《压电式传感器》PPT课件
合集下载
压电传感器的工作原理优秀课件
![压电传感器的工作原理优秀课件](https://img.taocdn.com/s3/m/b0759887d15abe23492f4d51.png)
灵 敏 度:0.1~1000mV/pC 频率范围:0.3~100KHz
噪声(最大增益):折合至输入端小于5µV 准 确 度:1% 最大输出:±10V/10mA 电 源:220V/50Hz 控制方式: 计算机或手动
焊接式 电荷放大器
24.10.2020
21
超小型电荷放大器模块
主要指标:
灵 敏 度:1、10、100mV/pC(任选一档) 频率范围:0.3~100KHz(上、下限可选) 噪声(最大灵敏度):输出端小于1mV 归 一 化:外接电阻调整 线性误差:1% 最大输出:±5V或±10V 电 源:±6V~±15V
24.10.2020
4
二、压电材料的分类及特性
压电传感器中的压电元件材料一般有 三类: 一类是压电晶体(如上述的石英晶 体); 另一类是 经过极化处理的 压电陶 瓷;第三类是高分子压电材料。
24.10.2020
5
(一)石英晶体
天然形成的石英晶体外形
24.10.2020
6
天然形成的石英晶体外形(续)
24.10.2020
10
压电陶瓷外形
24.10.2020
11
无铅压电陶瓷及其换能器外形
(上海硅酸盐研究所研制)
24.10.2020
12
高分子压电薄膜及拉制
24.10.2020
13
(三)高分子压电材料
典型的高分子压电材料有聚偏二氟乙烯 (PVF2或PVDF)、聚氟乙烯(PVF)、改性聚 氯乙烯(PVC)等。它是一种柔软的压电材料, 可根据需要制成薄膜或电缆套管等形状。它不易 破碎,具有防水性,可以大量连续拉制,制成较 大面积或较长的尺度,价格便宜,频率响应范围 较宽,测量动态范围可达80dB。
压电式传感器_图文
![压电式传感器_图文](https://img.taocdn.com/s3/m/1caacdb96529647d272852d1.png)
④温度和湿度稳定性要好:具有较高的居里点、以期望得 到宽的工作温度范围;
⑤时间稳定性:压电特性不随时间蜕变。
返回
上页
下页
6.5 测量电路
6.4.1电压放大器
电压放大器的作用是将压电式传感器的高输 出阻抗经放大器变换为低阻抗输出,并将微 弱的电压信号进行适当放大.因此也把这种 测量电路称为阻抗变换器。 其中
返回
上页
下页
6.3 压电材料
选用合适的压电材料是设计高性能传感器的关键。一般应 考虑以下几个方面:
①转换性能:具有较高的耦合系数或具有较大的压电常数 ;
②机械性能:压电元件作为受力元件,希望它的机械强度 高、机械刚度大。以期获得宽的线性范围和高的固有振动 频率;
③电性能:希望具有高的电阻率和大的介电常数,以期望 减弱外部分布电容的影响并获得良好的低频特性;
相对轴向灵敏度的百分比表
示。
返回
上页
下页
6.2 影响压电式传感器主要因数
定义(用轴向灵敏度的百分比表示): 最大横向灵敏度
Km=(Ky/Kz)100% =tg×100%;
一般横向灵敏度
Kt=(Kt/Kz)100% =tg×cos×100%;
返回
上页
下页
6.2 影响压电式传感器主要因数
产生横向灵敏度的必要条件 (1)伴随轴向作用力的同时,存在横向力; (2)压电元件本身具有横向压电效应。 消除横向灵敏度的技术途径 (1)从设计、工艺和使用诸方面确保力与电轴的
一致; (2)尽量Βιβλιοθήκη 取剪切型的力-电转换方式。一只较好
的压电传感器,最大横向灵敏度不大于5%。
返回
上页
下页
《压电式传感器》课件
![《压电式传感器》课件](https://img.taocdn.com/s3/m/e5375195b04e852458fb770bf78a6529657d3577.png)
汽车领域
压电式传感器在汽车中用于测量和 控制关键系统的压力,如制动系统、 供油系统和排放系统,提高车辆的 性能和安全性。
与其他传感器的比较
1 压力传感器 vs. 光传感器
压力传感器可以检测和测量物体的压力,而光传感器可以用于检测光线的强度和频率。
2 压力传感器 vs. 温度传感器
压力传感器可以测量物体的压力变化,而温度传感器可以测量环境的温度变化。
续的信号处理和分析。
3
输出信号
经过处理和转换,压电式传感器将输出电压 信号转化为可读取的压力数值或其他形式的 信号。
应用领域
工业领域
压电式传感器在工业生产过程中用 于检测和测量压力、压力变化,广 泛应用于制造业、自动化系统和控 制系统。
医疗领域
压电式传感器在医学设备中用于监 测生命体征、药物输送系统、手术 器械等,确保医疗过程的安全和有 效性。
压电式传感器
欢迎来到《压电式传感器》的PPT课件!本课程将深入探讨压电式传感器的定 义、原理、种类、工作原理、应用领域、与其他传感器的比较,以及未来发 展方向。
定义
什么是压电式传感器?
