运筹学第二章线性规划

合集下载

管理运筹学第二章 线性规划的图解法

管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)

-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0

第二章线性规划

第二章线性规划



线性规划要研究的两类问题中都包含有约束条件和目 标函数。用数学的方式描述,规划的目的就是在给定 的限制条件(或称约束条件)下,求目标函数的极值 问题(包括极小值和极大值)。
2
线性规划的数学模型
3
解: 设产品 的产量为:1 , 产品 的产量为:x2 x
4
5
6
7

配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
15
2.2.3 线性规划求解的可能结局
1、有唯一的最优解
2、有无穷多个最优解 (将目标函数改为 z=4x1+3x2 )
x2
max z 4 x1 3 x2 x1 2 x2 5 2 x x 4 1 2 s.t. 4 x1 3 x2 9 x1 , x2 0
3x1 2 x2 4 x3 3
3x1 2 x2 4 x3 xs 3
剩余变量
变量xs实际上是原式左端减去右端的差,即 :
xs 3x1 2 x2 4 x3 3
当约束条件是“ ”型的不等式时,只要将该约 束条件左端减去一个非负的剩余变量即可化为等式。 无论是松弛变量还是剩余变量在决策中都不产生实际价 值,因此它们在目标函数中的系数都应该为零。有时也将松 29 弛变量和剩余变量统称为松弛变量。
2x1+x2=4 D C
x1+2x2=5 B 4x1+3x2=9 O A x1
16
3、无界解
指线性规划问题有可行解,但是 在可行域,目标函数值是无界的, 因而达不到有限最优值。因此线 性规划问题不存在最优解。

运筹学第二章线性规划

运筹学第二章线性规划

第二章线性规划教学目的和要求:目的:使学生具备线性规划的基本知识以及应用线性规划的基本能力。

要求:理解线性规划概念,标准型,解的概念,基本定理;掌握单纯形法,人工变量法,了解图解法。

重点:线性规划标准型,解的概念,单纯形法,人工变量法。

难点:线性规划基本定理,单纯形法。

教学方法:讲授法,习题法。

学时分配:12学时 作业安排:见教材P 38.线性规划是运筹学的一个重要分支。

1939年苏联科学家康托罗维奇提出了生产组织和计划中的线性规划模型。

1947年美国学者丹捷格(George B.Dantzig)提出了求解一般线性规划问题的方法。

此后,线性规划理论日趋成熟,应用也日益广泛和深入。

第一节线性规划问题一、问题的提出在企业的生产经营活动中经常会面临这样两类问题:一是如何合理地利用有限的人力、物力、财力等资源,取得最佳的经济效果;二是在取得一定的经济效果的前提下,如何合理安排使用人力、物力、财力等资源,使花费的成本最低。

例1.生产计划问题 某工厂利用甲、乙、丙、丁四种设备生产A 、B 、C 三种产品,具体数据如下表所示。

A 、B 、C 单位产品的利润分别是4.5、5、7(百元)。

问如何安排生产计划,才能使所获总利润最大?解:设产品A 、B 、C 产量分别为X 1,X 2,X 3件,Z 表示利润,要求总利润最大,即求Z=4.5X 1+5X 2+7X 3的最大值,故记作极大化Z=4.5X 1+5X 2+7X 3,另外对甲、乙、丙、丁设备需满足2X 1+2X 2+4X 3≦800,X 1+2X 2+3X 3≦650,4X 1+2X 2+3X 3≦850,2X 1+4X 2+2X 3≦700;同时产量应非负,故X j ≧0 (j=1,2,3);以上问题可用数学模型表示为: 极大化Z=4.5X 1+5X 2+7X 3 满足 2X 1+2X 2+4X 3≦800 X 1+2X 2+3X 3≦6504X 1+2X 2+3X 3≦850 2X 1+4X 2+2X 3≦700X j ≧0 (j=1,2,3)例2.运输问题 设某种物资有m 个产地;A 1,A 2, …,A m ,它们的产量分别为a 1,a 2, …,a m ,有n 个销地B 1,B 2, …,B n 需要这种物资,它们的销量分别为b 1,b 2, …,b n 。

