沼气发电极其热能回收利用

沼气发电极其热能回收利用
沼气发电极其热能回收利用

污泥处理能源的利用——沼气发电及其热能回收

摘要:本文系统介绍了高碑店污水处理厂,污泥处理设计过程中,如何有效地回收利用沼气发电系统的余热作为污泥中温消化的热源。达到节约能源,减少电耗和降低污水处理成本的目的。

关键字:沼气发电能源利用余热回收热平衡

1污泥处理及能源利用概况

高碑店污水处理厂二期工程设计水量50万m3/d,初沉泥和二沉池的混合污泥量为4417m3/d,污泥含水率97%,污泥处理工艺采用重力浓缩,二级中温消化带式压滤机脱水,并利用消化产生的沼气发电并入城市电网,发电机产生的余热作为一级消化热源,锅炉房蒸汽为补充热源。

高碑店污水处理厂二期工程设置八座消化池,四座为一个系列,共两个系列,每一系列有一级消化池三座,二级消化池一座,消化池产沼气2.2~2.6万m3/d。其中甲烷含量占57%~62%,热值5000Kcal/m3,消化池产气总热量为540万Kcal/h。三台沼气发电机总发电量2000KW,所发电量并入市政公用电网。为维持污泥中温消化所需的温度,需要对污泥进行加热。加热污泥的热量需要由外部热源提供,高碑店污水处理厂利用污泥消化产生的沼气进行发电,沼气发电系统运行中产生的大量余热,作为加热污泥的热源,这将节约大量的热能,达到节省能源,降低能耗的目的。图1为能源利用流程图。

2能源利用途径

高碑店污水处理厂工程沼气发电系统选用三台奥地利JMS316-BL型沼气发电机,发电机总容量约2000KW,单台发电机容量为625KW。该系统在运行过程中有三个部分产生的热能可回收利用,它们是:燃气混合热能、缸套水热能和润滑油热能及尾气释放的热能。表1所示为各部分热能回收量与回收率,图2为沼气发电机组热能回收系统,图3为单台沼气发电机组能量平衡图。沼气发电系统热能回收量与回收率单位:kw(万kcal)表1序号项目回收量回收率备注1燃气混合热能98(8.4) 5.8%2缸套水和润滑油热能283(24.3) 16.6%3尾气热能475(40.9)27.9%总输入热能1703(146.5)4总回收热能856(73.6)50.3%由图2可知,进入发电机的冷水,流量39.4m3/h,温度为70℃,吸收沼气发电机的热能后流量不变,温度升为90℃,进入余热利用系统。由图3可知由沼气产生的总能量中有40%转变为机械能,60%转变为热能。其中40%机械能中的38.3%转换为电能;60%热能中的50.3%作为余热可回收利用,总能量回收效率可达88.6%。该回收率高于一般的沼气发电机。3热平衡系统

该热平衡是通过某种调节手段,使供热系统提供的热量恰好与需热系统所需热量相同。供热系统的热量为沼气发电系统产生的余热和蒸汽锅炉补充热量的总和;需热系统的热量是指消化池正常运行时所需热量。

3.1供热系统运行工况

3.1.1沼气发电机

沼气发电系统余热热量计算,

Q=CA△t(1)

其中,Q-供(需)热量(Kcal/h)

C-介质的传热系数(Kcal/m3℃)

A-介质流量(m3/h)

△t-介质温度的变化(℃)

如前所述,余热利用了燃气混合、缸套水、润滑油及尾气四部分热能,单台发电机组热能总值为856KW(73.6万Kcal/h)。单台机组在不同负荷情况下所提供的热量是变化回收的,见表2。同样,沼气发电系统供热量也随机组台数的变化而变化。单台机级能量随负荷变化表单位kw(万kcal)表2沼气发电系统热能回收量与回收率单位:kw(万kcal)表1项目100%负荷75%负荷50%负荷总输入能量1703(146.5)1321(113.6)969(83.3)总回收热能856(73.6) 675(58.0)491(42.2)其中:燃气混合热能98(8.4)40(3.4)2(0.2)缸套水和润滑油热能283(24.3)271(23.3)233(20.0)尾气热能475(40.9) 364(31.3)256(22.0)从能量分配得知,三台发电机满负荷运行时,沼气进气总能量为3×1703=5109KW(439.4万Kcal/h,100%),总发电量为3×652=1956KW(168.2万Kcal/h,38.3%),热回收总量为3×856=2568KW (220.8万Kcal/h,50%),尾气损失能量为3×139=417KW(35.9万Kcal /h,8.1%),机组辐射损失能量为3×56=168KW(14.4万Kcal/h,3.3%)。三台机组满负荷运行时可利用的最大热能为2568KW(220.8万Kcal/h,50.3%)。

3.1.2蒸汽锅炉汽水交换

沼气发电系统所产生的余热随其运行台数与负荷的不同而变化,加热污泥所需热量相对较稳定,当余热提供热量不能满足消化池所需热量时,可利用蒸汽锅炉作为补充热源。补充热源是由蒸汽锅炉产生的蒸汽,通过汽水热交换器产生热水供给泥水热交换器使用,以补充热量不足部分。补充热量为消化池污泥全年最冷月需热量226.8万Kcal/h。(见表6)

3.2需热系统工况

加热是污泥中温厌氧消化的重要条件,为保证消化池在35℃条件下正常运行,采用污泥池外间接加热法。螺旋板式泥水热交换器对污泥加热。

3.2.1加热污泥的耗热量计算

新鲜污泥温度变化。如图4。

按照消化池的投泥次数,每天投泥4次,每次1小时,每次投泥量90m3/h,得出单池新鲜污泥平均耗热量Q泥。如表3所示。单位:1000Kacl/h表3沼气发电系统热能回收量与回收率单位:kw(万kcal)表1月份123456泥耗热量309287276263228217月份789101112泥耗热量204197213 254270281

3.2.2消化池池体耗热量计算

根据北京市气温及地温的变化,按照公式:

Q池=FK(TD-TA)(2)

其中,Q池:消化池池体耗热量(Kcal/h)

F:池盖、池壁及池底的散热面积(m2)

K:池盖、池壁及池底的散热系数(Kcal/m2?h?℃)

TD:消化温度(℃)

TA:池外介质温度(℃)

得出消化池池体耗热量,见表4。单位:万Kcal/h表4月份123456池体耗热理351823460229224229601741413762月份789101112池体耗热量119331294215896214622756733401

污泥平均耗热量与池体耗热量之和,同事考虑10%的管道损耗,得出六座一级消化池所需热量。见表5及图5。单位:万Kcal/h表5月份123456消化池所需热量226.8212.0201.4188.5162.0152.7月份789101112消化池所需热量142.5138.3151.1181.6196.4207.3消化池冬季所需最大加热量为226.8万Kcal/h。夏季最小加热量为138.3万Kcal/h。

