几个概率分布函数

合集下载

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

概率分布函数与概率密度函数

概率分布函数与概率密度函数

概率分布函数与概率密度函数概率分布函数和概率密度函数是统计学中常见的两个重要概念,它们在描述随机变量分布特征时起着至关重要的作用。

下面我们将分别介绍概率分布函数和概率密度函数的概念、特点和应用。

一、概率分布函数概率分布函数又称为累积分布函数,是描述随机变量取值的概率分布规律的函数。

对于任意一个实数t,概率分布函数F(t)定义为随机变量X的取值小于等于t的概率,即F(t)=P(X≤t)。

概率分布函数的性质有以下几个特点:1. F(t)是一个单调非减的函数,即对于任意s和t(s≤t),有F(s)≤F(t)。

2. F(t)在整个实数轴上取值范围为[0,1]。

3. 当t趋近于负无穷时,F(t)趋近于0;当t趋近于正无穷时,F(t)趋近于1。

4. 概率分布函数是一种分步函数,具有不连续点。

在不连续点上,概率分布函数的值对应着概率的跳跃。

概率分布函数在统计学中有着广泛的应用,可以帮助研究者了解随机变量的分布情况,进而进行参数估计、假设检验、置信区间估计等统计分析工作。

二、概率密度函数概率密度函数是描述随机变量取值的密度分布的函数,通常用f(t)表示。

对于连续型随机变量X,如果存在一个函数f(t),对于任意实数区间[a,b],有P(a≤X≤b)= ∫[a,b] f(t)dt。

概率密度函数的性质如下:1. 概率密度函数在整个定义域上非负,即f(t)≥0。

2. 概率密度函数的积分在整个定义域上等于1,即∫(-∞,+∞) f(t)dt=1。

3. 概率密度函数f(t)与概率分布函数F(t)之间存在积分关系,即F(t)=∫(-∞,t) f(u)du。

4. 概率密度函数的图形代表了随机变量在不同取值上的密度大小,可以直观地表示随机变量的分布情况。

概率密度函数在连续型随机变量的分布描述中占据重要地位,例如正态分布、指数分布、均匀分布等常见的概率分布都可以通过概率密度函数来描述其分布规律。

综上所述,概率分布函数和概率密度函数是统计学中两个重要的概念,它们分别适用于离散型随机变量和连续型随机变量的分布描述。

均匀分布的概率分布函数

均匀分布的概率分布函数

均匀分布的概率分布函数1. 引言概率分布函数是描述随机变量的分布规律的数学函数。

均匀分布是概率论和统计学中常见的一种概率分布类型。

在均匀分布中,随机变量在给定范围内的取值是等可能的,没有偏向性,呈现出均匀分布的特征。

本文将就均匀分布的概率分布函数进行全面、详细、完整且深入的探讨。

2. 均匀分布的定义在概率论中,均匀分布是指随机变量在某个区间内以等可能性取得任一取值的概率分布。

均匀分布的概率密度函数(Probability Density Function, PDF)为常数,表示在区间内各个取值的概率是相等的。

均匀分布的概率密度函数可以表示为:f(x) = 1 / (b - a) (a <= x <= b)其中,a和b分别为分布的左右边界。

3. 均匀分布的性质均匀分布具有以下几个重要的性质:3.1 对称性均匀分布是以区间的中心点为对称点的对称分布。

对于区间[a, b],随机变量落在区间的左侧和右侧的概率相等。

3.2 期望值对于均匀分布,其期望值等于区间的中心点,可表示为:E(X) = (a + b) / 23.3 方差均匀分布的方差可以通过区间长度的平方除以12来计算,表示为:Var(X) = (b - a)^2 / 123.4 累积分布函数均匀分布的累积分布函数(Cumulative Distribution Function, CDF)可以表示为:F(x) = (x - a) / (b - a) (a <= x <= b)3.5 生成随机数由于均匀分布的随机变量在给定范围内的取值是等可能的,可以利用均匀分布生成随机数。

通过在区间[a, b]之间选择一个随机数,即可获得服从均匀分布的随机数。

4. 使用均匀分布的场景均匀分布在很多领域中都有广泛的应用,以下是一些常见的使用均匀分布的场景:4.1 随机抽样在概率抽样中,如果样本空间中的每个个体被选中的概率是相等的,那么可以使用均匀分布来生成随机样本。

