生物脱氮基本原理及影响因素
生物脱氮基本原理及影响因素
生物脱氮基本原理及影响因素生物脱氮是指通过生物微生物的作用,将有机氮转化为无机氮,进而将氮从生物体系中排出的过程。
生物脱氮涉及到多种微生物,包括硝化细菌、反硝化细菌和厌氧氨氧化细菌等。
其基本原理是硝化细菌将氨氮转化为硝态氮,而反硝化细菌将硝态氮还原为氮气。
生物脱氮的基本步骤如下:1.硝化作用:硝化细菌利用氨氧化酶将氨氮氧化为亚硝酸盐和硝酸盐。
亚硝酸盐进一步氧化为硝酸盐,其中亚硝化细菌主要起到这一步骤的作用。
2.反硝化作用:反硝化细菌利用硝还酶将硝酸盐还原为氮气,并同时释放出能量。
3.厌氧氨氧化作用:厌氧氨氧化细菌将氨氮和亚硝酸盐一同氧化为硝酸盐,并产生亚硝酸盐。
生物脱氮的影响因素包括pH值、温度、氧气含量、基质浓度和微生物种类等。
具体包括以下几点:1.pH值:酸碱度会影响硝化细菌和反硝化细菌的生长和代谢。
通常,硝化细菌对中性或稍微酸性的环境更适宜,而反硝化细菌对中性或弱碱性的环境更适宜。
2.温度:温度是微生物生长和代谢的重要因素。
较高的温度有助于硝化细菌和反硝化细菌的活动,但过高的温度会导致微生物失活或细胞膜破坏。
3.氧气含量:硝化细菌需要足够的氧气进行氮转化过程,但反硝化细菌则需要较低的氧气含量或完全无氧环境。
因此,氧气含量会影响生物脱氮的效率和速率。
4.基质浓度:基质浓度是指水体中氨氮和亚硝酸盐的含量。
较高的基质浓度有利于生物脱氮的进行,但过高的浓度可能会抑制微生物的生长。
5.微生物种类:不同类型的硝化细菌和反硝化细菌具有不同的代谢特性和耐受性。
因此,微生物种类的组成和相对丰度会影响生物脱氮的效果和稳定性。
总体而言,生物脱氮是一种高效且环境友好的氮去除方法。
深入理解生物脱氮的基本原理和影响因素,有助于优化生物脱氮过程的设计和操作,提高氮去除的效率。
生物脱氮的基本原理
生物脱氮的基本原理生物脱氮是指通过生物活动将氮化合物转化为氮气气体释放到大气中的过程。
生物脱氮的基本原理可以分为三个步骤:氨氧化、硝化和反硝化。
首先是氨氧化。
氨氧化是指将氨氮(NH3)转化为亚硝酸盐(NO2-)的过程。
在自然界中,氨氧化主要由氨氧化细菌完成。
这些细菌生活在土壤、水体和植物根际等环境中,并且广泛存在于各个层次的生态系统中。
氨氧化细菌利用氨作为其能源和氮源,并通过氨氧化酶将氨氧化为亚硝酸盐。
氨氧化酶将氨中的氨基氧化为亚硝酸盐,同时释放出一定量的能量。
这一过程是细菌维持生命活动的重要途径之一。
接下来是硝化。
硝化是指将亚硝酸盐转化为硝酸盐(NO3-)的过程。
硝化一般需要两个步骤:亚硝酸盐氧化为亚硝氧化酸盐(NO2-)和亚硝氧化酸盐氧化为硝酸盐。
这两步都由硝化细菌负责完成。
硝化细菌广泛分布在土壤、水体和植物根际等环境中。
亚硝氧化酸盐氧化为硝酸盐的过程通过另一种酶——亚硝氧化还原酶完成。
最后是反硝化。
反硝化是指将硝酸盐还原为氮气(N2)的过程。
反硝化一般需要两个步骤:首先将硝酸盐还原为亚硝酸盐,再将亚硝酸盐进一步还原为氮气。
这一过程由反硝化细菌负责完成。
反硝化细菌主要分布在水体、湿地和土壤等缺氧环境中。
反硝化细菌能够利用硝酸盐作为电子受体,将有机底物氧化为无机负氧化态物质,同时释放出氮气。
总结起来,生物脱氮的基本原理是通过氨氧化细菌将氨氮转化为亚硝酸盐,然后通过硝化细菌将亚硝酸盐转化为硝酸盐,最后通过反硝化细菌将硝酸盐还原为氮气释放到大气中。
这一过程在自然界中广泛存在,对维持氮循环的平衡和生态系统的稳定发挥着重要的作用。
同时,生物脱氮也对农业产生着重要的影响,可以减少农业产生的氮肥残留,降低对环境的污染。
生物脱氮的原理
生物脱氮的原理生物脱氮是指通过生物体内的微生物或酶的作用,将有机氮化合物转化为氮气或氨气的过程。
在自然界中,生物脱氮是氮循环中的一个重要环节,对于维持生态系统的氮平衡具有重要意义。
生物脱氮的原理可以通过以下几个方面来解释:首先,生物脱氮的过程通常发生在缺氧或微氧的环境中。
在这种环境下,一些厌氧细菌或古细菌会利用有机氮化合物作为电子受体,从而进行还原反应,将有机氮化合物还原为氮气或氨气。
这些细菌或古细菌通常存在于土壤、水体和沉积物中。
其次,生物脱氮的过程需要特定的酶的参与。
在生物体内,一些特定的酶可以催化有机氮化合物的分解反应,将其转化为氮气或氨气。
这些酶通常具有特定的底物特异性,可以选择性地催化特定的有机氮化合物。
此外,生物脱氮的过程还受到环境因素的影响。
例如,温度、pH值、氧气浓度等环境因素都会对生物脱氮的速率和效率产生影响。
在不同的环境条件下,生物脱氮的速率和途径可能会有所不同。
总的来说,生物脱氮是一种重要的氮循环过程,通过微生物或酶的作用,将有机氮化合物转化为氮气或氨气,从而促进氮的循环和再利用。
了解生物脱氮的原理,有助于我们更好地理解氮循环的机制,为生态系统的氮平衡提供理论基础。
通过研究生物脱氮的原理,可以为环境保护和资源利用提供科学依据,促进土壤肥力的提高和水体的净化,对于生态环境的保护和改善具有重要意义。
