ANSYS耦合问题
ansys应用-流固耦合
图4 3. 由于计算在 CFX 中迚行,因此可以右击 solution,然后选择 delete,将固
体部分的计算去除,如图 5:
图5 4. 本 例 中 使 用的 材 料 刚度 相 对 较 小, 因 此 需要 定 义 一 个新 的 材 料, 双 击
engineering data,在里面定义一个新材料 plate,具体参数如图 6 所示。
这里因为使用外部网格,可使用 fluent 的网格文件,也可以 由 ICEM CFD 直接生成 CFX 的网格文件,没有影响。*.msh 中包 吨流体网格和 named section。(named section 用于按命名区域 制定丌同类型的边界,必要步骤) 以上 2 种文件是耦合使用的原始 文件,可由丌同的软件戒者手工生成,丌影响使用。比如,*.inp 可 以由 ANSYS APDL、ANSYS WORKBENCH 戒者 Hypermesh 生 成;*.msh 可以由 ANSYS WORKBENCH、ICEM CFD、Gambit 等 生成。本例中,2 者都用 ansys workbench 生成。 (3)、MFX 使用的文件:*.def
MFX 在使用中是从 CFX-solver 中启动的,*.def 实际是 CFX-pre 交给 CFX-solver 使用的文件。 (4)、其他格式:
其他格式的文件是各软件自己的工程文件类型,丌参不耦合计 算,只是作为工程文件保存。
这样的做法,感觉有个好处:因为通过 Transient Structural 导出*.inp 结构文件,然后再导入 CFX 中进行分析,这样对于直接运 用 AWB help 中的方法而言,处理同样大小的模型所需要的内存较 小,容易在普通微机上计算,丌会出现如下的错误:
4、设置好 CFX 流体分析的边界条件并将流固耦合的边界面的 Mesh Motion 设 置为 ANSYS MultiField。CFX 中有默认的不 ANSYS FSI 传递的数据。其他的 边界条件见 CFX 流体分析的要求来设置。 5、通过 CFX 下的 Solver/Solver Units 设置单位,以保证 ANSYS 不 CFX 中的 单位一致。 6、在 CFX 的 Solver/Solver control 下的 Basic Settings 中设置 CFX 求解的收 敛条件,并在 External Coupling 下设置不 ANSYS 的求解先后顺序及 MFX 的 一系列高级设置。 7、设置完毕后在 CFX 的 FILE 菜单下 write Solver file,生成*.def 文件。 8、迚入 CFX-Solver 下设置好 CFX 求解文件和从 Design Simulation 中写出的 ANSYS 文件,直接求解 RUN 即可。
ansys多物理场耦合技术和方法
ANSYS是一种广泛应用于工程领域的仿真软件,它提供了多物理场耦合分析的能力,用于模拟和解决多个物理现象相互作用的问题。
以下是ANSYS多物理场耦合技术和方法的一些常见应用:1. 结构-热耦合(Thermo-Structural Coupling):这种耦合方法用于分析结构在热载荷下的变形和应力响应。
它可以考虑热传导、热辐射、温度梯度等对结构性能的影响,并通过结构和热传导方程之间的相互作用来解决这些问题。
2. 结构-电磁耦合(Electromagnetic-Structural Coupling):这种耦合方法用于研究结构在电磁场作用下的响应。
它可以考虑电磁场的电流、磁场、电磁感应等对结构的影响,并通过结构和电磁场方程之间的相互作用来解决这些问题。
3. 流体-结构耦合(Fluid-Structure Interaction, FSI):这种耦合方法用于模拟流体和结构之间的相互作用。
它可以考虑流体力学中的压力、速度、湍流、流体-固体界面等对结构的影响,以及结构对流体的阻力、振动等反馈作用。
4. 流体-热耦合(Fluid-Thermal Coupling):这种耦合方法用于模拟流体和热传导之间的相互作用。
它可以考虑流体在流动过程中的热对流、辐射等对热传导的影响,以及热传导对流体温度分布的影响。
5. 电磁-热耦合(Electromagnetic-Thermal Coupling):这种耦合方法用于模拟电磁场和热传导之间的相互作用。
它可以考虑电磁能量的吸收、热产生和热扩散等对系统温度分布的影响,以及温度对电磁特性的影响。
以上只是ANSYS多物理场耦合技术和方法的一些例子,实际中还有其他类型的耦合分析,如声-结构耦合、声-流体耦合等。
通过使用这些耦合技术和方法,工程师可以更准确地模拟和分析不同物理场之间的相互作用,从而更好地优化设计和解决实际问题。
ANSYS单元节点自由度耦合
ANSYS自由度耦合当生成模型时,典型地是用单元去连接节点以建立不同自由度间的关系,但是,有时需要能够刻划特殊细节(刚性区域结构的铰链连接,对称滑动边界,周期条件,和其他特殊内节点连接等),这些用单元不足以来表达,可用耦合和约束方程来建立节点自由度间的特殊联系,利用这些技术能进行单元做不到的自由度连接。