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。

正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。

1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。

其 中,.0为尺度参数。

指数分布的无记忆性:Plx s t|X = P{X t}。

f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。

概率论中几种常用重要分布

概率论中几种常用重要分布

概率论中几种常用的重要的分布摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。

其在实际中的应用。

关键词1 一维随机变量分布随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论.随机事件是按试验结果而定出现与否的事件。

它是一种“定性”类型的概念。

为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。

称这种变数为随机变数。

本章内将讨论取实值的这种变数—— 一维随机变数。

定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P Xx x=∈-∞=-∞+∞.这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。

它是一个普通的函数。

成这个函数为随机函数X 的分布函数。

有的随机函数X 可能取的值只有有限多个或可数多个。

更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈=称这样的随机变数为离散型随机变数。

称它的分布为离散型分布。

【例1】下列诸随机变数都是离散型随机变数。

(1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。

称这种随机变数的分布为退化分布。

一个退化分布可以用一个常数a 来确定。

(2)X 可能取的值只有两个。

确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。

如果([])P X b p ==,那么,([])1P X a p ===-。

因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。

特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。

常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。

以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。

1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。

2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。

3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。

4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。

5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。

6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。

分布函数

分布函数

分布函数分布函数(Cumulative Distribution Function, CDF)是概率统计中重要的函数,正是通过它,可用的方法来研究随机变量。

1.伯努利分布伯努利分布(Bernoulli distribution)又叫做两点分布或者0-1分布,是一个离散型概率分布,若伯努利实验成功,则伯努利随机变量取值为1,如果失败,则伯努利随机变量取值为0。

并记成功的概率为p,那么失败的概率就是1p-,概率p p-,则数学期望为p,方差为(1)密度函数为2.二项分布二项分布即重复n次独立的。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互,与其它各次试验结果无关,事件发生与否的概率在每一次中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

假设每次试验的成功概率为p,则二项分布的密度函数为:二项分布函数的数学期望为np,方差为(1)X B n p。

概率密度分布图如下所np p-,记为~(,)示。

3.正态分布正态分布(Normal distribution)又名高斯分布(Gaussian distribution),若X服从一个为μ、为σ2的高斯分布,记为:X~N(μ,σ2),则其为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

通常所说的标准正态分布是μ = 0,σ = 1的正态分布。

分布曲线特征:图形特征集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。

即频率的总和为100%。

关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。

常用概率分布函数

常用概率分布函数

– 则f(x)为X的概率密度函数(PDF)
– f(x)满足:
(1) f (x) 0
(2) f (x)dx 1
常用概率分布函数
• 连续型随机变量
– F(x)为连续型随机变量的累积分布函数(CDF)
F(x) P(X x) x f (x)dx
– 连续型随机变量X均值和方差分别为:
E(X ) xf (x)dx
常用概率分布函数
二项分布 泊松分布 均匀分布 正态分布 指数分布 伽马分布
常用概率分布函数
• 离散型随机变量
– 若随机变量的取值为有限个或可以逐一列举的无穷多个 数值,则称此类随机变量为离散型随机变量。
– 设离散随机变量X有:P( X xi ) p( xi )
– 将P={p1,p2,…pn…}称为X的概率密度函数 (Probability Density Function,PDF)
– 泊松分布是二项分布的特殊情况(n趋近无穷大,令 np->λ),当一个固定时间间隔内有大量事件以恒定的 速率发生,且事件之间相互独立时,可以用泊松分布描 述,并称这样的随机事件为泊松流。
– 泊松分布的概率密度函数: P(x k) k e k {0,1, 2..., n}
k!
– 累积分布函数:
– x=0:0.001:5;
0.4
– n=10;
0.35
– p=0.1;
0.3
– y=binopdf(x,n,p); 0.25
– plot(x,y);
0.2
0.15
0.1
0.05
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
常用概率分布函数
• 泊松分布( Poisson Distribution )