3.3热平衡系统的联接

3.3.1供热系统能量传递

图5表示污泥处理热平衡系统。

冬季三台发电机组满负荷运行,余热量基本满足消化池所需热量。若发电机组未满负荷运行,可通过汽水热交换器补充热量。当夏季发电机组提供的余热量大于消化池所需热量时,发电机组启动自身保护系统-紧急风冷器,将余热释放。以下为四种典型的加热系统流程。

(1)全部利用发电机组余热加热污泥系统(见图6)。

沼气发电机产生的余热可满足加热消化污泥所需的热能,而无需外界补充热源,即消化池加热系统与沼气发电机热交换系统相联。

(2)沼气发电机未运行的加热污泥系统(见图7)。

当运行初期沼气发电机未运行或未正常运行时,消化污泥需要加热,需使用外界补充热源,用汽水热交换器提供热水至泥水热交换器加热污泥,即消化池加热系统与汽水热交换器热交换系统相联。

当产气量少或消化池检修时,沼气发电机未满负荷运行(50%或70%),台数减少以及冬季最冷的情况下,单凭沼气发电机产生的余热不能满足加热消化污泥所需的热能时,需加用外界补充热源,即消化池加热系统与沼气发电机热交换系统和汽水热交换器串联系统相联。

(3)利用发电机组余热和补充热源的加热污泥系统(见图8)。

(4)污泥消化非正常运行的加热污泥系统(见图9)。当沼气发电机余热热水经泥水热交换器回至发电机冷却水人口处,其温度大于70℃,不满足发电机冷却要求或消化池本身污泥系统未运行时,需用发电机自身配套水水热交换器,通过紧急风冷器冷却。

3.3.2供需热系统内部能量调节

从能量的需求看,沼气发电机系统产生的余热能够满足污泥加热的要求,但由于泥水热交换器对进水温度有特殊要求:①进水温度不大于75℃。若大于75℃,污泥易结垢,影响传热效率。②进、出水温差不宜大于8℃,否则热交换器传热效率降低。而沼气发电系统冷却水出水温度为90℃,两者之间差别见表6。设备对温度及流量的要求表6项目泥水热交换器沼气发电机组进水温度(℃)7570出水温度(℃)68.790流量(m3/h)60*6 39.4*3热量(万Kcal/h)226.8236沼气发电系统所产生的高温热水不能对污泥直接进行加热。因此,需要设置温度和流量调节控制系统,见图10。通过该系统将泥水热交换器出口较低温度的水与发电机组较高温度的冷却水混合,达到泥水热交换器进口水温的要求。按式(3)、(4)、(5)可以算出不同条件下进出水的温度和流量。这一过程可全部自控完成。q2=q1+q3(3)Q=q2*1000(tw1-tw2)(4)q2tw2=q1te+q3tw1

(5)其中,q1:发电机出水流量(m3/h)q2:泥水热交换器进水流量(m3/h)q3:回流量(m3/h)tw1:泥水热交换器出水温度(℃)tw2:泥水热交换器进水温度(℃)te:发电机出水温度(℃)Q:泥水热交换器的供热量(Kcal/h)采用上述方法无需特殊设备,节省投资,自动调节,管理方便。 3.4热平衡系统的特点①在正常运行情况下,发电机产生的余热能满足消化池污泥加热的热量,节能综合利用率高,总能量回收率达到88.6%,热能回收50.3%。②热平衡系统既相对独立又相互补充,可以满足各种工况下污泥加热的要求,组合灵活。③泥水热交换器采用螺旋板式换热器,传热系数为1000Kcal/m2?h?℃。传热效率高,检修管理方便。对热交换器进水口温度进行控制,防止过热结垢现象。④在消化池需热及发电系统余热供热之间水量或水温不匹配的情况下,设置简单的调节装置(回流阀),即满足热量转换又满足泥水热交换器及发电机组进水口水温的要求,使得热能有效合理利用,并便于操作管理。⑤连续污泥加热,运行简便。4设计中应注意的问题①作好消化池及热循环系统管道的保温,减少热量损失。

②控制泥水热交换器进水温度,控制温度在75℃以下,以防止过热结垢。

③污泥中挥发性固体的种类及在消化池的分解程度,直接影响甲烷含量及产气率,影响能量利用。④沼气发电机的电力并人市政电网,其负荷可以平稳运行。沼气系统中设有贮气柜,可调节产气率的变化,也为沼气发电机提供平稳运行条件。因此应控制每台发电机,尽量在100%高负荷条件下运行,从而提高总能量回收率。⑤消化池运行初期未产生沼气时,需使用外热源蒸汽锅炉,通过汽水热交换器用热水加热污泥。5经济效益和环境效益

沼气是污泥消化的副产品,若剩余气体直接排放,会污染环境;沼气发电机尾气是发电时的副产品,若直接排放,会造成热污染。因此,利用沼气发电余热回收利用,可减少空气污染和热污染。通过能源利用,可节电、节煤、降低污水处理成本,达到综合利用的目的。6结论①利用沼气发电系统产生的余热加热污泥的方法在一定规模的污水处理厂中非常适用。②通过建立热平衡系统,分析需热与供热之间的矛盾,使得沼气发电系统所产生的余热获得充分的利用。每年可节约燃煤约5100吨。③在发电机发电量为2000KW 的条件下:电能利用率达38.3%;热能利用率达50.3%;能量总回收率达88.6%;每年可节约用电1750万度。通过沼气发电机余热利用,可节省全厂30%以上的用电量。④通过沼气发电和余热利用,降低污水处理成本。

瓦斯发电及其余热利用_瓦斯发电

瓦斯的主要成分是烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般还含有硫化氢、二氧化碳、氮和水气,以及微量的惰性气体。 具体可分为液化石油气与天然气、煤气三大类液化石油气,由原油炼制或天然气处理过程中产生的混合气体,主要成分是丙烷与丁烷天然气,由古生物遗骸长期沉积地下,经慢慢转化及变质裂解而产生的气态碳氢化合物,主要成份为甲烷,并含有少量之乙烷、丙烷、丁烷等碳氢化合物及少量之不燃性气体 煤气(指生活中人们对其称呼),也俗称为“瓦斯”。指的是煤炭不完全燃烧所产生的气体,主要成分是一氧化碳 煤矿瓦斯发电,既可以有效地解决煤矿瓦斯事故、改善煤矿安全生产条件,又有利于增加洁净能源供应、减少温室气体排放,达到保护生命、保护资源、保护环境的多重目标。 低浓度瓦斯发电需要解决2个问题,一是各个煤矿的本身不一样,而且随时都在变化,传统的发电机组很难“以不变应万变”;二是低浓度瓦斯的安全输送问题。 低浓度瓦斯发电机组采用电控燃气混合器技术,可以自动控制空燃比,以适应瓦斯的浓度变化,同时,低浓度瓦斯安全输送技术,采用细水雾技术,解决了低浓度瓦斯的地面安全输送问题。