1、什么是耦合当需要迫使两个或多个自由度(DOFs)取得相同(但未知)值,可以将这些自由度耦合在一起,耦合自由度集包含一个主自由度和一个或多个其他自由度。
耦合只能将主自由度保存在分析的矩阵方程里,而将耦合集内的其他自由度删除。
计算的主自由度值将分配到耦合集内的所有其他自由度中去。
典型的耦合自由度应包括:部分模型包含对称;在两个重复节点间形成销钉,铰链,万向节和滑动连接;迫使模型的一部分表现为刚体。
2、如何生成耦合命令:CPGUI:Preprocessor——Coupl/Ceqn——Couple DOF在生成一个耦合节点之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中。
也可用选择逻辑来耦合所选节点的全部耦合。
可用CP命令输入负的节点号来删除耦合集合中的节点。
要修改一耦合自由度(即增、删节点或改变自由度标记)用CPNGEN命令(无GUI)。
CPINTF命令通过在对每对重合节点上定义自由度标记生成一耦合集而实现对模型重合节点的耦合。
此操作对“扣紧”几对节点(诸如一条缝)尤为有用。
命令:CPINTFGUI:Preprocessor——Coupl/Ceqn——Coincident nodes除耦合重复节点外,还可用下列替换方法迫使节点有相同的变现方式:(1)如果对重复节点所有自由度都要耦合,通常用NRMMRG (numbering——mergeit)将这些节点合并起来更方便;(2)可用EINTF命令(create——element——at coincident)在重复节点生成2节点单元连接;(3)用EINTF(preprocessor——couple/ceqn——adjacent rejoins)将两个不相似网格模式的区域连接起来,这项操作使一个区域的选定节点与另一个区域的选定单元连接起来生成约束方程;(4)用下列方法以相同的节点号但与已有模式集不同的自由度标记生成新的耦合集。
ansys热流双向耦合+结构单向耦合
ANSYS软件是一种强大的有限元分析软件,广泛应用于工程领域的热流双向耦合和结构单向耦合分析。
本文将从热流双向耦合和结构单向耦合的基本原理、ANSYS软件的应用方法以及应用案例等方面进行介绍和分析。
一、热流双向耦合的基本原理1. 热流双向耦合是指热传导和流体流动之间相互影响的耦合分析方法。
2. 在热流双向耦合分析中,热传导和流体流动之间存在相互影响的物理过程。
热传导会导致流体的温度分布发生变化,而流体的流动又会影响热传导的过程。
3. 热流双向耦合分析可以用于模拟汽车发动机的冷却系统、航空发动机的燃烧室等工程问题,对于研究热传导和流体流动之间的复杂耦合现象具有重要意义。
二、结构单向耦合的基本原理1. 结构单向耦合是指结构应力和温度之间的单向耦合分析方法。
2. 在结构单向耦合分析中,结构的应力状态会随着温度的变化而发生变化,而温度的变化不会受到结构应力的影响。
3. 结构单向耦合分析可以用于模拟航空航天器在进入大气层时的热应力行为、电子器件的热机械性能等工程问题,对于研究结构应力和温度之间的复杂耦合现象具有重要意义。
三、ANSYS软件的应用方法1. ANSYS软件是目前应用最为广泛的有限元分析软件之一,具有强大的热流双向耦合和结构单向耦合分析功能。
2. 在进行热流双向耦合分析时,可以利用ANSYS软件中的流体动力学模块和热传导模块进行耦合求解,得到热传导和流体流动的相互影响结果。
3. 在进行结构单向耦合分析时,可以利用ANSYS软件中的结构分析模块和热分析模块进行耦合求解,得到结构应力和温度之间的单向耦合结果。
四、应用案例分析1. 以汽车发动机冷却系统为例,可以利用ANSYS软件进行热流双向耦合分析,研究冷却水在发动机中的流动和散热过程,为发动机的热管理设计提供依据。
2. 以航空航天器进入大气层时的热应力行为为例,可以利用ANSYS 软件进行结构单向耦合分析,研究航空航天器在高速进入大气层时的热应力分布,为材料选型和结构设计提供依据。
ANSYS结构声振耦合解决方案
▪ 动力学
➢ 声压级
➢ 自由振动—模态分析
➢ 声波散射、衍射、传输、
➢ 瞬态振动
辐射、衰减等参数
➢ 谐振动
➢ 结构动态变形应力等
➢ 随机振动
声波从空气传入水中
主动声纳探测
声波在管内震荡
主动声纳探测
ANSYS声学模型
模型类型
▪ 2D平面模型: Fluid29/Fluid129 ▪ 2D轴对称模型: Fluid29/Fluid129 ▪ 3D模型: Fluid30/Fluid130
三维结构模型
▪ SOLID45单元 ▪ SOLID95单元 ▪ SOLID185单元 ▪ SOLID186单元
ANSYS声学模型
FSI—流固界面
▪ 结构单元与流体单元接触作用表面 ▪ 定义流体压力与结构作用界面
( 中主 间动 为声 中纳 空性 刚能 性仿 球真 )
ANSYS声学模型
ቤተ መጻሕፍቲ ባይዱ
声学流体材料 ▪ 流体密度 ▪ 流体中声速 ▪ 边界声吸收系数
脉冲压力峰值:20Pa 脉冲压力时间:0.00001s
声压-时间曲线
超弹示例2:垂直入射结论
对于不同频率激励,超弹材料的响应回是一致的; 超弹性材料的变形是完全可以恢复的弹性,对声压 冲击的响应频率完全与激励频率一致,没有响应滞 后现象;
