Canny边缘检测
canny边缘检测matlab代码
canny边缘检测matlab代码Canny边缘检测是一种常用的图像处理算法,它可以有效地检测图像中的边缘,并将其显示为白色线条。
在Matlab中,可以使用以下代码实现Canny边缘检测:1. 读取图像首先,需要读取待处理的图像。
可以使用imread函数来读取图片:```matlabimg = imread('image.jpg');```其中,image.jpg是待处理的图片文件名。
2. 灰度化Canny算法只能处理灰度图像,因此需要将彩色图像转换为灰度图像。
可以使用rgb2gray函数来实现:```matlabgray_img = rgb2gray(img);```3. 高斯滤波在进行边缘检测之前,需要对图像进行高斯滤波来消除噪声。
可以使用fspecial和imfilter函数来实现:```matlabgaussian_filter = fspecial('gaussian', [5 5], 1);blur_img = imfilter(gray_img, gaussian_filter, 'replicate');```其中,[5 5]表示高斯核的大小为5x5,1表示标准差。
4. 计算梯度幅值和方向接下来,需要计算每个像素点的梯度幅值和方向。
可以使用Sobel算子来计算梯度,并利用arctan函数计算方向角度:```matlabsobel_x = [-1 0 1; -2 0 2; -1 0 1];sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];grad_x = imfilter(blur_img, sobel_x, 'replicate');grad_y = imfilter(blur_img, sobel_y, 'replicate');grad_mag = sqrt(grad_x.^2 + grad_y.^2);grad_dir = atan(grad_y ./ grad_x);```5. 非极大值抑制由于Sobel算子计算出的梯度幅值可能会有多个峰值,因此需要进行非极大值抑制来保留边缘。
Canny边缘检测器.ppt
对NMS结果进行二值化
• 对上述得到的N(x,y)使用阈值进行二值化 • 使用大的阈值,得到:
– 少量的边缘点 – 许多空隙
• 使用小的阈值,得到:
– 大量的边缘点 – 大量的错误检测
使用双阈值检测边缘
• 两个阈值T1,T2: T2 >> T1
–由T1得到E1(x,y),低阈值边缘图:更大的误检测率 –由T2得到E2(x,y),高阈值边缘图:更加可靠
Canny算子:流程
原始图像
原始图像经过Gauss平滑
Canny算子:流程
梯度幅值图像
梯度幅值经过非极大值抑制
Canny算子:流程
低阈值边缘图像
高阈值边缘图像
Canny输出边缘图像
使用Canny算子需要注意的问题
• Canny算子的优点:
– 参数较少 – 计算效率 – 得到的边缘连续完整
• 参数的选择:
Canny边缘检测器
• 也许是最常用的边缘检测方法 • 一个优化的方案
– 噪声抑制 – 边缘增强 – 边缘定位
CanБайду номын сангаасy边缘检测算法
• 算法基本过程:
计算图像梯度
幅值大小M(x,y) 方向Theta(x,y)
梯度非极大值抑制
NMS: Non-Maxima Suppression
双阈值提取边缘点
计算图像梯度:高斯函数的一阶导数
• 高斯函数的一阶导数(Derivative of Gaussian) • 可以很近似地满足以下三条边缘检测最优准则:
–好的边缘检测结果:Good detection 对边缘的响应大于对噪声的响应
–好的定位性能:Good localization 其最大值应接近边缘的实际位置
基于sobel和canny的边缘检测原理
基于sobel和canny的边缘检测原理
Sobel的原理:
Sobel 算子是图像处理中的算子之一,主要用作边缘检测。
它是一种离散性差分算子,用来运算图像亮度函数的梯度之近似值。
在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量.
该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
以I代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:
由于Sobel算子是滤波算子的形式,用于提取边缘,可以利用快速卷积函数,简单有效,因此应用广泛。
但是Sobel算子并没有将图像的主体与背景严格地区分开来,换言之就是Sobel算子没有基于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。
在观测一幅图像的时候,我们往往首先注意的是图像与背景不同的部分,正是这个部分将主体突出显示,基于该理论,我们给出了下面阈值化轮廓提取算法,该算法已在数学上证明当像素点满足正态分布时所求解是最优的。
Canny的原理:
1、图象边缘检测必须满足两个条件:其一必须有效地抑制噪声;其次必须尽量精确确
定边缘的位置。
2、根据对信噪比与定位乘积进行测度,得到最优化逼近算子。
这就是Canny边缘检测
算子。
3、类似于LoG边缘检测方法,属于先平滑后求导数的方法。
Canny边缘检测算法可以分为四个步骤:
1)用高斯滤波器平滑图象;
2)用一阶偏导的有限差分来计算梯度的幅值和方向;3)对梯度幅值进行非极大值抑制
4)用双阈值算法检测和连接边缘。
canny非极大值抑制算法步骤
canny非极大值抑制算法步骤Canny非极大值抑制算法步骤Canny边缘检测是一种常用的图像处理技术,通过检测图像中的边缘信息,可以用于目标检测、图像分割等应用。
其中,Canny非极大值抑制算法是Canny边缘检测的关键步骤之一。
本文将详细介绍Canny非极大值抑制算法的步骤。
1. 图像灰度化Canny非极大值抑制算法首先需要将输入的彩色图像转换为灰度图像。