压电式传感器是一种根据压电 效应原理制作的传感器,能够 将压力转化为电信号,实现压 力的检测和测量。
压电效应的原理
压电效应是指某些晶体材料在 受到压力或振动作用下,会产 生电荷分离和极化现象,从而 产生电压。
压电材料的种类
常用的压电材料包括石英、陶 瓷、聚合物等,每种压电材料 都具有不同的特性和应用领域。
工作ห้องสมุดไป่ตู้理
1
压电效应
当压电材料受到压力时,产生电荷分离和极
信号放大
2
化,从而产生电压信号。
传感器将微弱的电压信号放大,以便进行后
传感器技术-第6讲-压电磁敏传感器PPT
![传感器技术-第6讲-压电磁敏传感器PPT](https://img.taocdn.com/s3/m/bda0f13ea55177232f60ddccda38376baf1fe0b2.png)
2.霍尔元件基本结构
霍尔元件的外形结构图,它由霍尔片、 4根引线和壳体组成,激励电极通常用红色 线,而霍尔电极通常用绿色或黄色线表示。
图3 霍尔元件
3.霍尔元件基本特性
(1)输入电阻和输出电阻
霍尔元件激励电极之间电阻为输入电 阻,霍尔电极输出电势对于电路外部来说 相当于一个电压源,其电源内阻即为输出 电阻。
(c)
P
i
H-
N 电流
图8 磁敏二极管的工作原理示意图
结论:随着磁场大小和方向的变化,可产生 正负输出电压的变化、特别是在较弱的磁场 作用下,可获得较大输出电压。若r区和r区 之外的复合能力之差越大,那么磁敏二极管 的灵敏度就越高。
磁敏二极管反向偏置时,则在 r区仅流 过很微小的电流,显得几乎与磁场无关。因 而二极管两端电压不会因受到磁场作用而有 任何改变。
6.1.3 压电式传感器的应用
1 压电式测力传感器
组成:
主要由石英晶片、绝缘套、电极、上 盖和基座等组成。
2、原理
传感器的上盖为传力元件,当受到外 力作用时,它将产生弹性形变,将力传递 到石英晶片上,利用石英晶片的压电效应 实现力—电转换。绝缘套用于绝缘和定位。
它的测力范围是0~50N,最小分辨率 为0.01N,绝缘阻抗为 2 1014 ,固有频 率为50~60kHz。非线性误差小于±1%。 整个该传感器重为10g,可用于机床动态 切削力的测量。
ΔU/V
2.0
1.6 1.2
3.霍尔式接近开关
利用霍尔效应可以制成开关型传感器。 广泛应用于测转速、制作接近开关等。霍 尔式接近开关主要由霍尔元件、放大电路、 整形电路、输出驱动及稳压电路5部分组成。
由工作特性曲线可见,工作时具有一定的 磁滞特性,可以使开关更可靠工作。图中
传感器第4章压电式ppt课件(共79张PPT)
![传感器第4章压电式ppt课件(共79张PPT)](https://img.taocdn.com/s3/m/b03c4eb2f7ec4afe05a1dff2.png)
τ一定,ω越高,压高力频变送响器应部越件 好
压电传感器的外形
块、振膜、下塑料块传递到压电
1 石英晶体的压电效应
2 压电陶瓷的压电效应
压电材料开始丧失压电性能的温度
εr ——压电材料的相对介电常数。
电荷放大器是一种输出电压与输入电荷量成正比的前置放大器。
为此,通常把传感器信号先输到高输入阻抗的前置放大器。
第27页,共79页。
第4章 压电式传感器
4.2.2 压电陶瓷的压电效应 ❖压电陶瓷是人工制造的多晶体压电材料。 ❖材料内部的晶粒有许多自发极化的电畴, 它有一定的极化方向, 从而 存在电场。
❖在无外电场作用时, 电畴在晶体中杂乱分布, 它们的极化效 应被相互抵消, 压电陶瓷内极化强度为零。因此原始的压电 陶瓷呈中性, 不具有压电性质。
第28页,共79页。
压电陶瓷极化处理
第4章 压电式传感E器
✓在陶瓷上施加外电场时, 电畴的极化方向发生转动, 趋向于按外电场 方向的排列, 从而使材料得到极化。外电场愈强, 就有更多的电畴更完 全地转向外电场方向。
✓让外电场强度大到使材料的极化达到饱和的程度, 即所有电畴极化方向都整齐 地与外电场方向一致时, 外电场去掉后, 电畴的极化方向基本不变, 即剩余极 化强度很大, 这时的材料才具有压电特性。
✓极化方向即外加电场方向,取为Z轴方向。
第29页,共79页。
第4章 压电式传感器
1) 压电陶瓷的正压电效应 2) 如果在陶瓷片上施加一个与极化方向平行的压缩力,压电片
3) 产生压缩变形,使内部束缚电荷的间距变小,电畴发生偏转, 4) 极化强度变小,致使内部的束缚电荷变少,导致被吸附在外面
5) 电极上的自由电荷有一部分被释放,呈现放电状态。 6) 当外力消失后,陶瓷片恢复原状,使极化强度增大,内部束缚 7) 电荷增加,导致电极的吸附自由电荷增加,呈现充电状态。
压电式传感器.ppt
