(完整word版)2019年中考数学专题复习第二十三讲与圆有关的位置关系(含详细参考答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学专题复习

第二十三讲与圆有关的位置关系

【基础知识回顾】

一、点与圆的位置关系:

1、点与圆的位置关系有种,若圆的半径为r点P到圆心的距离为d

则:点P在圆内<=> 点P在圆上<=>

点P在圆外<=>

2、过三点的圆:

⑴过同一直线上三点作圆,过三点,有且只有一个圆

⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆的圆心叫做三角形的这个三角形叫做这个圆的。

⑶三角形外心的形成:三角形的交点,

外心的性质:到相等

【名师提醒:锐角三角形外心在三角形直角三角形的外心是钝角三角形的外心在三角形】

二、直线与圆的位置关系:

1、直线与圆的位置关系有种:当直线和圆有两个公共点时,叫做直线和圆这时直线叫圆的线,当直线和圆有唯一公共点时叫做直线和圆这时直线叫圆的线,直线和圆没有公共点时,叫做直线和圆这时直线叫圆的线。

2、设⊙O的半径为r,圆心O到直线l的距离为d,则:

直线l与⊙O相交<=>d r,直线l与⊙O相切<=>d r

直线l与⊙O相离<=>d r

3、切线的性质和判定:

⑴性质定理:圆的切线垂直于经过切点的

【名师提醒:根据这一定理,在圆中遇到切线时,常常连接圆心和切点,即可得垂直关系】

⑵判定定理:经过半径的且这条半径的直线是圆的切线

【名师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。

当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切】

4、切线长定理:

⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的长叫做这点到圆的切线长。

⑵切线长定理:从圆外一点引圆的两条切线,它们的相等,并且圆心和这一点的连线平分的夹角

5、三角形的内切圆:

⑴与三角形各边都的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的

⑵三角形内心的形成:是三角形的交点

内心的性质:到三角形各的距离相等,内心与每一个顶点的连接线平分

【名师提醒:三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r= 】一、圆和圆的位置关系:

圆和圆的位置关系有种,若⊙O1半径为R,⊙O 2半径为r,圆心距为d,则⊙O 1 与⊙O 2 外离<=> ⊙O 1 与⊙O 2 外切<=>

⊙O 1 与⊙O 2相交<=> ⊙O 1 与⊙O 2内切<=>

⊙O 1 与⊙O 2内含<=>

【名师提醒:两圆相离(无公共点)包含和两种情况,两圆相切(有唯一公共点)包含和两种情况,注意题目中两种情况的考虑,同心圆是两圆此时d= 】

二、反证法:

假设命题的结论,由此经过推理得出由矛盾判定所作的假设从而得到原命题成立,这种证明命题的方法叫反证法

【名师提醒:反证法证题的关键是提出即假设所证结论的反面成立,通过推理论证得出的矛盾可以与相矛盾,也可以与相矛盾,从而肯定原命题成立】

【典型例题解析】

考点一:切线的性质

例1 (2018•安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.

【思路分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.

【解答】解:连接OA,

∵四边形ABOC是菱形,

∴BA=BO,

∵AB与⊙O相切于点D,

∴OD⊥AB,

∵点D是AB的中点,

∴直线OD是线段AB的垂直平分线,

∴OA=OB,

∴△AOB是等边三角形,

∵AB与⊙O相切于点D,

∴OD⊥AB,

∴∠AOD=1

2

∠AOB=30°,

同理,∠AOE=30°,

∴∠DOE=∠AOD+∠AOE=60°,

故答案为:60.

【点评】本题考查的是切线的性质、等边三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键

考点二:切线的判定

例2(2018•怀化)已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.

(1)求扇形OBC的面积(结果保留);

(2)求证:CD是⊙O的切线.

【思路分析】(1)由扇形的面积公式即可求出答案.

(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.

【解答】解:(1)∵AB=4,

∴OB=2

∵∠COB=60°,

6042

3603

OBC

S

ππ

==

扇形

(2)∵AC平分∠FAB,∴∠FAC=∠CAO,

∵AO=CO,

∴∠ACO=∠CAO

∴∠FAC=∠ACO

∴AD∥OC,

∵CD⊥AF,

∴CD⊥OC

∵C在圆上,

∴CD是⊙O的切线

【点评】本题考查圆的综合问题,解题的关键是熟练运用扇形面积公式以及切线的判定方法,本题属于中等题型.

考点三:直线与圆、圆与圆的位置关系

例3(2018•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()

A.相交B.相切

C.相离D.无法确定

【思路分析】根据圆心到直线的距离5等于圆的半径5,则直线和圆相切.【解答】解:∵圆心到直线的距离5cm=5cm,

∴直线和圆相切.

故选:B.

【点评】此题考查直线与圆的关系,能够熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.

【备考真题过关】

一、选择题

1.(2018•眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()

A.27°B.32°

C.36°D.54°

相关文档
最新文档