华中科技大学2004年《数学分析》试题

合集下载

考研数学高数部分试卷与解答2004

考研数学高数部分试卷与解答2004

《考研数学试卷》2004高数部份一、填空题[2004.三.1.4][2004.四.1.4]若()0sin limcos 5xx x x b e a→-=-,则a =1,b=4-[2004.二.1.4]设()()21lim1n n xf x nx →∞-=+,则()f x 的间断点为x =0[2004.一.1.4]曲线ln y x =上与直线1x y +=垂直的切线方程为1y x =-[2004.二.2.4]设函数()y x 由参数方程333131x t t y t t ⎧=++⎪⎨=-+⎪⎩确定,则曲线()y y x =向上凸的x 取值范围为(,1]-∞[2004.四.3.4]设arctan lnxy e =-1x dy dx==211e e -+[2004.一.2.4]已知()x x f e xe -'=,且()10f =,则()f x =()21ln 2x[2004.三.3.4][2004.四.2.4]设()211,2211,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩,则()2121f x dx -=⎰12-[2004.二.3.4]1+∞=⎰2π[2004.三.2.4]函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2f u v∂=∂∂()()2g v g v '-⎡⎤⎣⎦[2004.二.4.4]设函数(,)z z x y =由方程232x zz ey -=+确定,则3z z xy∂∂+=∂∂2[2004.一.3.4]设L 为正向圆周222x y +=在第一象限中的部分,则曲线积分2Lxdy ydx -⎰的值为32π[2004.一.4.4]欧拉方程()2224200d y dy xxy x dxdx++=>的通解为122c c yxx=+[2004.二.5.4]微分方程()320y x dx xdy +-=满足()615y =的解为315y x =+二、单项选择题[2004.三.7.4][2004.四.7.4]函数()()()()2sin 212x x f x x x x -=--在下列那个区间内有界(A )A.(1,0)-B.()0,1C.()1,2D. ()2,3 [2004.三.8.4][2004.四.8.4]设()f x 在(),-∞+∞内有定义,且()()1,0lim ,0,0x f x f x a g x x x →∞⎧⎛⎫≠⎪ ⎪==⎝⎭⎨⎪=⎩,则(D ) A.0x =必是()g x 的第一类间断点 B. 0x =必是()g x 的第二类间断点 C. 0x =必是()g x 的连续点 D. ()g x 在点0x =处的连续性与a 的取值有关 [2004.一.7.4][2004.二.7.4]把0x +→时的无穷小量223cos ,tan,sin xxtdt tdt αβγ===⎰⎰⎰排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(B )A ,,αβγB ,,αγβC ,,βαγD ,,βγα[2004.一.8.4][2004.二.10.4]设()f x 连续,且()00f '>,则存在0δ>,使得(C ) A. ()f x 在()0,δ内单调增加 B. ()f x 在(),0δ-内单调减少 C. 对任意()0,x δ∈有()()0f x f > D. 对任意(),0x δ∈-有()()0f x f >[2004.三.11.4][2004.四.11.4]设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论种错误的是(D )A. 至少存在一点()0,x a b ∈,使得()()0f x f a >B. 至少存在一点()0,x a b ∈,使得()()0f x f b >C. 至少存在一点()0,x a b ∈,使得()00f x '=D. 至少存在一点()0,x a b ∈,使得()00f x =[2004.二.8.4][2004.三.9.4][2004.四.9.4]设()()1f x x x =-,则(C )A. 0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点B. 0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点C. 0x =是()f x 的极值点,且()0,0不是曲线()y f x =的拐点D. 0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点[2004.二.9.4]lim lnn →∞=(B )A.221ln xdx ⎰ B.212ln xdx ⎰ C.212ln(1)x dx +⎰ D.221ln (1)x dx +⎰[2004.四.10.4]设()()()01,00,0,1,0xx f x x F x f t dt x >⎧⎪===⎨⎪-<⎩⎰,则(B )A.()F x 在0x =点不连续。

2004考研数一真题及答案解析

2004考研数一真题及答案解析

令 Y
1 n
n i 1
Xi
,

(A)
Cov(
X1,
Y
)
2 n
(B) Cov( X1,Y ) 2
(C)
D( X 1
Y)
n
n
2
2
(D)
D( X 1
Y)
n 1 n
2
三、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证明过程或演算
步骤)
(15)(本题满分 12 分)

e
a
b
e2
,证明
(2)已知 f (e x ) xex ,且 f(1)=0, 则 f(x)= 1 (ln x)2 . 2
【分析】 先求出 f (x) 的表达式,再积分即可。
【详解】 令 e x t ,则 x ln t ,于是有
f (t) ln t , 即 f (x) ln x .
t
x
积分得 f (x) ln xdx 1 (ln x)2 C . 利用初始条件 f(1)=0, 得 C=0,故所求函数为 f(x)= 1 (ln x)2 .
【详解】
x2
lim x0
lim x0
tan tdt
0
x cos t 2dt
lim
x0
tan x 2x cos x 2
0 ,可排除(C),(D)选项,
0

lim lim
x0
x0
x sin t 3dt
0 x2
tan tdt
lim
x0
3
sin x 2
1
2x
2x tan x
0
= 1 lim 4 x0
0 0 1

2004年高考数学试题(全国4理)及答案

2004年高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x ∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)C已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值. 19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x e x f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.4316.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα,所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去 当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f图2Cy图1在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x ex x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nqq q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq q q q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2004考研数学一真题及答案解析

2004考研数学一真题及答案解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

2004-2005 学年第二学期大学数学分析试题及答案

2004-2005 学年第二学期大学数学分析试题及答案
2004——2005 学年第二学期数学分析试题 A(0401,0402)
一:填空(20 分)
1、函数 f (x) = e x 的带有拉格朗日型余项的麦克劳林公式为

2、设 f(x)为区间 I 上的可导函数,则 f 为 I 上的凸函数的充要条件为 f (x)
f (x1) + f (x1)(x2 − x1)
n+1
,
n
=
(4
1,2,
分)
n
所以当 x (0,2) 时,
f (x) = x = 4 (−1)n+1 sin nx = 4 sin x − 1 sin 2x + 1 sin 3x + (6 分)
n
2 2 2 2 3 2
5、因 an
=
n(n
1 + 1)(n
+
2)
=
1 2
1
n(n
+
1)

(n
由罗尔定理存在 (,1) (0,1) 使得 F ( ) = 0 ,即 f ( ) = − f ( ) (4 分)
23
n
,当 x = −1时
二:判断(16 分)
1、实轴上的任一有界点集 S 至少有一个聚点。( )
2、设 H = { ( 1 , 1 ) n+2 n
n = 1, 2, } ,则 H 能覆盖区间 (0,1)。( )
3、黎曼函数
f
(x)
=
1 , q
x = p , p, q互素, q p q
在 区 间 [0 , 1] 上 可 积 , 且
连续及连续函数的局部保号性,存在 x0 的某领域 (x0 − , x0 + ) (当 x0 = a 或