煤矿瓦斯分高浓度瓦斯和低浓度瓦斯,高浓度瓦斯是指瓦斯浓度大于25%的瓦斯,低浓度瓦斯是指瓦斯浓度低于25%的瓦斯。我国60%以上的瓦斯是含甲烷25%以下的低浓度瓦斯,按煤矿安全规程要求,瓦斯浓度在25%以下的就不能贮存和输送,更谈不上利用了。 低浓度瓦斯发电需要解决2个问题,一是各个煤矿的本身不一样,而且随时都在变化,传统的发电机组很难“以不变应万变”;二是低浓度瓦斯的安全输送问题。低浓度瓦斯发电机组采用电控燃气混合器技术,可以自动控制空燃比,以适应瓦斯的浓度变化,同时,低浓度瓦斯安全输送技术,采用细水雾技术,解决了低浓度瓦斯的地面安全输送问题。 中国工程院周院士认为“低浓度瓦斯发电机组,适合我国煤矿点多量小的特点,堪称破解我国煤矿瓦斯难题的金钥匙”。 2004年以来,胜利油田胜利动力机械集团开始对“煤矿瓦斯细水雾输送及发电技术”进行开发研究并与第二年试验成功,使低浓度瓦斯发电技术得到了快速发展。目前装机总容量达到45万KW ,每年可发电21亿KW·H ,利用瓦斯7亿立方米。新版《煤矿安全规程》对浓度在30%以下的瓦斯用于内燃机发电作出了明确的规定,《规程》第148条第五项规定抽采的瓦斯浓度低于30%时,不得作为燃气直接燃烧;用于内燃机发电或作其他用途时,瓦斯的利用、输送必须按有关标准的规定,并制定安全技术措施。这给低浓度瓦斯发电提供了制度保障。

恒友沼气发电项目可研报告修改稿2009[1].3.28

恒友沼气发电项目可研报告修改稿 20xx[1].3.28 (编号:GKxx06-032)河南省工程咨询公司二 00 九年三月 目录 第一章总论1 1、1 项目背景、1 1、2 项目概况、15第二章市场分析与预测19 2、1 市场分析、19 2、2 风险分析及规避、20 2、3 建设规模及产品方案、21第三章场址概况与建设条件22 3、1 建设地点、22 3、2 气象、地质条件、22 3、3 抗震设防、24 3、4 厂址评价、24 3、5 建设条件、24第四章工艺技术方案与总图运输26 4、1 项目组成、26 4、2 主要生产工艺、26 4、3 总图运输、45第五章公用工程49

5、1 给排水工程、49 5、2 供电工程、51 5、3 接地和防雷、52 5、4 供热、52第六章环境保护54 6、1 建设地区环境现状、54 6、2 设计采用标准、54 6、3 主要污染源(物)排放情况及治理措施、54第七章劳动安全卫生57 7、1 设计采用标准、57 7、2 建筑及总平面布置安全、57 7、3 安全防火与防爆措施、59 7、4 电气安全、59 7、5 静电、雷电防范措施、60 7、6 劳动安全、60第八章节能62 8、1 概述、62 8、2 节能设计依据、62 8、3 用能特点及节能指导思想、62 8、4 节能措施、63 8、5 能源管理、64 8、6 项目能耗分析、64 8、7 节能效果分析、64第九章企业组织机构、劳动定员及人员培训66

9、1 组织机构设置原则、66 9、2 企业组织机构设置、66 9、3 管理机构系统简图、66 9、4 劳动定员、67 9、5 人员培训、67第章项目管理与实施进度69 10、1 项目管理、69 10、2 项目建设期、69 10、3 建设阶段划分、69 10、4 建设进度计划、70第一章项目招投标方案71 11、1 项目招标范围及招标组织形式、71 11、2 投标、开标、评标和中标程序、71 11、3 评标委员会的人员组成和资质要求、72第二章投资估算与资金筹措73 12、1 估算范围、73 12、2 编制依据与说明、73 12、3 投资估算、74 12、4 总投资、79 12、5 资金筹措、80第三章财务分析及评价81 13、1 评价参数、依据及方法、81 13、2 成本费用估算、81 13、3 销售收入、82 13、4 利润及分析、83

垃圾填埋场沼气发电系统的优化配置

垃圾填埋场沼气发电系统的优化配置 随着全球经济的高速增长,能源和环保问题日益突出。一方面,化石能源日渐枯竭,世界正面临巨大的能源压力;生存环境日渐恶劣,世界正面临巨大的环境压力。另一方面,又有巨大的能源被白白地浪费;有大量的有害物质被肆无忌惮地排放。能源和环境已经成为世界最重要的事情!“节约能源,减少排放”在很多国家被列为“基本国策”。 研究表明:每吨垃圾填埋后可以产生300m3左右的填埋气,甲烷含量约占填埋气总量的45~60%,热值约为20MJ/Nm3,是一种利用价值较高的清洁燃料,产物是二氧化碳和水,具备二次污染小的特点。因此,沼气发电就成为垃圾处理的具体措施之一。 沼气发电是一个系统工程,它包括垃圾填埋操作管理、产气量的监测、沼气收集、沼气输送、沼气处理、沼气发电及电力上网以及系统配套设施等多项单元技术的组合,也涉及到国家对沼气发电的扶持政策和技术法规等。剖析国内已有的沼气发电工程,借鉴发达国家的沼气发电技术和经验,以及充分研究和利用国家对可再生能源的政策导向等,进行对垃圾填埋气体发电及其配套系统进行优化研究和应用,已成为业界日益关注和探讨的重要课题。 1垃圾填埋场填埋操作概述 卫生填埋法是大型填埋场应用最普遍的处理技术。将垃圾倒入具有一定地形特征的场地中,通过采取防渗、覆土和气体导排设施,消除了简易填埋带来的各种安全、卫生和环境污染问题的一种最终处置技术。投资少,容量大,操作简单。但是,大部分中小规模的城市生活垃圾采用直接露天堆放、自然填沟等方式处理,不但侵占了宝贵的土地资源,而且对环境造成了潜在的影响和危害,特别是渗滤液,由于没有进行必要的收集和集中净化处理,导致水资源和环境的严重污染,而且,所产生的沼气也无法利用,浪费了大量的能源。 填埋处置方式也有明显的弱点。一是占地面积大,场地选择较困难。二是二次污染问题。处理不好的填埋场,其渗滤液和沼气对周围地区造成严重危害。因此在填埋操作过程中,可以通过以下措施来优化垃圾填埋场的填埋操作管理: ﹡提高垃圾填埋场的堆放高度可以减少占用土地; ﹡分区集中作业,有利于垃圾分解产气和收集; ﹡采用新材料、新工艺加强填埋场底部处理,并设置污水处理系统,以解决对水源的污染; ﹡在垃圾填埋之前铺设垃圾渗滤液回收管道和沼气水平或垂直管道,提高填埋场沼气的抽取效率;﹡压实垃圾,创造厌氧环境,而且增大库容;及时覆土,阻止空气进入,防止好氧反应的发生;﹡阻止沼气散发,充分利用能源,消除安全隐患; ﹡建立防洪体系,维持厌氧反应环境;建立渗滤液处理系统,让渗滤液能顺利排出,并得到及时处理。

