人教版数学六年级下册正比例、反比例应用题
新人教版六年级下册数学正反比例精选练习题
数 学
两种相关联的量,一种量变化,另一种量 也随着变化。
比值(也就是商)一定 y =K(一定)
x
积一定
x×y=k(一定)
例7
数
观察下面的两个表,再回答问题。
学
1、表中各有哪两种相关联的量?
2、在各表的两种相关联的量中,一种量是怎样随着另一 种量的变化而变化的?它们的变化规律各有什么特征?
3、哪个表中的两种量成正比例关系?哪个表中的两种量 成反比例关系?
1
●
09
8
7
6
●
5
4
●
3
2
●
1
⑵图1是表示汽车所行路程与相应耗油量关系 的图像,说一说有什么特点。
答:汽车所行路程与相应的耗油量是两种相 关联的量,耗油量随着所行路程和变化而变 化。所行路程增加,耗油量随着增加,所行 路程减少,耗油量也随着减少。 ⑶利用图像估计一下,汽车行驶55㎞的耗油 量是多少?
速度、时间、路程
数
速度×时间=路程
学
路程
= 速度
时间
路程
= 时间
速度
当速度一定时,也就是路程和时间的比的比值一 定,路程和时间成正比例。
当路程一定时,也就是速度和时间的乘积一定, 速度和时间成反比例。
当时间一定时,也就是路程和速度的什么一定, 这时,路程和速度成什么比例?
路程(千米)
180
150
●
B
120
●
90
●
60
●
A
30 ●
速度(千米/时)
180 150
120 ● A 90
60 ●
●
30
● ●B
0 2 4 6 8 10 12 时间(时) 0 2 4 6 8 10 12
【★★】六年级下册数学人教版课时练第4单元《4-2正比例和反比例》(含答案)
课时练4.2 正比例和反比例一、单选题1.在等式a×b=c(a、b、c均不等于0)中,当c一定时,a和b()。
A. 成正比例B. 成反比例C. 不成比例D. 无法确定2.下面两种量成反比例的是()。
A. 圆锥的体积一定,它的底面积和高B. 长方形的周长一定,它的长和宽C. 利率一定,存款的本金和利息D. 折扣一定,商品的原价和折后价3.下列几句话中,正确的有()句。
①小华和小明玩“石头、剪刀、布”的游戏,他们获胜的可能性是一样的。
②2100年不是闰年。
③三角形面积一定,它的底和高成反比例。
④把一个长方形框架拉成一个平行四边形,周长不变,面积变大了。
A. 1B. 2C. 3D.44.零件的总个数一定,每小时做的零件数和做的时间()。
A. 成反比例B. 成正比例C. 不成比例5.梯形的面积一定,它的上底和下底()。
A. 成正比例B. 成反比例C. 既不成正比例也不成反比例6.()中的两种量不成比例。
A. 妈妈从家步行到单位,已走的路程和剩下的路程B. 从上海到广州,列车行驶的平均速度和所需时间C. 香蕉的单价一定,购买香蕉的数量和总价二、判断题7.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例。
()8.(1)圆锥的体积一定,它的底面积和高成反比例关系。
()(2)把一个长4cm、宽3cm的长方形按3:1放大,得到的图形的面积为36 。
()(3)如果3x−5y=0;(x,y不等于0),那么x和y成正比例关系。
()(4)如果A和B成正比例关系,那么2A和B也成正比例关系。
()三、填空题9.如果y=3x,那么y和x成________比例;如果=y,那么y和x成________比例。
10.分子一定,分母和分数值成________比例。
分母一定,分子和分数值成________比例。
分数值一定,分子和分母成________比例。
11.用一批纸装订练习本,每本25页,可以装订400本。
如果要装订500本,每本有X页。
人教版六年级下册《42_正比例和反比例的意义》小学数学-有答案-同步练习卷(2)
人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1. 直接写出得数。
2. 判断下列各题中,两种量是否成正比例关系,请说明理由。
(1)订阅《中国少年报》的金额和份数。
________(2)人的年龄和体重。
________3. 李师傅要加工一批零件,如表是他每天加工零件的数量与相应可以完成工作时间。
(1)把表格填完整。
(2)李师傅每天加工零件数量与完成工作时间成反比例吗?为什么?填空题.如果用字母x、y表示两种相关联的量,用k表示积(一定),反比例的关系式是________.一个自然数(0除外)与它的倒数成________比例。
x和y的积是12,那么x、y成________比例,它们的关系式是________.判断下面各题中的两个量是否成反比例,并说明理由。
(1)订《少先队员》的份数和总价钱。
________(2)三角形的面积一定,底和高。
________(3)总人数一定,行数和每行人数。
________(4)总价一定,单价与数量。
________已知x和y是反比例关系,根据表中的条件,填写下表。
全年级总人数一定,每班人数与班数成________比例。