管理运筹学第二章线性规划的图解法

管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的

运筹学第二章第6节矩阵法求解线性规划问题

运筹学第二章第6节矩阵法求解线性规划问题

(3)初始单纯性表与当前单纯性表关系
单纯性法的每一步就是:令非基变量XN(XN1和 XS2)=0,则当前基本可行解X=(XB,0) =(B-1b,0)。当前的目标函数值为 Z=CBB-1b,通过刚才用矩阵法的展示,我们发现: 1)B:初始单纯性表中基。 2)BN:初始单纯性表非基变量在A中对应的矩阵。 3)B-1:初始单纯性表中单位矩阵所对应的列在当 前矩阵中所构成的矩阵。 4)CB:当前基变量的价值向量。 5)CN:当前非基变量的价值向量。
2 x1 [1] 4 0 2
3 x2 0 0 1 0
0 x3 1 0 0 0
0 x4 0 1 0 0
0 x5 0 1/4 -3/4 θ 4 -
-1/2 2
在迭代到单纯性表2时,当前的基变量为x3,x4,x2,其中 x3和x4是松弛变量。这时,松弛变量中,x5为基变量,x3和 x4为非基变量,因此:基变量XB由两部分组成,一部分是 XB1=x2,一部分是XS1=x3和x4;非基变量XN由两部分组成, 一部分是XN1=x1,另外一部分是XS2=x5。
BX X
B
B
b BN X
1
N1
S2 X
N1
S2
;
1
B b B B N1 X
1
1
1
B S 2 X s2 ;
1
目标函数: z C B B b (C N1 C B B B N1 ) X (C S 2 C B B I ) X
1 S N1
令非基变量=0,由上式得到:
x1 2 x 2 x 3 4 x1 4 x2 x
j

8
x4 0
16 x 5 12
j 1, 2 , , 5

第二章线性规划及单纯形法总结

第二章线性规划及单纯形法总结

第一章
工厂需要的原棉存放在三个仓库中,现将原棉运往工 厂以满足工厂生产的需求。已知原棉运到各个工厂的单位 运费如表所示。问使总运费最小的运输方案?
仓库\工厂
1 2 3 需求
1
2 2 3 40
2
1 2 4 15
3
3 4 2 35
库存
50 30 10
2.线性规划数学模型
解:设xij为i 仓库运到 j工厂的原棉数量(i =1,2,3
1.线性规划介绍
第一章
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
第一章
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
第一章
j =1,2,3)
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33 x11 +x12+x13 x21+x22+x23 x31+x32+x33 50 30 10 40
st.
x11 +x21+x31 =
x12 +x22+x32 =
x13 +x23+x33 = xij 0
15
35
2.线性规划数学模型
第一章
练习4 连续投资10万元 A:从第1年到第4年每年初投资,次年末回收本利1.15; B:第3年初投资,到第5年末回收本利1.25,最大投资4万元; C:第2年初投资,到第5年末回收本利1.40,最大投资3万元; D:每年初投资,每年末回收本利1.11。 求:使5年末总资本最大的投资方案。 分析: A 1 x1A 2 x2A x2C x1D x2D x3D x4D x5D 3 x3A 4 x4A 5

运筹学第2章:线性规划的对偶理论

运筹学第2章:线性规划的对偶理论


标函数求极小时取“≥”号
注:对称形式与线性规划标准型是两种不同的形 式,对称形式中约束条件的符号由目标函数决定
从以下方面比较(LP1)与(LP2):
原问题
对偶问题 约束系数矩阵的转 臵 目标函数中的价格 系数向量 约束条件的右端项 向量 Min w=Y’b A’Y≥C’ Y≥0
A
b C 目标函数 约束条件 决策变量
非基变量 基变量
XB
0 b Xs C j - zj B
XN
N
Xs
I
0
初始 单纯形表
非基变量
CB
CN
基变量
最终
单纯形表
CB
XB
XB B-1b Cj - zj
I 0
Xs B-1 N B-1 CN-CBB-1N -CBB-1
XN
若B-1b为最优解,则
CB CB ( B 1B) 0 C N CB B N 0 CB B 1 0
令 y 2 y 2 , y3 y3 y3 ,则
min 2 y1 y2 4 y3
2 y1 3 y2 y3 1 3 y y y 4 1 2 3 s.t. 5 y1 6 y2 y3 3 y1 0, y2 0, y3无约束
n j 1 m j j
C X Y b, 即 c j x j y i bi
j 1 i 1
__
__
n
m
c x ( a
j 1 m i 1 n i i i 1 i 1 j 1
n
m
ij
yi ) x j aij x j yi ( a ji yi c j )
例1