![压电式传感器.ppt](https://img.taocdn.com/s3/m/0c097a58804d2b160b4ec02c.png)
§2-1 压电体等效电路
F
q
电荷 放大器
U a q Ca
Ca
Ca q Ra
电荷源
Ua
Ra
电压 放大器
电压源
§2-2 电压放大器
1.等效电路
屏蔽线
F
Ca
电压 放大器
-A
Ua
Ra
Cc
屏蔽线
Ri
Ci
Ui
U sc
压电体
放大器
§2-2 电压放大器
2. 输入特性
F Fm sin t
Ua
Ca
-A
Ui j R K ( j ) d 33 u 1 j R (Ca Ci Cc ) F
90
3
0 3 Kum K0
0
0
§2-3 电荷放大器
1. 工作原理
CF
A0 104
CF
RF CF 1
RF
-A
-A
q
U sc
q
Ca R a
电荷源
U
U sc q CF
§2-3 电荷放大器
2. 工作频限
1 fL 2 R f C f
1 fH 2 Rc (Ca Cc )
Ch9 压电式传感器
力相关非电量 压电效应 逆压电效应 电量
机械能 压电晶体
压电材料 压电陶瓷 压电聚合物
电能
§1 压电效应
§1-1 现象
极化面 压电体 应力T
T
Q + +++++
各向异性
P
T
面电荷
形变
电极化P
D=dT
压电系数,张量
F
q
电荷 放大器
U a q Ca
Ca
Ca q Ra
电荷源
Ua
Ra
电压 放大器
电压源
§2-2 电压放大器
1.等效电路
屏蔽线
F
Ca
电压 放大器
-A
Ua
Ra
Cc
屏蔽线
Ri
Ci
Ui
U sc
压电体
放大器
§2-2 电压放大器
2. 输入特性
F Fm sin t
Ua
Ca
-A
Ui j R K ( j ) d 33 u 1 j R (Ca Ci Cc ) F
90
3
0 3 Kum K0
0
0
§2-3 电荷放大器
1. 工作原理
CF
A0 104
CF
RF CF 1
RF
-A
-A
q
U sc
q
Ca R a
电荷源
U
U sc q CF
§2-3 电荷放大器
2. 工作频限
1 fL 2 R f C f
1 fH 2 Rc (Ca Cc )
Ch9 压电式传感器
力相关非电量 压电效应 逆压电效应 电量
机械能 压电晶体
压电材料 压电陶瓷 压电聚合物
电能
§1 压电效应
§1-1 现象
极化面 压电体 应力T
T
Q + +++++
各向异性
P
T
面电荷
形变
电极化P
D=dT
压电系数,张量
传感器原理及应用压电式传感器.完美版PPT
![传感器原理及应用压电式传感器.完美版PPT](https://img.taocdn.com/s3/m/c7ebc9d0eefdc8d377ee32b6.png)
§6.1 压电效应
二、压电效应的基本原理
z
3、石英晶体压电效应作用力与电荷关系
若从晶体上沿y方向切下一块晶片,当沿 电轴x方向施加应力时,晶片将产生厚度变形,
O
y
并发生极化现象。在晶体线性弹性范围内,极
x
化强度与应力成正比。
在垂直于x轴晶面上产生的电荷量为
b
z
q1 1d1 1 Fx
x
y
d11—压电系数。下标的意义为产生电荷的 面的轴向及施加作用力的轴向;a、b、c—石
这些自由电荷与陶瓷片内的束缚 电荷符号相反而数量相等,屏蔽和抵消 了陶瓷片内极化强度对外界的作用。
电极
自由电荷
-----
+++++
极化方向
- - - - - 束缚电荷
+++++
陶瓷片内束缚电荷与电极上 吸附的自由电荷示意图
因此,无外力或外场 作用时,极化处理后的压 电陶瓷也表现不出来对外 界的电场或应力。
产生电荷q11和q12的符号,决定于受压力
c a
还是受拉力。
§6.1 压电效应
二、压电效应的基本原理 4、石英晶体压电效应特点
§6.1 压电效应
二、压电效应的基本原理 5、压电陶瓷的压电效应
压电陶瓷是人工制造的多晶体 压电材料。
材料内部的晶粒有许多自发极 化的电畴,有一定的极化方向,从 而存在电场。
英晶片的长度、厚度和宽度。
c a
§6.1 压电效应
二、压电效应的基本原理
z
3、石英晶体压电效应作用力与电荷关系
若在同一切片上,沿机械轴y方向施加应 力,则仍在与x轴垂直的平面上产生电荷为
O
y
a q 12 d 12 b F y
压电式传感器应用 PPT课件
![压电式传感器应用 PPT课件](https://img.taocdn.com/s3/m/15445389551810a6f52486a8.png)
压电式传感器的应用实例
成员:郑逸凯 11192133 崔露凯 11192107 唐文杰 11192118
压电式传感器?