超弹材料也具有一定的能量耗散,但相对粘弹要低 很多;
从分析发现,粘弹材料具有比超弹材料更好的消声 减振性能。
▪ 模拟FLUID29/30模型边界 外的无限流体域吸收效果
▪ 二级吸收边界条件,传出的 压力波到达模型边界时将被 “吸收”,只有微量反射回 流体域
➢ 设置选项 K2=0:
✓ 内部流体 ✓ 仅具有流体压力自由度
ANSYSapdl命令流笔记16-------耦合场分析基础
ANSYSapdl命令流笔记16-------耦合场分析基础耦合场分析概述前⾔耦合场分析,也称为多物理场分析,分析不同的物理场的相互作⽤以解决⼀个全局性的⼯程问题。
例如,当⼀个场分析的输⼊依赖于从另⼀个分析的结果,那么分析就会被耦合。
耦合⽅式有:单向耦合:前⼀个分析的结果作为载荷施加给下⼀个分析,⽽下⼀个分析的结果不会影响前⼀个场的分析结果。
例如,在热应⼒问题中,温度场会在结构场中引⼊热应变,但是结构应变通常不会影响温度分布。
因此,⽆需在两个现场解决⽅案之间进⾏迭代。
双向耦合:两个物理场的结果会相互影响。
例如,⾮线性材料的感应加热中,谐波电磁分析计算出焦⽿热,该热在瞬态热分析中⽤于随时间变化的温度解,⽽温度的变化会反过来影响电磁场材料属性的变化,从⽽改变电磁分析结果。
⼀、耦合场分析类型1.直接耦合场分析直接⽅法通常只包含⼀个分析,它使⽤⼀个包含所有必需⾃由度的耦合单元类型,通过计算包含所需物理量的单元矩阵或单元载荷向量的⽅式进⾏耦合。
具有直接耦合功能的单元有:SOLID5 ---------3-D 耦合场实体单元 (电磁矩阵的推导,耦合效应)PLANE13---------⼆维耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID29 ---------⼆维声学流体 单元(声学矩阵的推导)FLUID30 ---------3-D 8 节点声学流体单元 (声学矩阵的推导)LINK68------------热电耦合杆单元SOLID98----------四⾯体耦合场实体单元 (电磁矩阵的推导,耦合效应)FLUID116---------热流体耦合管单元CIRCU124--------电路单元TRANS126-------机电转换器单元(电容计算,耦合机电⽅法)SHELL157--------热电耦合壳单元FLUID220---------3-D 20 节点声学流体单元FLUID221---------3-D 10 节点声学流体单元PLANE222--------⼆维 4 节点耦合场实体单元PLANE223--------⼆维 8 节点耦合场实体单元SOLID226---------3-D 20 节点耦合场实体单元SOLID227---------3-D 10 节点耦合场实体单元PLANE233--------⼆维 8 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID236--------3-D 20 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)SOLID237--------3-D 10 节点电磁耦合单元(电磁矩阵的推导,电磁场评估)优点:1.允许解决通常的有限元⽆法解决的问题。
ansys磁热耦合实例
ansys磁热耦合实例
(原创版)
目录
1.ANSYS 磁热耦合简介
2.磁热耦合实例介绍
3.磁热耦合求解过程
4.结论
正文
一、ANSYS 磁热耦合简介
ANSYS 是一款广泛应用于机械、电子、航空航天、能源等领域的大型有限元分析软件。
在 ANSYS 中,磁热耦合是指在磁场和温度场之间存在相互影响和耦合作用的现象。
通过 ANSYS 可以模拟这种耦合作用,从而分析磁热耦合问题。
二、磁热耦合实例介绍
在此实例中,我们考虑一个金属棒在磁场和温度场共同作用下的热膨胀问题。
金属棒受到磁场作用而产生磁化,磁化过程中会产生热量,导致金属棒温度升高,从而引起热膨胀。
我们需要分析金属棒在磁热耦合作用下的温度分布和形变情况。
三、磁热耦合求解过程
1.建立模型:首先,我们需要在 ANSYS 中建立金属棒的几何模型,并设置材料的磁导率、比热容等物理参数。
2.加载边界条件:在金属棒的两端施加温度边界条件,以模拟金属棒在恒定温度下的热膨胀过程。
3.添加磁场载荷:在金属棒周围施加磁场载荷,以模拟磁场对金属棒
的作用。
4.求解:使用 ANSYS 的求解器进行计算,得到金属棒在磁热耦合作用下的温度分布和形变情况。
5.后处理:对计算结果进行后处理,绘制温度分布云图和形变情况。
四、结论
通过以上求解过程,我们可以得到金属棒在磁热耦合作用下的温度分布和形变情况。
ansys流固耦合案例
ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。
在设计热沉时,流体流动和热传导是两个重要的物理过程。
Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。
在这个案例中,我们考虑了一个由铝合金制成的热沉。
热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。