2004考研数一真题及解析

2004考研数一真题及解析

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

华中科技大学历年考研真题

华中科技大学历年考研真题

华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。

2004考研数学三真题及答案解析

2004考研数学三真题及答案解析

2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)若5)(cos sin lim 0=--→b x a e xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题.【详解】因为5)(cos sin lim0=--→b x ae xxx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a =1.极限化为51)(cos lim)(cos sin lim00=-=-=--→→b b x xxb x ae x x xx ,得b =-4.因此,a =1,b =-4.【评注】一般地,已知)()(limx g x f =A ,(1)若g (x )→0,则f (x )→0;(2)若f (x )→0,且A ≠0,则g (x )→0.(2)设函数f (u ,v )由关系式f [xg (y ),y ]=x +g (y )确定,其中函数g (y )可微,且g (y )≠0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u =xg (y ),v =y ,可得到f (u ,v )的表达式,再求偏导数即可.【详解】令u =xg (y ),v =y ,则f (u ,v )=)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂.(3)设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x -1=t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x -1=t ,⎰⎰⎰--==-121121221)()()1(dtx f dt t f dx x f =21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4)二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为2.【分析】二次型的秩即对应的矩阵的秩,亦即标准型中平方项的项数,于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而2)(=A r ,即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++=2221232y y +=,其中,21213211x x x y ++=322x x y -=.所以二次型的秩为2.(5)设随机变量X 服从参数为λ的指数分布,则=>}{DX X P e1.【分析】根据指数分布的分布函数和方差立即得正确答案.【详解】由于21λDX =,X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布,即指数分布的考查,属基本题型.(6)设总体X 服从正态分布),(21σμN ,总体Y 服从正态分布),(22σμN ,1,,21n X X X 和2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本,则22121212()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为2121])(11[1σX X n E n i i =--∑=,2122](11[2σY Y n E n j j =--∑=,故应填2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界.(A)(-1,0).(B)(0,1).(C)(1,2).(D)(2,3).[A ]【分析】如f (x )在(a ,b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a ,b )内有界.【详解】当x ≠0,1,2时,f (x )连续,而183sin )(lim 1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1,0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a ,b ]上连续,则f (x )在闭区间[a ,b ]上有界;如函数f (x )在开区间(a ,b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a ,b )内有界.(8)设f (x )在(-∞,+∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则(A)x =0必是g (x )的第一类间断点.(B)x =0必是g (x )的第二类间断点.(C)x =0必是g (x )的连续点.(D)g (x )在点x =0处的连续性与a 的取值有关.[D ]【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f x f x g u x x ∞→→→===a (令xu 1=),又g (0)=0,所以,当a =0时,)0()(lim 0g x g x =→,即g (x )在点x =0处连续,当a ≠0时,)0()(lim 0g x g x ≠→,即x =0是g (x )的第一类间断点,因此,g (x )在点x =0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性.(9)设f (x )=|x (1-x )|,则(A)x =0是f (x )的极值点,但(0,0)不是曲线y =f (x )的拐点.(B)x =0不是f (x )的极值点,但(0,0)是曲线y =f (x )的拐点.(C)x =0是f (x )的极值点,且(0,0)是曲线y =f (x )的拐点.(D)x =0不是f (x )的极值点,(0,0)也不是曲线y =f (x )的拐点.[C ]【分析】由于f (x )在x =0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x =0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0<δ<1,当x ∈(-δ,0)⋃(0,δ)时,f (x )>0,而f (0)=0,所以x =0是f (x )的极小值点.显然,x =0是f (x )的不可导点.当x ∈(-δ,0)时,f (x )=-x (1-x ),02)(>=''x f ,当x ∈(0,δ)时,f (x )=x (1-x ),02)(<-=''x f ,所以(0,0)是曲线y =f(x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x =0的某空心邻域内的一阶导数的符号来判断.(10)设有下列命题:(1)若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2)若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3)若1lim 1>+∞→n n n u u ,则∑∞=1n n u 发散.(4)若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A)(1)(2).(B)(2)(3).(C)(3)(4).(D)(1)(4).[B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim 1>+∞→n n n u u 可得到n u 不趋向于零(n →∞),所以∑∞=1n n u 发散.(4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛.故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11)设)(x f '在[a ,b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是(A)至少存在一点),(0b a x ∈,使得)(0x f >f (a ).(B)至少存在一点),(0b a x ∈,使得)(0x f >f (b ).(C)至少存在一点),(0b a x ∈,使得0)(0='x f .(D)至少存在一点),(0b a x ∈,使得)(0x f =0.[D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项.【详解】首先,由已知)(x f '在[a ,b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >.同理,至少存在一点),(0b a x ∈使得)()(0b f x f >.所以,(A)(B)(C)都正确,故选(D).【评注】本题综合考查了介值定理与极限的保号性,有一定的难度.(12)设n 阶矩阵A 与B 等价,则必有(A)当)0(||≠=a a A 时,a B =||.(B)当)0(||≠=a a A 时,a B -=||.(C)当0||≠A 时,0||=B .(D)当0||=A 时,0||=B .[D ]【分析】利用矩阵A 与B 等价的充要条件:)()(B r A r =立即可得.【详解】因为当0||=A 时,n A r <)(,又A 与B 等价,故n B r <)(,即0||=B ,故选(D).【评注】本题是对矩阵等价、行列式的考查,属基本题型.(13)设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A)不存在.(B)仅含一个非零解向量.(C)含有两个线性无关的解向量.(D)含有三个线性无关的解向量.[B ]【分析】要确定基础解系含向量的个数,实际上只要确定未知数的个数和系数矩阵的秩.【详解】因为基础解系含向量的个数=)(A r n -,而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r 根据已知条件,0*≠A 于是)(A r 等于n 或1-n .又b Ax =有互不相等的解,即解不惟一,故1)(-=n A r .从而基础解系仅含一个解向量,即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14)设随机变量X 服从正态分布)1,0(N ,对给定的)1,0(∈α,数αu 满足αu X P α=>}{,若αx X P =<}|{|,则x 等于(A)2αu .(B)21αu-.(C)21αu -.(D)αu -1.[C ]【分析】利用标准正态分布密度曲线的对称性和几何意义即得.【详解】由αx X P =<}|{|,以及标准正态分布密度曲线的对称性可得21}{αx X P -=>.故正确答案为(C).【评注】本题是对标准正态分布的性质,严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求)cos sin 1(lim 2220xxx x -→.【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x xx x x x x x x x x x x .【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算.(16)(本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x .【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算.(17)(本题满分8分)设f (x ),g (x )在[a ,b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈[a ,b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba badx x xg dx x xf )()(.【分析】令F (x )=f (x )-g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可.【详解】令F (x )=f (x )-g (x ),⎰=x a dt t F x G )()(,由题设G (x )≥0,x ∈[a ,b ],G (a )=G (b )=0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(,由于G (x )≥0,x ∈[a ,b ],故有0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤ba badx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.(18)(本题满分9分)设某商品的需求函数为Q =100-5P ,其中价格P ∈(0,20),Q 为需求量.(I)求需求量对价格的弹性d E (d E >0);(II)推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E >0,所以dP dQ Q P E d =;由Q =PQ 及dPdQQ P E d =可推导)1(d E Q dPdR-=.【详解】(I)PPdP dQ Q P E d -==20.(II)由R =PQ ,得)1(1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=.又由120=-=PPE d ,得P =10.当10<P <20时,d E >1,于是0<dPdR,故当10<P <20时,降低价格反而使收益增加.【评注】当d E >0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==.利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dp dR d )1(-=,p E dQ dR d11(-=,d E EpER-=1(收益对价格的弹性).(19)(本题满分9分)设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ).求:(I)S (x )所满足的一阶微分方程;(II)S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S ,易见S (0)=0,+⋅⋅+⋅+='642422)(753x x x x S )642422(642 +⋅⋅+⋅+=x x x x )](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II)方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰-22212x Ce x +--=,由初始条件y(0)=0,得C =1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题.(20)(本题满分13分)设T α)0,2,1(1=,T ααα)3,2,1(2-+=,T b αb α)2,2,1(3+---=,T β)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ)β不能由321,,ααα线性表示;(Ⅱ)β可由321,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由321,,ααα线性表示,但表示式不唯一,并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解.【详解】设有数,,,321k k k 使得βαk αk αk =++332211.(*)记),,(321αααA =.对矩阵),(βA 施以初等行变换,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ)当0=a 时,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA .可知),()(βA r A r ≠.故方程组(*)无解,β不能由321,,ααα线性表示.(Ⅱ)当0≠a ,且b a ≠时,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r ,方程组(*)有唯一解:a k 111-=,ak 12=,03=k .此时β可由321,,ααα唯一地线性表示,其表示式为211)11(αaαa β+-=.(Ⅲ)当0≠=b a 时,对矩阵),(βA 施以初等行变换,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a ,2),()(==βA r A r ,方程组(*)有无穷多解,其全部解为a k 111-=,c ak +=12,c k =3,其中c 为任意常数.β可由321,,ααα线性表示,但表示式不唯一,其表示式为321)1(11(αc αc aαa β+++-=.【评注】本题属于常规题型,曾考过两次(1991,2000).(21)(本题满分13分)设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b b b b A .(Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题,通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】(Ⅰ)1当0≠b 时,111||---------=-λb b bλb b b λA E λ =1)]1(][)1(1[------n b λb n λ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 .对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n b b b b n b b b bn A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111 n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001 解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为Tk ξk )1,,1,1,1(1 =(k 为任意不为零的常数).对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为nn ξk ξk ξk +++ 3322(n k k k ,,,32 是不全为零的常数).2当0=b 时,n λλλλA E λ)1(100010001||-=---=- ,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112当0=b 时,E A =,对任意可逆矩阵P ,均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算,齐次线性方程组的求解和矩阵的对角化等问题,属于有一点综合性的试题.另外,本题的解题思路是容易的,只要注意矩阵中含有一个未知参数,从而一般要讨论其不同取值情况.(22)(本题满分13分)设A ,B 为两个随机事件,且41)(=A P ,31)|(=AB P ,21)|(=B A P ,令⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y求(Ⅰ)二维随机变量),(Y X 的概率分布;(Ⅱ)X 与Y 的相关系数XY ρ;(Ⅲ)22Y XZ +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】(Ⅰ)因为121)|()()(==A B P A P AB P ,于是61)|()()(==B A P AB P B P ,则有121)(}1,1{====AB P Y X P ,61)()((}0,1{=-====AB P A P B A P Y X P ,121)()()(}1,0{=-====AB P B P A P Y X P ,32)]()()([1)(1(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P ,(或32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:Y X01013212161121(Ⅱ)方法一:因为41)(==A P EX ,61)(==B P EY ,121)(=XY E ,41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数1515151),(==⋅=DYDX Y X Cov ρXY .方法二:X,Y 的概率分布分别为P65则61,41==EY EX ,163=DX ,DY=365,E(XY)=121,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ)Z 的可能取值为:0,1,2.32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P ,121}1,1{}2{=====Y X P Z P ,即Z 的概率分布为:Z 012P3241121【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型(23)(本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα.设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ)当1=α时,求未知参数β的矩估计量;(Ⅱ)当1=α时,求未知参数β的最大似然估计量;(Ⅲ)当2=β时,求未知参数α的最大似然估计量.【分析】本题是一个常规题型,只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】当1=α时,X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ)由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β令X ββ=-1,解得1-=X Xβ,所以,参数β的矩估计量为1-=X Xβ.(Ⅱ)对于总体X 的样本值n x x x ,,,21 ,似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βnβd βL d 1ln )]([ln ,令0ln )]([ln 1=-=∑=ni i x βnβd βL d ,解得∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.(Ⅲ)当2=β时,X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 ,似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他 当),,2,1(n i αx i =>时,α越大,)(αL 越大,即α的最大似然估计值为},,,min{ˆ21n x x x α=,于是α的最大似然估计量为},,,min{ˆ21n X X X α=.2005年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)极限12sinlim 2+∞→x x x x =.(2)微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X,再从X ,,2,1 中任取一个数,记为Y,则}2{=Y P =______.(6)设二维随机变量(X,Y)的概率分布为X Y 0100.4a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a=,b=.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A)2.(B)4.(C) 6.(D)8.[](8)设σd y x I D⎰⎰+=221cos ,σd y xI D⎰⎰+=)cos(222,σd y xI D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A)123I I I >>.(B )321I I I >>.(C)312I I I >>.(D)213I I I >>.[](9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A)∑∞=-112n n a收敛,∑∞=12n n a 发散.(B )∑∞=12n na收敛,∑∞=-112n n a 发散.(C))(1212∑∞=-+n n n a a收敛.(D))(1212∑∞=--n n n a a收敛.[](10)设x x x x f cos sin )(+=,下列命题中正确的是(A)f(0)是极大值,2(πf 是极小值.(B )f(0)是极小值,)2(πf 是极大值.(C )f(0)是极大值,)2(πf 也是极大值.(D)f(0)是极小值,2(πf 也是极小值.[](11)以下四个命题中,正确的是(A)若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界.(B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界.(C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D)若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界.[](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵.若131211,,a a a 为三个相等的正数,则11a 为(A)33.(B) 3.(C)31.(D)3.[](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01=λ.(B)02=λ.(C)01≠λ.(D)02≠λ.[](14)设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知.现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是(A))).16(4120),16(4120(05.005.0t t +-(B))).16(4120),16(4120(1.01.0t t +-(C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +-[]三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→(16)(本题满分8分)设f(u)具有二阶连续导数,且((),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂(17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分)求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x).(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 010).1()()()()()((20)(本题满分13分)已知齐次线性方程组(i )⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和(ii )⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b,c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B CC AD T 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I)计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n mE o C A E P 1;(II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I )(X,Y)的边缘概率密度)(),(y f x f Y X ;(II )Y X Z -=2的概率密度).(z f Z (III )}.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I )i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov (III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.。

(整理)2004年数二真题及标准答案及解析.

(整理)2004年数二真题及标准答案及解析.