• 压电效应:某些电介质(晶体,极化的陶瓷,高分子聚合物和负
合材料等),当在它的适当方向施加作用力时,内部会产生电极化状 态的变化,同时在电介质的两端表面出现符号相反、与外力成正比的 束缚电荷。这种由外力作用而导致电介质带电的现象即为压电效应。
• 如果换能器中压电陶瓷的振荡频率在超声波范围,则其发 射或接收的声频信号即为超声波,这样的换能器称为压电 超声换能器。
压电式流量计
• 压电超声换能器 每隔一段时间(如 1/100s)发射和接 收互换一次。在 顺流和逆流的情 况下,发射和接 收的相位差与流 速成正比。
压电式传感器在测漏中的应用
• 如果地面下一均匀的自来水直管道某处O发生漏水,水漏 引起的振动从O点向管道两端传播,在管道上A、B两点放 两只压电传感器,由从两个传感器接收到的由O点传来的 t0时刻发出的振动信号所用时间差可计算出LA或LB。
两者时间差为
• Δt= tA-tB=(LA - LB )/v
又L=LA +LB ,所以
L t v
LA 2
LB
L t v
2
压电声传感器在超声速测量实验中的应用
• 超声速测量实验装置Fra bibliotek当信号发生器产生的正弦交流信号加在压电 陶瓷片两端面时,压电陶瓷片将产生机械振 动,在空气中激发出声波。所以,换能器S1 是声频信号发生器。
加速度式心音传感器:将声信号转换为电信号
压电式声 传感器
• 当交变信号加在压电陶 瓷片两端面时,由于压 电陶瓷的逆压电效应, 陶瓷片会在电极方向产 生周期性的伸长和缩短 。
压电式传感器ppt课件
![压电式传感器ppt课件](https://img.taocdn.com/s3/m/8ad417bd846a561252d380eb6294dd88d1d23d19.png)
压电效应最为显著;
图5.3.1石英晶体
Y轴: 机械轴或2轴,
该轴加力变形最大;
Z轴: 光轴或3轴,光线沿该轴通过晶体时不产生双折(X轴)方向的力作用下产生电荷;
“横向压电效应”:
沿机械轴(Y轴)方向的力作用下产生电荷;
在光轴(Z轴)方向的力作用下不产生压电效应。
晶体切片
图5.3.4 石英晶体的压电效应
(a)正负电荷是互相平衡的,外部没有带电现象;
(b)在X轴方向压缩,A面呈现负电荷、B面呈现正电荷; (c)沿Y轴方向压缩,在A面和B面分别呈现正、负电荷 。
石英晶体
一种天然晶体,压电系数d11=2.31×10-12C/N; 莫氏硬度为7、熔点为1750℃、膨胀系数仅为钢的1/30。 优点:
当压力撤消后,陶瓷片恢复原状,片内的正、 负电荷之间的距离变大,极化强度也变大,因此电 极上又吸附部分自由电荷而出现充电现象。 放电电荷的多少与外力的大小成比例关系
Q d33 F (5.3.3)
Q——电荷量;d33——压电陶瓷的压电系数; F——作用力
对于压电陶瓷,通常取它的极化方向为z轴,垂直
两个压电片的联接方式
图5.3.9 两个压电片的联接方式
(a) “并联”,Q’=2Q,U’=U,C’=2C 并联接法输出电荷大,本身电容大,时间常数大,
适宜用在测量慢变信号并且以电荷作为输出量的地方。
(b) “串联” Q’=Q,U’=2U,C’=C/2 而串联接法输出电压大,本身电容小。适宜
用于以电压作输出信号,且测量电路输入阻抗很 高的地方。
压电系数较高,各项机电参数随温度、时间等外 界条件的变化小,在锆钛酸铅的基方中添加一两种微 量元素,可以 获得不同性能的PZT材料。
( 3 ) 铌 镁 酸 铅 Pb(MgNb)O3-PbTiO3-PbZrO3 压 电 陶 瓷 (PMN)
图5.3.1石英晶体
Y轴: 机械轴或2轴,
该轴加力变形最大;
Z轴: 光轴或3轴,光线沿该轴通过晶体时不产生双折(X轴)方向的力作用下产生电荷;
“横向压电效应”:
沿机械轴(Y轴)方向的力作用下产生电荷;
在光轴(Z轴)方向的力作用下不产生压电效应。
晶体切片
图5.3.4 石英晶体的压电效应
(a)正负电荷是互相平衡的,外部没有带电现象;