通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。
通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。
2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。
通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。
3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。
通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。
通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。
我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。
2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。
在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。
Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。
在这个案例中,我们考虑了一个三叶式风力发电机叶片。
叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。
通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。
通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。
2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。
ansys热耦合计算
ansys热耦合计算
热耦合计算是指在工程领域中使用ANSYS软件进行热传导和结
构力学之间相互影响的计算。
在进行热耦合计算时,需要考虑热量
对结构件的影响以及结构变形对温度场的影响,这种相互作用在许
多工程领域中都是非常重要的。
首先,在进行热耦合计算时,需要建立一个合适的模型。
这包
括定义材料属性、边界条件和载荷,以及确定模型的几何形状和尺寸。
在ANSYS中,可以使用各种建模工具和预处理器来完成这些任务,确保模型准确地反映了实际工程情况。
其次,进行热耦合计算时需要定义热传导方程和结构力学方程。
热传导方程描述了热量在材料中的传播方式,而结构力学方程描述
了结构件在受力作用下的变形情况。
在ANSYS中,可以使用热传导
模块和结构力学模块来设置这些方程,并进行求解。
另外,热耦合计算还需要考虑热应力和热变形。
当材料受热膨
胀或收缩时,会产生热应力和热变形,这对结构件的性能和稳定性
都会产生影响。
在ANSYS中,可以通过设置热应力和热变形的边界
条件来模拟这些效应,并进行分析和评估。
最后,在完成热耦合计算后,需要对结果进行后处理和分析。
这包括对温度场、热应力、结构变形等进行可视化和评估,以便工程师能够了解结构件在热载荷下的响应情况,并进行进一步的优化和改进。
总之,热耦合计算是一项复杂而重要的工程分析任务,通过使用ANSYS软件进行热耦合计算,工程师能够更好地理解和预测热载荷对结构件性能的影响,从而指导工程设计和优化。
用ANSYS进行温度和结构的耦合分析需要注意的问题总结
采用ansys进行温度和结构的耦合分析需要注意的问题总结温度场和结构的耦合有两种:间接和直接。
间接法,可以理解为先做温度场的分析,再做结构的分析,其中要引入温度场分析的结果。
在不同的分析里,单元的性质是不同的,但DOF一定要一致。
直接法,和上述方法不同的地方是,单元是直接就定义为含有温度和结构耦合的单元,然后直接做分析,即不需要分为两个步骤。
瞬态分析,一样可以用上述两个方法。
只是运用第一个时要十分清楚载荷步与分析的关系,虽然比第二种灵活,但处理起来也十分麻烦。
在做温度场的瞬态分析,根据需要,在合适的载荷步停顿,做结构分析(如果想省去单元定义转换的麻烦,那么就定义physics环境切换)。
做完结构分析,再开启温度场分析(一样要转换环境),这里为确保从某一载荷步出发,我们用FLOCHECK,2,然后继续加载边界条件求解。
耦合的过程很公式化,但是要让其符合你的要求,就要很小心数据的提取。
还有一个问题,结构分析时需不需要删除热边界条件。
需要删除热边界条件,比如对流等等。
一般情况下,不考虑变形对温度的影响(因为特别小),采用间接耦合,即先计算温度场,然后读取温度场结果,进行结构分析。
........................载荷步是为了表达随时间变化的载荷,也就是说把载荷—时间曲线分成载荷步。
这是瞬态与稳态分析最大的不同。
分析时对于每一个载荷步都要定义载荷值和对应的时间值。
而分析类型应定义为瞬态分析,每计算一个载荷步时,都要删掉上一个载荷步的温度,除非这些节点的温度在瞬态与稳态分析中都相同。