这是因为灰度图像只有一个通道,更容易处理。
常用的灰度化方法有取平均值法、加权平均法等。
2. 高斯滤波为了减少图像中的噪声对边缘检测的影响,需要对灰度图像进行高斯滤波。
高斯滤波可以平滑图像,并且能够保持边缘的信息。
通过使用一个高斯核对图像进行卷积操作,可以得到平滑后的图像。
3. 计算梯度幅值和方向在进行非极大值抑制之前,需要计算图像中每个像素点的梯度幅值和方向。
常用的方法是使用Sobel算子对图像进行卷积操作,得到水平和垂直方向的梯度值,然后利用这些梯度值计算每个像素点的梯度幅值和方向。
4. 非极大值抑制非极大值抑制是Canny边缘检测的核心步骤。
它的主要目的是将梯度幅值图像中的局部最大值保留下来,同时抑制非最大值点。
具体步骤如下:(1) 在梯度方向上,将每个像素点的梯度幅值与其相邻两个像素点的梯度幅值进行比较。
如果当前像素点的梯度幅值是相邻两个像素点中最大的,则将其保留,否则将其置为0。
(2) 迭代地对整个图像进行上述操作,直到所有的像素点都被处理完。
通过非极大值抑制,可以得到一个只有边缘线条的二值图像。
边缘线条的宽度与原始图像中边缘的宽度有关,可以通过调整高斯滤波的标准差来控制。
5. 双阈值检测非极大值抑制之后,得到的二值图像中仍然可能存在一些噪声点和弱边缘。
为了进一步提取有效的边缘信息,可以使用双阈值检测。
双阈值检测将像素点分为三类:强边缘、弱边缘和非边缘。
通过设定两个阈值,将像素点的梯度幅值与这两个阈值进行比较,可以将像素点分为三类。
Canny边缘检测算法的一些改进
Canny边缘检测算法的⼀些改进传统的Canny边缘检测算法是⼀种有效⽽⼜相对简单的算法,可以得到很好的结果(可以参考上⼀篇)。
但是Canny算法本⾝也有⼀些缺陷,可以有改进的地⽅。
1. Canny边缘检测第⼀步⽤⾼斯模糊来去掉噪声,但是同时也会平滑边缘,使得边缘信息减弱,有可能使得在后⾯的步骤中漏掉⼀些需要的边缘,特别是弱边缘和孤⽴的边缘,可能在双阀值和联通计算中被剔除。
很⾃然地可以预见,如果加⼤⾼斯模糊的半径,对噪声的平滑⼒度加⼤,但也会使得最后得到的边缘图中的边缘明显减少。
这⾥依然⽤Lena图为例,保持Canny算法中⾼阀值100,低阀值50不变,⾼斯半径分别为2,3,5的Canny边缘⼆值图像如下。
可知⾼斯模糊把很多有⽤的边缘信息也模糊掉了,因此如何精确的选择⾼斯半径就相当重要。
⾼斯半径2 ⾼斯半径3 ⾼斯半径52. 在最初的Canny算法中是使⽤的最⼩的2x2领域来计算梯度幅值的。
这种⽅法对噪声很敏感,⽐较容易检测到伪边缘或漏掉真是边缘。
在上⼀篇算法实现中,实际上使⽤的是3x3的Sobel梯度算⼦,是⼀种⽐较好的选择。
3. 传统Canny算法的双阀值是全局固定的,因此双阀值⼤⼩的选取对最终的结果影响很⼤,也有⼀些经验,⽐如选择低阀值是⾼阀值的0.4或0.5。
然⽽这毕竟是⼀种经验选择,阀值的确定仍然很难决定⼀个最优值。
⽽且⼀个图像的不同局部区域可能需要各不相同的阀值来精确地找到真实边缘,因此全局阀值就不太合适了。
4. 传统算法仍然可能产⽣⼀条宽度⼤于1的边缘,达不到满意的⾼精度单点响应。
也就是需要继续细化边缘。
下⾯就⼀些可以改进的地⽅做⼀些讨论。
代替⾼斯模糊噪声是⾼频信号,边缘信号也属于⾼频信号。
既然⾼斯模糊不加区分的对所有的⾼频信息进⾏了模糊,效果⾃然不尽如⼈意。
那么⾃然就想到了带有保留边缘功能的各种选择性平滑⽅法,似乎在这⾥⽐⾼斯模糊会更加合适,那我们就来试⼀试。
带有保留边缘功能的平滑⽅法的基本思想不是让领域范围内的所有像素都参与该种平滑⽅法的计算,⽽是设定⼀个阀值,仅仅让和中⼼像素灰度的差值⼩于这个阀值的像素参与计算。
(完整版)Canny边缘检测算法总结
一.Canny边缘检测算法原理JohnCanny于1986年提出Canny算子,属于是先平滑后求导数的方法。
其处理过程大体上分为下面四部分。
1. 对原始图像进行灰度化Canny算法通常处理的图像为灰度图,因此如果获取的是彩色图像,那首先就得进行灰度化。
对一幅彩色图进行灰度化,就是根据图像各个通道的采样值进行加权平均。
以RGB格式的彩图为例,通常灰度化采用的方法主要有:方法1:Gray=(R+G+B)/3;方法2:Gray=0.299R+0.587G+0.114B;(这种参数考虑到了人眼的生理特点)至于其他格式的彩色图像,可以根据相应的转换关系转为RGB然后再进行灰度化;在编程时要注意图像格式中RGB的顺序通常为BGR。
2. 对图像进行高斯滤波图像高斯滤波的实现可以用两个一维高斯核分别两次加权实现,也可以通过一个二维高斯核一次卷积实现。
1)高斯核实现上式为离散化的一维高斯函数,确定参数就可以得到一维核向量。
上式为离散化的二维高斯函数,确定参数就可以得到二维核向量。
在求得高斯核后,要对整个核进行归一化处理。
2)图像高斯滤波对图像进行高斯滤波,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。
这样可以有效滤去理想图像中叠加的高频噪声。
通常滤波和边缘检测是矛盾的概念,抑制了噪声会使得图像边缘模糊,这会增加边缘定位的不确定性;而如果要提高边缘检测的灵敏度,同时对噪声也提高了灵敏度。
实际工程经验表明,高斯函数确定的核可以在抗噪声干扰和边缘检测精确定位之间提供较好的折衷方案。
3. 用一阶偏导的有限差分来计算梯度的幅值和方向关于图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y 方向上偏导数的两个矩阵。
常用的梯度算子有如下几种:1)Roberts算子上式为其x和y方向偏导数计算模板,可用数学公式表达其每个点的梯度幅值为:2)Sobel算子上式三个矩阵分别为该算子的x向卷积模板、y向卷积模板以及待处理点的邻域点标记矩阵,据此可用数学公式表达其每个点的梯度幅值为:3)Prewitt算子和Sobel算子原理一样,在此仅给出其卷积模板。
边缘检测的原理