=y(x不为0),那么x和y成________比例。
如果24x每块砖的面积一定,铺地的面积和所需砖的块数成________比例。
判断题。
(对的在括号中画“√”,错的画“×”)被除数一定,商和除数成反比例。
________(判断对错)人的体重和年龄成正比例。
________(判断对错)糖水的含糖率一定,糖和水成反比例。
________(判断对错)正方形面积与边长成反比例。
________(判断对错)一批大米的总质量一定,每袋质量与袋数成反比例。
________(判断对错)铺地面积一定,每块砖的面积和块数成反比例。
________.参考答案与试题解析人教版六年级下册《4.2 正比例和反比例的意义》小学数学-有答案-同步练习卷(2)1.分数除法分数乘法【解析】根据分数加减乘除法的计算方法求解即可。
新版六年级数学下册试题第四单元正比例和反比例专项练习题人教版(附答案)
人教版六年级下册正比例和反比例专项练习题学校:___________姓名:___________班级:___________考号:___________一、选择题1.xy -9=k (一定),x 和y 的关系是( )。
A .成正比例B .成反比例C .不成比例D .无法确定2.一架民航机从A 地匀速飞往B 地,飞行速度和所用时间( )。
A .成正比例B .成反比例C .不成比例D .无法确定3.下面各题中的各种量不成比例的是( )。
A .梯形的上、下底的和不变,梯形的面积和高 B .在一块菜地上种南瓜和茄子的面积C .如果ba 14⨯=,a 和b 4.将8L 水倒入正方体形状的容器里,水的高度与容器的底面积( ) A .成正比例关系B .成反比例关系C .不成比例关系5.10个小星星可以换4面小红旗,淘气用x 个小星星换了18面小红旗.那么下列比例中,不符..合题意...的是( ). A .10:4:18x = B .10:4:18x = C .4:1018:x =D .4:10:18x =6.下面两种量成反比例关系的是( )。
A .订阅《数学报》的份数和总钱数 B .三角形的面积一定,它的底和高C .长方形的周长一定,它的长和宽7.如果xy= 8,x 和y ( )比例. A .成正B .成反C .不成8.下面图( )表示的是成反比例关系的图像。
A .B .C .9.表示a 、b 成正比例关系的是( ) A .a+b=18B .ab=18C .a=18b 10.下列x 和y 成反比例关系的是( )。
A .y =7+xB .x +y =48C .x =3y D .y =4二、图形计算11.如图:正方形的边长为1米,==,求四边形ABGD的面积.三、其他计算12.求未知数X.(1)1.5:0.3=x:2.7;(2)5x﹣1.2=2.8;(3)x+x=.四、填空题13.一间房子用方砖铺地。
用面积9平方分米的方砖,需要96块。
人教版六年级下册数学 正比例和反比例 同步练习
人教版六年级下册数学 正比例和反比例 同步练习(共20题,共100分)一、单选题(共5题,共15分)1.在比例里,两个外项的积一定,两个内项成( )A .正比例B .反比例C .不成比例D .无法判断2.下面式子中a 和b 成反比例关系的是( )。
A .b=4aB .a :4=b :9C .a 5 = 4bD .a+b=103.有两个相关联的量,它们的关系如图所示,这两个量不可能是()。
A .路程一定,已走的路程和剩下的路程B .圆的周长与直径C .圆柱的底面积一定,体积和高D .单价一定时,购物的总价和购物数量4.下面是关于正比例和反比例的描述,其中正确的是( ) ①正比例的图像是一条直线。
②一个人的年龄和体重既不成正比例关系,也不成反比例关系。
③圆柱的底面积一定,体积和高成反比例关系。
④路程一定,已走的路程和剩下的路程不成比例。
A .①②③B .①②④C .②③④D .①③④5.一本书每天看20页,15天看完,如果要10天看完,每天要看( )页。
A .10B .20C .30D .40二、判断题(共5题,共15分)6.出盐率一定,盐的质量和海水质量成正比例。
( )7.如果ab+4=40,那么a 与b 成反比例。
( )8.正比例与反比例的图象都是一条直线。
( )9.在同一时间,旗杆的高度和影子的长度成反比例关系。
( )10.如果A ×B =10,B ×C =20,那么A 与C 成正比例。
( )三、填空题(共5题,共27分)11.宽不变,长方形面积与长成 比例;运一堆煤,车的载质量和需要运的次数成 ;有15个苹果,已吃的个数与未吃的个数 。
12.若x= 15 y ,那么x和y成 比例关系;若 1y = x 5 ,那么x和y成 比例关系。
13.下表中,如果x 和y 成正比例,“?”处填 ;如果x 和y 成反比例,“?”处填 。
x4 ? y 12 24 14.小宇在操场上量得1.4m 长的标杆的影长是2.1m 。