经典概率分布特征函数计算

经典概率分布特征函数计算

经典概率分布特征函数计算概率分布的特征函数可以通过积分的形式计算得到。

特别是,对于离散型概率分布,特征函数的计算可以通过求和的方式进行。

下面我们将以几种常见的概率分布为例进行说明。

1. 二项分布(Binomial Distribution):二项分布描述了n次伯努利试验中成功次数的概率分布。

其特征函数可以通过幂的形式表示:φ(t) = (pe^it + q)^n其中p是每次试验成功的概率,q=1-p,n是试验次数。

2. 泊松分布(Poisson Distribution):泊松分布描述了在一个给定时间内,事件发生的次数的概率分布。

其特征函数可以表示为:φ(t) = e^(λ(e^it-1))其中λ是事件发生的平均次数。

3. 正态分布(Normal Distribution):正态分布是最常见的概率分布之一,也称为高斯分布。

其特征函数可以表示为:φ(t) = e^(μit- σ^2t^2/2)其中μ是均值,σ是标准差。

对于其他概率分布,特征函数的计算方法也类似。

需要注意的是,特征函数的计算可以提供概率分布的许多重要信息,如均值、方差、偏度和峰度等。

特征函数还可以用于推导概率分布的性质和进行随机变量的变换等。

在实际应用中,计算特征函数可以通过数值计算或解析计算来实现。

对于某些复杂的概率分布,解析计算可能很困难,因此数值计算成为更常用的方法之一、数值计算可以利用计算机软件进行,如使用MATLAB或R 语言的相关函数进行计算。

总结起来,特征函数提供了一种描述概率分布的数学工具,通过计算特征函数可以获得概率分布的重要信息。

不同概率分布的特征函数的计算方法类似,可以通过积分或求和的方式进行,也可以通过数值计算或解析计算来实现。

特征函数的计算对于理解概率分布的性质和进行相关推导具有重要意义。

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。

d 几种常见的概率分布律

d  几种常见的概率分布律

三、服从二项分布的随机变量的特征数
平均数: μ=nφ
方差: σ2=nφ(1-φ)
随着样本含量的增加,偏斜度和峭度趋 向于0,二项分布逐渐接近于正态分布。
四、二项分布应用实例
例:3.2 例:3.3 例:3.4
【例3.4】
用 棕 色 正 常 毛 (bbRR) 的 家 兔 和 黑 色 短 毛 (BBrr)兔杂交,杂种F1为黑色正常毛长的 家兔,F1雌、雄兔近亲交配,问最少需要 多少只F2代的家兔,才能以99%的概率至 少得到一只棕色短毛兔?
二、二项分布概率函数表达式:
p( y) Cny y (1)ny , y 0,1,2,, n
n=试验次数(或样本含量) y=在n次试验中事件A出现的次数 φ=事件A发生的概率(每次试验都是恒定的) 1-φ=事件A的对立事件发生的概率 p(y)=Y的概率函数=P(Y=y)
例:3.1
从雌雄各半的100只动物中做一抽样试验。第一次从这100只动 物中随机抽取一只,记下性别后放回,再做第二次抽取。共 做了10次抽样,计算抽中3只和3只以下雄性动物的概率。
(5)曲线和X坐标轴所夹的面积等于1。 (6)正态分布表查出的φ(u)的值表示随机变量
U落入区间(-∞, u)的概率。 (7)累积分布函数图形的特点是围绕点
(0, 0.5)对称。 (8)正态分布的偏斜度γ1=0 ,峭度γ2=0。
5. 一些重要值
68.27%
68.27%
95.00%
95.00%
99.00%
解: n=10 y=3,2,1,0 φ=1/2 p( y) Cny y (1)ny
p(3) 10! ( 1 )3 ( 1 )7 120 (210 ) 0.1171876 3!(10 3)! 2 2

常用概率分布间简介

常用概率分布间简介

其中 c 为常数,解方程(1)得
f ( ) c f ( )
f
(
)
k
e
1 2
c
2

k
为常数.
为使 f ( ) 为概率密度函数,
f
( )d
1,

k
e
1 2
c
2
dy
1
故必须 c 0 ,不妨令 c 1 ( 0 ),代入(2)解得 2
k 1 , 2 Biblioteka 于是f ( ) 1
2
e2 2 , R ,
2
这是均值为 0,方差为 2 的正态分布的概率密度函数.
.
X
~
N(0, 2)
,
则Y
X2
~
Ga(
1 2
,
1 2
2
)
.
(1) (2)
Ga( n , 1) 2(n) . 22
m
Xi ~ N(0,1) , i 1,2,,n 且相互独立 , 则 X
X
2 i
~
2(n) .
i 1
⒊ 相当误差(比率)的概率分布
m

Xi
~
N(0, 2 ) ,i
1,2,, m,m 1,,m n且相互独立,则
i 1
二、随机误差的概率分布
⒈ 高斯随机误差模型 随机变量的高斯分解
可观测的指标
X
不可观测的随机干扰
指标的标准值(生产控制参数,理论均值)
原始测量误差的概率分布
由棣莫弗提出,高斯推证,拉普拉斯再证,原始测量误差的概率分布为:
~ N (0 , 2 )
高斯的推证要点如下:
设测量误差 X 的密度函数为 f ( ) ,由“最大后验概率”的原则得