(b)在X轴方向压缩,A面呈现负电荷、B面呈现正电荷; (c)沿Y轴方向压缩,在A面和B面分别呈现正、负电荷 。
石英晶体
一种天然晶体,压电系数d11=2.31×10-12C/N; 莫氏硬度为7、熔点为1750℃、膨胀系数仅为钢的1/30。 优点:
当压力撤消后,陶瓷片恢复原状,片内的正、 负电荷之间的距离变大,极化强度也变大,因此电 极上又吸附部分自由电荷而出现充电现象。 放电电荷的多少与外力的大小成比例关系
Q d33 F (5.3.3)
Q——电荷量;d33——压电陶瓷的压电系数; F——作用力
对于压电陶瓷,通常取它的极化方向为z轴,垂直
两个压电片的联接方式
图5.3.9 两个压电片的联接方式
(a) “并联”,Q’=2Q,U’=U,C’=2C 并联接法输出电荷大,本身电容大,时间常数大,
适宜用在测量慢变信号并且以电荷作为输出量的地方。
(b) “串联” Q’=Q,U’=2U,C’=C/2 而串联接法输出电压大,本身电容小。适宜
用于以电压作输出信号,且测量电路输入阻抗很 高的地方。
压电系数较高,各项机电参数随温度、时间等外 界条件的变化小,在锆钛酸铅的基方中添加一两种微 量元素,可以 获得不同性能的PZT材料。
( 3 ) 铌 镁 酸 铅 Pb(MgNb)O3-PbTiO3-PbZrO3 压 电 陶 瓷 (PMN)
压电式传感器 ppt课件
![压电式传感器 ppt课件](https://img.taocdn.com/s3/m/6dc6ecfc05087632311212a6.png)
• 压电陶瓷的压电系数比石英晶体的大得多, 所 以采用压电陶瓷制作的压电式传感器的灵敏度较高。 极化处理后的压电陶瓷材料的特性不稳定,而且剩 余极化强度和特性与温度有关, 它的参数也随时间 变化, 从而使其压电特性减弱。 • 目前使用较多的压电陶瓷材料是钛酸钡陶瓷及 PZT系列, 它有较高的压电系数和较高的工作温度。
ppt课件
19
6.1 工作原理及压电材料
7) 石英晶体的上述特性与其内部分
y
子 结 构 有 关 。 图 6.1.3 是 一 个 单 元 组
体中构成石英晶体的硅离子和氧离子
在垂直于z轴的xy平面上的投影,等
x
效为一个正六边形排列。右图中紫色
代表硅离子Si4+,绿色代表氧离子O2-。
8) 当石英晶体未受外力作用时,正、负离子正好分 布在正六边形的顶角上,形成三个互成120°夹角的 电偶极矩P1、P2、P3。 如图6.1.3(a)所示。
ppt课件
11
6.1 工作原理及压电材料
相6 对5
介4
电 常
3
数2 ε1
居里点 t/℃
0
100 200 300 400 500 600
石英在高温下相对介电常数的温度特性
居里点温度
573°C
其介电常数和压电常数 的温度稳定性相当好, 在常温范围内这两个参 数几乎不随温度变化。
自振频率高,动态响应好,机械强度高,绝缘性能好, 迟滞小,重复性好,线性范围宽
• 具有体积小,重量轻,工作频带宽等特点, 因此在各种动 态力、 机械冲击与振动的测量, 以及声学、医学、力学、 宇航等方面都得到了非常广泛的应用。
ppt课件
2
6.1 工作原理及压电材料
一、 压电效应
ppt课件
19
6.1 工作原理及压电材料
7) 石英晶体的上述特性与其内部分
y
子 结 构 有 关 。 图 6.1.3 是 一 个 单 元 组
体中构成石英晶体的硅离子和氧离子
在垂直于z轴的xy平面上的投影,等
x
效为一个正六边形排列。右图中紫色
代表硅离子Si4+,绿色代表氧离子O2-。
8) 当石英晶体未受外力作用时,正、负离子正好分 布在正六边形的顶角上,形成三个互成120°夹角的 电偶极矩P1、P2、P3。 如图6.1.3(a)所示。
ppt课件
11
6.1 工作原理及压电材料
相6 对5
介4
电 常
3
数2 ε1
居里点 t/℃
0
100 200 300 400 500 600
石英在高温下相对介电常数的温度特性
居里点温度
573°C
其介电常数和压电常数 的温度稳定性相当好, 在常温范围内这两个参 数几乎不随温度变化。