六年级数学下册典型例题系列之第四单元正比例和反比例部分(解析版)人教版
2021-2022学年六年级数学下册典型例题系列之第四单元正比例和反比例部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第四单元正比例和反比例部分。
本部分内容主要以正比例和反比例的认识、判断及图表应用为主,而利用正比例和反比例解决生活实际问题则编辑在《比例的应用部分》中。
本部分内容偏理解,建议根据学生情况选择性进行讲解,一共划分为九个考点,欢迎使用。
【考点一】认识正比例。
【方法点拨】 一、正比例的意义两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,用字母表示为k xy(一定) 二、判断两种量是否成正比例关系的方法先找变量(找两种相关联的量),再看定量(看两种相关联的量中相对应的两个数的比值是否一定),最后作出判断。
三、正比例关系图象的特点正比例关系图象是一条从(0,0)出发的无限延伸的射线,从图象中可以直观地看到两种量的变化规律,不用计算就可以根据一种量的值直接找到对应的另一种量的值。
【典型例题】科学小组在同一时间、同一地点进行观察实验,测得竹竿的高与竿影的长如下表。
(1)说一说竿影的长与竹竿的高的变化关系。
解析:竹竿的高增加1m ,竿影的长随之增加0.4m 。
(2)写出竿影的长与竹竿的高的比,你有什么发现?解析:竿影的长/竹竿的高=0.4,不管竹竿的高怎么变化,竿影的长和竹竿的高的比值是不变的。
((3)竹竿的高与竿影的长是不是成正比例?说明理由。
解析:竹竿的高与竿影的长成正比例,因为它们的比值一定。
人教版六年级下册第四单元正反比例、比例尺的应用题及答案
正反比例的应用题1、用同样的方砖铺地;铺20平方米要320块;如果铺42平方米;要用多少块方砖?2、一间教室;用面积是0.16平方米的方砖铺地;需要275块;如果用面积是0. 25平方米的方砖铺地;需要方砖多少块?3、建筑工地原来用4辆汽车;每天运土60立方米;如果用6辆同样的汽车来运;每天可以运土多少立方米?4我国发射的人造地球卫星绕地球运行3周约3.6小时;运行20周约需多少小时?5、一种铁丝;7.5米长重3千克;现在有19.5米长的这种铁丝;重多少千克?6、汽车在高速公路上3小时行240千米;照这样计算;5小时行多少千米?7、修一条公路;4天修了200米;照这样计算;又修了6天;又修了多少米?8、小明读一本书;每天读12页;8天可以读完。
如果每天多读4页;几天可以读完?9、今春分配给学校一些植树任务;每天栽200棵6天可以完成任务;现在需要4天完成任务;实际每天比原计划多栽多少棵?10、农场用3辆拖拉机耕地;每天共耕225公顷;照这样速度;用5辆同样拖拉机;每天共耕地多少公顷?11、一艘轮船;从甲地从开往乙地;每小时航行20千米;12小时到达;从乙地返回甲地时;每小时多航行4千米;几小时可以到达?12、100千克黄豆可以榨油13千克;照这样计算;要榨豆油6.5吨;需黄豆多少吨?13、学校计划买54张桌子;每张30元;如果这笔钱买椅子;可以买90张;每张椅子多少钱?14、一对互相咬合的齿轮;主动轮有20个齿;每分钟转60转;如果要使从动轮每分钟转40转;从动轮的齿数应是多少?15、把3米长的竹竿直立在地面上;测得影长1.2米;同时测得一根旗杆的影长为4.8米;求旗杆的高是多少米?16、一个机器零件长5毫米;画在图纸上是4厘米;求这幅图纸的比例尺。
(5分)17、地图上的26厘米;在比例尺为1∶1300000的地图上约是多少千米?(5分)18、李师傅计划生产450个零件;工作8小时后还差330个零件没有完成;照这样速度;共要几小时完成任务?19、用一批纸装订同样的练习本;如果每本30页;可以装订80本。
比例应用题(专项训练)数学六年级下册人教版
比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
人教版六年级下册数学用正比例解决问题(附答案)
人教版六年级下册数学用正比例解决问题一.解比例。
51=25x x 2=5.311.2 32=15x x 5.2=4.01二、填空1.车轮直径一定,所行的路程和车轮的转数成( )比例。
2.因为每度电的价格一定,所以电费和用电的度数成( )比例。
3. 把下面的数量关系式补充完整路程÷( )=时间 路程÷( )=速度总价÷( )=数量 总价÷ ( )=单价 三、判断1.两种相关联的量,不成正比例,就成反比例。
( )2.图上距离和实际距离成正比例。
( )3.X 和Y 表示两种变化的相关联的量,同时5X -7Y =0,X 和Y 不成比例。
( )4.分数的大小一定,它的分子和分母成正比例。
( )5.在一定的距离内,车轮周长和它转动的圈数成反比例。