2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 2x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)lim ln (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln(1)x dx +⎰ [](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++[](12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰.(B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-. (20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时. (21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y∂∂∂∂∂∂∂. (22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2004年考硕数学(二)真题评注一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = 0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令220d ydx < ⇒ 0t <.又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞.(0t =时,1x =⇒x ∈(,1]-∞时,曲线凸.)【评注】本题属新题型.已考过的题型有求参数方程所确定的函数的二阶导数, 如1989、1991、1994、2003数二考题,也考过函数的凹凸性.(3)1+∞=⎰2π.【分析】利用变量代换法和形式上的牛顿莱布尼兹公式可得所求的广义积分值. 【详解1】22100sec tan sec tan 2t t dt dt t t πππ+∞⋅==⋅⎰⎰⎰.【详解2】11201101)arcsin 2dt tt π+∞-===⎰⎰⎰.【评注】本题为混合广义积分的基本计算题,主要考查广义积分(或定积分)的换元积分法.(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂2.【分析】此题可利用复合函数求偏导法、公式法或全微分公式求解. 【详解1】在 232x zz e y -=+ 的两边分别对x ,y 求偏导,z 为,x y 的函数.23(23)x z z z e x x-∂∂=-∂∂,23(3)2x z z ze y y-∂∂=-+∂∂, 从而 2323213x zx zz e x e --∂=∂+,23213x z z y e-∂=∂+ 所以 2323132213x zx zz z e x y e--∂∂++=⋅=∂∂+ 【详解2】令 23(,,)20x zF x y z e y z -=+-=则232x z F e x -∂=⋅∂, 2F y ∂=∂, 23(3)1x z Fe z-∂=--∂2323232322(13)13x z x zx z x z Fz e e x F x e ez----∂∂⋅∂∴=-=-=∂∂-++∂, 232322(13)13x z x z F z y F y e ez--∂∂∂=-=-=∂∂-++∂, 从而 232323313221313x z x zx z z z e x y ee ---⎛⎫∂∂+=+= ⎪∂∂++⎝⎭【详解3】利用全微分公式,得23(23)2x z dz e dx dz dy -=-+2323223x zx z e dx dy e dz --=+-2323(13)22x zx z edz e dx dy --+=+232323221313x z x z x ze dz dx dy e e ---∴=+++ 即 2323213x z x z z e x e--∂=∂+, 23213x z z y e -∂=∂+ 从而 32z zx y∂∂+=∂∂ 【评注】此题属于典型的隐函数求偏导.(5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为315y x =.【分析】此题为一阶线性方程的初值问题.可以利用常数变易法或公式法求出方程的通解,再利用初值条件确定通解中的任意常数而得特解.【详解1】原方程变形为 21122dy y x dx x -=, 先求齐次方程102dy y dx x-= 的通解:12dy dx y x= 积分得 1ln ln ln 2y x c =+y ⇒=设(y c x =,代入方程得211(((22c x c x c x x x '= 从而 321()2c x x '=,积分得 352211()25c x x dx C x C =+=+⎰,于是非齐次方程的通解为53211()55y x C x =+=1615x yC ==⇒=,故所求通解为 315y x =.【详解2】原方程变形为 21122dy y x dx x -=,由一阶线性方程通解公式得1122212dx dx x x y e x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰11ln ln 22212x x ex edx C -⎡⎤=+⎢⎥⎣⎦⎰35221125x dx C x C ⎤⎤=+=+⎥⎢⎥⎦⎦⎰6(1)15y C =⇒=,从而所求的解为 315y x =.【评注】此题为求解一阶线性方程的常规题.(6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =19.【分析】利用伴随矩阵的性质及矩阵乘积的行列式性质求行列式的值.【详解1】 2ABA BA E **=+ 2A B A B A E **⇔-=,(2)A E BA E *⇔-=,21A E B A E *∴-==, 221111010(1)(1)392100001B A E AA *====-⋅---. 【详解2】由1A A A *-=,得 11122ABA BA E AB A A B A A AA **---=+⇒=+2A AB A B A ⇒=+ (2)A A E B A ⇒-= 32AA EB A⇒-= 21192B A A E∴==- 【评注】此题是由矩阵方程及矩阵的运算法则求行列式值的一般题型,考点是伴随矩阵的性质和矩阵乘积的行列式.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰,2x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα[]B【分析】对与变限积分有关的极限问题,一般可利用洛必塔法则实现对变限积分的求导并结合无穷小代换求解.【详解】302000lim limcos x x x t dtt dtγα++→→=⎰⎰30lim x +→=320lim lim 02x x x x++→→===, 即 o ()γα=.又2000tan lim lim x x x βγ++→→=23002tan 22lim lim 01sin 2x x x x x x x ++→→⋅===, 即 o ()βγ=.从而按要求排列的顺序为αγβ、、, 故选(B ).【评注】此题为比较由变限积分定义的无穷小阶的常规题. (8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[]C【分析】求分段函数的极值点与拐点, 按要求只需讨论0x =两方()f x ', ()f x ''的符号.【详解】 ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩,()f x ''=2,102,01x x -<<⎧⎨-<<⎩,从而10x -<<时, ()f x 凹, 10x >>时, ()f x 凸, 于是(0,0)为拐点.又(0)0f =, 01x ≠、时, ()0f x >, 从而0x =为极小值点.所以, 0x =是极值点, (0,0)是曲线()y f x =的拐点, 故选(C ).【评注】此题是判定分段函数的极值点与拐点的常规题目 (9)lim ln (1)n n→∞+(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰ []B【分析】将原极限变型,使其对应一函数在一区间上的积分和式.作变换后,从四个选项中选出正确的. 【详解】 22lim (1)n n→∞+212lim ln (1)(1)(1)nn nn nn →∞⎡⎤=+++⎢⎥⎣⎦212limln(1)ln(1)(1)n n n n n n →∞⎡⎤=++++++⎢⎥⎣⎦11lim 2ln(1)nn i i n n →∞==+∑ 102ln(1)x dx =+⎰2112ln x t tdt +=⎰212ln xdx =⎰故选(B ).【评注】此题是将无穷和式的极限化为定积分的题型,值得注意的是化为定积分后还必须作一变换,才能化为四选项之一.(10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[]C【分析】可借助于导数的定义及极限的性质讨论函数()f x 在0x =附近的局部性质. 【详解】由导数的定义知 0()(0)(0)lim00x f x f f x →-'=>-,由极限的性质, 0δ∃>, 使x δ<时, 有()(0)0f x f x->即0x δ>>时, ()(0)f x f >, 0x δ-<<时, ()(0)f x f <, 故选(C ).【评注】此题是利用导数的定义和极限的性质讨论抽象函数在某一点附近的性质.(11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++[]A【分析】利用待定系数法确定二阶常系数线性非齐次方程特解的形式. 【详解】对应齐次方程 0y y ''+= 的特征方程为 210λ+=, 特征根为 i λ=±,对 2021(1)y y x e x ''+=+=+ 而言, 因0不是特征根, 从而其特解形式可设为21y ax bx c *=++对 sin ()ixm y y x I e ''+==, 因i 为特征根, 从而其特解形式可设为2(sin cos )y x A x B x *=+从而 21sin y y x x ''+=++ 的特解形式可设为xy2(sin cos )y ax bx c x A x B x *=++++【评注】这是一道求二阶常系数线性非齐次方程特解的典型题,此题的考点是二阶常系数线性方程解的结构及非齐次方程特解的形式.(12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A)11()dx f xy dy -⎰⎰. (B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[]D【分析】将二重积分化为累次积分的方法是:先画出积分区域的示意图,再选择直角坐标系和极坐标系,并在两种坐标系下化为累次积分.【详解】积分区域见图. 在直角坐标系下,20()()Df xy dxdy dy f xy dx =⎰⎰⎰⎰1111()dx f xy dy -=⎰⎰故应排除(A )、(B ). 在极坐标系下, cos sin x r y r θθ=⎧⎨=⎩ ,2sin 20()(sin cos )Df xy dxdy d f r rdr πθθθθ=⎰⎰⎰⎰,故应选(D ).【评注】此题是将二重积分化为累次积分的常规题,关键在于确定累次积分的积分限.(13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[]D【分析】根据矩阵的初等变换与初等矩阵之间的关系,对题中给出的行(列)变换通过左(右)乘一相应的初等矩阵来实现.【详解】由题意 010100001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100011001C B ⎛⎫⎪= ⎪ ⎪⎝⎭,010100100011001001C A ⎛⎫⎛⎫ ⎪⎪∴= ⎪⎪ ⎪⎪⎝⎭⎝⎭011100001A AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭,从而 011100001Q ⎛⎫⎪= ⎪ ⎪⎝⎭,故选(D ).【评注】此题的考点是初等变换与初等矩阵的关系,抽象矩阵的行列初等变换可通过左、右乘相应的初等矩阵来实现.(14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]A【分析】将A 写成行矩阵, 可讨论A 列向量组的线性相关性.将B 写成列矩阵, 可讨论B 行向量组的线性相关性.【详解】设 (),i j l m A a ⨯=()i j m n B b ⨯=, 记 ()12m A A A A =0AB = ⇒()11121212221212n n m m m mn b b b b b b A A A bb b ⎛⎫ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪⎝⎭()1111110m m n mn m b A b A b A b A =++++= (1)由于0B ≠, 所以至少有一 0i j b ≠(1,1i m j n ≤≤≤≤), 从而由(1)知, 112210j j i j i m m b A b A b A b A +++++=,于是 12,,,m A A A 线性相关.又记 12m B B B B ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,则0AB = ⇒11121121222212m m l l l m m a a a B a a a B a a a B ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1111221211222211220m m m m l l l m m a B a B a B a B a B a B a B a B a B +++⎛⎫ ⎪+++ ⎪==⎪ ⎪ ⎪+++⎝⎭由于0A ≠,则至少存在一 0i j a ≠(1,1i l j m ≤≤≤≤),使 11220i i i j j im m a B a B a B a B ++++=,从而 12,,,m B B B 线性相关,故应选(A ).