因此,深入探究生物脱氮的原理,对于推动可持续发展具有重要的意义。
在实际应用中,可以通过调控环境因素、利用适当的微生物或酶的技术手段,促进生物脱氮的过程,从而实现有机氮化合物的高效转化和氮资源的再利用。
这对于农业生产、环境保护和资源利用具有重要的意义,值得进一步深入研究和应用。
生物脱氮原理及6大参数
生物脱氮原理及6大参数高氨氮废水是我们经常会遇到的一种废水,想要将污水中的氨氮去除,除了要了解各种脱氮原理,还要从经济有效的角度来考虑选用哪种工艺,而生物脱氮技术恰恰符合以上条件,成为污水脱氮中最常见的工艺之一。
今天我们就来聊一聊生物脱氮原理和主要控制参数。
污水中的氮主要以氨氮和有机氮的形式存在,通常没有或只有少量亚硝酸盐和硝酸盐形式的氮。
只有不到20%——40%的氮在传统的二级处理中被去除。
污水生物处理脱氮主要是靠一些专性细菌实现氨形式的转化,经过氨化、硝化、反硝化过程,含氮有机化合物最终转化为无害的氮气,从污水中去除,其过程如图所示:1、工艺原理及过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物--亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个反应过程都释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。
反硝化过程也分为两步进行,第一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。
同时,反硝化菌利用含碳有机物和部分分硝酸盐转化为氨氮用于细胞合成,该碳源既可以是污水中的有机碳或细胞体内碳源,也可以外部投加。
2、生物脱氮的工艺控制(1)消化过程(硝化菌)的影响因素1.温度:硝化反应的最适宜温度范围是30一35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。
温度低于5℃,硝化细菌的生命活动几乎完全停止:在5一35℃的范围内,硝化反应速率随温度的升高而加快;但达到30℃后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。
生物脱氮机理、影响因素及应用工艺详解
生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。
其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。
一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。
含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。
2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。
硝化过程可以分成两个阶段。
第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。
3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。
反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。
二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。
反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。
实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。
2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。
为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。
当DO值较低时,硝化反应过程将受到限制,甚至停止。
反硝化与硝化在溶解氧的需求方面是一个对立的过程。
传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。
简述生物脱氮和生物除磷的基本原理和过程
生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
生物脱氮工艺
生物脱氮工艺随着人类社会的不断发展,环境问题越来越引人关注。
其中,氮污染是一个严重的问题。
氮是生物体内必需的元素,但过量的氮却会对环境造成巨大的负担。
氮污染主要来自于农业、工业和城市污水处理等领域。
针对氮污染问题,科学家们研发了各种方法,其中生物脱氮工艺是一种环保、高效的氮污染治理方法。
一、生物脱氮的基本原理生物脱氮是利用微生物将废水中的氮转化为无害的氮气的过程。