运筹学第二章线性规划的对偶理论

运筹学第二章线性规划的对偶理论

(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3

y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条

《管理运筹学》02-1线性规划的数学模型及相关概念

《管理运筹学》02-1线性规划的数学模型及相关概念

03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。

运筹学第2章-线性规划的对偶理论

运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0

运筹学—线性规划第2章

运筹学—线性规划第2章

1 1
1 0
0 1
0 0
6 2 0 0 1
1 0 0

B 0
1
0
的列是线性无关的,即
1
0
0 0 1
p3 0, p4 1 0 0

0
p5 0 是线性无关,因此 1
x3
x4
x5
是, 0
p2
1 2
不在这个基中,所以x1,
x2为非基变量。
定义10:使目标函数达到最优值的基本可行解,称为基
本最优值。
• 例4:(SLP)如例3,试找一个基本可行解。
1 1 0
解:B1
1
0
0
是其一个基矩阵.p1,p3, p5是一个基。
6 0 1
则 x1 , x3, x5为基变量。X2, x4为非基变量。令 x2=x4=0. 得x1=2, x3=3, x5=9. 故 x1=(2,0,3,0,9)是原问题的一个基本 可行解,B1为基可行基。
•当 由0连续变动到1时,点z由y沿此直线连续的变动到x,且 因z-y平行x-y,则有:z y (x y) 于是有:
z x (1 ) y
•这说明当 0 1 时,x (1 ) y表示以x.y为端点的直线段
上的所有点,因而它代表以 x.y为端点的直线段。 一般地,如果x.y是n维欧氏空间Rn中的两点,则有如下定义:
• 定义14:设R是Rn中的一个点集,(即R Rn),对于任意 两点x R, y R 以及满足0 1 的实数 ,恒有
x (1 )y R
则称R为凸集。
• 根据以上定义12及13可以看到,凸集的几何意义是:连接凸 集中任意两点的直线段仍在此集合内。
其可行域如上图,可行解(3,1,0,0)T。用x1, x2 表示则为图上点(3,1)。由图可见这不是可行域的 顶点。而我们将证明基本可行解是可行域的顶点。而 在例4中p1,p3线性无关,所以B=(p1,p3)是一个基矩阵, 对应的基本解为(4,0,0,0)T。用坐标x1, x2表示则 为平面上的点(4,0),是上图可行域的顶点。

运筹学第四版第二章线性规划及单纯形法

运筹学第四版第二章线性规划及单纯形法

方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目

设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。

运筹学第二章——第八节—线性规划的对偶理论

运筹学第二章——第八节—线性规划的对偶理论

四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。

运筹学_线性规划1

运筹学_线性规划1
min Z 2x1 3x2 x3
x1 x 2 x3 10 3 x 2 x x 8 1 2 3 s.t. x1 3 x 2 x3 1 x1 , x 2 0, x3 符号不受限制
Байду номын сангаас
标 准 化
maxZ 2x1 3x2 ( x3 x4 ) 0 x5 0 x6
I 设备A(h) 设备B(h) 调试工序(h) 利润(千元) 0 6 1 2
II 5 2 1 1
课堂练习
一家家电公司准备将一种新型电视机在三家商场进行销 售,每一个商场的批发价和推销费及产品的利润如表所示。 由于该电视机的性能良好,各商场都纷纷争购,但公司每 月的生产能力有限,只能生产1000台,故公司规定:商场 1至少经销100台,至多200台,商场2至少经销300台,商 场3至少经销200台。公司计划在一个月内的广告预算费为 8000元,推销人员最高可用工时数为1500。同时,公司只 根据经销数进行生产,试问公司下个月的市场对策?
④ 右端非负。
标准型的紧缩形式:
max Z c j x j
j 1 n
标 准 型
n aij x j bi s.t. j 1 x 0 j
i 1,2,, m j 1,2,, n
标准型的矩阵形式:
max Z CX
AX b s.t. X 0
例2-3 某饲料公司生产一种鸡饲料,每份饲料
问 题 的 导 出
为100公斤,饲料中的营养成份要求、配料及 其成本数据如下:
配料 营养成分 单位 蛋白质 配料 钙 含量 粗纤维 单位配料成本 大豆粉 玉米粉 石灰石 0.50 0.002 0.08 2.50 0.09 0.001 0.02 0.926 0 0.38 0 0.164 含量要求 ≥22% ≥0.8%且≤1.2% ≤5%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/3/4
广东工业大学管理学院
11
2.2 线性规划的图解法
➢可行解:我们将满足线性规划问题的所有约束 条件的变量的一组取值称为线性规划问题的一个 可行解。 ➢可行域:我们将可行解的集合称为可行域。 ➢最优解:使得目标函数取最优值的可行解。 ➢最优值:将最优解代入目标函数而得到的值。
2020/3/4
2020/3/4
广东工业大学管理学院
4
线性规划模型的特征
决策变量 目标函数 约束条件 目标函数必须是决策变量的线性函数 约束条件必须是含决策变量的线性等式或不等式
2020/3/4
广东工业大学管理学院
5
例2.2 设有一批规格为10米长的圆钢筋,将它截成分别 为3米,4米长的预制构件的短钢筋各100根,问怎样截 取最省料。
x4