【评注】此题的考点是分块矩阵和向量组的线性相关性,此题也可以利用齐次线性方程组的理论求解. 三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】此极限属于型未定式.可利用罗必塔法则,并结合无穷小代换求解. 【详解1】 原式2cos ln 331limx x x ex+⎛⎫ ⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20ln 2cos ln 3lim x x x→+-=() 01sin 2cos lim 2x x x x →⋅-+=()011sin 1lim 22cos 6x x x x →=-⋅=-+【详解2】 原式2cos ln 331limx x x ex+⎛⎫⎪⎝⎭→-=202cos ln 3lim x x x→+⎛⎫ ⎪⎝⎭=20cos 1ln 3lim x x x→-+=(1) 20cos 11lim 36x x x →-==-【评注】此题为求未定式极限的常见题型.在求极限时,要注意将罗必塔法则和无穷小代换结合,以简化运算.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.【分析】分段函数在分段点的可导性只能用导数定义讨论. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++.(Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x---→→-++'===-. 令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导. 【评注】此题的考点是用定义讨论分段函数的可导性. (17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数; (Ⅱ)求()f x 的值域.【分析】利用变量代换讨论变限积分定义的函数的周期性,利用求函数最值的方法讨论函数的值域. 【详解】 (Ⅰ) 32()sin x x f x t dt πππ+++=⎰,设t u π=+, 则有22()sin()sin ()x x xxf x u du u du f x ππππ+++=+==⎰⎰,故()f x 是以π为周期的周期函数.(Ⅱ)因为sin x 在(,)-∞+∞上连续且周期为π, 故只需在[0,]π上讨论其值域. 因为 ()sin()sin cos sin 2f x x x x x π'=+-=-,令()0f x '=, 得14x π=, 234x π=, 且344()s i n 24f t d t πππ==⎰554433443()sin sin sin 24f t dt t dt t dt πππππππ==-=-⎰⎰⎰又 20(0)sin 1f t dt π==⎰, 32()(sin )1f t dt πππ=-=⎰,∴()f x的最小值是2, 故()f x的值域是[2.【评注】此题的讨论分两部分:(1)证明定积分等式,常用的方法是变量代换.(2)求变上限积分的最值, 其方法与一般函数的最值相同.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x 轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim()t S t F t →+∞.【分析】用定积分表示旋转体的体积和侧面积,二者及截面积都是t 的函数,然后计算它们之间的关系. 【详解】 (Ⅰ)0()2tS t π=⎰022x x te e π-⎛+= ⎝⎰ 2022x x te e dx π-⎛⎫+= ⎪⎝⎭⎰, 2200()2x x tte e V t y dx dx ππ-⎛⎫+== ⎪⎝⎭⎰⎰, ()2()S t V t ∴=. (Ⅱ)22()2t t x te e F t yππ-=⎛⎫+== ⎪⎝⎭,20222()limlim ()2xxtt t t t e e dx S t F t e e ππ-→+∞→+∞-⎛⎫+⎪⎝⎭=⎛⎫+ ⎪⎝⎭⎰222lim222t t tt t t t e e e e e e ---→+∞⎛⎫+ ⎪⎝⎭=⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭lim 1t tttt e e e e --→+∞+==- 【评注】在 t 固定时,此题属于利用定积分表示旋转体的体积和侧面积的题型,考点是定积分几何应用的公式和罗必塔求与变限积分有关的极限问题.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-. 【分析】文字不等式可以借助于函数不等式的证明方法来证明,常用函数不等式的证明方法主要有单调性、极值和最值法等.【详证1】设224()ln x x x e ϕ=-, 则 2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,所以当x e >时, ()0x ϕ''<, 故()x ϕ'单调减小, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 即当2e x e <<时, ()x ϕ单调增加.因此, 当2e a b e <<<时, ()()b a ϕϕ>, 即 222244ln ln b b a a e e ->- 故 2224ln ln ()b a b a e ->-.【详证2】设2224()ln ln ()x x a x a eϕ=---, 则2ln 4()2x x x e ϕ'=-21l n ()2xx xϕ-''=,∴x e >时, ()0x ϕ''<()x ϕ'⇒, 从而当2e x e <<时,22244()()0x e e e ϕϕ''>=-=, 2e x e ⇒<<时, ()x ϕ单调增加.2e a b e ⇒<<<时, ()()0x a ϕϕ>=.令x b =有()0b ϕ>即 2224ln ln ()b a b a e ->-.【详证3】证 对函数2ln x 在[,]a b 上应用拉格朗日定理, 得 222ln ln ln ()b a b a ξξ->-, a b ξ<<.设ln ()t t t ϕ=, 则21ln ()t t tϕ-'=, 当t e >时, ()0t ϕ'<, 所以()t ϕ单调减小, 从而2()()e ϕξϕ>, 即222ln ln 2e e eξξ>=, 故 2224ln ln ()b a b a e->- 【评注】此题是文字不等式的证明题型.由于不能直接利用中值定理证明,所以常用的方法是将文字不等式化为函数不等式,然后借助函数不等式的证明方法加以证明.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.【分析】本题属物理应用.已知加速度或力求运动方程是质点运动学中一类重要的计算,可利用牛顿第二定律,建立微分方程,再求解.【详解1】由题设,飞机的质量9000m kg =,着陆时的水平速度0700/v km h =.从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为()x t ,速度为()v t .根据牛顿第二定律,得 dv mkv dt=-. 又 dv dv dx dv v dt dx dt dx=⋅=, m dx dv k∴=-, 积分得 ()m x t v C k=-+, 由于0(0)v v =,(0)0x =, 故得0m C v k=, 从而 0()(())m x t v v t k =-. 当()0v t →时, 069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【详解2】根据牛顿第二定律,得 dv mkv dt=-. 所以 dv k dt v m =-, 两边积分得 k t m v Ce-=, 代入初始条件 00t v v ==, 得0C v =,0()k t m v t v e-∴=, 故飞机滑行的最长距离为 0000() 1.05()k t m mv mv x v t dt e km k k+∞-+∞==-==⎰. 【详解3】根据牛顿第二定律,得 22d x dx m k dt dt=-, 220d x k dx dt m dt+=,其特征方程为 20k r r m +=, 解得10r =, 2k r m=-, 故 12k t m x C C e -=+,由(0)0x =, 2000(0)k t m t t kC dx v e v dt m -====-=,得012mv C C k=-=, 0()(1)k t m mv x t e k-∴=-. 当t →+∞时, 069000700() 1.05()6.010mv x t km k ⨯→==⨯. 所以,飞机滑行的最长距离为1.05km .【评注】此题的考点是由物理问题建立微分方程,并进一步求解.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y ∂∂∂∂∂∂∂. 【分析】利用复合函数求偏导和混合偏导的方法直接计算.【详解】 122xy z x f ye f x∂''=+∂, 122xy z y f xe f y∂''=-+∂, 21112222[(2)]x y x y x y z x f y f x e e f x y e f x y ∂''''''=⋅-+⋅++∂∂2122[(2)]x y x y y e f y f x e''''+⋅-+⋅ 222111222242()(1)xy xy xy xyf x y e f xye f e xy f '''''''=-+-++++. 【评注】此题属求抽象复合函数高阶偏导数的常规题型.(22)(本题满分9分)设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩试问a 取何值时, 该方程组有非零解, 并求出其通解.【分析】此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.【详解1】对方程组的系数矩阵A 作初等行变换, 有11111111222220033333004444400a a a a a B a a a a a a ++⎛⎫⎛⎫ ⎪ ⎪+- ⎪ ⎪→= ⎪ ⎪+- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭当0a =时, ()14r A =<, 故方程组有非零解, 其同解方程组为12340x x x x +++=.由此得基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数.当0a ≠时,111110000210021003010301040014001a a B ++⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭当10a =-时, ()34r A =<, 故方程组也有非零解, 其同解方程组为12131420,30,40,x x x x x x -+=⎧⎪-+=⎨⎪-+=⎩由此得基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数.【详解2】方程组的系数行列式311112222(10)33334444a a A a a a a +⎛⎫ ⎪+ ⎪==+ ⎪+ ⎪ ⎪+⎝⎭. 当0A =, 即0a =或10a =-时, 方程组有非零解.当0a =时, 对系数矩阵A 作初等行变换, 有11111111222200003333000044440000A ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解方程组为 12340x x x x +++=.其基础解系为1(1,1,0,0)T η=-, 2(1,0,1,0)T η=-, 3(1,0,0,1)T η=-,于是所求方程组的通解为112233x k k k ηηη=++, 其中123,,k k k 为任意常数.当10a =-时, 对A 作初等行变换, 有91119111282220100033733001004446400010A --⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭91110000210021003010301040014001-⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭故方程组的同解方程组为 2131412,3,4,x x x x x x =⎧⎪=⎨⎪=⎩其基础解系为(1,2,3,4)Tη=,所以所求方程组的通解为x k η=, 其中k 为任意常数【评注】解此题的方法是先根据齐次方程有非零解的条件确定方程组中的参数,再对求得的参数对应的方程组求解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化. 【分析】由矩阵特征根的定义确定a 的值,由线性无关特征向量的个数与E A λ-秩之间的关系确定A 是否可对角化.【详解】A 的特征多项式为1232201431431515aa λλλλλλλ-----=------- 110100(2)143(2)13315115a a λλλλλλ-=--=--------- 2(2)(8183)a λλλ=--++.若2λ=是特征方程的二重根, 则有22161830a -++=, 解得2a =-.当2a =-时, A 的特征值为2, 2, 6, 矩阵1232123123E A -⎛⎫ ⎪-=- ⎪ ⎪--⎝⎭的秩为1,故2λ=对应的线性无关的特征向量有两个, 从而A 可相似对角化.若2λ=不是特征方程的二重根, 则28183a λλ-++为完全平方,从而18316a +=, 解得23a =-.当23a =-时, A 的特征值为2, 4, 4, 矩阵32321032113E A ⎛⎫ ⎪- ⎪-= ⎪ ⎪-- ⎪⎝⎭的秩为2,故4λ=对应的线性无关的特征向量只有一个, 从而A 不可相似对角化.【评注】此题的考点是由特征根及重数的定义确定a 的值, 对a 的取值讨论对应矩阵的特征根及对应E A λ-的秩, 进而由E A λ-的秩与线性无关特征向量的个数关系确定A 是否可相似对角化.。