该工艺的基本原理是:将含氮废水通过生物反应器,在一定的条件下,利用氨氧化细菌将氨氮转化为亚硝酸盐,再利用硝化细菌将亚硝酸盐转化为硝酸盐,最后通过反硝化细菌将硝酸盐还原为氮气,从而达到脱氮的目的。
二、生物脱氮工艺的优点1、环保:生物脱氮工艺不需要添加任何化学药剂,不会产生二次污染,对环境没有负面影响。
2、高效:生物脱氮工艺可以达到较高的脱氮效率,对氮污染治理效果显著。
3、经济:生物脱氮工艺不需要大量投入,运行成本低,对于农业、工业和城市污水处理等领域都具有实用性。
三、生物脱氮工艺的应用领域1、城市污水处理:城市污水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以有效地降低污水中的氮含量,达到国家排放标准。
2、农业:农业是氮污染的主要来源之一。
生物脱氮工艺可以应用于农业废水的处理,减少氮肥的使用量,达到节约能源和环保的目的。
3、工业:工业废水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以应用于工业废水的处理,降低氮污染的程度。
四、生物脱氮工艺的发展趋势目前,生物脱氮工艺已经成为氮污染治理的主要手段之一。
随着科技的不断进步和人们对环境问题的重视,生物脱氮工艺也在不断发展和完善。
未来,生物脱氮工艺将会更加智能化、高效化和精准化,为氮污染治理提供更加优秀的解决方案。
总之,生物脱氮工艺是一种环保、高效、经济的氮污染治理方法,已经在城市污水处理、农业和工业废水处理等领域得到广泛应用。
污水处理中的生物脱氮技术
污水处理中的生物脱氮技术污水处理是保护水资源和环境的重要举措之一。
而生物脱氮技术作为一种高效节能的污水处理方法,已经得到了广泛的应用和研究。
本文将重点介绍污水处理中的生物脱氮技术原理、应用案例以及未来发展趋势。
一、生物脱氮技术原理生物脱氮技术是指利用微生物将废水中的氮化合物转化为气态氮的过程。
常见的脱氮技术包括硝化-反硝化和厌氧反硝化。
其中,硝化过程是将氨氮先转化为亚硝酸盐氮,再通过细菌作用转化为硝酸盐氮。
而反硝化过程则是将硝酸盐氮还原为氮气。
厌氧反硝化技术是针对无氧环境下,通过厌氧细菌将硝酸盐氮还原为氮气。
二、生物脱氮技术的应用案例1. 活性污泥法活性污泥法是一种常见的生物脱氮技术,通过在好氧条件下,利用生物膜中的硝化细菌和反硝化细菌,将废水中的氨氮转化为氮气。
这种技术适用于中小型污水处理厂和城市污水处理厂。
2. 等温厌氧反硝化技术等温厌氧反硝化技术是近年来快速发展的生物脱氮技术之一。
该技术通过通过将反硝化与厌氧条件相结合,在相对温和的条件下提高了反硝化的效率。
这种技术适用于低温环境下的污水处理。
3. 全自动生物脱氮系统全自动生物脱氮系统是一种集成化的生物脱氮技术。
该系统通过自动控制设备,实现了对污水处理过程中关键参数的监测和调控。
这种技术具有稳定性高、运行成本低、操作简便等优点,被广泛应用于大型污水处理厂。
三、生物脱氮技术的发展趋势1. 高效节能随着能源问题的日益凸显,未来的生物脱氮技术将更加注重能源的高效利用。
例如,利用厌氧颗粒污泥技术可以在反硝化过程中产生较低的剩余物,提高能源利用效率。
2. 微生物多样性研究生物脱氮技术中的微生物扮演着重要的角色。
因此,未来的研究将更加关注微生物多样性的研究,进一步优化脱氮效果。
3. 优化污水处理工艺将生物脱氮技术与其他污水处理工艺相结合,可以进一步提高脱氮效果。
例如,与生物脱磷技术相结合,可以实现对污水中氮磷的同步去除,提高污水处理的效率。
总之,生物脱氮技术作为一种高效节能的污水处理方法,持续得到广泛研究和应用。
生物脱氮的原理和应用
一、生物脱氮基本原理:1.氨化作用:含氮有机物(动、植物和微生物残体以及它们的排泄物、代谢物所含的有机氮化物)经微生物降解放出氨的过程。
(1) 蛋白质分解:环境中绝大多数异氧微生物都具有分解蛋白质、释放出氨的能力,使蛋白质水解,生成多肽与二肽,然后由肽酶进一步水解生成氨基酸。
(2)核酸的分解:核酸的生物降解在自然界中相当普遍。
76%的菌株能产生核糖核酸酶,有86%能产生脱氧核糖核酸酶。
(3)其他含氮有机物的分解:尿酸、尿素、几丁质、卵磷脂等含氮有机物都能被相应微生物分解,释放出氨。
总之,氨化作用无论在好氧还是厌氧条件下。
中性、碱性或是酸性环境中都能进行,只是作用的微生物种类不同、作用强弱不已。
但当环境中存在一定浓度的酚或木质素-蛋白质复合物时,会阻滞氨化作用的。
2.硝化和反硝化作用:硝化反应是由一类自养好氧微生物完成的,它包括两个步骤:第一步称为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐,亚硝酸菌中有亚硝酸单胞菌属、亚硝酸螺杆菌属和硝化球菌属;第二步称为硝化过程,由硝酸菌(包括硝酸杆菌属、螺菌属和球菌属)将亚硝酸盐进一步氧化为硝酸盐。
亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。
亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,生长率较快,因此较能适应冲击负荷和不利的环境条件;当硝酸菌受到抑制时,有可能出现NO2-积累的情况。
反硝化反应是由一群异养型微生物完成的,它的主要作用是将硝酸盐或亚硝酸盐还原成气态氮或N2O,反应在无分子态氧的条件下进行。
反硝化细菌在自然界很普遍,多数是兼性的,在溶解氧浓度极低的环境中可利用硝酸盐中的氧作为电子受体,有机物则作为碳源及电子供体提供能量并被氧化稳定。
当环境中缺乏有机物时,无机物如氢、Na2S等也可作为反硝化反应的电子供体,微生物还可以消耗自身的原生质进行所谓的内源反硝化。
1简述城镇污水生物脱氮过程的基本步骤和影响因素(论文资料)
1 简述城镇污水生物脱氮过程的基本步骤和影响因素。
答:污水生物脱氮过程氮的转化主要包括氨化、硝化和反硝化作用。
(1)氨化:微生物分解有机氮化合物产生氨的过程称为氨化反应。
在氨化微生物作用下,有机氮化合物在好氧或厌氧条件下分解、转化为氨态氮。
(2)硝化反应:在亚硝化菌和硝化菌的作用下,将氨态氮转化为亚硝酸盐(NO2-—)和硝酸盐(NO3-)。
(3)反硝化反应:在缺氧条件下,NO2-和NO3-在反硝化菌的作用下被还原为氮气。
影响因素:污泥处理回流液;不同的进水方式;进水可生物降解基质;进水PH和碱度3 如何从理想沉淀池的理论分析得出斜板沉淀池产生依据?答:因为通过理想沉淀池的理论分析存在H/u=L/v,即u/v=H/L。
如果将水深为H的沉淀池分隔成几个水深为H/n的沉淀池,则当沉淀池长度为原沉淀区长度的1/n时,就可处理与原来的沉淀池相同的水量,并达到完全相同的处理效果。
这说明,减少沉淀池的深度,可以缩短沉淀时间,因而减少沉淀池的体积,也就可以提高沉淀效率,为便于排泥将隔板倾斜放置60°5.从气体传递的双膜理论,分析氧传递的主要影响因素。
答:气体传递的双膜理论的基点是认为在气液界面存在着二层膜(即气膜和液膜)这一物理现象。
这两层薄膜使气体分子从一相进入另一相时受到了阻力。
当气体分子从气相向液相传递时,若气体的溶解度低,则阻力主要来自液膜。
影响氧传递的因素主要有如下:污水水质:水中各种杂质如某些表面活性物质会在气液界面处集中,形成一层分子膜,增加了氧传递的阴力,影响了氧分子的扩散。
水温:水温对氧的转移影响较大,水温上升,水的黏度降低,液膜厚度减小,扩散系数提高,反之,扩散系数降低。
氧分压:气相中的氧分压直接影响到氧传递的速率。
气相中氧分压增大,则传递速率加快,反之,则速率降低。
总的来说,气相中氧分压、液相中氧的浓度梯度、气液间的接触面积和接触时间、水温、污水的性质、水流的紊流程度等因素都影响着氧的转移速率。
生物脱氮原理
经富营养化污染的水体,治理关键是要脱氮除磷,而脱氮最常用的是生物脱氮。
生物脱氮原理:生物脱氮是在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下的反硝化反应将硝酸盐还原成气态氮从水中去除。
生物脱氮通过氨化、硝化、反硝化三个步骤完成。
1、氨化反应:氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。
参与氨化作用的细菌称为氨化细菌。
在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。
在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨,另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。
在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。
2、硝化反应:在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。
首先,在亚硝化细菌的作用下,使氨(NH4 + )转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。
亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。
硝酸菌有硝酸杆菌属、硝酸球菌属。
影响硝化反映的因素:1、好样环境条件下,并保持一定的碱度:溶解氧在~L。
2、pH:硝化反应的pH在~3、温度:硝化反应的适宜温度在20~30℃4、尽量减少有毒有害物质的进入,且高浓度的氨氮和硝态氮对硝化作用有抑制。
以上因素之所以会对硝化作用有影响,主要是因为他们对硝化细菌的生长环境造成了影响。
3、反硝化反应:反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮(N2 )的过程。
进行这类反应的细菌主要有变形杆菌属、微球菌属、假单胞菌属、芽胞杆菌属、产碱杆菌属、黄杆菌属等兼性细菌,它们在自然界中广泛存在。