煤矿余热节能环保综合利用项目

煤矿余热节能综合利用项目 瓦斯发电机组余热、压风机余热、矿井水余热、矿井乏风氧化余热综合利用 胜动集团节能工程公司 2014年5月21日

公司简介 胜动集团节能工程公司位于山东省东营市经济技术开发区府前大街30号,是“中国节能服务产业十佳企业”胜利油田胜利动力机械集团有限公司下属分公司,专业从事分布式能源发电;矿井水、乏风、工艺循环、压风机冷却废热提取;井口保温和井下制冷;工业余/ 废热综合利用等节能工程项目建设总承包业务,集节能工程项目咨询、工程设计、施工总包于一体,提供节能工程建设一体化服务。公司以工程设计院为依托,拥有一支精良工程项目管理团队,业务内容涵盖节能诊断、节能规划、方案设计、可行性研究报告、工程设计、工程施工、EPC总承包。公司目前拥有电力行业(新能源发电、火电)设计和咨询乙级资质、机电设备安装工程专业承包叁级资质,现有员工120余人,其中设计咨询板块60余人,拥有注册建筑师、注册结构师、注册电气工程师、注册公用设备工程师、注册造价师、注册咨询师等各类执业资格技术人员20余名,拥有建筑、结构、暖通、机务、电气、动力等各类专业高中级工程师30余名,工程项目管理板块拥有国家注册建造师执业资格的项目管理人员10余名。节能工程公司立足于集团公司节能减排产业,始终如一的秉承“节约能源、保护蓝天”的企业宗旨,坚持“追求完美、创造卓越”的工作理念,提供给社会“全盘、全套、全面、全新、全优”的节能工程综合服务。近年来,公司以全国范围内燃煤替代节能工程为市场方向,进入煤矿余热综合利用、工业余/废热回收利用等集成供热制冷节能工程领域,实现了快速发展。

一、煤矿丰富的余热资源 1、煤矿瓦斯发电余热 胜动集团是全国最大的燃气内燃机发电机组产业基地,拥有多种型号的燃气发电机组,如500kW/600kW/700kW/1200kW/2000kW大型煤矿瓦斯发电机组。拥有多项发明专利的特有技术。是煤矿低浓度瓦斯发电的行业实施者、标准制定者。 发电机组在运行时,只有约35%转化为电能,约30%-35%随高温烟气排出,20%-25%被发动机冷却水带走,通过机身散热等其他损失约占10%左右,充分利用这些没有被转化为电能的余热,用来制取冷热水以满足用户的生产生活需求。例如:煤矿瓦斯变害为利改造途径中,既有瓦斯的发电利用,也有瓦斯发电余热的利用,既提高了瓦斯的利用率,改善机组运行工况,又降低其他能源消耗。 2、压风机余热制取洗浴热水

烟气余热回收装置的利用(2021年)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 烟气余热回收装置的利用(2021 年)

烟气余热回收装置的利用(2021年)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅

沼气发电各种利用途径对比

沼气发电----沼气利用方式效益对比 以酒精生产企业为例 国内很多酒精厂在保护环境方面作了很大努力,建厌氧池处理废水是非常有力的方式,每年减少大量有机废水排放,保护了有限的水资源。但厌氧反应出来的沼气部分企业用来烧锅炉,或发电,或直接供生产蒸汽,对于这些利用方式,我公司谨根据有关经济价值比较提出新的沼气利用方式,以获得更高的经济效益,回报环保工作的付出。 一、效益比较。 1、效率对比:同样的发电采用不同的方式,其经济结果是不一样的。采用锅炉发电,由于酒精生产企业大都是小功率发电站,效率都比较低,特别是简单的气、煤混烧,效率在17%左右,大大的浪费资源,而采用内燃机发电,效率在35%以上。 价值对比:烧锅炉用煤和气都可以,用气烧锅炉发电,每方气相当于0.8公斤标准煤的价值,约计0.45元,而采用内燃机组发电,每方气发电在1.8 kWh,按0.6元/ kWh计算,价值在1.08元。 3、综合比较:以下以年产10万吨酒精厂生产过程产生的沼气用于内燃机发电及余热利用效益与烧锅炉进行比较。10万吨酒精生产线有机废水采用厌氧装置,每天产气量约10万方。 (1)简单烧锅炉供蒸汽方式,10万方沼气约合80吨标准煤价值,按550元每吨计,价值44000元。实际上,10万吨产能酒精生产线日需9kg蒸汽300吨左右,需标准煤30吨左右,多余的能量就白白浪费了。 (2)采用烧锅炉发电供蒸气方式:发电量每方气在0.8kWh左右,共计发电量100000×0.8=80000kWh,按0.6/kWh元计,发电价值4.8万元。加上实际需要的蒸汽需煤消耗价值:30吨×550元/吨=16500元,总值64500元。 (3)采用内燃机发电及余热利用方式:每天可发电100000×1.8=180000kWh , 发电价值108000元。发动机余热通过针管式余热锅炉回收余热,根据酒精工艺,利用后每小时可产九公斤饱和蒸汽4吨,日产96吨,每公斤9公斤饱和蒸汽按80%锅炉热效率算需热650大卡,那么96吨9公斤饱和蒸汽需热6240万大卡,合标准煤约8吨,价值4400元。价值总计112400元。 结论:采用燃气内燃机发电并利用余热是最有效益的沼气利用方式 二、合作方式: 1、购销合作:由用户投资购买燃气机组组建电站,自行负责维护,我方提供最佳服务 2、劳务合作:用户投资建站,我方负责运行维护并保证一定发电量,收取劳务费。 三、内燃机组发电特点如下: ①发电效率高。通常在35~40%,若增加热电冷联供系统,热电效率可达80%以上。 ②造价相对较低。由于内燃机技术成熟,零件的精密度要求相对较低,单位千瓦造价低。 ③使用场合灵活。根据不同场合用户的需要,可方便的并机或并网,构成总输出功率达上万千瓦的电站或热电冷联供机组。机组群还可根据实际负载的需要,灵活方便地调节发电输出。