( ) 四、解决问题 1.2.小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?3.小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?4.运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?5.运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?6.用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?7.一种水管,40米重60千克。
现称得一捆水管重270千克,这捆水管共长多少米?8.华南服装厂3天加工西装180套,照这样计算,要生产540套西装,需要多少天?9.王师傅生产25个零件需要1.5小时,照这样计算,生产125个零件需要多少小时?10.把一根3m长的标杆直立在地上,测得影长2.7m,同时测得旁边一棵树的影长比标杆影长多3.6m,这棵树高多少米?11.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?12.一个修路队,原计划每天修400m,15天可以修完。
结果12天就完成任务,实际每天修多少米?参考答案:人教版六年级下册数学用正比例解决问题一.解比例。
人教版六年级数学下册第四单元7.正比例和反比例 同步练习附答案
人教版六年级数学下册第四单元7.正比例和反比例一、仔细审题,填一填。
(每空2分,共12分) 1.如果x y =9.8,那么x 和y 成( )比例。
2.圆锥的体积一定,圆锥的底面积和高成( )比例;购买无人飞机的单价一定,总价和数量成( )比例。
3.已知mn =a (m 、n 、a 均不为0),当a 一定时,m 和n 成( )比例;当m 一定时,n 和a 成( )比例;当n 一定时,m 和a 成( )比例。
二、火眼金睛,判对错。
(对的在括号里画“√”,错的画“×”)(每小题4分,共16分)1.正方体的表面积与体积成正比例。
( ) 2. 一堆煤的总质量不变,每天平均烧去的质量与烧的天数成反比例。
( )3.圆的面积和半径的平方成正比例。
( ) 4.同时、同地测量物体时,物高和影长成反比例。
( ) 三、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题4分,共16分)1.小明从家里去学校,所需时间与所行速度( )。
A .成正比例B .成反比例C .不成比例2.下列各组量中,成反比例关系的是( )。
A .三角形面积一定,底和高B .王师傅每周生产零件总数和每天生产零件的个数C .50个口罩,已卖出的口罩个数和没卖的口罩个数D .房间面积一定,每块瓷砖的边长和所需块数 3.表示x 和y 成正比例关系的式子是( )。
A .x +y =5 B .y =5x C .yx =0D .x y +3=54.圆的周长与( )成正比例关系。
A .圆的面积B .圆的半径C .圆周率四、按要求填表。
(每小题8分,共16分) 1.x 和y 成正比例关系。
x 6 1.5 3.6 y7.210.86.482.x 和y 成反比例关系。
x 2.5 0.5 13 y0.40.1255五、聪明的你,答一答。
(共40分) 1.把相同体积的水倒入底面积 不同的杯子中,杯子的底面 积和杯子中水面高度的关系 如图。
(1)杯子的底面积和水面高度成()比例关系。
六下数学 正比例与反比例 应用题训练30题 带答案
相同时间内,路程和速度成正比例,速度之比=路程之比
(2x-130):(x+130)=3:2 解得x=650
8、一辆卡车与一辆小轿车同时从甲、乙两城相对开出,相遇后两 车继续向前行驶.当小轿车到达甲地、卡车到达乙地后.立即返回 ,第二次相遇点距甲城120千米,已知:卡车与小轿车的速度比是3 :4,甲、乙两城相距多少千米?
13、用方砖铺一间教室的地面,如果用边长为2dm的方砖 ,需要用60块,如果改用边长为3dm的方砖,需要用多少 块? 27块 解析:解设需要用x块砖 教室的面积一定,所用的方砖的块数和每块方砖的面积成 反比例
2×2×60=3×3×x 解得 x=80/3 进一法,所以需要27块
14、有甲乙丙三个相互咬合的齿轮,当甲齿轮转动2圈时, 乙齿轮转动3圈,丙齿轮转动4圈,这三个齿轮的齿数之比 是( ):( ):( )。 6:4:3 解析:相互咬合的齿轮转动的总齿数是相同的,那么一圈 的齿数和转动的圈数是成反比例的,设三个齿轮的齿数分 别为x y z 则2x=3y=4z 得x:y :z=6:4:3
16、学校组织同学参观爱国主义纪念展,每60名同学配2
X=18
4、某修路队修一条公路,前6天修了180米,照这样的速度,修路 队又修了5天才全部修完,这条公路全长是多少米?
解设这条公路的全长是x米 每天修的长度一定,路的全长和时间成正比例关系 180:6=x:(6+5)
X=330
5、甲乙丙三人进行200米赛跑(他们的速度保持不变),甲到 终点时,乙还差20米,丙离终点还有25米,问乙到达终点时, 丙还差多少米?