至于单元,个人推荐使用SOLID62,无论是分网还是施加载荷都比教方便,基本可满足各类瞬态分析计算条件。
......................首先了解一个概念,顺序耦合或是直接耦合的选择是针对不同的问题选择的,一般地,当温度变化对于结构的力学影响相对很小的时候,也就是说可以忽略的情况下,我们称之为单向弱耦合,此时采用顺序耦合很方便,例如焊接过程,这样可以节省分析时间!而对于诸如车的制动系统即车闸盘与闸片的接触,在制动过程中,由于闸片与闸盘的摩擦生热会影响两者的接触,同时由于闸盘的减速对闸片的生热也会有很大影响,所以两者是强耦合,只能采用直接耦合!你需要选择合适的耦合方法才能更好的求解你的问题!从实际情况来讲,直接耦合是最接近现实的耦合方法,但同时求解也会存在困难性!你的模型如果是热力过程同时进行的话,那么这个求解过程无疑是瞬态的,每一点每一时刻的温度值都是需要读入力学分析中的相应时刻的,不存在“静态力分析和瞬态热分析的过程!当然,如果你的分析过程是模型先受热后才开始力载荷的作用,那可以进行”静态力分析“,此时你的模型热分析的温度值你只需对最终的温度值以载荷形式赋与结构分析中去,当然,这种过程也就不叫做耦合了!.....................顺序法热力耦合的基本思路是:在热载荷作用下温度场分析的过程,是热梯度分布渐变的过程。
ANSYS 杆单元、壳单元的单元耦合问题学习
ANSYS中杆单元、壳单元的单元耦合问题关键词:单元耦合ANSYS在比较复杂的结构的有限元分析中,不同的结构部件通常使用不同类型的单元来模拟。
通常情况下,不同类型的单元的各个节点的自由度数目是不同的,不同类型单元的连接节点处的自由度的耦合问题,是一个比较令人头疼的问题。
在ANSYS中通常可以用耦合命令CP来耦合不同类型单元在连接节点处的自由度(DOF)。
也可以用CE命令来认为添加自由度之间的约束方程来达到耦合的目的。
下面是一个简单的算例,使用了CE命令来耦合连接节点处的自由度。
模型是航天器的机翼的一个Section的某一个隔框。
上下表皮是薄壳结构,用Shell63单元来模拟,在上下表皮之间有起支撑作用的杆件,用link8单元来模拟。
建模的时候,link8单元和shell63单元在连接有各自独立的节点。
即:link8单元和shell63单元的节点在连接处是重合的,但是,节点编号是各自独立的。
link8单元在每个节点有ux,uy,uz3个平动自由度;shell63在每个节点有ux,uy,uz这3个平动自由度和rotx,roty,rotz这3个转个自由,共6个自由度。
在耦合节点处,两个耦合节点的ux,uy,uz自由度应该是相等的。
这个等式可以用CE命令来描述。
完整的命令流如下:finish/clear,start/prep7!定义第一种材料属性;mp,ex,1,30e6mp,prxy,1,0.3!定义shell63单元和实常数;et,1,shell63r,1,1e-3!建立几何模型;rectng,31.8,33.2,0,0.3556agen,2,1,1,1,0,0,1a,1,4,8,5a,6,7,3,2KL,7,0.5, ,KL,3,0.5, ,在关键点处生成节点;nkpt,100,4 !与编号为117的节点耦合nkpt,101,9 !与编号为169的节点耦合nkpt,102,10 !与编号为120的节点耦合nkpt,103,7 !与编号为160的节点耦合mat,1type,1real,1lesize,1,,,6lesize,3,,,6lesize,5,,,6lesize,7,,,6lesize,9,,,6lesize,10,,,6lesize,11,,,6lesize,12,,,6lesize,2,,,6lesize,4,,,6lesize,6,,,6lesize,8,,,6MSHAPE, 0, 2DMSHKEY, 1allselamesh,all!定义第二种材料属性;mp,ex,2,30e4mp,prxy,2,0.3!定义link8单元和实常数;et,2,link8r,2,28.26e-6mat,2type,2real,2e,101,102e,100,101e,102,103!CE, NEQN, CONST, NODE1, Lab1, C1, NODE2, Lab2, C2, NODE3, !Lab3, C3ce,1,0,100,ux,1,117,ux,-1 !节点100的ux=节点117的ux;ce,2,0,100,uy,1,117,uy,-1 !节点100的uy=节点117的uy;ce,3,0,100,uz,1,117,uz,-1 !节点100的uz=节点117的uz;ce,4,0,101,ux,1,169,ux,-1 !同上;ce,5,0,101,uy,1,169,uy,-1ce,6,0,101,uz,1,169,uz,-1ce,7,0,102,ux,1,120,ux,-1ce,8,0,102,uy,1,120,uy,-1ce,9,0,102,uz,1,120,uz,-1ce,10,0,103,ux,1,160,ux,-1ce,11,0,103,uy,1,160,uy,-1ce,12,0,103,uz,1,160,uz,-1!施加约束,底面约束所有的自由度;DA,1,all!施加分布载荷;SFA,2,1,PRES,-1e4finish/solusolve !求解;finish/post1PLNSOL, S,X, 0,1.0finishPLNSOL, S,X, 0,1.0 对应的结果云图PLNSOL, S,EQV, 0,1.0对应的结果云图。