【VIP专享】华中科技大学试题目录

【VIP专享】华中科技大学试题目录

华中科技大学数学系③310数学分析2000,2002-2005④401高等代数1999,2002,2005(单)数学(文、经各专业)2002、2004-2005(单)数学(工科各专业)2002-2005高等数学2004综合课程2003数值分析1999、2002常微分方程2002C语言程序设计2002概率统计2002概率论与数理统计2004数理方程与泛函分析2002物理系③395数学(物理各专业)2002-2005④402量子力学2002-2005力学与电磁学2002-2004统计物理2002固体物理2002-2005光学2002化学系③311有机化学2002A、2002B、2003-2004③315细胞生物学2002-2005④403无机化学2002、2004-2005④404物理化学2002-2004④437生化与分子生物学2003-2005③313分析化学(含仪器分析)2002、2004-2005③312高分子化学2005无机与分析化学2003高分子化学(一)2002、2004机械学院④405机械设计基础2002-2005④426电路理论2002-2004④447综合考试(二)(通信与信息系统、信号与信息处理) 2003-2004④448电子技术基础 2005④452控制理论(经典控制理论、现代控制理论)2005④457综合考试(计算机学院各专业、机械学院各专业)2003-2005④408电子技术基础2003-2005④409汽车理论2004-2005④406生产与作业管理2004④407管理学2002-2003,2005④410互换性与技术测量2000,2002-2005④411光电检测技术2002-2003,2005③314工业设计史2004-2005④412工业设计综合考试(含工业设计概论、人机工程学、工业设计方法学)2004-2005综合考试(二)(通信原理,计算机网络)2005综合考试一2003微机原理及应用(一)2002机械原理1999-2000、2002液压传动2000、2002程序设计基础2000、2002设计概论2002汽车理论和设计2002计算机网络1999-2000、2003计算机组成原理1999-2000、2002、2004-2005理论力学2002-2004机械设计1999-2000、2002材料科学与工程学院④413材料科学基础2002-2003,2005④414陶瓷材料学2002、2004-2005④415高分子化学(二)2002-2005④416材料成形原理2003-2005④417微机原理及应用2003-2005综合考试2002高分子化学及物理2002金属材料学2002物理化学2002-2005微机原理及应用(一)2002计算机图形学2002铸件形成理论2002塑性成形原理2002金属学与热处理2002控制理论2002程序设计语言及编译2000、2002理论力学2002-2004材料力学一2002,2004能源与动力工程学院④418传热学2002-2005④419工程热力学2002-2005④422不可压缩流体力学2002-2005④464材料力学2002-2005④424电子技术基础2000,2003-2005④420化工原理2005④425大气污染控制工程2005④421锅炉原理2002,2005④427自动控制理论2002-2005④423热工自动化2002材料力学一2002,2004控制理论2002电站锅炉原理2004汽轮机原理2002内燃机原理2002机械原理1999-2000、2002流体机械原理2002制冷原理与设备2002低温原理与设备2002电工电子技术2003物理化学2002-2005机械设计基础2002,2004电气与电子工程学院④426电路理论2002-2005④427自动控制理论2002-2005④428信号与系统2002-2005④429电磁学与热学2005④430电磁场2002电力电子学(电力电子技术)2002微机原理(一)2002电子技术基础2002-2004信号与线性系统2002电磁场与电磁波2002-2004力学与电磁学2002-2004电机学2002电力系统分析2002高电压技术2002交通科学与工程学院④431交通工程学2002-2005④432城市道路设计2002-2005④433材料力学2005④405机械设计基础2002,2004④408电子技术基础2002-2005机械设计1999-2000、2002机械原理1999-2000、2002工程力学(交通学院)2002-2004运筹学与系统工程2004综合考试(材料加工工程专业)2002船舶原理2002船舶设计原理2002高级语言程序设计(C语言)2002理论力学2002-2004控制理论2002微机原理及应用(一)2002力学系④434理论力学2002-2005④435材料力学(一)2002-2005④436流体力学结构力学2002-2004机械原理1999-2000、2002微机原理及应用(三)2002工程力学(力学系)2002工程流体力学2002液压流体力学2000生命科学与技术学院③316遗传学2002、2004-2005③315细胞生物学2002-2005④437生化与分子生物学2003-2005④443微生物学2002、2004-2005③317药剂学2005③311有机化学2002A、2002B、2003-2004④442药理学2004-2005④404物理化学2002-2005(2003有答案)④438电子技术基础2002-2005③441生态学2004(第1种)、2004(第2种)③439光子学基础2002-2005④440数据结构及程序设计技术2004-2005④414陶瓷材料生物化学2002-2003微机原理与接口技术2002-2004工程生理学2002信号与线性系统2002数字信号处理2002植物生理学2004数据库系统原理2002、2004真菌学2004生物物理学2002生物信息学2002电子与信息工程系④444综合考试(微机原理,高频电子线路)2002-2003,2005④446综合考试(一)(信号与线性系统,数字信号处理)2003-2005④445电磁场与电磁波2002-2005④447综合考试(二)(通信原理,计算机网络)2003-2005微机原理及应用(三)2002高频电子线路2002信号与线性系统2002计算机网络1999-2000、2003通信原理2001-2002(2001-2002有答案)综合考试(电路与系统)2004数字信号处理2002微波技术2002光电子工程系④448电子技术基础2000、2003-2005④449物理光学2002、2004-2005④450量子力学2002-2005电子技术基础2002-2004专业基础综合课(光学工程、物理电子学)2003-2005计算机网络1999-2000、2003光学2002微机原理(二)2002电路理论2002通信原理2001-2002(2001-2002有答案)信号与线性系统2002软件学院④451综合考试(微机原理、C程序设计)2004-2005控制科学与工程系④452控制理论(经典控制理论、现代控制理论)2005④453综合考试一(传感器原理,数字电子技术)2003-2005④454综合考试三(数据结构,运筹学)2004-2005微机原理与接口技术2002-2004运筹学2002、2004综合考试四2004综合考试二2003-2004综合考试三2003优化技术2002计算机原理及应用2002-2005软件基础2002-2004数据库系统原理2002、2004电路理论2002-2004微机原理及应用(三)2002电力电子与自动控制系统2002自动控制理论2002-2005传感技术2002操作系统2002管理信息系统2002电子科学与技术系④455固体物理2002-2005④404物理化学2002-2005(2003有答案)④456电子技术基础2002-2005力学与电磁学2002-2004材料物理2002量子力学2002-2005电子器件微机原理及应用(二)2002电力电子与自动控制系统2002电路理论2002-2004图像识别研究所④457综合考试(计算机学院各专业、机械学院各专业)2003、2005④452控制理论(经典控制理论、现代控制理论)2005④446综合考试一(信号与线性系统、数字信号处理)2003-2004④456电子技术基础2002-2005综合考试(计算机系统结构)2002综合考试(三)(城市规划与设计)2002综合考试(四)(城市规划与设计)2002综合考试(二)2002,2004操作系统2002电路理论2002数字信号处理2002微机原理及应用(三)2002程序设计基础2000、2002信号与线性系统2002计算机组成原理2000、2002计算机科学与技术学院④457综合考试(计算机学院各专业、机械学院各专业)2003、2005综合考试2002 (第1种)2002(第2种)操作系统2002计算机系统结构2000计算机网络1999-2000、2003C语言程序设计2002数据库系统原理2002、2004常微分方程2002程序设计基础2000、2002程序设计语言及编译2000、2002数据结构2004数字化工程中心④472计算机原理及应用(含计算机体系结构80%、C语言基础20%)2002-2005④476软件基础(含数据库60%、数据结构40%)2002-2005④477遥感技术基础2005数据结构2004数据库系统原理2002、2004优化技术2002、2005建筑与城市规划学院③320艺术设计史论2004-2005④462艺术设计(一) 2004-2005③318建筑历史2002-2005④459建筑设计(二)2002、2004-2005④458建筑设计(一)2002、2004-2005③319城市规划原理2002、2004-2005④460规划设计(一) 2002、2004-2005④461规划设计(二) 2002、2004-2005④452控制理论(经典控制理论、现代控制理论)2005④综合考试(计算机学院各专业、机械学院各专业)2003、2005④418传热学2002-2005静物色彩写生2003综合考试(建筑设计及其理论专业)2002 (第1种)、2002(第2种)、2003综合考试(城市规划与设计专业)2002 (第1种) 2002(第2种)、 2003(第1种) 2003(第2种) 计算机组成原理2000、2002激光技术与工程研究院④463专业基础综合课(含激光原理、电路理论、微机原理、金属材料学四部分)2003-2004电路理论2002-2005电子技术基础2002-2005金属材料2002、2004金属材料学2002激光原理2002物理光学2002、2004-2005量子力学2002-2005光学2002材料科学基础2002-2003、2005土木工程与力学学院④464材料力学2002-2004④465结构力学2002-2005④466工程经济及房地产开发2005④467建筑施工及项目管理2005土力学与地基基础2002钢筋混凝土结构2002钢结构2002桥梁工程2002城市道路设计2002-2005城市道路规划与设计2002道路工程经济分析与投资决策2002工程经济学2002-2004房地产2002建筑施工2002工程项目管理2004环境科学与工程学院③322生态学2005④469微生物学2002-2005④471水质分析化学2002-2005④418传热学2002-2005④419工程热力学2002-2005③321有机化学2002A、2002B、2003-2005④468分析化学2002-2005④405机械设计基础2002,2004-2005④426电路理论2002-2005④470环境微生物学2003-2005④473优化技术2002,2005动物学2004材料力学(岩土工程专业)2002-2004结构力学2002-2004排水工程2002给水工程2002供热工程2002空气调节2002工程流体力学2002燃气输配2002生物化学2002-2003物理化学2002-2005(2003有答案)环境系统分析与建模2004管理信息系统2002机械设计1999-2000、2002高电压技术2002城市废物处理2002水处理生物学2002运筹学2002、2004-2005水电与数字化工程学院④472工程水文学2002-2004④473优化技术2002④474计算机原理及应用(含计算机体系结构80%、C语言基础20%)2002-2005④475自动控制理论2003-2005自动控制原理2002474工程水文学2005管理学院③323法学综合2003-2005④478经济法2002-2005④483管理经济学2002、2004-2005④482运筹学2002、2004-2005④481电工电子学2004-2005④480会计学2004-2005(2004有答案)④479概率论与数理统计2004-2005管理学2001-2005科学技术史2002-2004管理信息系统2002生产与作业管理2004机械设计基础2002,2004-2005财务会计与成本会计2002财务管理与管理会计2002电工电子学2004市场营销2002财务管理2001-2002微观经济学2002技术经济学2002生产与运作管理2005经济学院④484微宏观经济学2002-2005(2004有答案)宏观经济学2003-2004微观经济学2002经济学原理2002政治经济学2001-2002(2001-2002有答案)政治经济学(工商管理专业)2003(2003有答案)国际贸易学2001-2002(2002有答案)国际贸易与国际金融1997国际经济学2002政治(单考)2004-2005货币银行学2001-2002计量经济学2002概率论与数理统计2004人文学院历史研究所③324中国古代史2004-2005④485中国文化史2002、2004-2005人文学院中文系③325普通语言学2003-2005④486汉语及写作2003-2005④487汉语言文字及写作2003-2005③326文学理论2004-2005④488中国古代文学史2005④489中国现当代文学2004-2005语言学概论2002现代汉语2002古代汉语2002计算语言学2002中外文学史2003-2004中国文学史2002中国文学批评史2002中国文化史2002、2004-2005文学理论基础2003人文学院政教系③331西方马克思主义2005③332逻辑学2005④493马克思主义哲学原理2005③329科学技术史2002-2004③330普通物理学2002④492自然辨证法2005③328中外经济史及经济思想史2005④491政治经济学2001-2002,2005(2001-2002有答案)③327中国近现代史2002-2005④490政治学2005③333发展心理学2004-2005④494现代社会心理学2005政治学基础2002政治学原理2002马克思主义哲学2002政治经济学原理2004政治经济学(工商管理专业)2003(2003有答案)历史唯物主义2002-2004社会心理学2002、2004-2005心理学2002-2005人文学院哲学系③339马克思主义哲学原理2005④878西方哲学史2002-2005③340中国哲学史2002-2005④880中国哲学原著选读(先秦部分)2005③342现代西方哲学2004-2005③341伦理学原理2004-2005③337普通物理学③338普通生物学④879自然辩证法2002-2005时事政治论文2002马克思主义哲学史2002-2004形式逻辑2002马克思主义哲学2002西方伦理思想史2004科学技术史2002-2004法学院③334法律知识综合2005④496法理学2004-2005④497民商法学2004-2005④437生化与分子生物学④441生态学2005④442药理学2004-2005④447通信原理与计算机网络④495经济法学2003-2005法律知识综合(一)2004法律知识综合(二)2004计算机网络1999-2000、2003民法学2002通信原理2001-2002(2001-2002有答案)分子生物学2003-2005法律知识综合(三)2004法学概论2002社会学系③335社会学概论2002-2005④498社会调查方法2002-2005④877社会心理学2002、2004-2005③336社会保障概论2002-2005④875公共管理学2004-2005④876宏观经济学2003-2004心理学2002-2004行政管理学2002-2004公共管理学院③344管理学2001-2005(2005有答案)④884西方经济学1997-2001、2004公共管理学2004宏观经济学2003-2004经济学原理2002社会保障概论2002-2004外语系②211二外日语2002-2005212二外俄语2002-2005213二外德语2002-2005214二外法语2002-2004215二外英语2002-2005③345综合英语2004-2005④885英汉互译与英语作文(英汉互译50%、英语作文50%)2005③346综合日语2004-2005④886日汉互译与日语写作(日汉互译50%、日语写作50%)2005基础语言学及写作2003英语作文2002英汉互译2002综合英语与语言学基础2002综合日语翻译2003日语学基础与日语写作2003日语作文2002日汉互译2002日语基础与日本语学2002英语2005教育科学研究院③347教育学原理2002,2004-2005④887心理学2002-2005④890中外教育史2002-2005350计算机应用基础2005④894现代教育技术2005④888教育心理学2005④891教育经济学2003-2005④893教育管理学2003-2005管理学基础2002西方经济学(教育经济与管理专业)2002新闻与信息传播学院③348新闻史论2002-2005④895新闻业务I(新闻学专业)2003-2005③349传播理论与研究方法2002-2005④896新闻业务II(传播学专业)2003-2005时事政治论文2002新闻业务2002传播实务2002。

2004—数一真题、标准答案及解析

2004—数一真题、标准答案及解析

全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dxy d ax =++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{=.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x x xx x tan 221sin lim tan sin limlim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有α 21α-(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+=222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(tt t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx-=0,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于梅花香自苦寒来,岁月共理想,人生齐高飞!第 - 21 - 页 共 21 页 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。