自振频率高,动态响应好,机械强度高,绝缘性能好, 迟滞小,重复性好,线性范围宽
• 具有体积小,重量轻,工作频带宽等特点, 因此在各种动 态力、 机械冲击与振动的测量, 以及声学、医学、力学、 宇航等方面都得到了非常广泛的应用。
ppt课件
2
6.1 工作原理及压电材料
一、 压电效应
压电式传感器介绍课件
![压电式传感器介绍课件](https://img.taocdn.com/s3/m/d488a67868eae009581b6bd97f1922791688be95.png)
压电陶瓷:具有高灵敏度、 高稳定性和长寿命的特点
A
压电复合材料:结合多种材料 的优点,提高传感器的性能
C
B
压电薄膜:具有轻量化、柔 性化Fra bibliotek可弯曲的特点D
压电纳米材料:具有高灵敏度、 低功耗和快速响应的特点
集成化、微型化
01
集成化:将多个传 感器集成到一个芯 片上,实现多功能、
高精度的测量
02
微型化:减小传感 器的体积和重量, 提高便携性和可穿
压电材料:具有压电效应的材料,如石英、锆 钛酸铅等 传感器结构:由压电材料和电极组成,当受到 压力时,压电材料产生电荷,通过电极输出
信号处理:将输出的电荷信号进行放大、滤 波等处理,得到所需的测量信号
2
压电式传感器分 类
压电陶瓷传感器
工作原理:利用压电效应,将机械 能转化为电能
特点:体积小、重量轻、灵敏度高、 响应速度快
微型化:压电式传感器将向微型化方向发展,体积更小, 重量更轻,便于携带和安装。
集成化:压电式传感器将实现多种功能集成,如压力、温 度、加速度等,提高测量精度和效率。
谢谢
和补偿
应用领域:汽车 安全气囊、地震
2 监测、航空航天
等领域
3
优点:高灵敏度、 宽频率响应、低 功耗、体积小
流量测量
压电式传感 器可用于测 量液体和气
体的流量
通过检测压 力变化来测
量流量
适用于各种 管道和设备, 如泵、阀门、
管道等
具有高精度、 高可靠性和 长寿命的特
点
4
压电式传感器发 展趋势
新型压电材料
应用领域:广泛应用于压力、加速 度、流量、位移等物理量的测量
压电式压力传感器PPT课件
![压电式压力传感器PPT课件](https://img.taocdn.com/s3/m/2b08802cec630b1c59eef8c75fbfc77da26997b4.png)
荷的压电效应称为“横向压电效应”,沿光轴Z-Z方向受力
则不产生压电效应。
压电效应结论
①无论是正或逆压电效应,其作用力(或应变) 与电荷(或电场强度)之间呈线性关系; ②晶体在哪个方向上有正压电效应,则在此方 向上一定存在逆压电效应; ③石英晶体不是在任何方向都存在压电效应的。
12
第12页,共38页。
压电式动态力传感器以及在车床中用于动态切削力的 测量
30
第30页,共38页。
§7.6 压电传感器的应用 压电式动态力传感器在体育动态测量中的应用 压电传感器测量双腿 跳的动态力
压电式步态分 析跑台
压电式纵跳 训练 分析装置
31
第31页,共38页。
§7.6 压电传感器的应用
4. 在振动测量中应用
1) 振动的基本概念
Ra传感器的漏电阻
Ri前置放大器输入电阻
19
§7.6 压电传感器的应用
压电传感器只能应用于动态测量
由于外力作用在压电元件上产生的电荷只有在无泄漏 的情况下才能保存,即需要测量回路具有无限大的输入阻 抗,这实际上是不可能的,因此压电式传感器不能用于静
态测量。压电元件在交变力的作用下,电荷可以不断补充,可以 供给测量回路以一定的电流,故只适用于动态测量(在50kHz以 上时,灵敏度下降)。
(四)、高分子压电材料
高分子压电薄膜:是某些高分子聚合物经延展和拉伸以及电 场极化后具有压电性能的材料,如聚二氟乙烯 优点:耐冲击、不易破碎、稳定性好、频带宽。 高分子压电陶瓷薄膜:是在高分子化合物中加入压电陶瓷粉末 制成的,这种复合材料保持了高分子压电陶瓷薄膜的柔软性, 又具有较高的压电系数。
16
获得良好的低频特性;
④环境适应性强:温度和湿度稳定性要好,要求具有较高的居