解设:甲乙两城相距x千米 则第二次相遇时,卡车经过的路程为:x+x-120=2x-120 小轿车经过的路程为:x+120
人教版六年级数学下册《正比例和反比例》练习
一、填空。
1.因为=工作效率工作总量( )(一定),所以工作总量与工作效率成( )比例。
2.因为=除数被除数( )(一定),所以( )和( )成正比例。
3.根据=yx4填表。
二、判断下列两个量是否成正比例关系,是的打“√”否则打“×”。
1. 速度一定,路程和时间。
( ) 2. 一个平行四边形的底是5.5cm ,它的面积和高成正比例。
( ) 3. 正方形的周长和边长。
( ) 4. a 是b 的45,a 和b 。
( )5. 圆的直径一定,它的周长和圆周率。
( ) 三、判断下面各题中的两种量是不是成正比例,并说明理由。
1.一袋大米已经吃了的和没吃的质量。
2. y=5x ,y 和x 。
3.出油率一定,油的质量和油菜子的4.4y= 3x ,y 和x 。
质量。
一、希望小学订阅《作文报》的份数与总钱数如下表。
份数 10 20 30 40 50 60 … 总钱数/元150300450600750900…1.选择几组数据,写出几组总钱数与份数的比,并比较比值的大小。
这个比值表示什么?2.《作文报》的总钱数与份数成正比例吗?为什么?3.根据下表在图中描出对应点并连线。
根据图像订90份《作文报》需要( )元。
二、判断x 和y 是否成正比例关系,是的打“√”否则打“×”。
1. x :y=5 ( ) 3. xy=5 ( )2. y=x ( ) 4. 5+x=y ( ) 三、判断题。
1.因为k xy,所以y 和x 成正比例。
( )2.圆的面积与半径成正比例。
( )3.修一条公路,已修的长度和未修的长度不成比例。
( )4.分数值一定,分子和分母成正比例。
( )四、一种农药,药液与水的质量比是1:150,35kg 药液加水多少千克?如果用3600kg 水,需要加多少千克药液?1.单价书的总价=本数(一定),书的总价和单价成( )比例;本数书的总价=单价(一定),书的总价和本数成( )比例;单价×本数=书的总价(一定),书的单价和本数成( )比例。
人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)
人教版六年级下册《正比例和反比例》小学数学-有答案-同步练习卷(某校)一、判断下面每组中的量是否成正比例,对的打“√”错的打“×”.1. 订阅《小学生天地》的份数和钱数成________比例。
2. 一个人的年龄和体重________比例。
3. 除数一定,被除数和商________比例。
4. 平行四边形的底一定,面积和高成________比例。
5. 三角形的面积一定,底和高不成比例。
________.(判断对错)=k,所以y和x成正比例。
________.(判断对错)6. 因为yx7. 圆的面积与半径成正比例关系。
________.(判断对错)8. 3x=5y,那么x和y成正比例关系。
________.(判断对错)9. 成正比例的两个量,一个量扩大,另一个也在扩大。
________.(判断对错)10. 一袋面粉,吃掉的和剩下的成反比例关系。
________.(判断对错)二、解答题(共10小题,满分0分)下表中的x和y成正比例,请把表格填写完整。
=20.请完成下表。
如果x和y成正比例,并且yx已知x和y成正比例关系,请完成下列表格。
已知x和y成反比例关系,请完成下表。
购买面粉的重量和钱数如下表,根据表填空。
(1)________和________是两种相关联的量,________随着________的变化而变化。
(2)与总价7.6元相对应的重量是________千克;与6千克相对应的总价是________元。
(3)总价与重量中相对应的两个数的比值所表示的意义是________.(4)因为比值一定,所以表中总价和重量叫做成________的量。
小英和妈妈的年龄变化情况如下,把表填写完整。
母女的年龄成正比例吗?为什么?甲、乙两辆车速度比是8:9,那么行驶相同的一段路,两辆车的时间比是多少?对应训练:甲、乙两车的速度比是8:9,那么在相同的时间里,两车所行使的路程比是多少?一列火车从甲地开往乙地,2小时行了280千米,从乙地开往丙地,5小时行了700千米。
六年级下册数学正比例、反比例应用题专练
小升初数学应用题『正比例、反比例——专项训练』1.小兰的身高1.5m,她的影长是2.4m。
如果同一时间同一地点测得一棵树的影子长4米,这棵树有多高?解:设这棵树高x米,4:x=2.4:1.52.4x=4×1.5x=6÷2.4x=2.5答:这棵树高2.5米.2.一间房子要用方砖铺地,用边长5分米的方砖需用2000块,如果改用边长是4分米的方砖,需用多少块?(用比例解)解:设需用x块,4×4×x=5×5×200016x=25×200016x÷16=50000÷16x=3125答:需用3125块3.用同样的砖铺地,铺18平方米要用618块砖.如果铺地24平方米,要用多少块砖?(用比例知识来解)解:设要用x块砖,由题意可得:18:618=24:x,18x=618×2418x=14832x=824答:要用824块砖小升初数学应用题『正比例、反比例——专项训练』4.