影响反硝化作用的因素:1、要有充足的碳源2、pH:反硝化反应的pH在~3、溶解氧浓度:反硝化菌是异养兼性厌氧菌,溶解氧应控制在L以下4、温度:反硝化反应的适宜温度在20~40℃生物脱氮工艺主要有传统生物脱氮工艺(三级生物脱氮工艺)、A/O 工艺、A2/O 工艺(脱氮除磷),重点介绍后两种。
生物脱氮除磷原理及影响因素
内源反硝化
微生物还可通过消耗自身的原生质进行所谓的内源反硝化 C5H7NO2+4NO3-→5CO2+NH3+2H2↑+4OH-
内源反硝化的结果是细胞物质减少,并会有NH3的生成。 废水处理中不希望此种反应占主导地位,而应提供必要
的碳源。
书山有路勤为径, 学海无涯苦作舟
BOD5/TN≥3~5,否则需另投加碳源,现多采用CH3OH,其分解产 物为CO2+H2O,不留任何难降解的中间产物,且反硝化速率高。
目前反硝化投加有机碳源一般利用原污水中的有机物。 还原1g硝态氮能产生3.57g碱度,而在硝化反应中,1gNH3-N氧化为
NO3--N要消耗7.14g碱度,在缺氧-好氧中,反硝化产生的碱度可补 偿硝化消耗碱度的一半左右。
电子受体,有机物作为碳源及电子供体而得到降解。当利用
的碳源为甲醇时:
NO3-+1.08CH3OH+0.24H2CO3→0.056C5H7CO2+0.47N2↑+1.68H2O + HCO3NO2+0.67CH3OH+0.53H2CO3→0.04C5H7CO2+0.48N2↑+1.23H2O+HCO
3
生物脱氮除磷原理及影 响因素
书山有路勤为径, 学海无涯苦作舟
2020年4月10日星期五
氮和磷的排放会加速导致水体的富营养化,其次是氨氮 的好氧特性会使水体的溶解氧降低,此外,某些含氮化合 物对人和其他生物有毒害作用。因此,国内外对氮磷的排 放标准越来越严格。本章阐述生物脱氮除磷技术。生物脱 氮除磷技术是近20年发展起来的,一般来说比化学法和物 理化学法去除氮磷经济,尤其是能有效地利用常规的二级 生物处理工艺流程进行改造达到生物脱氮除磷的目的,是 日前应用广泛和最有前途的氮磷处理方法。
全程自养生物脱氮工艺机理及影响因素分析
全程自养生物脱氮工艺机理及影响因素分析摘要:氮污染是当前水体环境中的一大问题,而生物脱氮工艺作为一种可持续进步的治理措施受到了广泛关注。
全程自养生物脱氮工艺是一种基于生物转化过程的高效脱氮技术,本文主要通过对全程自养生物脱氮工艺的机理及影响因素进行分析,以期探讨其在氮污染治理中的应用前景。
关键词:全程自养;生物脱氮;工艺机理;影响因素1. 引言氮污染是当前全球面临的重大环境问题之一。
氮素在水中的过量积累会导致水体富营养化,引发藻类爆发性繁殖,从而导致水体富营养化。
因此,氮污染的治理成为了环境保卫的重要课题。
传统氮污染治理方法中,化学法和物理法存在着高能耗、高操作成本、易产生二次污染等问题,因此亟需开发一种高效、经济、环保的氮污染治理技术。
2. 全程自养生物脱氮工艺概述全程自养生物脱氮工艺是一种利用生态系统内自然存在的微生物进行脱氮的技术。
其核心思想是通过合理设计和稳定运行的微生物群落,利用硝化反硝化过程,将氨氮转化为无害的氮气释放到大气中。
这种生物脱氮工艺具有工艺稳定性高、能耗低、运行成本低等优点。
3. 全程自养生物脱氮工艺机理全程自养生物脱氮工艺的核心机理是硝化反硝化过程。
硝化是指将氨氮氧化为亚硝酸根和硝酸根的过程,反硝化是指将硝酸根还原为氮气的过程。
在工艺中,通过合理的填料和生物群落结构的设计,创建适合的环境条件,增进硝化反硝化微生物的生长和代谢活性。
硝化微生物主要包括氨氧化细菌和亚硝化细菌,而反硝化微生物则主要为厌氧细菌。
4. 影响全程自养生物脱氮工艺的因素4.1 温度:温度是全程自养生物脱氮工艺中的重要影响因素之一。
适合的温度可以增进微生物的活性和代谢过程,提高脱氮效率。
过高或过低的温度都会对微生物的生长和代谢活性造成不利影响。
4.2 pH值:pH值影响着微生物的生存和代谢过程,对全程自养生物脱氮工艺的运行稳定性有重要影响。
一般来说,适合的pH范围为7.0-8.0,过高或过低的pH值都会抑止微生物的活性和代谢过程。
生物脱氮原理
生物脱氮原理
生物脱氮指的是利用生物体内的微生物或酶的作用,将废水中的氮污染物转化为不容易引起环境问题的形式,从而达到减少氮污染的目的。
生物脱氮的原理主要有两种:硝化和反硝化。
硝化是指将废水中的氨氮转化为亚硝酸盐和硝酸盐的过程。
这一过程通常由硝化细菌来完成,这些细菌可以氧化废水中的氨氮为亚硝酸盐,然后进一步氧化为硝酸盐。
硝化细菌需要适宜的温度、pH值和氧气供应才能正常生长和繁殖。
反硝化是指将废水中的硝酸盐还原为氮气的过程。
这一过程主要由反硝化细菌完成。
当废水中硝酸盐的浓度较高,并且缺乏氧气供应时,反硝化细菌利用硝酸盐作为电子外接体,还原为氮气释放到大气中。
在实际应用中,常常将硝化和反硝化结合起来,构建生物脱氮系统。
首先,利用硝化细菌将废水中的氨氮转化为硝酸盐,然后利用反硝化细菌将硝酸盐还原为氮气。
这种生物脱氮系统能够有效地降低废水中的氮含量,达到环境保护的目的。
生物脱氮硝化反硝化原理及影响因素解析!