边缘检测的原理概述边缘检测是计算机视觉领域中一种常用的图像处理技术,用于检测图像中的边缘信息。
边缘是指图像中灰度级发生突变的区域,通常表示物体的轮廓或对象的边界。
边缘检测在很多图像处理应用中起着重要的作用,如图像分割、目标检测、图像增强等。
基本原理边缘检测的基本原理是利用像素点灰度值的变化来检测边缘。
在数字图像中,每个像素点都有一个灰度值,范围通常是0到255。
边缘处的像素点灰度值变化较大,因此可以通过检测像素点灰度值的梯度来找到边缘。
常用算法1. Roberts算子Roberts算子是一种基于差分的边缘检测算法。
它通过计算相邻像素点之间的差值来检测边缘。
具体计算方式如下:1.将图像转换为灰度图像。
2.将每个像素点与其相邻的右下方像素点(即(i,j)和(i+1,j+1))进行差值计算。
3.将每个像素点与其相邻的右上方像素点(即(i,j+1)和(i+1,j))进行差值计算。
4.对上述两组差值进行平方和再开方得到边缘强度。
5.根据设定的阈值对边缘强度进行二值化处理。
2. Sobel算子Sobel算子是一种基于滤波的边缘检测算法。
它通过使用两个卷积核对图像进行滤波操作,从而获取图像中每个像素点的梯度信息。
具体计算方式如下:1.将图像转换为灰度图像。
2.使用水平和垂直方向上的两个卷积核对图像进行滤波操作。
3.将水平和垂直方向上的滤波结果进行平方和再开方得到边缘强度。
4.根据设定的阈值对边缘强度进行二值化处理。
3. Canny边缘检测算法Canny边缘检测算法是一种基于多步骤的边缘检测算法,被广泛应用于计算机视觉领域。
它在边缘检测的精度、对噪声的抑制能力和边缘连接性上都有很好的表现。
Canny算法的主要步骤包括:1.将图像转换为灰度图像。
2.对图像进行高斯滤波以减小噪声的影响。
3.计算图像的梯度和方向。
4.对梯度进行非极大值抑制,只保留局部极大值点。
5.使用双阈值算法进行边缘连接和边缘细化。
6.得到最终的边缘图像。
canny边缘检测及matlab实现
北京工业大学研究生课程考试答题纸课程类别:学位课选修课研究生学号:研究生姓名:学生类别:博士硕士工程硕士进修生考试时间:年月日一、实验目的:熟悉边缘检测原理,并运用matlab软件实现图像的canny边缘检测,体会canny 边缘检测的优缺点。
二、实验内容:编写matlab程序,实现对lena图像的边缘检测,输出程序运行结果。
三、实验原理或步骤:首先回顾一下边缘检测的一般步骤:边缘检测算法一般包含如下四个步骤:1.滤波(去噪)。
2.增强(一般是通过计算梯度幅值)。
3.检测(在图像中有许多点的梯度幅值会比较大,而这些点并不都是边缘,所以应该用某种方法来确定边缘点,比如最简单的边缘检测判据:梯度幅值阈值)。
4.定位(有的应用场合要求确定边缘位置,可以在子像素水平上来估计,指出边缘的位置和方向)Canny边缘检测的算法步骤:1.用高斯滤波器平滑图像(不同尺度的Canny检测子由高斯的不同标准差来表示)用一阶偏导的有限差分来计算梯度的幅值和方向。
2.对高斯平滑后的图像进行sobel边缘检测。
这里需要求横的竖的还有联合的,所以一共三个需要sobel边缘检测图像。
3.对联合的sobel检测图像进行非极大值抑制(Non-Maxima Suppression, NMS)4.用双阈值算法检测和连接边缘,并进行滞后阈值处理。
其中非极大值抑制细化了幅值图像中的屋脊带,只保留幅值局部变化最大的点。
双阈值算法:用两个阈值得到两个阈值图像,然后把高阈值的图像中的边缘连接成轮廓,连接时到达轮廓的端点时,在低阈值图像上找可以连接的边缘。
不断收集,直到所有的间隙连接起来为止。
四、运行结果和分析每步运行效果:Figure1原图:Figure2 高斯模糊后:Figure3 sobel边缘检测后:Figure4 非极大抑制后:Figure5 上阈值120,下阈值100检测结果:Canny算子的方向性使得它的边缘检测和定位优于其他算子,具有更好的边缘强度估计,能产生梯度方向和强度两个信息。
边缘检测的原理
边缘检测的原理
边缘检测是一种图像处理技术,它的原理是通过分析和识别图像中颜色、灰度或纹理的突变部分,提取出图像中物体轮廓的技术。
边缘检测的基本原理是基于图像的梯度变化。
在一幅图像中,物体的边缘往往表现为像素灰度值的变化。
利用这种像素灰度值的变化可以找到图像中的边缘。
常用的边缘检测算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种基于图像灰度梯度的边缘检测算法。
它将图像中每个像素的灰度值与其周围像素的灰度值进行卷积运算,得到图像的梯度值。
通过设置阈值来提取出图像中的边缘。
Prewitt算子是一种类似于Sobel算子的边缘检测算法。
它也是通过对图像中的每个像素进行卷积运算来计算梯度值,然后通过设定阈值来提取边缘。
Canny算子是一种比较高级的边缘检测算法,它结合了图像梯度和非极大值抑制技术。
对图像中每个像素进行梯度计算,并在梯度最大值处绘制边缘。
然后利用阈值来筛选出符合条件的边缘。
边缘检测在计算机视觉、图像处理等领域都有广泛的应用。
通
过边缘检测,可以提取图像中的特征信息,例如物体的轮廓、边界等,从而实现目标检测、图像分割、图像修复等任务。
Canny_算子边缘检测解析
w
w
f '2 ( x)dx
③ 边缘响应次数最少:要保证只有一个像素响应,检 测算子的脉冲响应导数的零交叉点平均距离D(f)满 1 足 2
'2 f ( x ) dx ' D(f ) f ( x ) dx
| G(x) f ( x)dx | | G ' (x) f ' ( x)dx | J(f) SNR(f) Location w w w w 2 f ( x)dx f '2 ( x)dx
边缘检测算法