测量小组要测量一棵树的高度,先量得树的影子长12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长1.2米.这棵树的高度是多少米?解:设这棵树的高度是x米,12:x=1.2:21.2x=12×21.2x=24x=20答:这棵树的高度是20米5.小华的身高是1.6米,他的影长是2.4米.如果在同一时间、同一地点测得一棵树的影长为6米,这棵树有多高?解:设这棵树x米,得:1.6:2.4=x:62.4x=1.6×62.4x=9.6x=4答:这棵树高4米6.市政工程队铺一条路,原计划每天铺0.6千米,24天完成.实际每天铺0.8千米,实际用多少天完成?解:设实际用了x天.0.8x=0.6×24x=14.4÷0.8x=18答:实际用18天完成.小升初数学应用题『正比例、反比例——专项训练』7.青艺农场收割小麦.前6天收割了114公顷,剩下152公顷.(1)照前几天的工作效率,剩下的还要多少天才能完成?(用比例解)解:设还需要x天才能完成.114∶6=152∶x114x=152×6x=912÷114x=8答:剩下的还要8天才能完成.(2)前几天收割的比后几天收割的少百分之几?解:(152-114)÷152=38÷152=0.25=25%答:前几天收割的比后几天收割的少25%.(3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?解:7.5×(114+152)÷5=7.5×266÷5=1.5×266=399(次)答:需要运399次.。
人教版六年级数学下册第四单元 第2课时 正比例和反比例(同步练习)
人教版六年级数学下册课时作业第四单元 第2课时 正比例和反比例一、填空题1. a÷b =c ,当a 一定时b 和c 成 比例。
2. 已知5a =b 7(a 和b 都是不为0的自然数),a 和b 成 (填“正”或“反”)比例,ab ﹣25= 。
3. 若12x =34y(x ,y 均不为0),则x :y = ,x 和y 成 比例。
4. 表中,如果x 与y 成正比例,那么☆表示的数是 ;如果x 与y 成反比例,那么☆表示的数是 。
5. 如果x :7=y ,那么x 和y 成 比例,当y =1.4时,x = 。
6. 一辆自行车的前齿轮数是28,后齿轮数是16。
后齿轮转数是14转时,前齿轮转数是 转。
车轮半径是32cm ,蹬一圈,自行车前进了 m(保留一位小数)。
7. a 和b 都是非0自然数,且a =14b 则a 与b 成 比例,它们的最小公倍数是 。
8. 报纸的单价一定,订阅的份数和总价成 比例;正方体的体积一定,它的底面积和高成 比例。
9. 中国古代数学名著《九章算术》在“粟米章”中对比例就有深入研究。
请解决问题:如果a 与b 互为倒数,那么a 与b 成 比例:如果4a =6b(a 、b 均不为0),那么a 与b 成 比例。
二、判断题10. 圆柱的底面半径一定时,它的体积和高成正比例。
()11. 车轮的周长一定,车轮的转数与车辆行驶的距离成正比例。
()12. 长方形的宽一定,它的面积和长成正比例。
()13. 圆的周长和它的半径成反比例关系。
()14. 每袋大米的质量一定,大米的总质量和袋数成正比例。
()15. 妈妈读一本书,已读页数和剩下的页数成反比例。
()16. X和Y表示两种相关联的量,同时5X﹣7Y=0,X和Y不成比例。
( )三、单选题17. m,n是两种相关联的量(m,n均不为0),下列各式中,m和n 成反比例的是()。
A. mn =310B. n2=mC. m6=n5D. 7mn=818. 下列说法正确的是()。
【六年级下册数学】 《反比例》专项应用题
《反比例》专项应用题1.两个咬合在一起的齿轮,主动轮有50个齿,每分钟转100转;从动轮有20个齿,每分钟转多少转?解:设从动轮每分钟转x转,则20x=50×10020x=5000x=250答:从动轮每分钟转250转。
2.用边长15厘米的方砖给房间铺地需要2000块,如果改用边长为25厘米的方砖铺地,需要多少块?解:设需要x块。
25×25x=15×15×2000解得x=7203.为了保护环境,净化空气,六年级同学要去植树,原计划每小时植树40棵,3小时植完。
实际每小时比原计划多植树20棵,实际提前几小时完成任务?解:设实际提前x小时完成任务40:(40+20)=(3-x):360×(3-x)=1203-x=2x=1答:实际提前1小时完成任务《反比例》专项应用题4.如果x和y成正比例关系,当x=16时,y=0.8;当x=10时,y 是多少?如果x和y成反比例关系,当x=16时,y=0.8;当x=10时,y是多少?解:①16:0.8=10:y16y=0.8×1016y÷16=8÷16y=0.5答:如果x和y成正比例关系,当x=16时,y=0.8;当x=10时,y是0.5.②10y=16×0.810y÷10=12.8÷10y=1.28答:如果x和y成反比例关系,当x=16时,y=0.8;当x=10时,y是1.28。
5.用边长20厘米的方砖铺一块地面需要270块,如果改用面积为9平方分米的方砖铺这块地需要多少块?(用比例解)解:设需要x块,20厘米=2分米9x=2×2×270x=1080÷9x=120答:需要120块.《反比例》专项应用题6.工程队修一条公路,计划每天4.5千米,20天完成,实际每天修6千米,实际几天可修完?(用比例解)解:设实际x天可修完.20:x=6:4.56x=20×4.56x=90x=15答:实际15天可修完.7.一辆汽车在两地之间行驶。