生物脱氮硝化反硝化原理及影响因素解析!所属行业: 水处理关键词:生物脱氮硝化反硝化除氮工艺废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
快速消除水中氨氮方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等。
下面我详细介绍以下这种快速消除水中氨氮的方法:(一)生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值;当pH值为8.0~8.4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度;温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间;硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧;氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷;硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。
所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
(二)生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N 和NO3--N还原成N2的过程,称为反硝化。
污水处理工艺脱氮
污水处理工艺脱氮污水处理工艺脱氮是指在污水处理过程中,采用一定的技术手段将污水中的氮气化合物去除的过程。
脱氮工艺的实施可以有效减少氮气化合物对水体环境的污染,保护水资源,改善生态环境。
下面将从脱氮工艺的原理、常见脱氮工艺、脱氮工艺的应用、脱氮工艺的优势和发展趋势等方面进行详细介绍。
一、脱氮工艺的原理1.1 生物脱氮原理:利用厌氧细菌将氨氮还原为氮气的过程。
1.2 化学脱氮原理:利用化学试剂将氨氮转化为氮气的过程。
1.3 物理脱氮原理:通过物理方法将氮气从污水中分离出来。
二、常见脱氮工艺2.1 生物脱氮工艺:包括厌氧氨氧化、厌氧硝化反硝化等过程。
2.2 化学脱氮工艺:包括硝化反硝化、氨气氧化等过程。
2.3 物理脱氮工艺:包括气浮法、膜分离等方法。
三、脱氮工艺的应用3.1 城市污水处理厂:常用于城市污水处理厂中,用于去除污水中的氮气化合物。
3.2 工业废水处理:用于工业废水处理中,减少氮气化合物对环境的影响。
3.3 农业废水处理:用于农业废水处理中,改善水质,保护农田生态环境。
四、脱氮工艺的优势4.1 减少氮气化合物对水体的污染,保护水资源。
4.2 降低氮气化合物对水生生物的危害,改善水生生态环境。
4.3 提高污水处理效率,减少处理成本,节约资源。
五、脱氮工艺的发展趋势5.1 绿色环保:未来脱氮工艺将更加注重绿色环保,减少对环境的影响。
5.2 高效节能:未来脱氮工艺将更加注重高效节能,提高处理效率,降低能耗。
5.3 智能化技术:未来脱氮工艺将更加智能化,采用先进技术提升处理水平。
总之,污水处理工艺脱氮在实际应用中具有重要意义,通过不断改进和创新,可以更好地保护水资源,改善环境质量,促进可持续发展。
希翼未来脱氮工艺能够得到更广泛的应用和推广,为人类创造更夸姣的生活环境。
污水处理生物脱氮除磷影响因素
节能环保污水处理生物脱氮除磷主要是通过微生物的生命活动实现,其脱氮除磷效率受微生物生命活动的影响很大。
因此,运行和维持高效的生物脱氮除磷系统,必须对其影响因素有比较深入的了解。
影响脱氮除磷效果的因素很多,其中比较关键的因素有温度、pH值、溶解氧(DO)、C/N及C/P比以及有毒物质等。
一、温度温度是影响污水处理微生物活性的最重要因素之一,它影响着酶催化反应速率及基质扩散进入细胞内的速率。
微生物的生长是一个非常复杂的生化反应过程,这种反应需要在一定的温度范围内进行。
温度过低细菌的新陈代谢极弱,甚至处于休眠状态,过高则使之体内的酶变性失活而导致其死亡。
(1)硝化反应的最适温度范围为30~35℃,温度不仅影响硝化细菌的增长繁殖,还影响硝化细菌的代谢活性。
尤其在低温条件下,对硝化细菌的抑制作用极为强烈,当温度很低(<5℃)时,其新陈代谢极弱,甚至处于休眠状态。
当温度大于5℃时,硝化反应速率随温度的升高而增大,且超过30℃后硝化速率随温度的升高增幅减缓。
对去除有机物的同时进行硝化反应的反应器来说,当温度低于15℃时硝化速率急剧降低。
进行反硝化反应的最适温度范围为35~45℃,而温度对硝化菌的影响大于反硝化菌。
活性污泥的活性在20℃左右时较高,而当水温低于10℃时,活性污泥的活性就会大幅度降低。