ANSYS流固耦合
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
7. 在Monitor Points and Expressions下 a. 点击Add new item ,采用默认的名字
b. 设置 Option 为 Cartesian Coordinates c. 设置 Output Variables List 为Total Mesh Displacement
通过 ANSYS CFX-Solver Manager 获得结果
ANSYS输出文件 1. 点击User Points 键,观察薄板上部随着求解怎样变形 2. 当求解完成, ANSYS CFX-Solver Manager 会弹出一个
对话框通知你,点击Yes 以继续 3. 如果在standalone模式下运行 ANSYS CFX-Solver ,关
接下来 1. 打开Timestep Selector 对话框,
选择 value 值为1.1 [s] 2. 置鼠标于浏览器中背景颜色显示的
地方,右击,选择Deformation > Auto 3. 为真实的反映变形,右击, 选择 Deformation >True Scale
通过 ANSYS CFX-Post 观察结 果
置 Variable为Total Mesh Displacement,点击Apply 3. 打开Timestep Selector 对话框,选择 value 值为1.1 [s]
这样可以验证Total Mesh Displacement在CFX和ANSYS区域中 是连续变化的
通过 ANSYS CFX-Post 观察结 果
以继续 3. 应用以下设置
ansys流固耦合核数 -回复
ansys流固耦合核数-回复
ANSYS流固耦合的核数取决于使用的ANSYS版本和许可证类型。
对于ANSYS Mechanical APDL软件(ANSYS经典),它主要使用单个核心运行。
但是可以使用ANSYS的并行处理功能来在多个核心上运行,并加快求解过程。
对于ANSYS Workbench软件,它内置了FLUENT流体动力学分析软件,可以利用多个核心进行流固耦合分析。
核心数量取决于计算机硬件和许可证类型。
对于高级许可证,可以同时使用多个核心进行流固耦合分析。
需要注意的是,计算机硬件的性能和安装的ANSYS版本也会对多核处理的效果产生影响。
一般来说,拥有更多的核心和更快的处理器速度可以显著提高流固耦合分析的求解速度和性能。
ANSYS电热耦合分析
ANSYS电热耦合分析一、 Electric-Thermal AnalysisANSYS中电热耦合分析主要焦耳热效应(Joule heating)、塞贝克效应(Seebeck effect)、珀尔帖效应(Peltier effect)、珀尔帖效应(Thomson effect)。
我们这里的分析主要是Joule heating分析,即通电产生热量,用于加热双层薄片。
1. ANSYS电-热耦合知识点1.1、Element DOFs选项:UX, UY, UZ, and TEMP:可用于Thermal-Electric Analysis 的单元类型如上表所示,其中LINK68, PLANE67, SOLID69, and SHELL157 是专用的thermal-electric elements,专用于Joule heating effects,SOLID5, SOLID98, PLANE223, SOLID226, and SOLID227 则需要选择DOFs选项为TEMP and VOLT。
For SOLID5 or SOLID98, set KEYOPT(1) to 1;For PLANE223, SOLID226, or SOLID227, set KEYOPT(1) to 110。
1.2、Material Properties设置:对于Joule heating effects,需要设置材料参数:电学参数:electric permittivity电阻率RSVX、RSVY、RSVZ 热学参数:thermal conductivity导热系数KXX, KYY, KZZ 若考虑瞬态热效应,需设置密度DENS、比热C或焓ENTH1.3、Load载荷设置:设置Applied Voltage or Current 设置对流、辐射、传热等边界条件1.4、Solve求解进行ANSYS三维电热分析,选择SOLID69单元,为专用于焦耳热分析的单元,只需设置电阻率RSVX、导热系数KXX,加载电压VOLT、对流系数CONV即可进行求解,不考虑加热元件本身的热变形;选择SOLID98,除以上参数外,还可以设置弹性模量EX、泊松比PRXY、热膨胀系数ALPX,即可分析加热元件本身的变形。
(整理)ANSYS单元节点自由度耦合.