六年级下册数学第二学期练习题第4单元 比例 正比例和反比例
t和组装的手机总数之第1页/共4页(3)如果这批组装任务需要8天完成。
每天组装多少部手机?13.京沪高铁的火车平均行驶速度与行驶完全程所需时间如下表。
(2)如果用v表示火车的平均速度,t表示驶完全程所需时间。
t与v个关系式吗?(3)如果火车的平均速度为325千米/时,驶完全程需要多长时间?14.下面的图象表示斑马和长颈鹿的奔跑情况。
(1关系?长颈鹿呢?(2)估计一下,两种动物18分钟各跑多少千米?(3)从图象上看,斑马跑的快还是长颈鹿跑的快?,强化了记忆,又发展了思维,为说打下了基础。
这个工作可让学生分组负责收集整理,登在小黑板上,目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,有x、y、z三个相关联的量,并有xy=z。
对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
(1)当z一定时,x与y成______比例关系。
(2)当x一定时,z与y成______比例关系。
(3)当y一定时,z与x成______比例关系。
一个长方形的面积是36cm2,用x和y表示它的长和宽。
y与x成什么比例关系?如果把它们的关人教版(新课标)第4单元比例正比例反比例练习题第3页/共4页(5)总页数=已读页数+未读页数,所以未读页数与已读的页数不成正比例关系。
3.下面是某几种汽车所行路程和耗油量的对应数值表。
(2)下图是表示汽车所行路程与相应耗油量关系的图象,说一说它有什么特点。
(3)利用图象估计一下,汽车行驶55km 的耗油量是多少?解:(1)成正比例关系,因为耗油量:所行路程=行驶1km 的耗油量,而行驶1km 的耗油量一定。
(2)图像是一条经过原点的直线。
(3)汽车行驶55km 的耗油量大约是7.3L 。
六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题 人教版(含解析)
人教版六年级数学下册《第4章比例第2课时正比例和反比例》同步测试题一.选择题(共6小题)1.下列等式中,a与b(a、b均不为0)成反比例的是()A.2a=5b B.a×7=C.a×=12.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时间和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数3.圆的周长和直径()A.成正比例B.成反比例C.不成比例4.a和b成反比例关系的式子是()A.5a=4b B.=C.5a=D.5a=b+45.如果ab=3,那么a与b()A.不成比例B.成反比例C.成正比例6.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共6小题)7.A、B、C三量的关系时A×B=C中,当C一定时,A和B成关系.8.表格中,如果A和B成正比例,x=,如果A和B成反比例,x=.A28B0.5x9.少先队员每人做好事的件数一定,做好事的总件数与做好事的少先队员人数成正比例..10.表中如果x和y成正比例,那么空格里应填;如果x和y成反比例,那么空格里应填.x26y2411.一种练习本销售的数量与总价的关系如表.数量/本12345总价/元 5.51116.52227.5(1)表中有和两种相关联的量,总价随着的变化而变化,且总价与相应数量的比值都是,实际就是练习本的.(2)像这样,两种的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫做的量,它们的关系叫做关系.上表中,总价和数量是成的量,总价与数量成关系.12.在比例中,两个外项的积一定,两个两内项成比例.三.判断题(共5小题)13.工作总量一定,工作效率和工作时间成正比例.(判断对错)14.在一定的距离内,车轮周长和它转动的圈数成反比例..(判断对错)15.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例.(判断对错)16.式子=k(一定)表示的是正比例关系..(判断对错)17.如果a和b成正比例,b和c成反比例,那么a和c一定成反比例..(判断对错)四.应用题(共3小题)18.淘淘家在装修房屋时,买了同样大小的地板砖,铺地面积与所需块数的关系如图.他家的客厅面积是36m2,需要铺多少块这样的地板砖?(用比例解决问题)19.下面的图象表示小强从甲地到乙地不同的速度和所对应的时间.(1)在这个过程中,哪种量没有变?(2)速度和所对应的时间成什么比例关系?(3)不计算,观察图象,如果每小时行40km,那么从甲地到乙地大约需要多少小时?20.食堂有一批大米.如表记录的是每天的用量和所用的天数.每天的用量/kg40255所用的天数8102080(1)把上表填写完整.(2)每天的用量和所用的天数成反比例吗?为什么?(3)如果每天用8kg,那么可以用多少天?