有研究表明,活性污泥的沉降性能与温度也有一定的关系,不同温度下活性污泥的沉降性能以及脱水性能也存在差异;(2)温度在5℃~24℃范围内,较低温度下的除磷效率比较高温度时的效率要好。
对聚磷菌(Polyphosphate-accumulating microorganisms,PAOs))而言,降低温度会降低其生化转换过程(磷的吸收/释放速率、VFA的吸收速率、PHAs的氧化以及生物量的增长速率等),但在较低的温度条件下(5℃)长期驯化的强化生物除磷(Enhanced Biological Phosphate Removal, EBPR)系统表现出较高的除磷效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物脱氮基本原理及影响因素
摘要:介绍了生物脱氮基本原理及影响因素,为环境工作者掌握生物脱氮。
废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。
在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为 NO3-N 和 NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气。
由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。
由于氨化反应速度很快。
在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。
关键词:生物脱氮基本原理影响因素
废水中存在着有机氮、氨氮、硝态氮等形式的氮,而其中以氨氮和有机氮为主要形式。
在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成氨氮,而后经硝化过程转化变为 NO3-N 和 NO2-N,最后通过反硝化作用使硝态氮转化成氮气,而逸入大气
由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。
由于氨化反应速度很快。
在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化
1氨化作
1.1概
氨化作用是指将有机氮化合物转化为氨态氮的过程,也称为矿化作用
1.2细
参与氨化作用的细菌成为氨化细菌。
在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌,兼性的变形杆菌和厌氧的腐败梭菌等
1.3降解方式(分好氧和厌氧
在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。
例如氨基酸生成酮酸和氨
[2-1
丙氨酸亚氨基丙酸法丙酮酸
另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。
例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们式好氧菌,其反应式如下
[2-2
在厌氧条件或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应
[2-3
[2-4
[2-5
2硝化作
2.1概
硝化作用是指将氨氮氧化为亚硝酸氮和硝态氮的生物化学反应
2.2细
这个过程由亚硝酸菌和硝酸菌共同完成
亚硝化菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。
硝酸菌有硝化杆菌属、硝化球菌属。
亚硝酸菌和硝化菌统称为硝化菌
2.3反应过
包括亚硝化反应和硝化反应两个步骤。
该反应历程为
亚硝化反应[2-6
硝化反应[2-7
总反应式[2-8
发生硝化反应时细菌分别从氧化 NH3 和NO2-的过程中获得能量,碳源来自无机碳化合物,如 CO32-、HCO-、CO2 等。
假定细胞的组成为 C5H7NO2,则硝化菌合成的化学计量关系可表示为
亚硝化反应[2-9
硝化反应[2-10
在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为
[2-11
2.4特
从上式可以看出硝化过程的三个重要特点
NH3 的生物氧化需要大量的氧,大约每去除 1g 的 NH3-N 需要 4.2gO2
硝化过程细胞产率非常低,且难以维持较高胜物浓度,特别是在低温的冬季
硝化过程中产生大量的的质子(H—),为了使反应能顺利进行,需要大量的碱中和,其理论上大约为每氧化 1g 的 NH3-N 需要碱度 5.57g(以 NaCO3 计)
2.5硝化反应影响因
温
在生物硝化系统中,硝化细菌对温度的变化非常敏感,在 5~35℃的范围内,硝化菌能进行正常的生理代谢活动。