各种概率分布介绍

各种概率分布介绍

一、引言Bayes统计起源于英国学者托马斯.贝叶斯(Thomas Bayes,1702~1761)死后发表的一篇论文“论有关机遇问题的求解”。

在此论文中他提出了著名的贝叶斯公式和一些归纳推理方法,随后拉普拉斯(Laplace,P。

C.1749~1827)不仅重新发现了贝叶斯定理,阐述的远比贝叶斯更为清晰,而且还用它来解决天体力学、医学统计以及法学问题。

之后虽有一些研究和应用但由于其理论尚不完整,应用中出现一些问题,致使贝叶斯方法长期未被接受。

直到二战后,瓦尔德(Wald,A.1902~1950)提出统计决策函数论后又引起很多人对贝叶斯研究方法的兴趣.因为在这个理论中,贝叶斯解被认为是一种最优决策函数。

在Savage,L.J.(1954)、Jeffreys,H.(1961)、Good,I。

J(1950)、Lindley,D.V(1961)、Box,G。

E.P.&Tiao,G.C。

(1973)、Berger,J。

O。

(1985)等贝叶斯学者的努力下,对贝叶斯方法在观点、方法和理论上不断的完善.另外在这段时期贝叶斯方法在工业、经济、管理等领域内获得一批无可非议的成功应用。

贝叶斯统计的研究论文与著作愈来愈多,贝叶斯统计的国际会议经常举行.如今贝叶斯统计已趋成熟,贝叶斯学派已发展成为一个有影响的学派,开始打破了经典统计学一统天下的局面。

贝叶斯统计是在与经典统计的争论中发展起来的,现已成为统计学中不可缺少的一部分.贝叶斯统计与经典统计的主要区别就是是否利用先验信息。

贝叶斯统计重视已出现的样本观测值,对尚未发生的样本观测值不予考虑。

近几年来对贝叶斯统计的广泛应用,使得贝叶斯统计在可靠性问题中起到越来越重要的作用。

尤其是对产品的失效率以及产品寿命的检验中,更是离不开贝叶斯统计。

本文主要是探索串联系统和并联系统的可靠性,以及可靠性增长模型的Bayes 估计,这些都表现出了Bayes统计在可靠性中的广泛应用。

几个重要的分布

几个重要的分布

在前面的章节中我们讲到随机变量可以用其概率密度函数的一些数字特征(或矩)来描述,比如期望值和方差。

但是,由于随机变量种类繁多,因此假设知道其概率密度函数实际上是较高的要求。

但在实际中,一些随机变量经常发生,因此统计学家能够确定其概率密度函数并归纳出其性质。

这里,我们主要关注的是一些基本的概率密度函数。

但是,在任何一本标准的统计学教科书上,你都会发现统计学家还对其他的一些概率密度函数作了仔细的研究。

本章主要讨论的4种概率分布是:(1) 正态分布;(2) 2分布;(3) t 分布;(4) F 分布。

我们将考察上述各概率密度的主要特征、性质及其用途。

读者必须掌握本章的全部内容,因为,这些概率分布是经济计量理论和实践的核心内容。

3.1 正态分布对于连续型随机变量而言,正态分布(normal distribution )是最重要的一种概率分布,稍具统计知识的读者都会熟悉其“钟型”形状(见图2 -2)。

经验表明:对于其值依赖于众多微小因素且每一因素均产生微小的或正或负影响的连续型随机变量来说,正态分布是一个相当好的描述模型。

比如考虑体重这一随机变量,它就近似服从正态分布,因为遗传、骨骼结构、饮食、锻炼、新陈代谢等都对人的体重有影响,但又没有一种因素起到压到一切的主导作用。

与此相类似,人的身高、考试分数等都近似地服从正态分布。

为了简便,通常用:X ~N (u ,2)(3 -1)1表示随机变量X 服从正态分布。

符号~表示随机变量服从什么样的分布,N 表示正态分布,括号内的参数u ,2称为正态分布的(总体)均值(或期望)和方差。

需要指出的是:X 是一个连续型随机变量,可取区间(-∞,+∞)内的任意一值。

第3章■一些重要的概率分布1 正态变量的概率密度函数:其中,e x p {}表示以e 为底的指数形式,e=2.718 28,π=3.141 59。

µ和2分别是正态分布的参数,均值和方差。

下载图3-1 正态曲线下的区域正态分布的性质正态分布曲线(见图2 -2)以均值u为中心,对称分布。

常见的分布函数范文

常见的分布函数范文

常见的分布函数范文离散型分布函数:1.伯努利分布:伯努利分布是最简单的离散型分布之一,它只有两个取值:成功(通常记为1)或失败(通常记为0),其分布函数可以用来描述实验中只有两种可能结果的情况。