2004研究生数学二真题及详解

2004研究生数学二真题及详解

2004年考硕数学(二)真题一. 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上. )(1)设2(1)()lim1n n xf x nx →∞-=+, 则()f x 的间断点为x = .(2)设函数()y x 由参数方程 333131x t t y t t ⎧=++⎪⎨=-+⎪⎩ 确定, 则曲线()y y x =向上凸的x 取值范围为____..(3)1+∞=⎰_____..(4)设函数(,)z z x y =由方程232x zz ey -=+确定, 则3z zx y∂∂+=∂∂______. (5)微分方程3()20y x dx xdy +-=满足165x y ==的特解为_______. (6)设矩阵210120001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 矩阵B 满足2ABA BA E **=+, 其中A *为A 的伴随矩阵, E 是单位矩阵, 则B =______-.二. 选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求, 把所选项前的字母填在题后的括号内. ) (7)把0x +→时的无穷小量2cos xt dt α=⎰, 20x β=⎰, 30t dt γ=⎰排列起来, 使排在后面的是前一个的高阶无穷小, 则正确的排列次序是(A ),,.αβγ (B ),,.αγβ(C ),,.βαγ (D ),,.βγα [](8)设()(1)f x x x =-, 则(A )0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B )0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C )0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D )0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.[](9)lim n →∞等于(A )221ln xdx ⎰. (B )212ln xdx ⎰.(C )212ln(1)x dx +⎰. (D )221ln (1)x dx +⎰ [](10)设函数()f x 连续, 且(0)0f '>, 则存在0δ>, 使得(A )()f x 在(0,)δ内单调增加. (B )()f x 在(,0)δ-内单调减小. (C )对任意的(0,)x δ∈有()(0)f x f >.(D )对任意的(,0)x δ∈-有()(0)f x f >.[](11)微分方程21sin y y x x ''+=++的特解形式可设为(A )2(sin cos )y ax bx c x A x B x *=++++. (B )2(sin cos )y x ax bx c A x B x *=++++. (C )2sin y ax bx c A x *=+++.(D )2cos y ax bx c A x *=+++[](12)设函数()f u 连续, 区域{}22(,)2D x y x y y =+≤, 则()Df xy dxdy ⎰⎰等于(A )11()dx f xy dy -⎰⎰.(B )2002()dy f xy dx ⎰⎰.(C )2sin 200(sin cos )d f r dr πθθθθ⎰⎰.(D )2sin 20(sin cos )d f r rdr πθθθθ⎰⎰[](13)设A 是3阶方阵, 将A 的第1列与第2列交换得B , 再把B 的第2列加到第3列得C , 则满足AQ C =的可逆矩阵Q 为(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭. (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭.(C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭. (D )011100001⎛⎫ ⎪⎪ ⎪⎝⎭.[](14)设A ,B 为满足0AB =的任意两个非零矩阵, 则必有(A )A 的列向量组线性相关,B 的行向量组线性相关. (B )A 的列向量组线性相关,B 的列向量组线性相关. (C )A 的行向量组线性相关,B 的行向量组线性相关.(D )A 的行向量组线性相关,B 的列向量组线性相关.[]三. 解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤. )(15)(本题满分10分)求极限3012cos lim 13x x x x→⎡⎤+⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16)(本题满分10分)设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导.(17)(本题满分11分) 设2()sin x xf x t dt π+=⎰,(Ⅰ)证明()f x 是以π为周期的周期函数;(Ⅱ)求()f x 的值域.(18)(本题满分12分)曲线2x x e e y -+=与直线0,(0)x x t t ==>及0y =围成一曲边梯形. 该曲边梯形绕x轴旋转一周得一旋转体, 其体积为()V t , 侧面积为()S t , 在x t =处的底面积为()F t .(Ⅰ)求()()S t V t 的值; (Ⅱ)计算极限()lim ()t S t F t →+∞.(19)(本题满分12分)设2e a b e <<<, 证明2224ln ln ()b a b a e ->-.(20)(本题满分11分)某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.现有一质量为9000kg 的飞机,着陆时的水平速度为700/km h .经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为66.010k =⨯).问从着陆点算起,飞机滑行的最长距离是多少?注 kg 表示千克,/km h 表示千米/小时.(21)(本题满分10分)设22(,)xyz f x y e =-,其中f 具有连续二阶偏导数,求2,,z z z x y x y∂∂∂∂∂∂∂.(22)(本题满分9分) 设有齐次线性方程组1234123412341234(1)0,2(2)220,33(3)30,444(4)0,a x x x x x a x x x x x a x x x x x a x ++++=⎧⎪++++=⎪⎨++++=⎪⎪++++=⎩ 试问a 取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a -⎛⎫ ⎪-- ⎪ ⎪⎝⎭的特征方程有一个二重根, 求a 的值, 并讨论A 是否可相似对角化.2004年全国硕士研究生入学统一考试数学二试题解析一. 填空题(1)0 .【分析】本题属于确定由极限定义的函数的连续性与间断点.对不同的x ,先用求极限的方法得出()f x 的表达式, 再讨论()f x 的间断点.【详解】显然当0x =时,()0f x =;当0x ≠时, 2221(1)(1)1()lim lim 11n n xn x x n f x nx x x x n →∞→∞--====++, 所以 ()f x 0,01,0x x x=⎧⎪=⎨≠⎪⎩,因为 001lim ()lim(0)x x f x f x→→==∞≠ 故 0x =为()f x 的间断点.(2)1-∞∞(,)(或(-,1]).【分析】判别由参数方程定义的曲线的凹凸性,先用由 ()()x x t y y t =⎧⎨=⎩定义的 223()()()()(())d y y t x t x t y t dx x t ''''''-=' 求出二阶导数,再由 220d ydx< 确定x 的取值范围. 【详解】 22222331213311dydy t t dt dx dx t t t dt--====-+++,222223214113(1)3(1)d y d dy dt tdt dx dx dx t t t '⎛⎫⎛⎫==-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 令 220d ydx< ⇒ 0t <. 又 331x t t =++ 单调增, 在 0t <时, (,1)x ∈-∞。

(完整word版)2004-2010华中师范大学数学分析考研真题

(完整word版)2004-2010华中师范大学数学分析考研真题

2004年数学分析1.求下列极限(共50分,第1,2小题各10分,第3,4小题各15分)(1)21sinlim(cos )xx x →(2)n(3)74lim x x →∞- (4)1lim sin(sin)2nn k k n nππ→∞=∑ 2.(15)设)(),(x g x f 在],[b a 上连续,在),(b a 内可导,若12,x x 是)(x f 在区间],[b a 上的两个零点,证明:存在[,]a b ξ∈,使得'()()'()0f f g ξξξ+=3.(15)设)(x f 在)0](,[>>a b b a 上连续,在),(b a 内可导,证明:在),(b a 内存在,ξη使ba f f ⋅'⋅=')()(2ηηξ.4.(15)设)(x f 在],[b a 上黎曼可积,证明:()f x e在],[b a 上也是黎曼可积的.5.(15)'()(1,2,3,n f x n =…)在],[b a 上连续,函数)(x g 在],[b a 上也连续,且对],[b a 中任意的12,x x 和正整数n ,有1212|()()|||n n Mf x f x x x n -≤-(0>M ),证明:lim ().'()0bn n ag x f x dx →+∞=⎰.6.(15)设()n f x ( ,2,1=n )在],[b a 上连续,且{()}n f x 在],[b a 上一致收敛与)(x f .证明:(1)存在0>M ,使对任何自然数n ,有|()|,|()|n f x M f x M ≤≤及. (2)若)(x F 为-∞+∞(,)上连续函数,则(())n F f x 一致收敛于))((x f F .7.(10)设函数)(x f 在闭区间]1,1[-上具有三阶连续导数,且0)0(,1)1(,0)1(='==-f f f ,证明:在)1,1(-内至少存在一点ξ,使得(3)()3fξ=.8.(15)函数),(y x F 在点00(,)x y 的某个邻域内有连续的二阶偏导数,且00000000(,)0,'(,)0,'(,)0,''(,)0x y xx F x y F x y F x y F x y ==><,证明:由方程),(y x F 确定的隐函数()y f x =在0x 点取得极小值.2005年数学分析1.求下列极限或指定函数的值:(1)1!2!3!!lim !n n n →∞++++(10分) (2)lim 62n n→∞(10分)(3)132lim [().2x x x x x e →+∞-+(10分) (4)设)(x f 在0=x 的邻域二阶可导,且130()lim(1)x x f x x e x→++=,求(0),'(0),''(0)f f f 的值.(15分) 2.(15)设函数)(),(x g x f 在],[b a 上可导,且在),(b a 上'()0g x ≠,证明:存在)()'()(,)()()'()f a f f a bg g b g ξξξξξ-∈=-(使.3.(15)设函数()f x 在]4,2[上有连续的一阶导函数,且(2)(4)0f f ==,证明:4242max |'()||()|x f x f x dx ≤≤≥⎰.4.(13)设有方程.sin (01)x m q x q =+<<.若0101,.sin ,,sin ,,n n x m x m q x x m q x +==+=+证明:{}n x 收敛; 设lim n n x l →+∞=,再证明l 是方程.sin x m q x =+的唯一解.5.(13)证明:函数项级数11((1))x nn x e nn ∞=-+∑在任何有穷区间[,]a b 上一致收敛.6.(13)设()f x 在[,]a b 上二阶可导,且''()0f x >,证明:1()()2baa b f f x dx b a +≤-⎰. 7.(13)设12,,,,n a a a 均为常数,证明:函数项级数101..!xn t n n a t e dt n ∞-=∑⎰在[,]a b 上一致收敛. 8.(13)设()f x 在[,]a b 上黎曼可积,()0,f x c ≥≥用可积准则证明:函数ln ()f x 在[,]a b 上黎曼可积.9.(10)设()f x 在[,]a b 上具有连续的二阶导数,证明:在(,)a b 内存在ξ,使得31()()()().''()224baa b f x dx b a f b a f ξ+=-+-⎰2006年数学分析1.(30) (1)111sin)1(sin lim121----→x x e x x . (2) 设x x a x y +=,求y '. (3)dx xx ⎰+ln 1ln ln . (4)设yx y x y x f y arcsin)1(),(2-+=,求)1,(x f x '. (5)dxdy e y x y xD22)(+⎰⎰+,其中}1),{(22≤+=y x y x D . (6) 求⎰-=Lydx ydy x I cos sin ,其中L 是从点)0,0(O 到点)0,(πA 的正弦曲线有x y sin =.2.(20)设)(x f 在(,)a +∞上可导,且'()f x 在(,)a +∞上有界,证明:(1) )(x f 在(,)a +∞上一致连续.(2)()lim ()lim ()x x af a f x f x ++→∞→=存在,但不一定存在.(3)若)(lim x f x +∞→存在,且)(lim )(lim x f x f ax x +→+∞→=,则)(x f '在(,)a +∞上至少有一个零点。

2004考研数学一真题及答案

2004考研数学一真题及答案

2004考研数学一真题及答案一、填空题〔此题共6小题,每题4分,总分值24分. 把答案填在题中横线上〕〔1〕曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 此题为根底题型,相当于切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 此题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y . 此题比拟简单,类似例题在一般教科书上均可找到. 〔2〕xxxee f -=')(,且f(1)=0, 那么f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,那么t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)= 2)(ln 21x .【评注】 此题属根底题型,导函数求原函数一般用不定积分. 〔3〕设L 为正向圆周222=+y x 在第一象限中的局部,那么曲线积分⎰-Lydxxdy 2的值为π23. 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的局部,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd ydx xdy L]sin 2sin 22cos 2cos 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 此题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.〔4〕欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.【详解】 令te x =,那么dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-, ][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221xc x c e c ec y t t+=+=-- 【评注】 此题属根底题型,也可直接套用公式,令te x =,那么欧拉方程)(222x f cy dx dybx dx y d ax=++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- 〔5〕设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,那么=B91. 【分析】 可先用公式E A A A =*进展化简 【详解】 等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B 【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进展化简.〔6〕设随机变量X 服从参数为λ的指数分布,那么}{DX X P >= e1.【分析】 连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可.【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{ =.11eex=-∞+-λλ 【评注】 此题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题〔此题共8小题,每题4分,总分值32分. 每题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内〕〔7〕把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,那么正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,.[ B ]【分析】 先两两进展比拟,再排出次序即可.【详解】 0cos 2tan lim cos tan limlim 202002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项,又 xx xx dtt dtt x xxx x tan 221sin lim tan sin lim lim 2300302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B).【评注】 此题是无穷小量的比拟问题,也可先将γβα,,分别与nx 进展比拟,再确定相互的上下次序.〔8〕设函数f(x)连续,且,0)0(>'f 那么存在0>δ,使得(A) f(x)在〔0,)δ内单调增加. 〔B 〕f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ] 【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进展分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进展讨论. 〔9〕设∑∞=1n na为正项级数,以下结论中正确的选项是(A) 假设n n na ∞→lim =0,那么级数∑∞=1n na收敛.〔B 〕 假设存在非零常数λ,使得λ=∞→n n na lim ,那么级数∑∞=1n na发散.(C) 假设级数∑∞=1n na收敛,那么0lim 2=∞→n n a n .(D) 假设级数∑∞=1n na发散, 那么存在非零常数λ,使得λ=∞→n n na lim .[ B ]【分析】 对于敛散性的判定问题,假设不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,那么n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,那么级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 此题也可用比拟判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). 〔10〕设f(x)为连续函数,⎰⎰=ttydx x f dy t F 1)()(,那么)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否那么,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.〔11〕设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 那么满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 此题考察初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001,于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系.〔12〕设A,B 为满足AB=O 的任意两个非零矩阵,那么必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ] 【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行〔或列〕满秩或Ax=0〔Bx=0〕是否有非零解进展分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,那么由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT=,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A).【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.〔13〕设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,假设α=<}{x X P ,那么x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u .[ C ]【分析】 此类问题的求解,可通过αu 的定义进展分析,也可通过画出草图,直观地得到结论.【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C).【评注】 此题αu 相当于分位数,直观地有21α-〔14〕设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,那么(A) Cov(.),21nY X σ=(B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ]【分析】 此题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 此题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+=222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- 〔15〕〔此题总分值12分〕设2e b a e <<<, 证明)(4ln ln 222a b e a b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,那么2ln 1)(t t t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b e a b ->-. 【证法2】 设x ex x 224ln )(-=ϕ,那么24ln 2)(e x x x -='ϕ,2ln 12)(x xx -=''ϕ,所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时, 044)()(222=-='>'ee e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 此题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进展证明即可. 〔16〕〔此题总分值11分〕某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞翻开后,飞机所受的总阻力与飞机的速度成正比〔比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 此题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可. 【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开场记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mkv dv -= 两端积分得通解t mkCev -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv e kmv dt t v x tmk==-==∞+-∞+⎰或由t m ke v dt dx-=0,知)1()(000--==--⎰t m kt t m ke mkv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dtx d m -=22,022=+dt dxm k dtx d , 其特征方程为 02=+λλm k ,解之得mk-==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 此题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意.〔17〕〔此题总分值12分〕 计算曲面积分,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围局部的下侧,记Ω为由∑与1∑围成的空间闭区域,那么dxdy z dzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233 .)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知dxdydz z y x dxdy z dzdx y dydz x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy z dzdx y dydz x π,故 .32πππ-=-=I【评注】 此题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧〔或内侧〕,再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).〔18〕〔此题总分值11分〕设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比拟法判定.【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n 存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 此题综合考察了介值定理和无穷级数的敛散性,题型设计比拟新颖,但难度并不大,只要根本概念清楚,应该可以轻松求证.〔19〕〔此题总分值12分〕设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x .令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yzxz得 ⎩⎨⎧=-+-=-,0103,03z y x y x故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3.类似地,由61)3,3,9(22-=∂∂=---x z A ,21)3,3,9(2=∂∂∂=---y x z B ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为z(-9, -3)= -3.【评注】 此题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.〔20〕〔此题总分值9分〕 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 此题是方程的个数与未知量的个数一样的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进展讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得根底解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为 ⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得根底解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得根底解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得根底解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A〔21〕〔此题总分值9分〕设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,那么有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.假设2=λ不是特征方程的二重根,那么a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)〔此题总分值9分〕 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:〔I 〕二维随机变量(X,Y)的概率分布; 〔II 〕X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 〔I 〕 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P 〔或32121611211}0,0{=---===Y X P 〕, 故(X,Y)的概率分布为YX 0 132 121 1 61 121(II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 那么61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 此题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比拟好地将概率论的知识前后连贯起来,这种命题方式值得注意.〔23〕〔此题总分值9分〕 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:〔I 〕 β的矩估计量; 〔II 〕 β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进展讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ〔I 〕 由于 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x xf EX ,令X =-1ββ,解得 1-=X Xβ,所以参数β的矩估计量为 .1ˆ-=X Xβ〔II 〕似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i nnni i ββββ当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=ni i x nd L d 1ln )(ln βββ,令0)(ln =ββd L d ,可得 ∑==ni ixn1ln β,故β的最大似然估计量为.ln ˆ1∑==ni iXnβ【评注】 此题是根底题型,难度不大,但计算量比拟大,实际做题时应特别注意计算的准确性.。