则不产生压电效应。
压电效应结论
①无论是正或逆压电效应,其作用力(或应变) 与电荷(或电场强度)之间呈线性关系; ②晶体在哪个方向上有正压电效应,则在此方 向上一定存在逆压电效应; ③石英晶体不是在任何方向都存在压电效应的。
12
第12页,共38页。
压电式动态力传感器以及在车床中用于动态切削力的 测量
30
第30页,共38页。
§7.6 压电传感器的应用 压电式动态力传感器在体育动态测量中的应用 压电传感器测量双腿 跳的动态力
压电式步态分 析跑台
压电式纵跳 训练 分析装置
31
第31页,共38页。
§7.6 压电传感器的应用
4. 在振动测量中应用
1) 振动的基本概念
Ra传感器的漏电阻
Ri前置放大器输入电阻
19
§7.6 压电传感器的应用
压电传感器只能应用于动态测量
由于外力作用在压电元件上产生的电荷只有在无泄漏 的情况下才能保存,即需要测量回路具有无限大的输入阻 抗,这实际上是不可能的,因此压电式传感器不能用于静
态测量。压电元件在交变力的作用下,电荷可以不断补充,可以 供给测量回路以一定的电流,故只适用于动态测量(在50kHz以 上时,灵敏度下降)。
(四)、高分子压电材料
高分子压电薄膜:是某些高分子聚合物经延展和拉伸以及电 场极化后具有压电性能的材料,如聚二氟乙烯 优点:耐冲击、不易破碎、稳定性好、频带宽。 高分子压电陶瓷薄膜:是在高分子化合物中加入压电陶瓷粉末 制成的,这种复合材料保持了高分子压电陶瓷薄膜的柔软性, 又具有较高的压电系数。
16
获得良好的低频特性;
④环境适应性强:温度和湿度稳定性要好,要求具有较高的居
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机 械 能
压电元件
电 能
精选ppt
6
(一)石英晶体
天然形成的石英晶体外形
精选ppt
7
天然形成的石英晶体外形(续)
精选ppt
8
石英晶体切片及封装 石英晶体薄片
双面镀银并封装
精选ppt
9
石英晶体振荡器(晶振)
晶振
石英晶体在振荡 电路中工作时,压电 效应与逆压电效应交 替作用,从而产生稳 精选ppt 定的振荡输出频率1。0
精选ppt
3
第6章 压电式传感器 传感器原理及应用
概述
压电加速度计
压电陶瓷超声换能器
压电警号
压电陶瓷位精选移ppt器
压电秤重浮游计
4
第6些电介质(晶体)
➢ 当沿着一定方向施加力变形时, 内部产生极化现象,同时在它表 面会产生符号相反的电荷;
➢ 当外力去掉后,又重新恢复不 带电状态;
压电材料可以分为两大类:压电晶体和压电陶瓷。
压电材料的主要特性参数有:
① 压电常数: 压电常数是衡量材料压电效应强弱的参数,它 直接关系到压电输出灵敏度。
② 弹性常数: 压电材料的弹性常数、刚度决定着压电器件的 固有频率和动态特性。
精选ppt
12
③ 介电常数: 对于一定形状、尺寸的压电元件,其固有电 容与介电常数有关;而固有电容又影响着压电传感器的频率下 限。
第6章 压电式传感器
6.2 压电材料 6.2.1 石英晶体
传感器原理及应用
➢ 自然界许多晶体具有压电效应,但十分微弱,研究发
现石英晶体、钛酸钡、锆钛酸铅是优能的压电材料。
➢ 压电材料可以分为两类:压电晶体、压电陶瓷。
外形结构
精选ppt
11
在自然界中大多数晶体都具有压电效应,但压电效应十分微 弱。随着对材料的深入研究,发现石英晶体、钛酸钡、锆钛酸铅 等材料是性能优良的压电材料。
➢当作用力方向改变后,电荷的 极性也随之改变;
❖ 这种现象称压电效应。
精选ppt
5
第6章 压电式传感器
6.1 压电效应
传感器原理及应用
❖ 压电效应是可逆的
➢在介质极化的方向施加电场时,电介质会产生形变, 将电能转化成机械能,这种现象称“逆压电效应”。
• 所以压电元件可以将机械能——转化成电能
➢ 也可以将电能——转化成机械能。
④ 机械耦合系数:它的意义是,在压电效应中,转换输出 能量(如电能)与输入的能量(如机械能)之比的平方根,这 是衡量压电材料机—电能量转换效率的一个重要参数。