污水处理厂工艺流程

污水处理厂工艺流程 污水进入厂区先通过1.截流井(让厂能处理的污水进入厂区进行处理)进入2.粗格栅(打捞较大的渣滓)到3.污水泵(提升污水的高度)到4.细格栅(打捞较小的渣滓)到5.沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到6.生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入7.终沉池(排除剩余污泥和回流污泥)进入8.D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线9.消毒(杀灭水中的大肠杆菌)然后10.出水 生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理. 一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理. 二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD物质).去除率可达90%以上.使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理. 三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用. 各个处理构筑物的能耗分析 1.污水提升泵房 进入污水处理厂的污水经过粗格删进入污水提升泵房.之后被污水泵提升至沉砂池的前池.水泵运行要消耗大量的能量.占污水厂运行总能耗相当大的比例.这与污水流量和要提升的扬程有关. 2.沉砂池 沉砂池的功能是去除比重较大的无机颗粒.沉砂池一般设于泵站前.倒虹管前.以便减轻无机颗粒对水泵.管道的磨损,也可设于初沉池前.以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池.多尔沉砂池和钟式沉砂池. 沉砂池中需要能量供应的主要是砂水分离器和吸砂机.以及曝气沉砂池的曝气系统.多尔沉砂池和钟式沉砂池的动力系统. 3.初次沉淀池 初次沉淀池是一级污水处理厂的主题处理构筑物.或作为二级污水处理厂的预处理构筑

垃圾填埋场沼气发电技术的现状及其前景

中国沼气发电技术发展现状与前景展望 摘要:本文通过对中国沼气利用现状和沼气发电工程市场前景的调查与分析,描述了沼气发电技术发展现状及其能源利用市场潜力,对影响沼气发电商品化和市场化的社会经济因素和主要障碍进行了分析评价,并提出了一些对策和措施。 关键词:沼气工程发电 1、引言 生物质能是来源于太阳能的一种可再生能源,具有资源丰富、含碳量低的特点,加之在其生长过程中吸收大气中的C02,因而用新技术开发利用生物质能不仅有助于减轻温室效应和生态良性循环,而且可替代部分石油、煤炭等化石燃料,成为解决能源与环境问题的重要途径。 随着对环境的日益重视,人们开始利用各种方式来减少工农业生产对环境的破坏。近十几年来,在各级政府有关部门和企业的帮助协调下,用于处理畜禽粪便及各种生产、生活污水的大中型沼气工程纷纷上马,至1998年底,我国已建成大中型沼气工程742处,年产沼气量为16393.94万立方米;垃圾填埋法产生沼气是处理城市垃圾的主要方式之一,具有简单易行和费用较低的特点,同时还可回收能源,正受到世界各国的普遍欢迎。目前,全世界共建成4817座垃圾填埋场,每年可回收沼气51.42亿立方米。 沼气是一种具有较高热值的可燃气体,与其它燃气相比,其抗爆性能较好,是一种很好的清洁燃料,传统上大多利用沼气进行取暖、炊事和照明,随着沼气产量的不断增加,如何更高效地利用沼气,成为摆在我们面前的一项课题。 2、沼气发电技术进展状况 沼气燃烧发电是随着沼气综合利用的不断发展而出现的一项沼气利用技术,它将沼气用于发动机上,并装有综合发电装置,以产生电能和热能,是有效利用沼气的一种重要方式。目前用于沼气发电的设备主要有内燃机和汽轮机。 国外用于沼气发电的内燃机主要使用Otto发动机和Diesel发动机,其单位重量的功率约为27 kW/T。汽轮机中燃气发动机和蒸汽发动机均有使用,燃气发动机的优点是单位重量的功率大,一般为70~140kW/T;蒸汽发动机一般为10kW/T。国外沼气发电机组主要用于垃圾填埋场的沼气处理工艺中。目前,美国在沼气发电领域有许多成熟的技术和工程,处于世界领先水平。现有61个填埋场使用内燃机发电,加上使用汽轮机发电的装机,总容量已达340兆瓦;欧洲用于沼气发电的内燃机,较大的单机容量在0.4~2兆瓦,填埋沼气的发电效率约为1.68~2kWh/m3。 我国开展沼气发电领域的研究始于八十年代初,1998年全国沼气发电量为1,055,160kWh。在此期间,先后有一些科研机构进行过沼气发动机的改装和提高热效率方面的研究工作。我国的沼气发动机主要为两类,即双燃料式和全烧式。目前,对“沼气一柴油”双燃料发动机的研究开发工作较多。如:中国农机研究院与四川绵阳新华内燃机厂共同研制开发的S195—1型双燃料发动机:上海新中动力机厂研制的20/27G双燃料机等。成都科技大学等单位还对双燃料机的调速、供气系统以及提高热效率等方面进行过研究。潍坊柴油机厂研制出功率为120 kW的6160A一3型全烧式沼气发动机,贵州柴油机厂和四川农业机械研究所共同开发出60 kW的6135AD(Q)型全烧沼气发动机发电机组;此外,还有重庆、上海、南通等一些机构进行过这方面的研究、研制工作。可以说,目前我国在沼气发电方面的研究工作主要集中在内燃机系列上。表1是我国部分12kW以下沼气发电机组的测试性能比较。 3、沼气发电前景广阔 沼气发电工程本身是提供清洁能源,解决环境问题的工程,它的运行不仅解决沼气工程中的一些主要环境问题,而且由于其产生大量电能和热能,又为沼气的综合利用找到了广泛的应用前景: 1)有助于减少温室气体的排放 通过沼气发电工程可以减少CH4的排放,每减少1屯CH4的排放,相当于减少25吨C02的排放,对缓和温室效应有利。 2)有利于变废为宝,提高沼气工程的综合效益 我们以沼电在酒厂中的的综合效益为例:四川荣县进行了120 kW沼气发电的生产和示范。用酒糟废水经厌氧消化产生沼气,发电效率为1.69 kWh/m3,当年成本为0.0465元/kWh。沼电能够基本满足该厂的生产用电:山东昌乐酒厂安装2台120 kW的沼气发电机组,170m3酒糟日产沼气4800m3,发电8640kwh,全年能源节约开支29万元,工程运行一年即收回全部成本。

500kW发电机组余热利用计算

500KW燃气发电机组 烟气余热利用数据计算及经济效益分析 一、余热利用数据计算 1、烟气余热计算 燃气在空气中完全燃烧公式: 燃气在空气中不完全燃烧公式: 国产的500kW瓦斯气发电机组正常运转时,发电功率约为400kW、排烟温度为520℃左右。 如果采用该系统产生洗澡热水,设定烟气余热回收装置的排出的烟气温度为160℃,瓦斯气完全燃烧时瓦斯气和空气的体积比,根据各地的瓦斯成分有所不同,为使燃料充分燃烧,一般燃气与空气的混合比例为理论值的1.4倍左右。无论其混合比是多少,经测量其每小时产生的烟气量一般约为2250 m3/h左右。 平均烟气比重按1.25kg/m3计算, 则每小时排出烟气总重:2250×1.25=2812.5kg 排烟的比热容按烟道气体计算 (烟道气体的成分 CO 13% H2O 11% N2 76%,在100℃~600℃的平均定压比热容为0.27kcal/kg·℃) 数据列表 定压比热容(kcal/kg.℃)烟道气体空气 100℃0.255 0.241 200℃0.262 0.245 300℃0.268 0.250 400℃0.275 0.255 500℃0.283 0.261 600℃0.290 0.266 每台发电机组可利用排烟余热为: 2台发电机组可利用排烟余热总量为:

27.34×2 =54.68万kcal/h(~635kW) 2、缸套高温水余热计算 发动机正常运转过程中,必需要求其缸套温度保持在合理温度之内,高温水的热量如果不利用,则需要加冷却塔进行冷却。如果我们增加1台板式水-水换热器,将高温水热量加以利用,则可以减少能源浪费,使能源利用达到最大化,根据发动机厂家提供的数据,其高温水热量约为: 300KW × 0.75 =225 Kw (19.4万kcal/h) 2台发电机组可利用高温缸套水余热总量为: 19.4×2 =38.8万kcal/h(~450kW) 3、烟气和缸套高温水总余热计算 通过上面计算,可以看出2台发电机组可以利用的烟气和缸套高温水总余热热量为: 54.68 + 38.8 = 93.48万kcal/h(~1086kW) 二、经济效益分析 如果管线和散热损失按5%计算,2台燃气发电机组的烟气和高温缸套水余热产生的热量88.8万kcal/h;燃煤锅炉的热效率按照80%,煤的热值按照5000kcal/kg 计算,则回收的热量相当于每小时节省燃煤: 88.8×10000÷5000÷0.8 = 222 kg。 每天按照24小时,则每天节省的燃煤量: 222×24 = 5328 kg 每吨煤按照400元计算,则每天节省的费用: 400×5.328 = 2131元 每月按照30天,每年按照运行12个月计算,则每年节省的费用为: 2131×30×12 = 76.7 万元 三、热量平衡计算分析

烟气余热回收装置的利用(新编版)

烟气余热回收装置的利用(新 编版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0521

烟气余热回收装置的利用(新编版) [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电

厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1.0%。因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端

沼气燃烧发电

沼气燃烧发电 概述 沼气燃烧发电是随着大型沼气池建设和沼气综合利用的不断发展而出现的一项沼气利用技术,它将厌氧发酵处理产生的沼气用于发动机上,并装有综合发电装置,以产生电能和热能。沼气发电具有创效、节能、安全和环保等特点,是一种分布广泛且价廉的分布式能源。 [1]沼气发电在发达国家已受到广泛重视和积极推广。生物质能发电并网在西欧一些国家占能源总量的10%左右。我国沼气发电有30多年的历史,在“十五”期间研制出20~600kW纯燃沼气发电机组系列产品,气耗率0.6~0.8m0/kw h(沼气热值~>21MJ/m0)。但国内沼气发电研究和应用市场都还处于不完善阶段,特别是适用于我国广大农村地区小型沼气发电技术研究更少,我国农村偏远地区还有许多地方严重缺电,如牧区、海岛、偏僻山区等高压输电较为困难,而这些地区却有着丰富的生物质原料。如能因地制宜地发展小 沼电站,则可取长补短就地供电。[1]编辑本段沼气发电技术 沼气发电流程图 [2] 沼气发电技术是集环保和节能于一体的能源综合利用新技术。它是利用工业、农业或城镇生活中的大量有机废弃物(例如酒糟液、禽畜粪、城市垃圾和污水等),经厌氧发酵处理产生的沼气,驱动沼气发电机组发电,并可充分将发电机组的余热用于沼气生产。[1]沼气发电热电联产项目的热效率,视发电设备的不同而有较大的区别,如使用燃气内燃机,其热效率为70%~75%之间,而如使用燃气透平和余热锅炉,在补燃的情况下,热效率可以达到90%以上。沼气发电技术本身提供的是清洁能源,不仅解决了沼气工程中的环境问题、消耗了大量废弃物、保护了环境、减少了温室气体的排放,而且变废为宝,产生了大量的热能和电能,符合能源再循环利用的环保理念,同时也带来巨大的经济效益。 编辑本段我国沼气发电机组状况

利用沼气发电方案

一.沼气的气体组成特点 沼气是一种具有较高热值的可燃气体,其主要成分是甲烷,杂质及有害成分含量少,抗爆性能较好,是一种很好的清洁燃料。沼气与天然气成分对比如下: 利用活塞式内燃机发电,每立方沼气一般可发电2.3度以上。以单台500kW沼气机组长期运行(400kW)为例,耗气量为174m3/h。甲烷的热值为 35.9MJ /立方米。沼气的热值 20MJ 立方米 ~25MJ/立方米 二. 燃气净化要求: 沼气是一种清洁的燃气,1512Z系列沼气发电机组一般经过滤后可直接接入机组进气管路,不需升压,可适应零压或负压气源。如沼气中硫含量高于标准应进行

热值在21~42MJ/m3λ λ压力范围5kPa~400kPa(需根据不同的压力选用合适的调压阀)。 燃气温度范围:0~65℃。λ λ过滤精度:50um。 三. 技术参数 ①沼气发动机主要技术参数 型 号:G12V190ZLDTZ G12V190ZLDZ-2 型式:四冲程、火花塞点火、增压中冷、增压前混合 气缸排列: 12缸V型、60°夹角12缸V型、60°夹角 缸径×行程(mm):190×210190×210 活塞总排量(L): 71.5 71.5 标定转速(r/min):1500 1 000 空载最低稳定转速(r/min):700 600 标定功率(kW): 800(12小时功率)550(12小时功率) 燃气压力(kPa) : 5~400 5~400 热耗率(kJ/kW·h) :≤11000≤11000机油消耗率(g/kW·h ) :≤1.6≤1.6

排气温度(涡轮前)(℃) :≤650≤650 出水温度(℃) :≤90 ≤90 中冷器进水温度(℃) :≤45≤45 机油温度(油底壳内℃) :≤90≤90 主轴道机油压力(kPa) :500~800 500~800 调速方式:电子调速电子调速 起动方式:DC24V电马达起动DC24V电马达起动 稳定调速率(%):≤5 ≤5 冷却方式:双温双循环、半开式强制水冷 润滑方式:压力润滑和飞溅润滑曲轴转向(自飞轮端视) :逆时针逆时针 ② ③燃气发电机组主要技术参数 机组参数 机组型号:500GF -NK1 发动机型号: G12V190ZL