传统的边缘检测算子:Sobel算子,Prewitt算子,Roberts 算子,Krich算子等,大部分处理的效果都不很好,实际处理 中不太实用,而Canny算子检测的性能较好,常被作为其他实 验的标准来参考。Canny算子是John Canny在1986年发表的论 文中首次提出的一种边缘检测算法,当时弥补了其他算法的不 太好的缺点,因此Canny算子被认为是边缘检测领域较好的算 法,并一直被引用,近几年来,随着研究的深入,性能更加完 善的改性型的Canny算子也层出不穷,例如自适应Canny算子等。
阈值th1----图像1
遍历图像2
非零轮廓 在图像1中找 线终点 对应非零点
阈值th2----图像2
补充到图像2中作为 新的起点继续遍历
SNR(f) | G(x ) f ( x)dx |
w w
w
w
f 2 ( x)dx
G(-x)表示图像边函数 f(x)滤波器函数 表示噪声的均方差
Canny算子详细原理
②高的定位精度:Location越大越好
Location | G ' ( x ) f ' ( x)dx |
边缘检测原理
边缘检测原理边缘检测是计算机视觉领域中的基础技术,用于检测图像中的边缘信息。
边缘在图像中表示了不同区域之间的边界,对于图像分割、物体识别和目标跟踪等任务具有重要意义。
在本文中,将介绍常见的边缘检测原理及其应用。
一、Sobel算子Sobel算子是一种基于局部像素差值的边缘检测方法,通过计算像素点周围邻域像素的灰度值差异来识别边缘。
Sobel算子分为水平和垂直两个方向的算子,分别用于检测图像中的水平和垂直边缘。
对于一幅图像中的像素点,水平方向的Sobel算子表示为:-1 0 1Gx = [-2 0 2]-1 0 1垂直方向的Sobel算子表示为:-1 -2 -1Gy = [ 0 0 0]1 2 1通过将Sobel算子与图像的每一个像素点进行卷积操作,我们可以得到该像素点的边缘强度和边缘方向。
边缘强度可以通过计算卷积结果的梯度幅值来表示。
二、Canny边缘检测Canny边缘检测算法是一种常用的边缘检测方法,它结合了图像灰度梯度、非极大值抑制和双阈值处理等步骤,能够有效地提取图像中的边缘信息。
首先,Canny算法利用Sobel算子计算图像的梯度幅值和方向,得到图像的梯度图。
其次,Canny算法对梯度图进行非极大值抑制,即在梯度方向上对像素进行极大值筛选。
只有梯度幅值在其所在方向上是局部最大值的像素才被保留下来,其他像素被抑制掉。
然后,Canny算法利用双阈值处理来检测强边缘和弱边缘。
首先选择两个阈值:高阈值和低阈值。
边缘强度大于高阈值的像素点被认为是强边缘,并被保留下来。
边缘强度介于高阈值和低阈值之间的像素点被认为是弱边缘,需要进一步判断其是否是真正的边缘。
最后,Canny算法使用边缘连接算法将弱边缘连接到强边缘,形成完整的边缘线条。
三、边缘检测的应用边缘检测在计算机视觉中有广泛的应用。
以下是几个常见的应用领域:1. 图像分割:边缘信息可以帮助将图像分割成不同的区域,用于图像的后续处理和分析。
2. 物体识别:通过检测图像中的边缘,可以提取物体的外观轮廓,从而实现物体的识别和分类。
canny算子边缘检测原理
canny算子边缘检测原理Canny算子边缘检测原理引言:边缘检测是图像处理中非常重要的一项任务,它能够有效地提取图像中的边缘信息。
而Canny算子边缘检测是一种经典的边缘检测算法,以其准确性和鲁棒性而闻名。
本文将介绍Canny算子边缘检测的原理,以及其在图像处理中的应用。
一、Canny算子的基本原理Canny算子边缘检测包括以下几个关键步骤:高斯滤波、计算梯度幅值和方向、非极大值抑制、双阈值处理和边缘链接。
下面将依次介绍这些步骤的原理。
1. 高斯滤波高斯滤波是Canny算子边缘检测的第一步,它主要用于平滑图像,减少噪声的影响。
高斯滤波通过卷积操作将每个像素点的值与周围像素点的值进行加权平均,从而得到平滑后的图像。
这样可以减少噪声对边缘检测的干扰。
2. 计算梯度幅值和方向在高斯滤波之后,需要计算每个像素点的梯度幅值和方向。
梯度幅值反映了像素值的变化程度,而梯度方向表示了变化的方向。
通常使用Sobel算子来计算梯度,它分别在水平和垂直方向上进行卷积操作,然后根据卷积结果计算梯度幅值和方向。
3. 非极大值抑制非极大值抑制是Canny算子边缘检测的一个重要步骤,它用于提取出边缘的细化线条。
在这一步中,算法会沿着梯度方向,在每个像素点上进行比较,将非极大值点保留下来,而其他点则被抑制掉。
这样可以使得边缘线条更加细化,去除掉冗余的边缘。
4. 双阈值处理双阈值处理是Canny算子边缘检测的关键步骤之一,它用于确定边缘的强度。
一般来说,图像中的边缘可以分为强边缘和弱边缘。
在双阈值处理中,我们可以设置两个阈值,大于高阈值的像素点被认为是强边缘,小于低阈值的像素点被认为是弱边缘,而介于两个阈值之间的像素点则根据其与强边缘的连接情况进行分类。
5. 边缘链接边缘链接是Canny算子边缘检测的最后一步,它用于将弱边缘与强边缘进行连接,形成完整的边缘线条。
在这一步中,我们可以通过追踪弱边缘像素点与强边缘像素点之间的连接关系,将它们归为同一个边缘。
Canny边缘检测算法的流程
Canny边缘检测算法的流程介绍边缘检测的⼀般标准包括:1) 以低的错误率检测边缘,也即意味着需要尽可能准确的捕获图像中尽可能多的边缘。
2) 检测到的边缘应精确定位在真实边缘的中⼼。
3) 图像中给定的边缘应只被标记⼀次,并且在可能的情况下,图像的噪声不应产⽣假的边缘。
在⽬前常⽤的边缘检测⽅法中,Canny边缘检测算法是具有严格定义的,可以提供良好可靠检测的⽅法之⼀。
由于它具有满⾜边缘检测的三个标准和实现过程简单的优势,成为边缘检测最流⾏的算法之⼀。
Canny边缘检测算法的处理流程Canny边缘检测算法可以分为以下5个步骤:1) 使⽤⾼斯滤波器,以平滑图像,滤除噪声。
2) 计算图像中每个像素点的梯度强度和⽅向。
3) 应⽤⾮极⼤值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应。
4) 应⽤双阈值(Double-Threshold)检测来确定真实的和潜在的边缘。
5) 通过抑制孤⽴的弱边缘最终完成边缘检测。
下⾯详细介绍每⼀步的实现思路。