ANSYS自由度耦合当生成模型时,典型地是用单元去连接节点以建立不同自由度间的关系,但是,有时需要能够刻划特殊细节(刚性区域结构的铰链连接,对称滑动边界,周期条件,和其他特殊内节点连接等),这些用单元不足以来表达,可用耦合和约束方程来建立节点自由度间的特殊联系,利用这些技术能进行单元做不到的自由度连接。
1、什么是耦合当需要迫使两个或多个自由度(DOFs)取得相同(但未知)值,可以将这些自由度耦合在一起,耦合自由度集包含一个主自由度和一个或多个其他自由度。
耦合只能将主自由度保存在分析的矩阵方程里,而将耦合集内的其他自由度删除。
计算的主自由度值将分配到耦合集内的所有其他自由度中去。
典型的耦合自由度应包括:部分模型包含对称;在两个重复节点间形成销钉,铰链,万向节和滑动连接;迫使模型的一部分表现为刚体。
2、如何生成耦合命令:CPGUI:Preprocessor——Coupl/Ceqn——Couple DOF在生成一个耦合节点之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中。
也可用选择逻辑来耦合所选节点的全部耦合。
可用CP命令输入负的节点号来删除耦合集合中的节点。
要修改一耦合自由度(即增、删节点或改变自由度标记)用CPNGEN命令(无GUI)。
CPINTF命令通过在对每对重合节点上定义自由度标记生成一耦合集而实现对模型重合节点的耦合。
此操作对“扣紧”几对节点(诸如一条缝)尤为有用。
命令:CPINTFGUI:Preprocessor——Coupl/Ceqn——Coincident nodes除耦合重复节点外,还可用下列替换方法迫使节点有相同的变现方式:(1)如果对重复节点所有自由度都要耦合,通常用NRMMRG (numbering——mergeit)将这些节点合并起来更方便;(2)可用EINTF命令(create——element——at coincident)在重复节点生成2节点单元连接;(3)用EINTF(preprocessor——couple/ceqn——adjacent rejoins)将两个不相似网格模式的区域连接起来,这项操作使一个区域的选定节点与另一个区域的选定单元连接起来生成约束方程;(4)用下列方法以相同的节点号但与已有模式集不同的自由度标记生成新的耦合集。
ANSYS磁场耦合场分析
单元类型自由度的选择
5-3
三维汇流排变形
• 在三维模拟实例中采用三维 汇流排,确定排的变形
• 汇流排模型,由于电流同方 向,位移为Z方向,朝着对称 平面
两个汇流排“角形”组件
电流方向
5-4
• 需要先前的磁场分析结果 • 如果没有汇流排的磁场分析结果,必须重新分析得到 • 输入命令angle3d,1,1,这将进行求解汇流排单元Lorentz 力的磁场分
析
5-5
• 利用磁场分析中生成的力进行结构分析,则单元类型必须转换 到结构单元类型: solid45 Preproc>element type>add/edit/delete
选择6,这是汇流排 的单元类型
• 选择 ADD
5-6
• 把单元类型6定义为三维结构单元
输入6与汇流 排相对应 • 选择 OK • 定义了结构单元类型后,结构自由度被激活。静力学分析所要求的材料性质 为弹性模量EX (N/m2) 。
因为只有一种结果, 此处为“空”就可以 读入正确结果
• 选择 OK
对于没有电路单元的磁场分析, 缺省的结果文件为file.rmg
5-9
• 力的分量如图所示,箭头长度相应于力的大小
利用PlotCtrls中 的符号和边界条件 控制项来控制力的 符号显示
5-10
• 其边界条件用来约束汇流排“角形”组件 Preproc>loads>apply>-structural-displacements>on lines
• 在“角形”组件的三个地方加结构约束条件
5-11
• 利用PlotCtrls中的缩放控制来辅助选择感兴趣区域的线段
基于ANSYS的多场耦合问题的仿真
基于ANSYS的多场耦合问题的仿真多场耦合(multi-physics)是分析多个物理场之间的交互作⽤,例如热应⼒问题,压电分析,压阻分析,MEMS分析,流固耦合分析等等。
对于单物理场进⾏分析的软件已经很多很多,但对多物理场进⾏有效仿真的软件并不多见,⽽ANSYS就是其中之⼀。
使⽤ANSYS进⾏多物理场仿真,总体上有两种途径:基于经典界⾯的⽅式和基于WORKBENCH的⽅式。
(1)基于WOKRBENCH的多物理场仿真就⼀般⽤户⽽⾔,使⽤WORKBENCH⽅式会更容易⼀些。