2004考研数学一真题及答案解析(统编)

2004考研数学一真题及答案解析(统编)

2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()eb a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。

华中科技大学2004年《数学分析》试题答案

华中科技大学2004年《数学分析》试题答案
证明:

若 收敛,则
即 收敛。
若 不收敛,同理可知 不收敛。
10.设 , 在 上连续, ( ),当 时, 在 上一致收敛于 .证明:至少存在一点 ,使得 .
证明:
当 时, 在 上一致收敛于 ,则 ,并且 在 上连续,从而 在 上取得最大值,设为 。
若对任意的 ,均有 ,则 ,因此
矛盾,因此至少存在一点 ,使得 .
华中科技大学2004年《数学分析》试题
(试题由博士论坛之硕博之路版主hfg1964录入)
以下每题15分
1.设 , ( ), ( ).求级数 之和.
解:
2.设 , ( ).证明 ( ).此估计式能否改进?
3.设 有处处连续的二阶偏导数, .证明

证明:
4.设 在 上连续,在 内可微,存在唯一点 ,使得 ,
6.求 , 是取反时针方向的单位圆周.
解: 的参数方程:
7.设 是连续正值函数,

证明 ( )是严格单调减函数.
证明:
因此, ( )是严格单调减函数
8.设级数 收敛,证明

证明:
由 收敛知, 在 上一致收敛,从而 ,
因此 在 上一致收敛,则分 收敛 级数 收敛.
.设 , ( ),
,证明 是 在 上的最大值.
证明:反证法,假设 不是 在 上的最大值。
由于 ,存在 ,当 时,
考察闭区域 ,显然 :
由已知 在 上连续,从而 在 上取得最大值,设为 。
显然在 上,总有 ,因而必有: 。
当 时, ,因此 是 在 上的最大值。由假设, 。
这与已知矛盾,可知假设不真。
5.设处处有 .证明:曲线 位于任一切线之上方,且与切线有唯一公共点.