2.二项分布:二项分布是一种重要的离散型分布,它描述了在n次独立重复试验中,成功事件发生的次数的概率分布。

二项分布有两个参数:试验次数n和成功概率p。

3.泊松分布:泊松分布适用于描述单位时间或空间内随机事件发生次数的概率分布。

泊松分布的参数是单位时间或单位空间内随机事件平均发生次数。

4.几何分布:几何分布描述了在一串独立重复试验中,首次成功所需要进行的试验次数的概率分布。

几何分布的参数是成功概率p。

连续型分布函数:1.正态分布:正态分布是最常见的连续型分布之一,也被称为高斯分布。

它在自然界和社会科学中广泛应用,常用于描述连续的随机变量的概率分布。

正态分布由两个参数完全描述,即均值μ和标准差σ。

2.均匀分布:均匀分布描述了一段固定区间内所有取值的概率密度相等。

它有两个参数:最小值a和最大值b。

3.指数分布:指数分布描述了事件发生的间隔时间的概率分布。

它是一种无记忆性分布,即其中一事件已经发生一段时间后,再继续观察,时间间隔不会受前一次事件发生的影响。

指数分布由一个参数λ描述。

4.γ分布:γ分布是一类重要的连续概率分布,它是指数分布的推广。

γ分布由两个参数α和β完全描述。

5.χ²分布:χ²分布是一种特殊的γ分布,用于描述多个独立标准正态分布随机变量的平方和的概率分布。

χ²分布由一个参数n描述,表示自由度。

6.t分布:t分布是用于小样本情况下对总体均值进行推断的概率分布。

它由一个参数n描述,表示自由度。

上述仅是常见的分布函数的一小部分,实际上还有很多其他的分布函数,如贝塔分布、F分布、伽玛分布、韦伯分布等等。

每个分布函数都有其特定的应用场景和数学特性,研究和理解这些分布函数对于进行概率和统计分析非常重要。

几种常见的概率分布率-(1)分解

几种常见的概率分布率-(1)分解
➢ 曲线与横坐标轴所夹的图形面积为1; ➢ 累积分布函数曲线从-∞到0平稳上升,围绕点(0,0.5)对称;
➢ 标准正态分布的偏斜度γ1和峭度γ2均为零。
以下一些特征值很重要:
-3 -2 -1
1 23
68.27%
95.45%
99.73%
P(-1≤u<1)=0.6826 P(-2≤u<2)=0.9545 P(-3≤u<3)=0.9973
4.822),求:
(1)X<161cm的概率; (2)X>164cm的概率; (3)152<X<162的概率。
x-
=
161 - 156.2 4.82
=
1.00
x
=
164 - 156.2 4.82
=
1.62
x
=
152 - 156.2 4.82
=
-0.87
x
=
162 - 156.2 4.82
=
1.20
四、 正态分布的单侧分位数和双侧分位数
x
[(1-
-1
p) ]p - p(n-x)
(当n→∞时,系数的极限为1,且nφ =μ)Βιβλιοθήκη x!= x e-x!
1
-1
e = lim (1 z) z,lim (1 - p) p = e
z0
p0
二、 服从泊松分布的随机变量的特征数
➢ 平均数:μ=λ ➢ 方差: σ2 = λ
➢ 偏斜度: 1=
1

峭度:
标轴从-∞到u所夹的面积,该曲线下的面积即表示随机 变量U 落入区间(-∞,u)的概率;
➢ 标准正态分布查表常用的几个关系式:
• P(0<U <u1)=F(u1)-0.5 • P(U >u1)=F(-u1)=1-F(u1) • P(∣U∣>u1)=2F(-u1) • P(∣U∣<u1)=1- 2F(-u1) • P(u1<U <u2)=F(u2)-F(u1)