(4)如果计划用100天,那么每天应该用多少千克?五.操作题(共2小题)21.甲、乙两台机器的工作时间和耗电量如表.时间/时123456甲机器耗电量/千瓦时306090120150180乙机器耗电量/千瓦时3065100130160200根据表中的数据,在下图中描出每一组工作时间与耗电量所对应的点,再把它们按顺序连接起来.(1)根据画出的图象,机器的工作时间和耗电量成正比例.(2)根据画出的图象,工作2.5小时,甲机器的耗电量大约是千瓦时,乙机器的耗电量大约是千瓦时.22.文具店有一种电动橡皮擦,销售的数量与总价的关系如下表:数量/个246总价/元163248(1)把橡皮擦的数量与总价所对应的点在图中描出来,并连线;(2)利用图象估计7个这样的橡皮擦总价是元.六.解答题(共2小题)23.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?24.一种岩石的体积与质量的关系如下表.体积/cm326101213质量/g618303639(1)在如图中描出各点,并顺次连起来.(2)这种岩石的体积与质量成比例吗?成什么比例?(3)如果一块岩石的体积是8cm2,那么这块岩石的质量是多少克?参考答案与试题解析一.选择题(共6小题)1.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.【解答】解:A,因为2a=5b,所以=(一定),所以a、b成正比例;B,因为a×7=,所以=14(一定),所以a、b成正比例;C,因为a×=1,所以ab=3(一定),所以a、b成反比例;故选:C.【点评】此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.2.【分析】判断两种相关联的量之间是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:A.圆的面积=π×圆的半径2,不符合正比例的意义,所以圆的半径和圆的面积不成正比例关系;B.因为写字总时间=写字总数×写一个字所用时间,所以写字总时间÷写一个字所用时间=写字总数(一定)符合正比例的意义,写字总数一定,写一个字所用时间和写字总时间成正比例关系;C.因为每分钟写字个数×写字总时间=写字总数(一定),符合反比例的意义,不符合正比例的意义,所以写字总数一定,每分钟写字个数和写字总时间不成正比例关系;D.两个互相咬合的齿轮,齿轮的齿数是一定的与转数没关系,不符合正比例的意义,所以两个互相咬合的齿轮,齿轮的齿数和转数不成正比例关系,故选:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用比例 解决问题
教材分析:
本部分内容是在学习了比例的意义和基本性质基础上继续学习正反本来的意义和性质。
本节设置了 3 个例题,通过实验,得出正反比例的意义。
由于两个实验具有相通性,因此可以较好地帮助学习理解正反比例之间的差别。
教学目标:
理解正、反比例的意义,认识正比例与反比例的区别,能够正确判断成正、反比例的量
会用比例知识解答比较容易的应用题
培养学生仔细审题,认真思考,探索规律的良好习惯。
教学重点: 理解正反比例的意义和特征。
教学难点:能够正确判断两种量成什么比例
教学准备:投影设备,小黑板
一、旧知铺垫
1、下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
2、根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
3
2102140 (2)汽车从甲地到乙地,每小时行70千米,4小时到达。
如果每小时行56千米,要5小时到达。
70×4=56×5
二、探索新知
1、教学例5
(1)出示课文情境图,描述例题内容。
板书
8吨水 10吨水
水费12.8元 水费?元
(2)你想用什么方法解决问题?
①学生独立思考,寻找解决问题的方式。
②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。
① 汇报解决问题的结果。
引导提问:
A .题中哪两种量是变化的量?说说变化情况。
B .题中哪一种量一定?哪两种量成什么比例?
C .用关系式表示应该怎样写?
吨数
水费吨数水费= (3)与算术解比较。
①检验答案是否一样。
②比较算理。
算述解答时,关键看什么不变?
(4)练习。
王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水? 过程要求:
① 用比例来解决。
② 学生独立尝试列式解答。
③ 汇报思维过程与结果。
想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。
也就是说,水费和用水吨数的比值相等。
吨数
水费吨数水费= 2、 教学例6。
(1) 出示课文情境图,了解题目条件和问题。
(2) 说一说题中哪一种量一定,哪两种量成什么比例。
(3) 用等式表示两种量的关系。
每包本数×包数=每包本数×包数
(4) 设末知数为X ,并求解。
(5) 如果要捆15包,每包多少本?
3、 完成课文“做一做”。
4、 课堂小结。
三、巩固练习
完成练习九第3~5题。