2004数学三真题解析

2004数学三真题解析

2004年全国硕士研究生入学统一考试数学三试题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若,则a =______,b =______. (2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则.(3) 设,则.(4) 二次型的秩为 . (5) 设随机变量服从参数为的指数分布, 则_______.(6) 设总体服从正态分布, 总体服从正态分布,和分别是来自总体和的简单随机样本, 则.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且, ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点.5)(cos sin lim0=--→b x ae xx x 2fu v∂=∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 212(1)f x dx -=⎰213232221321)()()(),,(x x x x x x x x x f ++-++=X λ=>}{DX X P X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑2)2)(1()2sin(||)(---=x x x x x x f a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g(C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ](10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散. (4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ ] (11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ). (C) 至少存在一点,使得.(D) 至少存在一点,使得= 0.[ D ](12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, .(C) 当时, . (D) 当时, . [ ](13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求. ∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim1>+∞→n n n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f ),(0b a x ∈)(0x f n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1)cos sin 1(lim 2220xxx x -→(16) (本题满分8分)求,其中D所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足,x ∈ [a , b ),.证明:.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0);(II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设, , , ,试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设阶矩阵⎰⎰++Dd y y x σ)(2222122=⎰⎰≥x axadt t g dt t f )()(⎰⎰=bab adt t g dt t f )()(⎰⎰≤bab adx x xg dx x xf )()(d E d E )1(d E Q dPdR-=d E )(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=Tβ)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,αααn. (Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵. (22) (本题满分13分)设,为两个随机事件,且, , , 令求(Ⅰ) 二维随机变量的概率分布; (Ⅱ) 与的相关系数 ; (Ⅲ) 的概率分布.(23) (本题满分13分)设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量;(Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若,则a =,b =.【分析】本题属于已知极限求参数的反问题. 【详解】因为,且,所以,得a = 1. 极限化为,得b = -4. 因此,a = 1,b = -4.⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b bb b A A P AP P 1-A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα5)(cos sin lim0=--→b x ae xx x 14-5)(cos sin lim0=--→b x ae xx x 0)(cos sin lim 0=-⋅→b x x x 0)(lim 0=-→a e x x 51)(cos lim )(cos sin lim00=-=-=--→→b b x xxb x a e x x x x【评注】一般地,已知= A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =,所以,,.(3) 设,则.【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,=.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为于是二次型的矩阵为 ,)()(limx g x f )()(22v g v g vu f '-=∂∂∂)()(v g v g u+)(1v g u f =∂∂)()(22v g v g v u f '-=∂∂∂⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x 21)1(221-=-⎰dx x f ⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f 21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x 213232221321)()()(),,(x x x x x x x x x f ++-++=213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=⎪⎪⎪⎭⎫ ⎝⎛--=211121112A由初等变换得 ,从而 , 即二次型的秩为2.【详解二】因为,其中 .所以二次型的秩为2.(5) 设随机变量服从参数为的指数分布, 则. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于, 的分布函数为 故. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体服从正态分布, 总体服从正态分布,和 分别是来自总体和的简单随机样本, 则.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 , , 故应填 .⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A 2)(=A r 213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=2322321)(23)2121(2x x x x x -+++=2221232y y +=,21213211x x x y ++=322x x y -=X λ=>}{DX X P e121λDX =X ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=X ),(21σμN Y ),(22σμN 1,,21n X X X 2,,21n Y Y Y X Y 22121212)()(21σn n Y Y X X E n j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==2121])(11[1σX X n E n i i =--∑=2122])(11[2σY Y n E n j j =--∑=2σ【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限与存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而,,,,,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限与存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且,,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限是否存在,如存在,是否等于g (0)即可,通过换元, 可将极限转化为.【详解】因为= a (令),又g (0) = 0,所以,当a = 0时,,即g (x )在点x = 0处连续,当a ≠ 0时,,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点.[ C ]2)2)(1()2sin(||)(---=x x x x x x f )(lim x f a x +→)(lim x f b x -→183sin )(lim 1-=+-→x f x 42sin )(lim 0-=-→x f x 42sin )(lim 0=+→x f x ∞=→)(lim 1x f x ∞=→)(lim 2x f x )(lim x f a x +→)(lim x f b x -→a x f x =∞→)(lim ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg )(lim 0x g x →xu 1=)(lim 0x g x →)(lim x f x ∞→)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→==xu 1=)0()(lim 0g x g x =→)0()(lim 0g x g x ≠→【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),, 当x ∈ (0 , δ)时,f (x ) = x (1 - x ),,所以(0 , 0)是曲线y = f (x )的拐点. 故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若收敛,则收敛.(2) 若收敛,则收敛.(3) 若,则发散. (4) 若收敛,则,都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令,显然,分散,而收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由可得到不趋向于零(n → ∞),所以发散. (4)是错误的,如令,显然,,都发散,而收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设在[a , b]上连续,且,则下列结论中错误的是 (A) 至少存在一点,使得> f (a ). (B) 至少存在一点,使得> f (b ).(C) 至少存在一点,使得.02)(>=''x f 02)(<-=''x f ∑∞=-+1212)(n n n u u ∑∞=1n n u ∑∞=1n n u ∑∞=+11000n n u 1lim1>+∞→n n n u u ∑∞=1n n u ∑∞=+1)(n n n v u ∑∞=1n n u ∑∞=1n n v nn u )1(-=∑∞=1n n u ∑∞=-+1212)(n n n u u 1lim1>+∞→n n n u u n u ∑∞=1n n u n v n u n n 1,1-==∑∞=1n n u ∑∞=1n n v ∑∞=+1)(n n n v u )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈)(0x f ),(0b a x ∈)(0x f ),(0b a x ∈0)(0='x f(D) 至少存在一点,使得= 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知在[a , b]上连续,且,则由介值定理,至少存在一点,使得;另外,,由极限的保号性,至少存在一点使得,即. 同理,至少存在一点使得. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设阶矩阵与等价, 则必有(A) 当时, . (B) 当时, .(C) 当时, . (D) 当时, . [ D ] 【分析】 利用矩阵与等价的充要条件: 立即可得.【详解】因为当时, , 又 与等价, 故, 即, 故选(D). 【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设阶矩阵的伴随矩阵 若是非齐次线性方程组 的互不相等的解,则对应的齐次线性方程组的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=, 而且根据已知条件 于是等于或. 又有互不相等的解,即解不惟一, 故. 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵与其伴随矩阵的秩之间的关系、线性方程组解的结构等多个知识点的综合考查.(14) 设随机变量服从正态分布, 对给定的, 数满足,若, 则等于 (A) . (B) . (C) . (D) . [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得.【详解】 由, 以及标准正态分布密度曲线的对称性可得),(0b a x ∈)(0x f )(x f '0)(,0)(<'>'b f a f ),(0b a x ∈0)(0='x f 0)()(lim )(>--='+→ax a f x f a f a x ),(0b a x ∈0)()(00>--ax a f x f )()(0a f x f >),(0b a x ∈)()(0b f x f >n A B )0(||≠=a a A a B =||)0(||≠=a a A a B -=||0||≠A 0||=B 0||=A 0||=B A B )()(B r A r =0||=A n A r <)(A B n B r <)(0||=B n A ,0*≠A 4321,,,ξξξξb Ax =0=Ax )(A r n -⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r ,0*≠A )(A r n 1-n b Ax =1)(-=n A r A *A X )1,0(N )1,0(∈ααu αu X P α=>}{αx X P =<}|{|x 2αu 21αu-21αu -αu -1αx X P =<}|{|. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】 =. 【评注】本题属于求未定式极限的基本题型,对于“”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分) 求,其中D 是由圆和所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆减去小圆,再利用对称性与极坐标计算即可.【详解】令,由对称性,..所以,. 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性21}{αx X P -=>)cos sin 1(lim 2220xxx x -→0xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→x x x x x x x x x x x x x x 0⎰⎰++Dd y y x σ)(22422=+y x 1)1(22=++y x }4|),{(221≤+=y x y x D }1)1(|),{(222≤++=y x y x D }1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D 0=⎰⎰Dyd σ⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d )23(916932316-=-=ππ)23(916)(22-=++⎰⎰πσDd y y x及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足,x ∈ [a , b ),.证明:.【分析】令F (x ) = f (x ) - g (x ),,将积分不等式转化为函数不等式即可.【详解】令F (x ) = f (x ) - g (x ),,由题设G (x ) ≥ 0,x ∈ [a , b ], G (a ) = G (b ) = 0,. 从而,由于 G (x ) ≥ 0,x ∈ [a , b ],故有 ,即.因此.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性(> 0);(II) 推导(其中R 为收益),并用弹性说明价格在何范围内变化时,降低价格反而使收益增加. 【分析】由于> 0,所以;由Q = PQ 及可推导 . 【详解】(I) . (II) 由R = PQ ,得.又由,得P = 10.⎰⎰≥x axadt t g dt t f )()(⎰⎰=bab adt t g dt t f )()(⎰⎰≤bab adx x xg dx x xf )()(⎰=xadt t F x G )()(⎰=xadt t F x G )()()()(x F x G ='⎰⎰⎰⎰-=-==bab aba babadx x G dx x G x xG x xdG dx x xF )()()()()(0)(≤-⎰badx x G 0)(≤⎰ba dx x xF ⎰⎰≤babadx x xg dx x xf )()(d E d E )1(d E Q dPdR-=d E d E dP dQ Q P E d =dPdQQ P E d =)1(d E Q dPdR-=PPdP dQ Q P E d -==20)1()1(d E Q dP dQ Q P Q dP dQ P Q dP dR -=+=+=120=-=PPE d当10 < P < 20时,> 1,于是,故当10 < P < 20时,降低价格反而使收益增加.【评注】当> 0时,需求量对价格的弹性公式为. 利用需求弹性分析收益的变化情况有以下四个常用的公式:,,, (收益对价格的弹性). (19) (本题满分9分) 设级数的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) , 易见 S (0) = 0,.因此S (x )是初值问题的解.(II) 方程的通解为d E 0<dPdRd E dPdQQ P dP dQ Q P E d -==Qdp E dR d )1(-=Q E dp dR d )1(-=p E dQ dR d)11(-=d E EpER-=1)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S +⋅⋅+⋅+='642422)(753x x x x S )642422(642 +⋅⋅+⋅+=x x x x )](2[2x S x x +=0)0(,23=+='y x xy y 23x xy y +=']2[3C dx e x e y xdx xdx +⎰⎰=⎰-,由初始条件y(0) = 0,得C = 1.故,因此和函数.【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设, , , ,试讨论当为何值时,(Ⅰ) 不能由线性表示;(Ⅱ) 可由唯一地线性表示, 并求出表示式;(Ⅲ) 可由线性表示, 但表示式不唯一, 并求出表示式.【分析】将可否由线性表示的问题转化为线性方程组是否有解的问题即易求解. 【详解】 设有数使得. (*) 记. 对矩阵施以初等行变换, 有. (Ⅰ) 当时, 有.可知. 故方程组(*)无解, 不能由线性表示. (Ⅱ) 当, 且时, 有22212x Ce x +--=12222-+-=x e x y 12)(222-+-=x e x x S T α)0,2,1(1=T ααα)3,2,1(2-+=T b αb α)2,2,1(3+---=Tβ)3,3,1(-=b a ,β321,,αααβ321,,αααβ321,,αααβ321,,αααβαk αk αk =++332211,,,321k k k βαk αk αk =++332211),,(321αααA =),(βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a 0=a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA ),()(βA r A r ≠β321,,ααα0≠a b a ≠, 方程组(*)有唯一解:, , .此时可由唯一地线性表示, 其表示式为. (Ⅲ) 当时, 对矩阵施以初等行变换, 有, , 方程组(*)有无穷多解, 其全部解为, , , 其中为任意常数.可由线性表示, 但表示式不唯一, 其表示式为. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设阶矩阵.(Ⅰ) 求的特征值和特征向量;(Ⅱ) 求可逆矩阵, 使得为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程和齐次线性方程组来解决. 【详解】 (Ⅰ) 当时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r ak 111-=a k 12=03=k β321,,ααα211)11(αaαa β+-=0≠=b a ),(βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a 2),()(==βA r A r a k 111-=c a k +=12c k =3c β321,,ααα321)1()11(αc αc aαa β+++-=n ⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 b b b bb b A A P AP P 1-0||=-A E λ0)(=-x A E λ 10≠b= ,得的特征值为,. 对,解得,所以的属于的全部特征向量为 (为任意不为零的常数).对,得基础解系为,,.故的属于的全部特征向量为111||---------=-λb b bλb b b λA E λ 1)]1(][)1(1[------n b λb n λA b n λ)1(11-+=b λλn -===12 b n λ)1(11-+=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001Tξ)1,,1,1,1(1 =A 1λTk ξk )1,,1,1,1(1 =k b λ-=12⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000000111 T ξ)0,,0,1,1(2 -=T ξ)0,,1,0,1(3 -=T n ξ)1,,0,0,1(,-= A 2λ(是不全为零的常数). 当时,,特征值为,任意非零列向量均为特征向量.(Ⅱ) 当时,有个线性无关的特征向量,令,则当时,,对任意可逆矩阵, 均有.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设,为两个随机事件,且, , , 令求(Ⅰ) 二维随机变量的概率分布; (Ⅱ) 与的相关系数 ;(Ⅲ) 的概率分布.【分析】本题的关键是求出的概率分布,于是只要将二维随机变量的各取值对转化为随机事件和表示即可.【详解】 (Ⅰ) 因为 , 于是 , 则有 , , , n n ξk ξk ξk +++ 3322n k k k ,,,32 20=b n λλλλA E λ)1(100010001||-=---=- 11===n λλ 10≠b A n ),,,(21n ξξξP =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(1120=b E A =P E AP P =-1A B 41)(=A P 31)|(=AB P 21)|(=B A P ⎩⎨⎧=不发生,,发生,A A X 0,1⎩⎨⎧=.0,1不发生,发生,B B Y ),(Y X X Y XY ρ22Y X Z +=),(Y X ),(Y X A B 121)|()()(==A B P A P AB P 61)|()()(==B A P AB P B P 121)(}1,1{====AB P Y X P 61)()()(}0,1{=-====AB P A P B A P Y X P 121)()()(}1,0{=-====AB P B P B A P Y X P,( 或),即的概率分布为:(Ⅱ)方法一:因为,,,,,,,,所以与的相关系数.方法二:X, Y的概率分布分别为X 0 1 Y 0 1P P则,,DY=, E(XY)=,故,从而(Ⅲ) 的可能取值为:0,1,2 .,,,即的概率分布为:0 1 232)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===ABPBPAPBAPBAPYXP32121611211}0,0{=---===YXP),(YX41)(==APEX61)(==BPEY121)(=XYE41)(2==APEX61)(2==BPEY163)(22=-=EXEXDX165)(22=-=EYEYDY241)(),(=-=EXEYXYEYXCovX Y1515151),(==⋅=DYDXYXCovρXY4341656161,41==EYEX163=DX365121241)(),(=⋅-=EYEXXYEYXCov.1515),(=⋅=DYDXYXCovXYρZ32}0,0{}0{=====YXPZP41}1,0{}0,1{}1{===+====YXPYXPZP121}1,1{}2{=====YXPZPZ【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量的分布函数为其中参数. 设为来自总体的简单随机样本,(Ⅰ) 当时, 求未知参数的矩估计量;(Ⅱ) 当时, 求未知参数的最大似然估计量; (Ⅲ) 当时, 求未知参数的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数. 【详解】 当时, 的概率密度为(Ⅰ) 由于令, 解得 , 所以, 参数的矩估计量为 . (Ⅱ) 对于总体的样本值, 似然函数为当时, , 取对数得 ,对求导数,得X ⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(1,0>>βαn X X X ,,,21 X 1=αβ1=αβ2=βα1=αX ⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX βX ββ=-11-=X Xββ1-=X XβX n x x x ,,,21 ∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他 ),,2,1(1n i x i =>0)(>βL ∑=+-=ni ixββn βL 1ln )1(ln )(ln β, 令, 解得 ,于是的最大似然估计量为.( Ⅲ) 当时, 的概率密度为对于总体的样本值, 似然函数为当时, 越大,越大, 即的最大似然估计值为, 于是的最大似然估计量为 .∑=-=ni i x βnβd βL d 1ln )]([ln 0ln )]([ln 1=-=∑=ni i x βnβd βL d ∑==ni ixnβ1ln β∑==ni ixnβ1ln ˆ2=βX ⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32X n x x x ,,,21 ∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他 ),,2,1(n i αx i =>α)(αL α},,,min{ˆ21n x x x α=α},,,min{ˆ21n X X X α=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中科技大学2004年《数学分析》试题
(试题由博士论坛之硕博之路版主hfg1964录入)
以下每题15分
1.设00x =,1
n
n k
k x a
==
∑(1n ≥),n x b →(n →∞).求级数11
()n n n n a x x ∞
-=+∑之和.
2.设(0)(1)f f =,''()2f x ≤(01x ≤≤).证明'()1f x ≤(01x <<).此估计式能否改进? 3.设(,)f x y 有处处连续的二阶偏导数,'(0,0)'(0,0)(0,0)0x y f f f ===.证明
(,)f x y 1
22
1112220
(1)[(,)2(,)(,)]t x f tx ty xyf tx ty y f tx ty dt =
-++⎰

4.设(,)f x y 在,0x y ≥上连续,在,0x y >内可微,存在唯一点00(,)x y ,使得00,0x y >,
0000'(,)'(,)0x y f x y f x y ==.设00(,)0f x y >,(,0)(0,)0f x f y ==(,0x y ≥),
2
2
lim (,)0x y f x y +→∞
=,证明00(,)f x y 是(,)f x y 在,0x y ≥上的最大值.
5.设处处有''()0f x >.证明:曲线()y f x =位于任一切线之上方,且与切线有唯一公共点.
6.求22
49L
xdy ydx
I x y
-=
+⎰
,L 是取反时针方向的单位圆周.
7.设()f 是连续正值函数,
2
2
2
2
2
2
2
222
2222
()()()()x y z t
x y t
f x y z dxdydz
F t x y f x y dxdy
++≤+≤++=
++⎰⎰⎰
⎰⎰

证明()F t (0t >)是严格单调减函数.
8.设级数0
1
n n a n ∞
=+∑
收敛,证明
1
1n
n
n n n a a x dx n ∞∞
===
+∑
∑⎰.
9.设()f x 在[0,)∞上连续,其零点为01:0n n x x x x =<<<< ,()n x n →∞→∞.证明:积分0
()f x dx ∞

收敛⇔级数10
()n n
x x n f x dx +∞
=∑

收敛.
10.设a b <,()n f x 在[,]a b 上连续,()0b
n a
f x dx ≥⎰(1,2,n = ),当n →∞时,()n f x 在[,]
a b 上一致收敛于()f x .证明:至少存在一点0[,]x a b ∈,使得0()0f x ≥.。

相关文档
最新文档