x5

x6

20
x1, x2 , x3 , x4 , x5 , x6 , y 0
2020/3/4
广东工业大学管理学院
9
2.12 某糖果厂用原料A、B、C加工成三种不同牌号的糖果甲、 乙、丙。已知各种牌号糖果中A、B、C三种原料的含量要求、 各种原料的单位成本、各种原料每月的限制用量、三种牌号 糖果的单位加工费及售价如表所示。问该厂每月生产这三种 牌号糖果各多少千克,才能使该厂获利最大?
第二章 线性规划
1. 线性规划问题的提出
线性规划是运筹学中研究较早、方法较成熟的 一个重要分支。在经济、管理、交通运输、军 事等领域存在着广泛的应用。
线性规划研究的问题大体上可归为两类:一是: 给出一定量的人力、物力、财力等资源,如何 统筹规划这些有限资源完成最大任务;二是: 对于给定的任务,如何运筹规划,合理安排, 以最少资源来完成它。
所需人数 60 70 60 50 20 30
设服务员分别在各时间区段一开始时上班,并连续工作八 小时,问该酒店至少配备多少名服务员。列出此问题的线 性规划模型。
2020/3/4
广东工业大学管理学院
7
min w x1 x2 x3 x4 x5 x6
x1 x6 ≥ 60

x2
2x1+x2=4 l* D
C
x1+2x2=5
此时最优值为:
z*

3x1

2x2

6
1 2
O
B 4x1+3x2=9
A
x1
2020/3/4
广东工业大学管理学院
15
2.2.3 线性规划求解的可能结局
1、有唯一的最优解
2、有无穷多个最优解 (目标函数改为 z=4x1+3x2 )
x2
max z 4x1 3x2
等价为: 2x1 3x2 x3 xs 2
广东工业大学管理学院
12
图解法步骤: ➢建立平面直角坐标系 ➢图示约束条件,求可行域 ➢图示目标函数 ➢求最优解
2020/3/4
广东工业大学管理学院
13
例: max z=x1+3x2
x1+ x2≤6 st. -x1+2x2≤8
x1 ≥0, x2≥0
x2 6
4
最优解 X*= (4/3, 14/3) z* = 46/3
am1 am2 amn
2020/3/4
广东工业大学管理学院
21
2.3.2 线性规划的标准形式
max z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1 s.t.a21x1 a22x2 a2n xn b2
-x1+ 2x2=8
可行域
-8 0
目标函数等值线
2020/3/4
广东工业大学管理学院
6 x1
x1+ x2=6
14
max z 3x1 2x2
x1 2x2 5
s.
t.42
x1 x1