1 ⾼斯平滑滤波为了尽可能减少噪声对边缘检测结果的影响,所以必须滤除噪声以防⽌由噪声引起的错误检测。
为了平滑图像,使⽤⾼斯滤波器与图像进⾏卷积,该步骤将平滑图像,以减少边缘检测器上明显的噪声影响。
⼤⼩为(2k+1)x(2k+1)的⾼斯滤波器核的⽣成⽅程式由下式给出:下⾯是⼀个sigma = 1.4,尺⼨为3x3的⾼斯卷积核的例⼦(需要注意归⼀化):若图像中⼀个3x3的窗⼝为A,要滤波的像素点为e,则经过⾼斯滤波之后,像素点e的亮度值为:其中*为卷积符号,sum表⽰矩阵中所有元素相加求和。
重要的是需要理解,⾼斯卷积核⼤⼩的选择将影响Canny检测器的性能。
尺⼨越⼤,检测器对噪声的敏感度越低,但是边缘检测的定位误差也将略有增加。
⼀般5x5是⼀个⽐较不错的trade off。
2 计算梯度强度和⽅向图像中的边缘可以指向各个⽅向,因此Canny算法使⽤四个算⼦来检测图像中的⽔平、垂直和对⾓边缘。
最新Canny边缘检测基本原理
C a n n y边缘检测基本原理2 Canny边缘检测基本原理Canny边缘检测器是高斯函数的一阶导数,是对信噪比与定位之乘积的最优化逼近算子[1]。
Canny认为好的边缘检测具有3个特点:(1)低概率的错标非边缘点和低概率不标真实边缘点;(2)检测出来的边缘点应该尽可能的靠近真实边缘中心;(3)边缘响应是单值的。
设表示两维高斯函数,表示图像;Canny边缘检测算子为式中:是边缘曲线的法向量,由于事先不知道边缘的方向,所以取。
那么边缘点是方程的解,即然后通过双阈值去掉伪边缘,Canny算子检测到的是边缘点是高斯函数平滑后的图像拐点。
Canny算法的实现步骤:Step1:用高斯滤波器平滑图像,去除图像噪声。
一般选择方差为1.4的高斯函数模板和图像进行卷积运算。
Step2:用一阶偏导的有限差分来计算梯度的幅值和方向。
使用的梯度算子计算x和y方向的偏导数和,方向角,梯度幅值。
Step3:对梯度幅值应用非极大值抑制。
幅值M越大,其对应的图像梯度值也越大,但这还不足以确定边缘,因为这里仅把图像快速变化的问题转化成求幅值局部最大值问题,为确定边缘,必须细化幅值图像中的屋脊带,只保留幅值局部变化最大的点,生成细化的边缘。
Step4:用双阈值算法检测并且连接边缘。
双阈值法使Canny算子提取的边缘点更具有鲁棒性,高低阈值分别表示为Hth和Lth,对于高阈值Hth的选折,基于计算出的图像梯度值对应的直方图进行选取。
在一幅图像中,非边缘点数目在总图像像素点数目中占的比例表示为Hratio,根据图像梯度值对应的直方图累加,累加数目达到总像素数目的Hratio时,对应的图像梯度值设置为Hth,在文中设定Hratio为0.7。
低阈值Lth的选择通过Lth=Lratio*Hth得到,文中Lratio设定为0.4。
最后通过对边缘点的标记和领域关系进行连接得到最后的边缘检测图。
3亚像素级Zernike矩算子精确定位边缘Zernike矩算子的基本思想是通过计算每个像素点的4个参数来判断该点是否为边缘点。
亚像素轮廓边缘提取canny算法原理
亚像素轮廓边缘提取canny算法原理亚像素轮廓边缘提取是一种常用的图像处理算法,而Canny算法是其中一种常用的实现方法。
本文将详细介绍Canny算法的原理和步骤,并分析其在亚像素轮廓边缘提取中的应用。
Canny算法是由约翰·Canny于1986年提出的一种边缘检测算法,它被广泛应用于图像处理领域。
Canny算法的基本思想是将图像中的边缘提取出来,以便进一步的分析和处理。
与其他边缘检测算法相比,Canny算法具有较好的抗噪声能力和较高的边缘定位精度。
Canny算法的步骤如下:1. 噪声抑制:首先,Canny算法使用高斯滤波器对图像进行平滑处理,以抑制图像中的噪声。
高斯滤波器是一种线性平滑滤波器,通过对每个像素点周围的像素值进行加权平均,来减少图像中的噪声。
2. 计算梯度幅值和方向:在经过噪声抑制后,Canny算法计算图像中每个像素点的梯度幅值和方向。
梯度幅值表示像素值的变化程度,方向表示变化的方向。
通常情况下,梯度幅值越大,表示图像中的边缘越明显。
3. 非极大值抑制:Canny算法使用非极大值抑制来细化边缘。
非极大值抑制的思想是,在梯度方向上,只保留局部最大值点,而抑制其他点。
这样可以使边缘变得更加细化和准确。
4. 双阈值检测:在非极大值抑制后,Canny算法使用双阈值检测来判断哪些边缘是真正的边缘。
双阈值检测将梯度幅值分为三个范围:高阈值、低阈值和中间阈值。
只有梯度幅值大于高阈值的像素点被认为是强边缘,梯度幅值在低阈值和高阈值之间的像素点被认为是弱边缘,而梯度幅值小于低阈值的像素点被认为是背景。
在双阈值检测后,只有与强边缘相连的弱边缘才被保留下来,其他弱边缘被抑制。
5. 边缘连接:最后,Canny算法通过边缘连接来将弱边缘连接成完整的边缘。
边缘连接的思想是通过查找弱边缘与强边缘的连接关系,将它们连接成一条完整的边缘线。
在亚像素轮廓边缘提取中,Canny算法可以通过进一步的优化来提高边缘定位的精度。
Canny边缘检测及轮廓提取
摘要.................................................................................... Abstract . (I)1 绪论 02 设计内容与OpenCV简介 (1)2.1 设计任务内容 (1)2.2 OpenCV简介 (1)3 理论分析 (2)3.1 边缘检测 (2)3.1.1 图像的边缘 (2)3.1.2 边缘检测的基本步骤 (2)3.2 轮廓提取 (3)4 边缘检测的算法比较 (4)4.1 Reborts算子 (4)4.2 Sobel算子 (4)4.3 Prewitt 算子 (5)4.4 Kirsch 算子 (6)4.5 LOG算子 (6)4.6 Canny算子 (7)5 实验仿真 (8)5.1算法设计 (8)5.2 实验结果 (8)6 分析与总结 (9)参考文献 (10)附录 (11)边缘检测是图像处理和计算机视觉中的基本问题,它的目的是标识出数字图像中亮度变化明显的点。