当废水温度低于15℃时,硝化速率会明显下降,当温度低于10℃时已启动的硝化系统可以勉强维持,硝化速率只有30℃时的硝化硝化速率的[1]。
尽管温度的升高,生物活性增大,硝化速率也升高,但温度过高将使硝化菌大量死亡,实际运行中要求硝化反应温度低于38℃[2]
pH
硝化菌对 pH 值变化非常敏感,最佳 pH 值是 8.0~8.4,在这一最佳 pH 值条件下,硝化速度,硝化菌最大的比值速度可达最大值。
Anthonison 认为 pH 对硝化反应的影响只是表观现象,实际起作用是两个平衡 H++NH3 = NH4+和H++NO2-= HNO2 中的NH3(FA)和
HNO2(FNA),pH 通过这两个平衡影响 FA 和FNA 的浓度起作用的。
FA 与FNA 浓度可由下式计算
其
A—总氮(NH3+NH4+)浓度;Kb—氨的离解常数
Kw —水的电离常数;Ka—亚硝酸的离
溶解
氧是硝化反应过程中的电子受体,反应器内溶解氧高低,必将影响硝化反应得进程。
在活性污泥法系统中,大多数学者认为溶解氧应该控制在 1.5~2.0mg/L 内,低于
0.5mg/L 则硝化作用趋于停止。
当前,有许多学者认为在低DO(1.5mg/L)下可出现SND 现象。
在DO>2.0mg/L,溶解氧浓度对硝化过程影响可不予考虑。
但DO 浓度不宜太高,因为溶解氧过高能够导致有机物分解过快,从而使微生物缺乏营养,活性污泥易于老化,结构松散。
此外溶解氧过高,过量能耗,在经济上也是不适宜的
生物固体平均停留时间(污泥龄
为了使硝化菌群能够在连续流反应器系统存活,微生物在反应器内的停留时间(θc )N 必须大于自养型硝化菌最小的世代时间(θc)minN,否则硝化菌的流失率将大于净增率,将使硝化菌从系统中流失殆尽。
一般对(θc)N 的取值,至少应为硝化菌最小世代时间的 2 倍以上,即安全系数应大于 2
重金属及有毒物
除了重金属外,对硝化反应产生抑制作用的物质还有:高浓度氨氮、高浓度硝酸盐有机物及络合阳离子等
3.反硝化作
3.1概
反硝化作用是指在厌氧或缺氧(DO<0.3-0.5mg/L)条件下,硝态氮、亚硝态氮及其其它氮氧化物被用作电子受体而还原为氮气或氮的其它气态氧化物的生物学反应
3.2细
这个过程反硝化菌完成
进行这类反应的细菌主要有变形杆菌属、微球菌属、假单胞菌属、芽胞杆菌属、产碱杆菌属、黄杆菌属等兼性细菌,它们在自然界中广泛存在。
有分子氧存在时,利用 O2 作为最终电子受体,氧化有机物,进行呼吸;无分子氧存在时,利用NO3―或者NO2―进行呼吸。
研究表明,这种利用分子氧和NO3―之间的转换很易进行,即使频繁交换也不抑制其反硝化的进行
大多数反硝化菌能进行反硝化的同时将NO3―同化为 NH4+而供给细胞合成之用,这也
就是所谓同化反硝化。
只有当NO3―作为反硝化菌唯一可利用的氨源时NO3―同化代谢才能发生。
如果废水中同时存在 NH4+,反硝化菌有限利用氨态氮进行合成
3.3反硝化过
该反应历程为
[2-12
[2-13
[2-14
[H]可以是任何能提供电子,且能还原NO3―及NO2―为的物质,包括有机物、硫化物、H+等
3.4反硝化反应影响因
1. 温
反硝化细菌对温度变化虽不如硝化细菌那样敏感,但反硝化效果也会随温度变化而变化。
温度越高,硝化速率也越高,在 30~35℃时,DNR 增至最大。
当低于15℃时,反硝化速率将明显降低;至5℃时,反硝化将趋于停止
2.pH
pH 值是反硝化反应的重要影响因素,对反硝化最适宜的 pH 值是6.5~7.5,在这个 pH 值的条件下,反硝化速率最高,当 pH 值高于 8 或者低于 6 时,反硝化速率将大为下降
3.外加碳
反硝化菌是属于异养型兼性厌氧菌,在厌氧的条件下以 NOx-N 为电子受体,以有机物(有机碳)为电子供体。
由此可见,碳源是反硝化过程中不可少的一种物质,进水的 C/N 直接影响生物脱氮除氮效果的重要因素。
一般 BOD/TKN=3~4,有机物越充分,反应速度越快,当废水中 BOD/TKN 小于3 时,需要外加碳源才能达到理想的脱氮目的。
因此碳源对
反硝化效果影响很大。
反硝化的碳源来源主要分三类:一是废水本身的组成物,如各种有机酸、淀粉、碳水化合物等;二是废水处理过程中添加碳源,一般可以添加附近一些工业副产物,如乙酸、丙酸和甲醇等;三是活性污泥自身死亡自溶释放的碳源,称为内源碳
4.溶解
反硝化是异养兼性厌氧菌,只有在无分子氧而同时存在硝酸和亚硝酸离子的条件下,它们才能利用这些离子中的氧进行呼吸,使硝酸盐还原。
如反应器内溶解氧较高,将使反硝化菌利用氧进行呼吸,抑制反硝化菌体内硝酸盐还原酶的合成,或者氧成为电子受体,阻碍硝酸盐的还原。
但是,另一方面,在反硝化菌体内某些酶系组分只有在有氧条件下,才能合成,这样,反硝化菌以在厌氧、好氧交替环境中生活为宜,溶解氧应控制在
0.5mg/L。