⑤ 电阻: 压电材料的绝缘电阻将减少电荷泄漏,从而改善 压电传感器的低频特性。
⑥ 居里点温度: 它是指压电材料开始丧失压电特性的温度。
精选ppt
精选ppt
20
第6章 压电式传感器
6.2 压电材料 6.2.1 石英晶体
传感器原理及应用
因为P=ql, q为电荷量,l为正负电荷之间距离。此时正负电
荷重心重合,电偶极矩的矢量和等于零,即P1+P2+P3=0,所以 晶体表面不产生电荷,即呈中性。
当石英晶体受到沿x轴方向的压力作用时,晶体沿x方向将 产生压缩变形,正负离子的相对位置也随之变动。如图(b)所 示,此时正负电荷重心不再重合,电偶极矩在x方向上的分量由 于P1的减小和P2、P3的增加而不等于零。在x轴的正方向出现负 电荷,电偶极矩在y方向上的分精量选pp仍t 为零,不出现电荷。 21
如图6-3(a)所示。
精选ppt
19
x
+
-
P1 -
o
y
+ P2 P3 +
-
(a)
x
Fx
A - -- -- -
+
- P1
-
y
o
+ P2 P3 +
-
B + ++ ++ +
Fx
(b)
x
A ++++
Fy
+
Fy
y
- P1 -
C
P2 +o
P3 +
D
- B ----
(c)
图6-3 石英晶体压电模型 (a) 不受力时; (b) x轴方向受力; (c) y轴方向受力
石英晶体的上述特性与其内部分子结构有关。图6-3是一个单 元组体中构成石英晶体的硅离子和氧离子,在垂直于z轴的xy平 面上的投影,等效为一个正六边形排列。 图中“”代表硅离子 Si4+, “”代表氧离子O2-。
当石英晶体未受外力作用时,正、负离子正好分布在正六边
形的顶角上,形成三个互成120°夹角的电偶极矩P1、P2、P3。
13
精选ppt
14
第6章 压电式传感器
6.2 压电材料 6.2.1 石英晶体
压 电 晶 片
传感器原理及应用
人工合成水晶
精选ppt
按特定方向切片
15
第6章 压电式传感器
6.2 压电材料
6.2.1 石英晶体
传感器原理及应用
石英晶体化学式为SiO2,是单晶体结构。图6-2(a)表示了 天然结构的石英晶体外形,它是一个正六面体。石英晶体各个方
式中, d11为x方向受力的压电系数。
若在同一切片上,沿机械轴y方向施加作用力Fy,则仍在与x 轴垂直的平面上产生电荷qy,其大小为
qy
d1
2
a b
Fy
(6-2)
精选ppt
18
式中:d12——y轴方向受力的压电系数,根据石英晶体的对称性, 有d12=-d11;
a、b——晶体切片的长度和厚度。
电荷qx和qy的符号由受压力还是受拉力决定。
精选ppt
16
z
o
x
y
x
(a)
z z
b
o
o
y
x
cy
a
(b)
(c)
图6-2 石英晶体 (a) 晶体外形; (b) 切割方向; (c) 晶片
精选ppt
17
若从晶体上沿y方向切下一块如图6-2(c)所示的晶片,当
沿电轴方向施加作用力Fx时,在与电轴x垂直的平面上将产生电
荷, 其大小为
qx d11Fx
(6-1)
向的特性是不同的。 其中纵向轴z称为光轴,经过六面体棱线并垂
直于光轴的x称为电轴,与x和z轴同时垂直的轴y称为机械轴。 通
常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电
效应”, 而把沿机械轴y方向的力作用下产生电荷的压电效应称
为“横向压电效应”。 而沿光轴z方向的力作用时不产生压电效应。
传感器原理及应用
第6章 压电式传感器
精选ppt
1
第6章 压电式传感器
主要内容
传感器原理及应用
1.压电效应 2.压电材料 3.压电元件结构 4.等效电路与测量电路 5.压电传感器的应用
精选ppt
2
第6章 压电式传感器 概述
传感器原理及应用
➢ 压电式传感器是一种典型的发电型传感器, 以电介质的压电效应为基础,外力作用下在 电介质表面产生电荷,从而实现非电量测量。 ➢ 压电式传感器可以对各种动态力、机械冲 击和振动进行测量,在声学、医学、力学、 导航方面都得到广泛的应用。