图像经过边沿检测处理之后,不仅大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。
事实上,边缘存在于图像的不规则结构和不平稳现象中,也即存在于信号的突变点处,这些点给出了图像轮廓的位置。
这些轮廓常常是我们在图像边缘检测时,所需要的非常重要的一些特征条件,这就需要我们对一幅图像检测并提取出它的边缘。
可用于图像边缘检测和轮廓提取的方法有很多,其中包括有常见的Robert边缘算子、Prewitt 边缘算子、Sobel边缘算子等等。
本文首先将会从数字图像处理的角度,对几种边缘检测算法进行详细的分析,然后会并选择其中一种边缘检测算法进行实验。
考虑到以后进一步的学习,本文将会使用openCV对算法进行实现。
最后,本文将会把实验获得的实际效果,与理论分析的结果进行比对,并以此对本次实验进行总结。
关键字:边缘检测轮廓提取图像处理openCVAbstractEdge detection is the basic problem in image processing and computer vision, its purpose is to identify the digital image brightness changes in the obvious points.Image after edge detection processing, not only greatly reduces the amount of data, and eliminated can think irrelevant information, keep the structure of the image important attribute.Edge of image, in fact, exist in the image of the irregular structure and unstable phenomenon, which exists in the abrupt change point of the signal, the point the location of the image contour is presented.These contours are often in image edge detection, we need some important characteristics of the condition, this needs us to the edge of an image detection and extract it.There are so many method can be used in image edge detection and contour extraction, including common Robert edge operator, Prewitt edge operator, Sobel edge operator and so on.At first, this paper will, from the perspective of digital image processing and analysis of several kinds of edge detection algorithms in detail, and then select one of the edge detection algorithm for experiments.After considering the further study, this paper implemented the algorithm will use openCV.Finally, this article will obtain the actual effect of the experiment, and compares the results of theoretical analysis, and then to summarize this experiment. Keywords: Edge detection Contour extraction Image processing openCV。
canny算子原理
canny算子原理Canny算子是一种常用于边缘检测的算法,由John F. Canny于1986年提出。
Canny算子是一种基于梯度的算法,它可以在图像中检测出明显的边缘,并将其转化为二值图像,便于后续的处理。
Canny算子的原理主要包括以下几个步骤:1.高斯滤波在进行边缘检测之前,首先需要对原始图像进行高斯滤波,以去除图像中的噪声。
高斯滤波是一种线性平滑滤波器,它可以将图像中的噪声平滑化,同时保留图像中的细节信息。
2.计算梯度幅值和方向在进行边缘检测之前,需要对图像进行梯度计算,以确定图像中的边缘。
梯度是一个向量,它表示函数在某一点的变化率。
在图像中,梯度的方向指向最大变化的方向,梯度的大小表示变化的程度。
在Canny算子中,使用Sobel算子来计算梯度幅值和方向。
Sobel 算子是一种离散差分算子,它可以在图像中计算出每个像素点的梯度幅值和方向。
3.非极大值抑制由于图像中的梯度方向可能非常复杂,如何确定哪些像素点是边缘点是一个非常困难的问题。
为了解决这个问题,Canny算子采用了非极大值抑制的方法。
非极大值抑制的基本思想是,在梯度方向上,只有局部的最大值才可能是真正的边缘点。
因此,对于每个像素点,只有当其梯度方向上的幅值是局部最大值时,才会被保留下来。
4.双阈值处理在进行非极大值抑制之后,图像中的边缘已经被明显地检测出来了。
但是,由于图像中可能存在一些噪声,因此可能会出现一些假边缘。
为了解决这个问题,Canny算子采用了双阈值处理的方法。
双阈值处理的基本思想是,将图像中的像素点分为三类:强边缘、弱边缘和非边缘。