x2 4 3x2 9
x1, x2 0
x1 3 2 , x2 1
劳动力安排:某单位由于工作需要,在不同的时间段需要 不同数量的工作人员,在一定的安排规则:比如每个工作 人员在连续做5个工作日后接连休息两天下,如何安排工 作人员才能用最少的工作人员来满足工作的需求?
运输问题:一家公司有若干个生产单位和销售单位,产品 由各生产单位运往各销售单位的成本有差异,如何根据各 生产单位的产量和各销售单位的销售需要量制定一个最佳 的运输方案,使产品运往各销售单位的总运输费用最低?
解:因为,10米长的钢筋截为3米或4米长,共有三种 截法:Ⅰ:3 3 3 1 米;Ⅱ:3 3 4 0 米;Ⅲ:4 4 0 2 米
假设按截法Ⅰ,Ⅱ,Ⅲ各截取10米长的钢筋分别为x1, x2, x3根。则可以获得3米长的短钢筋的根数是3x1+x2,4 米长短钢筋的根数是 x2+2x3
min w x1 x2 x3
设一共植了y棵树,男生中有x1人挖坑, x2人栽树, x3人浇水; 女生中有x4人挖坑, x5人栽树, x6人浇水.
max z y
20x1 10x4 y 0 30x2 20x5 y 0
s.t.
25x3

x1

x2
15x6 x3

y 30
0

2020/3/4
广东工业大学管理学院
2
例2.1 穗羊公司的例子
I
II
每周可使用量
A(千克)
1
2
5
B(吨)
2
1
4
C(百工时)
4
3
9
单位产品利润(万元)
3
2
问该公司每周应生产产品I与产品II各多少单位,才能使每周 的获利达到最大?
假设产品I、II每周的产量分别是x1和x2,得到如下数学模型:
目标函数 max z=3x1+2x2
例如线性规划问题:
x2
max z 2x1 x2
x1 2x2 4
2 2
x1 x1

3x2 2 x2 2
x1, x2 0
-x 1+2x 2=4
2x1 -3x2 =2
2020/3/4
O 2x1+x2=2
x1
广东工业大学管理学院
18
两个重要的结论:
➢线性规划问题可行域若不是空集,则它是 一个凸集;



A B C 加工费
x11 60%以上 x12 20%以下 x13 0.50
x21 15%以上 x22 60%以下 x23 0.40
x31 x32 50%以下 x33 0.30
售价
3.40
2.85
2.25
原料成本 2.00 1.50 1.00
限制用量 2000 2500 1200
设该厂每月生产甲品牌糖果(x11 x12 x13)千克,其中用原料A x11千克,用原料B x12千克,用原料C x13千克; 生产乙品牌糖果(x21 x22 x23)千克,其中用原料A x21千克,用原料B x22千克,用原料C x23千克; 生产丙品牌糖果(x31 x32 x33)千克,其中用原料A x31千克,用原料B x32千克,用原料C x33千克。
s.t.
3xx2 12xx23
100 100
x1 , x2 , x3 0
2020/3/4
广东工业大学管理学院
6
2.10. 一家酒店24小时都需要安排服务员上班,在各时间段 中所需要的服务员数量见表
班次
1 x1
2 x2 3 x3 4 x4 5 x5 6 x6
时间 6:00-10:00 10:00-14:00 14:00-18:00 18:00-22:00 22:00-2:00 2:00-6:00
1. 目标函数是求最小值的情形 例如: min z 2x1 3x2 x3
取原目标函数的相反数 为新的目标函数
等价于: max w 2x1 3x2 x3
2020/3/4
广东工业大学管理学院
23
2. 约束条件为不等式
(a)对于约束条件是“≤”的不等式
例如: 2x1 3x2 x3 2 约束条件左端加上一个非 负的变量xs(松弛变量)
st. ……
am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥0
cj—价值系数 bi—资源常数 aij—工艺系数
技术系数
简化形式
n
max(min) z c j x j
n
j 1
s.t.
aijxj (, )bi (i 1, , m) j1

x
2


b


b2


pj


a
2j


x
m

b
m

a
mj

max(min) z CX
s.t.
AX (, )b X 0
a11 a12 a1n
A


a21
a22

a
2n


约束条件
x1+2x2 ≤5 s.t. 2x1+ x2 ≤4
4x1+3x2 ≤9
x1 ,x2 ≥0
2020/3/4
广东工业大学管理学院
3
例1中的问题常称为生产计划问题或产品组合(product mix) 问题。一般的生产计划问题可以表述为:设用m种资源,生 产n种不同的产品。已知第 i种资源在一给定的计划期最多可 以使用bi个单位,每生产一个单位的产品 j 需要第 i 种资源 aij 个单位,并且产品 j 的单位利润为Cj 元。问在该计划期应如 何组织生产才能获得最大利润?
相关文档
最新文档