浅谈瓦斯发电机组余热回收利用技术

2019.02科学技术创新-191-浅谈瓦斯发电机组余热回收利用技术 王银华 (中煤昔阳能源有限责任公司瓦斯发电厂,山西昔阳045300) 摘要:主要收集并分析了黄岩汇煤矿职工澡堂洗浴热水年用水量、水源热泵年耗电量、稳定情况等指标,在此基础上,研究了余热锅炉汽水分离器产生的蒸汽输往矿井过程中的能量变化情况,然后选择采用和瓦斯发电机组相适应的余热锅炉,这样一来,水源热泵系统和余热回收利用系统就能够相互备用,充分发挥两者作用,而且很好的解决了职工澡堂洗浴热水问题。此外,通过一系列优化设计,保证了余热回收系统能够科学有效的运行,降低了水源热泵系统整体耗电量。 关键词:瓦斯发电组;余热回收利用技术;技术方案;效益分析 中图分类号:TD712+.67文献标识码:A文章编号:2096-4390(2019)02-0191-02 黄岩汇煤矿在2016年初投入使用职工澡堂和更衣室供暖系统,主要是通过水源热泵系统给矿上提供职工洗浴热水以及澡堂冷暖空调。采用水暖热泵系统优势在于运行稳定、成本低,但是弊端也很明显,比如在枯水季矿井水量不多,这样热量就达不到,温度相对很低,另外,矿井上的水不是很干净,杂质比较多,很容造成堵塞,需要经常清洗,维护成本相对偏高,周期也长。现在已经有三台水源热泵机组和冷暖空调损坏,严重影响了澡堂热水使用,因此,当务之急就是从新配备新的澡堂热水供应系统,以便和水源热泵系统互补备用。 1现状概述 黄岩汇煤矿和中煤昔阳能源有限责任公司的瓦斯发电厂距离较近,电厂发电机组燃气内燃机产生的高温冷却水热量比较大,同时烟道余热的热量也大,这些热量对于黄岩汇煤矿职工澡堂空调取暖以及洗浴热水来说已经绰绰有余,且节约费用。通过分析瓦斯发电机组的具体情况,然后新建瓦斯发电机组余热回收系统,以此为黄岩汇煤矿提供取暖,主要是澡堂热水和冬季空调采暖。把之前损坏的水源热泵系统修好,其主要负责夏季制冷,而瓦斯发电机组余热回收系统提供采暖。经过改造后,既节约了费用,又节能环保,关键是余热回收系统和水源热泵系统实现了补充备用,两者互不影响,而且能够智能控制。考虑到瓦斯发电机组内燃机拥有足够多的余热.同时通过实践可知,仅两台内燃机烟道余热回收约为300t/d,这已足够满足黄岩汇煤矿的供热需求,高温冷却水约为80t/d。但需要注意的是矿区水质差问题,这对系统正常运行会造成严重影响,因此需要在冷水进水端加入软水系统,流量约为20t o 2技术方案 2.1瓦斯发电余热回收系统 瓦斯发电余热冋收系统设备主要采用的是燃气内燃机,型号为500GFZL通过分析可知,燃气内燃机烟气排放物有微量硫化合物、碳颗粒、NOx、HC。如果这些物质在气态时,一般不会腐蚀设备,但如果排烟温度相对较低的话,水蒸气遇冷就会形成液态水,其会和上述硫化物以及氮氧化物结合形成酸,由此就会对设备形成腐蚀。此外,碳颗粒在潮湿时候非常容易结垢,烟气余热转换器需要一直保持排烟温度在150T上下,避免因为蒸汽受冷形成酸而腐蚀设备。浴室采暖适合用暖气片,兼顾管路热损,温度设置80七为宜。 2.2燃气发电机余热回收数据 该燃气发电机组额定功率为500KW,热效率值为35%,总热功率1430kW,排烟热功率占总热功率的32%,可回收率达到64%。实际发电机组在正常运行时,发电量在450KW,比理论值略低,约占理论值的九成,能够回收的热值为412KW,以64%的可回收率来计算,两台瓦斯发电机组可产80T热水约150t/d,除去热水管网等热损10%,仍可产80覽热水约136t/d,换成501的热水约为240t,可满足供应澡堂洗浴热水的要求。 2.3烟道余热回收 和高温冷却水余热回收比起来,烟道余热回收更为简单、方便、易行、节省费用。余热回收利用不但能够和之前的水源热泵同时运行,而且也可以单独运行,所以,这里只采用瓦斯发电机组烟道余热利用系统。若发电机组运行,烟道余热回收机组就会打开进水电磁阀,目的是把冷水进行充分热交换,确保出水温度满足要求,如果不达标,机组会报警。机组的控制器可设置出水量和温度,如果发电机组因故停止工作,此时热回收机组会把进水电磁阀关闭,机组将会全部停止工作。若发电机组需要检修,或者是在不运行时,水源热泵系统就会取而代之为澡堂供热。等到夏季,水源热泵系统会自动为末端制冷,这是制冷和热水备用系统。考虑到实际情况,比如距离、热损等,使用的烟道余热回收机组型号为GLC-13。从现在来看,冷水情况下也是可以达到热回收机组流量和压力要求,为保险起见,需要设置增压水泵,以防在水压达不到要求时自动启动。通过相关数据研究得出,选用四台水泵,型号为TD80-22/2。 2.4之前系统设备更换 室外水源热泵主机需要四台,型号改为LSR-1OOIIGW,每台制热量100KW,功率20KW。把之前受损的中央空调机组修复,冬季采暖通过新的余热回收系统,用R410A环保型冷媒代替MWH030DB模块式水源冷水(热泵)中央空调机组,R410A环保型冷媒每台制热额制冷量分别为115KW和106KW,功率在20-29KW左右,冬天制冷通过瓦斯余热回收系统,夏天制冷通过室外水源泵主机。 2.5余热回收系统优点 采用余热回收系统,不但变废为宝,实现节能,而且运行稳定,关键没有产生运行费用,还解决了散热负担问题,一举多得。实践显示,余热冋收系统产热足够满足澡堂需求,采用热交换原理,设备运行也相对比较可靠。余热回收系统对水温控制比较精准,误差极小,烟道排烟科学,对烟气的成分和状态不会改变,降低了腐蚀风险,同时,该系统具有较强的耐腐蚀性,易清洗、易维护,所用材质优良,使用期限可达二十年之久。 2.6余热回收系统运行方式要求 第一,空调制冷。澡堂第一层和第二层空调制冷(转下页)

冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(标准版)

冶炼电炉烟气全余热回收装置-高温烟道式余热锅炉(标准 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0843