强边缘是指梯度幅值大于高阈值的像素点,非边缘是指梯度幅值小于低阈值的像素点,弱边缘是指梯度幅值在高低阈值之间的像素点。
在双阈值处理中,强边缘被保留下来,非边缘被丢弃,而弱边缘则需要进一步处理。
通常情况下,弱边缘会被与强边缘连接起来,形成完整的边缘。
5.边缘跟踪在进行双阈值处理之后,图像中的边缘已经被明显地检测出来了。
Canny边缘检测基本原理
2 Canny边缘检测基本原理Canny边缘检测器是高斯函数的一阶导数,是对信噪比与定位之乘积的最优化逼近算子[1]。
Canny认为好的边缘检测具有3个特点:(1)低概率的错标非边缘点和低概率不标真实边缘点;(2)检测出来的边缘点应该尽可能的靠近真实边缘中心;(3)边缘响应是单值的。
设表示两维高斯函数,表示图像;Canny边缘检测算子为式中:是边缘曲线的法向量,由于事先不知道边缘的方向,所以取。
那么边缘点是方程的解,即然后通过双阈值去掉伪边缘,Canny算子检测到的是边缘点是高斯函数平滑后的图像拐点。
Canny算法的实现步骤:Step1:用高斯滤波器平滑图像,去除图像噪声。
一般选择方差为1.4的高斯函数模板和图像进行卷积运算。
Step2:用一阶偏导的有限差分来计算梯度的幅值和方向。
使用的梯度算子计算x和y方向的偏导数和,方向角,梯度幅值。
Step3:对梯度幅值应用非极大值抑制。
幅值M越大,其对应的图像梯度值也越大,但这还不足以确定边缘,因为这里仅把图像快速变化的问题转化成求幅值局部最大值问题,为确定边缘,必须细化幅值图像中的屋脊带,只保留幅值局部变化最大的点,生成细化的边缘。
Step4:用双阈值算法检测并且连接边缘。
双阈值法使Canny算子提取的边缘点更具有鲁棒性,高低阈值分别表示为Hth和Lth,对于高阈值Hth的选折,基于计算出的图像梯度值对应的直方图进行选取。
在一幅图像中,非边缘点数目在总图像像素点数目中占的比例表示为Hratio,根据图像梯度值对应的直方图累加,累加数目达到总像素数目的Hratio时,对应的图像梯度值设置为Hth,在文中设定Hratio为0.7。
低阈值Lth的选择通过Lth=Lratio*Hth得到,文中Lratio设定为0.4。
最后通过对边缘点的标记和领域关系进行连接得到最后的边缘检测图。
3亚像素级Zernike矩算子精确定位边缘Zernike矩算子的基本思想是通过计算每个像素点的4个参数来判断该点是否为边缘点。
边缘检测的名词解释
边缘检测的名词解释边缘检测是计算机视觉领域中一项重要的图像处理技术,其目的是识别和提取图像中各个物体或场景的边缘信息。
边缘是指图像中颜色或亮度发生明显变化的地方,它标志着物体之间的分界线或者物体与背景之间的过渡区域。
边缘检测能够帮助我们理解图像中的结构,更好地分析图像内容并进行后续的图像处理和分析。
在计算机视觉应用中,边缘检测有着广泛的应用。
例如在目标识别中,边缘检测可以帮助我们找到物体的轮廓,从而进行物体的识别和分类。
在图像分割方面,边缘检测可以用来分割图像中的不同区域,提取感兴趣的物体。
此外,边缘检测还可以用于图像增强、图像压缩等领域。
常用的边缘检测算法包括Sobel算子、Laplacian算子、Canny算子等。
这些算法基于图像的灰度值和亮度变化来检测边缘。
Sobel算子通过计算图像中每个像素点的梯度幅值来确定边缘的位置和方向。
Laplacian算子则通过计算像素值的二阶导数来检测边缘。
而Canny算子则是一种综合性的边缘检测算法,它综合了Sobel 算子和Laplacian算子的优点,在性能上更加稳定和准确。
边缘检测并不是一项简单的任务,它受到噪声、光照变化、图像分辨率等因素的影响。
因此,在进行边缘检测前,通常需要进行预处理,比如图像平滑、灰度化等步骤,以减少这些干扰因素对边缘检测结果的影响。
边缘检测并非完美,它仍然存在一些问题和挑战。
例如,边缘检测往往会产生一些不连续和不完整的边缘,这需要通过进一步的处理和分析来解决。
此外,在图像中存在复杂的背景和纹理时,边缘检测的准确性也会受到影响。
因此,为了获得更好的边缘检测效果,我们需要结合其他的图像处理和分析技术,如图像分割、特征提取等。
总结起来,边缘检测是计算机视觉中一项重要的图像处理技术,其通过识别和提取图像中的边缘信息来帮助我们理解图像结构、进行目标识别和图像分割等应用。
虽然边缘检测还存在一些问题和挑战,但随着技术的不断进步和研究的不断深入,相信边缘检测在图像处理领域将发挥更大的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Canny边缘检测
图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。
图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位,自从1959提出边缘检测以来,经过五十多年的发展,已有许多中不同的边缘检测方法。
根据作者的理解和实践,本文对边缘检测的原理进行了描述,在此基础上着重对Canny检测算法的实现进行详述。
本文所述内容均由编程验证而来,在实现过程中,有任何错误或者不足之处大家共同讨论(本文不讲述枯燥的理论证明和数学推导,仅仅从算法的实现以及改进上进行原理性和工程化的描述)。
1、边缘检测原理及步骤
在之前的博文中,作者从一维函数的跃变检测开始,循序渐进的对二维图像边缘检测的基本原理进行了通俗化的描述。
结论是:实现图像的边缘检测,就是要用离散化梯度逼近函数根据二维灰度矩阵梯度向量来寻找图像灰度矩阵的灰度跃变位置,然后在图像中将这些位置的点连起来就构成了所谓的图像边缘(图像边缘在这里是一个统称,包括了二维图像上的边缘、角点、纹理等基元图)。
在实际情况中理想的灰度阶跃及其线条边缘图像是很少见到的,同时大多数的传感器件具有低频滤波特性,这样会使得阶跃边缘变为斜坡性边缘,看起来其中的强度变化不是瞬间的,而是跨越了一定的距离。
这就使得在边缘检测中首先要进行的工作是滤波。