第4章 几种常见的概率分布

第4章 几种常见的概率分布

6. 正态分布的单双侧临界值
面积为,已知 上侧临界值 P(U> u )= α ,下侧临界值 P (U <- u )= α (附表 3 上侧临界值)
若将一定曲线下面积α,平分到两侧尾区,则每侧曲线下面积为α/2,
即 P(
U U 2
)=
α,
U 这时的
U
2
称为α的双侧临界值。
面积为,已知
u 称为的上侧临界值。 附表3 (256页)给出了u的值。
N(0,1)
x=0 时,φ(x) 达到最大值
(1) 关于点(0,0.5)对称,该点也
是它的拐点
(2)x 取值离原点越远,φ (x) 值越小 (2) 曲线以 y = 0 和 y = 1 为渐近线;
(3)关于 y 轴对称,即φ(x)= φ (- x)
(3) Ф(1.960)-Ф(-1.960) = 0.95
种变量有它各自的概率而组成一个分布。这个分布就叫做二项概率分布,或简称二项分布
(binomial distribution) 由此得到计算二项分布任何一项概率的通式为:p(x) =Cnx φ
x(1- φ)n-x
二项分布是一种离散型随机变量的概率分布
性质
n
Cnx x (1 )nx 1
x0
m
一指定时间范围内或在指定的面积或体积内某一事件出现的个体数的分布 泊松分布是一种离散型随机变量的概率分布
实例 调查某种猪场闭锁育种群仔猪畸形数,共记录 200 窝, 畸形仔猪数的分布情况如下表所
示。试判断畸形仔猪数是否服从泊松分布。 畸形仔猪数统计分布
解:根据泊松分布的平均数与方差相等这一特征,若畸形仔猪数服从泊松分布,则由观察数 据计算的平均数和方差就近于相等。样本均数和方差 S2 计算结果如下:

常见概率密度函数

常见概率密度函数

常见概率密度函数
常见概率密度函数是用于描述某个随机变量取值的概率分布的数学函数,它可以帮助我们更好地理解和分析随机现象的规律性。

1. 均匀分布
均匀分布是最简单的概率密度函数之一,它可以用来描述当随机变量在一个区间上取值的概率分布。

均匀分布的概率密度函数在区间内保持恒定,而在区间外则为0。

均匀分布函数的参数包括起始点a和终止点b,它们定义了随机变量的范围。

2. 正态分布
正态分布是最广泛使用的概率分布之一,它用于描述大量随机现象,例如人口高度和IQ分数等。

正态分布的概率密度函数是一个钟形曲线,它是由两个参数决定的:均值μ和标准差σ。

均值决定了曲线的中心位置,而标准差则确定了曲线的宽度。

3. 指数分布
指数分布是用于描述时间间隔随机变量的概率分布的函数。

指数分布
的概率密度函数是一个指数函数,它随着时间的增加而不断减少。

指数分布的参数λ反映了事件发生的速率。

4. 泊松分布
泊松分布是描述事件发生次数的概率分布函数,例如电话接线员在一定时间内接到的电话数。

泊松分布的概率密度函数是一个离散函数,它随着事件的发生次数而变化。

泊松分布的参数λ表示单位时间内事件发生的平均次数。

以上是常见的概率密度函数。

学习它们将帮助我们更好地理解和处理概率和统计学问题。

概率密度函数范围

概率密度函数范围

概率密度函数范围
概率密度函数又称概率分布函数,是概率论和数理统计分析中用来表述随机变量分布特性的函数,它表示随机变量取值落在某区域内的概率。

概率密度函数的范围是[0,+∞],表示随机变量在某一事件发生的概率大小。

概率密度函数分布有几种不同的形式,包括均匀分布、泊松分布、正态分布、对数正态分布等。

均匀分布属于一般分布,其概率密度函数的范围是[0,1],表示取值落在某个区域内的概率是均匀的;泊松分布为离散分布,其概率密度函数的范围是[0,+∞],反映了随机变量取值落在某个区域内的概率;正态分布也称为高斯分布,是连续性随机变量的概率密度函数的特殊情况,其范围也是[0,+∞];对数正态分布是基于相同的思想生成的一种变体,其概率密度函数的范围也是[0,+∞]。

概率密度函数反映了某一事件在特定区域内发生的概率,是定量研究随机变量分布形态的重要工具。

概率密度函数有几种不同的形式,范围都为[0,+∞],具体形式取决于随机变量的分布类型。

不同的概率密度函数表达不同的随机变量取值落在特定区域内的概率,所以经常使用这些函数来分析不同的随机变量的分布情况。

概率密度函数的存在是随机变量分布研究的一个重要工具,它可以把一个随机变量的取值落在某一区域内的概率表示为函数值,是概率论和统计学重要的分析工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档