冶炼电炉烟气全余热回收装置-高温烟道 式余热锅炉(标准版) 在电炉冶炼的过程中,要产生大量的高温烟气,其最高温度可达2100℃,含尘量高,且所含氧化铁尘具有工业回收价值。高温含尘烟气携带的热量约为电炉输入总能量的11%,有的甚至高达20%。这些高温烟气不仅带走大量的热,而且给电炉的除尘系统带来了巨大的负担,不但降低了氧化铁尘的回收率,而且造成了严重的污染问题。随着钢铁行业的发展,电炉炼钢的铁水比例逐渐上升,有的甚至超过了30%。铁水比例的升高,引起电炉炼钢烟气量增加、热量浪费和除尘问题的日趋严重。如何将这部分高温烟气中的显热充分地回收,变“废”为宝,使之转化为热能,并使得电炉烟气更加稳定,为高效除尘创造条件,从而降低除尘系统运行成本和企业的生产成本,这是电炉炼钢企业必须重视的问题。公司组建了专业的技

术队伍开始了电炉烟气全余热回收装置的研究,从提高余热回收量、烟尘沉降效率、锅炉的压力及使用寿命3个角度进行研发,从而降低电炉的吨钢能耗。并在江苏某企业110t电炉成功投运,并对装置出口烟气温度、吨钢回收蒸汽量等关键参数进行了现场测试,测试结果显示装置达到了预期指标。 1、电炉烟气冷却方式现状 目前电炉烟气冷却的方式有水冷+机力风冷、废钢预热+水冷、水冷+热管余热锅炉等几种。 1.1水冷+机力风冷 水冷+机力风冷系统的流程见图1。电炉第四孔出口的高温烟气进入水冷烟道,同时,混入从电炉四孔水冷弯头和水冷滑套间的缝隙吸入的空气,进行燃烧,之后进入燃烧沉降室,在燃烧沉降室进行燃烧和灰尘沉降后,从燃烧沉降室出来的高温烟气经过水冷烟道冷却到600℃左右,进入机力风冷器,冷却后的烟气与电炉密闭罩的除尘烟气混合降温后进入布袋除尘器除尘,之后通过风机、消声器,从烟囱排出。

沼气发电极其热能回收利用

污泥处理能源的利用——沼气发电及其热能回收 摘要:本文系统介绍了高碑店污水处理厂,污泥处理设计过程中,如何有效地回收利用沼气发电系统的余热作为污泥中温消化的热源。达到节约能源,减少电耗和降低污水处理成本的目的。 关键字:沼气发电能源利用余热回收热平衡 1污泥处理及能源利用概况 高碑店污水处理厂二期工程设计水量50万m3/d,初沉泥和二沉池的混合污泥量为4417m3/d,污泥含水率97%,污泥处理工艺采用重力浓缩,二级中温消化带式压滤机脱水,并利用消化产生的沼气发电并入城市电网,发电机产生的余热作为一级消化热源,锅炉房蒸汽为补充热源。 高碑店污水处理厂二期工程设置八座消化池,四座为一个系列,共两个系列,每一系列有一级消化池三座,二级消化池一座,消化池产沼气2.2~2.6万m3/d。其中甲烷含量占57%~62%,热值5000Kcal/m3,消化池产气总热量为540万Kcal/h。三台沼气发电机总发电量2000KW,所发电量并入市政公用电网。为维持污泥中温消化所需的温度,需要对污泥进行加热。加热污泥的热量需要由外部热源提供,高碑店污水处理厂利用污泥消化产生的沼气进行发电,沼气发电系统运行中产生的大量余热,作为加热污泥的热源,这将节约大量的热能,达到节省能源,降低能耗的目的。图1为能源利用流程图。 2能源利用途径 高碑店污水处理厂工程沼气发电系统选用三台奥地利JMS316-BL型沼气发电机,发电机总容量约2000KW,单台发电机容量为625KW。该系统在运行过程中有三个部分产生的热能可回收利用,它们是:燃气混合热能、缸套水热能和润滑油热能及尾气释放的热能。表1所示为各部分热能回收量与回收率,图2为沼气发电机组热能回收系统,图3为单台沼气发电机组能量平衡图。沼气发电系统热能回收量与回收率单位:kw(万kcal)表1序号项目回收量回收率备注1燃气混合热能98(8.4) 5.8%2缸套水和润滑油热能283(24.3) 16.6%3尾气热能475(40.9)27.9%总输入热能1703(146.5)4总回收热能856(73.6)50.3%由图2可知,进入发电机的冷水,流量39.4m3/h,温度为70℃,吸收沼气发电机的热能后流量不变,温度升为90℃,进入余热利用系统。由图3可知由沼气产生的总能量中有40%转变为机械能,60%转变为热能。其中40%机械能中的38.3%转换为电能;60%热能中的50.3%作为余热可回收利用,总能量回收效率可达88.6%。该回收率高于一般的沼气发电机。3热平衡系统 该热平衡是通过某种调节手段,使供热系统提供的热量恰好与需热系统所需热量相同。供热系统的热量为沼气发电系统产生的余热和蒸汽锅炉补充热量的总和;需热系统的热量是指消化池正常运行时所需热量。 3.1供热系统运行工况 3.1.1沼气发电机 沼气发电系统余热热量计算, Q=CA△t(1) 其中,Q-供(需)热量(Kcal/h)

火力发电厂生产流程图

火力发电厂生产流程图 火力发电厂生产流程 1、前言 火力发电厂是利用化石燃料燃烧释放的热能发电的动力设施,包括燃料燃烧释热和热能电能转换以及电能输出的所有设备、装置、仪表器件,以及为此目的设置在特定场所的建筑物、构筑物和所有有关生产和生活的附属设施。主要有蒸汽动力发电厂、燃气轮机发电厂、内燃机发电厂几种类型.\ 2、火力发电厂生产流程 3、汽轮机本体 Highway 1/2. Rail transportation and land use there ... Big. Urban rail transit as a low-pollution urban public transport has become a major positive development and construction of the city's main transport infrastructure through the construction of urban rail transit will help curb rapid growth in traffic demand and help reduce the core frequency

汽轮机本体(steam turbine proper)是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。如下图所示。 4、锅炉本体 锅炉设备是火力发电厂中的主要热力设备之一。它的任务是使燃料通过燃烧将化学能转变为热能,并且以此热能加热水,使其成为一定数量和质量(压力和温度)的蒸汽。 由炉膛、烟道、汽水系统(其中包括受热面、汽包、联箱和连接管道)以及炉墙和构架等部分组成的整体,称为“锅炉本体”。如下图所示。 5、热力系统及辅助设备 汽轮机部分的辅助设备有凝汽器、水泵、回热加热器、除氧器等。把锅炉、汽轮机及其辅助设备按汽水循环过程用管道和附件连接起来所构成的系统,叫做发电厂的热力系统。 he core frequencyinfrastructure through the construction of urban rail transit will help curb rapid growth in traffic demand and help reduce tpollution urban public transport has become a major positive development and construction of the city's main transport -Highway 1/2. Rail transportation and land use there ... Big. Urban rail transit as a low2 发电厂的热力系统按照不同的使用目的分为“原则性热力系统”、“全面性热力系统”、“汽轮机组热力系统”等。如下图所示。

相关文档
最新文档