1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此必须采用滤波器来改善与噪声有关的边缘检测器的性能。
常见的滤波方法主要有高斯滤波,即采用离散化的高斯函数产生一组归一化的高斯核(具体见“高斯滤波原理及其编程离散化实现方法”一文),然后基于高斯核函数对图像灰度矩阵的每一点进行加权求和(具体程序实现见下文)。
2)增强:增强边缘的基础是确定图像各点邻域强度的变化值。
增强算法可以将图像灰度点邻域强度值有显著变化的点凸显出来。
在具体编程实现时,可通过计算梯度幅值来确定。
3)检测:经过增强的图像,往往邻域中有很多点的梯度值比较大,而在特定的应用中,这些点并不是我们要找的边缘点,所以应该采用某种方法来对这些点进行取舍。
实际工程中,常用的方法是通过阈值化方法来检测。
2、Canny边缘检测算法原理
JohnCanny于1986年提出Canny算子,它与Marr(LoG)边缘检测方法类似,也属于是先平滑后求导数的方法。
本节对根据上述的边缘检测过程对Canny检测算法的原理进行介绍。
2.1 对原始图像进行灰度化
Canny算法通常处理的图像为灰度图,因此如果摄像机获取的是彩色图像,那首先就得进行灰度化。
对一幅彩色图进行灰度化,就是根据图像各个通道的采样值进行加权平均。
以RGB格式的彩图为例,通常灰度化采用的方法主要有:
方法1:Gray=(R+G+B)/3;
方法2:Gray=0.299R+0.587G+0.114B;(这种参数考虑到了人眼的生理特点)
注意1:至于其他格式的彩色图像,可以根据相应的转换关系转为RGB然后再进行灰度化;
注意2:在编程时要注意图像格式中RGB的顺序通常为BGR。
2.2 对图像进行高斯滤波
图像高斯滤波的实现可以用两个一维高斯核分别两次加权实现,也可以通过一个二维高斯核一次卷积实现。
1)高斯核实现
上式为离散化的一维高斯函数,确定参数就可以得到一维核向量。
上式为离散化的二维高斯函数,确定参数就可以得到二维核向量。
注意1:关于参数Sigma的取值详见上篇博文。
注意2:在求的高斯核后,要对整个核进行归一化处理。
2)图像高斯滤波
对图像进行高斯滤波,听起来很玄乎,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。
这样可以有效滤去理想图像中叠加的高频噪声。
通常滤波和边缘检测是矛盾的概念,抑制了噪声会使得图像边缘模糊,这回增加边缘定位的不确定性;而如果要提高边缘检测的灵敏度,同时对噪声也提高了灵敏度。
实际工程经验表明,高斯函数确定的核可以在抗噪声干扰和边缘检测精确定位之间提供较好的折衷方案。
这就是所谓的高斯图像滤波,具体实现代码见下文。
2.3 用一阶偏导的有限差分来计算梯度的幅值和方向
关于图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y 方向上偏导数的两个矩阵。
常用的梯度算子有如下几种:
1)Roberts算子
上式为其x和y方向偏导数计算模板,可用数学公式表达其每个点的梯度幅值为:
2)Sobel算子
上式三个矩阵分别为该算子的x向卷积模板、y向卷积模板以及待处理点的邻域点标记矩阵,据此可用数学公式表达其每个点的梯度幅值为:
3)Prewitt算子
和Sobel算子原理一样,在此仅给出其卷积模板。
4)Canny算法所采用的方法
在本文实现的Canny算法中所采用的卷积算子比较简单,表达如下:
其x向、y向的一阶偏导数矩阵,梯度幅值以及梯度方向的数学表达式为:
求出这几个矩阵后,就可以进行下一步的检测过程。
2.4 对梯度幅值进行非极大值抑制
图像梯度幅值矩阵中的元素值越大,说明图像中该点的梯度值越大,但这不不能说明该点就是边缘(这仅仅是属于图像增强的过程)。
在Canny算法中,非极大值抑制是进行边缘检测的重要步骤,通俗意义上是指寻找像素点局部最大值,将非极大值点所对应的灰度值置为0,这样可以剔除掉一大部分非边缘的点(这是本人的理解)。
图1 非极大值抑制原理
根据图1 可知,要进行非极大值抑制,就首先要确定像素点C的灰度值在其8值邻域内是否为最大。
图1中蓝色的线条方向为C点的梯度方向,这样就可以确定其局部的最大值肯定分布在这条线上,也即出了C点外,梯度方向的交点dTmp1和dTmp2这两个点的值也可能会是局部最大值。
因此,判断C点灰度与这两个点灰度大小即可判断C点是否为其邻域内的局部最大灰度点。
如果经过判断,C点灰度值小于这两个点中的任一个,那就说明C点不是局部极大值,那么则可以排除C点为边缘。
这就是非极大值抑制的工作原理。
作者认为,在理解的过程中需要注意以下两点:
1)中非最大抑制是回答这样一个问题:“当前的梯度值在梯度方向上是一个局部最大值吗?” 所以,要把当前位置的梯度值与梯度方向上两侧的梯度值进行比较;
2)梯度方向垂直于边缘方向。
但实际上,我们只能得到C点邻域的8个点的值,而dTmp1和dTmp2并不在其中,要得到这两个值就需要对该两个点两端的已知灰度进行线性插值,也即根据图1中的g1和g2对dTmp1进行插值,根据g3和g4对dTmp2进行插值,这要用到其梯度方向,这是上文Canny算法中要求解梯度方向矩阵Thita的原因。
完成非极大值抑制后,会得到一个二值图像,非边缘的点灰度值均为0,可能为边缘的局部灰度极大值点可设置其灰度为128。
根据下文的具体测试图像可以看出,这样一个检测结果还是包含了很多由噪声及其他原因造成的假边缘。
因此还需要进一步的处理。
2.5 用双阈值算法检测和连接边缘
Canny算法中减少假边缘数量的方法是采用双阈值法。
选择两个阈值(关于阈值的选取方法在扩展中进行讨论),根据高阈值得到一个边缘图像,这样一个图像含有很少的假边缘,但是由于阈值较高,产生的图像边缘可能不闭合,未解决这样一个问题采用了另外一个低阈值。
在高阈值图像中把边缘链接成轮廓,当到达轮廓的端点时,该算法会在断点的8邻域点中寻找满足低阈值的点,再根据此点收集新的边缘,直到整个图像边缘闭合。
以上即为整个Canny边缘检测算法的原理分析,接下来我们进行VC下的算法实现和效果分析。