例如⼀个稳态热应⼒问题,只要先创建⼀个稳态热分析,然后把分析的温度场作为热载荷加载到静态结构分析中,就可以⽅便的进⾏耦合场的仿真,如下图。
但这只限于做单向的多物理场分析。
⽽有些多物理场耦合问题属于双向耦合,例如流固耦合问题,此时如何使⽤WORKBENCH来进⾏分析呢?对于这种问题,WORKBENCH也提供了⼀种⽅法,例如流固耦合问题。
先创建⼀个结构分析,然后把结果导出为CFX流体分析,如下图。
从上图中,我们看不到是如何做双向耦合的。
的确如此。
WORKBENCH对于双向的流固耦合做了特殊的处理,我们看到上⾯的项⽬⽰意图中,对于结构分析,删去了求解单元格和结果单元格,⽽在结构分析中,添加了⼀个流固耦合交界⾯;最终的双向耦合设置,都是在CFX中进⾏的。
但是上述⽅式仅适⽤于流固耦合分析。
对于其它双向耦合问题,我们还看不到WORKBENCH是如何处理的。
总之,WORKBENCH处理单向耦合问题⾮常简单⽅便,对于双向耦合问题,它处理流固耦合问题很⽅便,⽽对于其它耦合问题则还没有看到解决办法。
但是在经典界⾯中,则提供了许多求解多物理场的⽅法,远远超过了WORKBENCH的⽀持⼒度。
(2)基于经典界⾯的多物理场仿真总体上,ANSYS经典界⾯提供了四种⽅法进⾏多物理场的仿真。
分别简述如下。
(2.1)⼀种单元的⽅式(ANSYS称之为直接法)在这种⽅法之下,使⽤⼀个单元,该单元的每⼀个节点上直接包含了所需要的多个物理场的⾃由度。
ansys 小球跌落的流固耦合
ansys 小球跌落的流固耦合ANSYS是一种流体和固体力学仿真软件,可用于模拟各种流固耦合问题。
在此,我们将探讨小球跌落的流固耦合模拟。
小球跌落是一个经典的物理实验,它可以用于研究物体的运动学和动力学特性。
在这个实验中,我们将一个小球从一定高度自由落下,并观察其在空气中的运动状态。
由于空气的存在,小球受到了空气阻力的影响,这将影响小球的运动。
因此,我们需要进行流固耦合模拟来研究小球的运动状态。
在ANSYS中,我们可以使用FLUENT模块来模拟空气流动。
首先,我们需要创建一个三维模型,包括小球和周围的空气。
然后,我们需要定义空气的物理特性,如密度、粘度和温度等。
接下来,我们需要定义边界条件,如入口速度和出口压力等。
最后,我们可以运行模拟并观察空气流动的结果。
接下来,我们需要使用ANSYS中的Mechanical模块来模拟小球的运动。
我们需要将小球的模型导入Mechanical中,并定义其物理特性,如材料、密度和弹性模量等。
然后,我们需要定义边界条件,如重力和接触条件等。
最后,我们可以运行模拟并观察小球的运动状态。
在进行流固耦合模拟时,我们需要将FLUENT和Mechanical模块进行耦合。
这可以通过ANSYS Workbench中的Multi-FieldSolver实现。
在Multi-Field Solver中,我们需要定义FLUENT和Mechanical之间的耦合条件,如流体力和固体位移等。
然后,我们可以运行模拟并观察小球在空气中的运动状态,以及其与周围空气的相互作用。
在模拟小球跌落的流固耦合问题时,我们需要考虑以下因素:1.空气阻力:空气阻力将影响小球的运动状态,因此我们需要对空气流动进行准确的模拟。
2.重力:重力是小球运动的驱动力,我们需要准确地定义重力的作用。
3.接触:小球与地面的接触将影响其运动状态,因此我们需要准确地定义接触条件。
4.材料特性:小球的材料特性将影响其弹性和变形,我们需要准确地定义材料特性。
ansys的直接耦合场分析(热结构耦合)
在直接耦合场分析的前处理中要记住以下方面:
•使用耦合场单元的自由度序列应该符合需要的耦合场要求。
模型中不需要耦合的部分应使用普通单元。
•仔细研究每种单元类型的单元选项,材料特性合实常数。
耦合场单元相对来说有更多的限制(如, PLANE13不允许热质量交换而PLANE55单元可以, SOLID5不允许塑性和蠕变而SOLID45可以)。
•不同场之间使用统一的单位制。
例如,在热-电分析中,如果电瓦单位使用瓦(焦耳/秒),热单位就不能使用Btu/s。
•由于需要迭代计算,热耦合场单元不能使用子结构。
在直接方法的加载,求解,后处理中注意以下方面:
•如果对带有温度自由度的耦合场单元选择瞬态分析类型的话:
–瞬态温度效果可以在所有耦合场单元中使用。
–瞬态电效果(电容,电感)不能包括在热-电分析中(除非只是TEMP和VOLT自由度被激活)。
–带有磁向量势自由度的耦合场单元可以用来对瞬态磁场问题建模(如,SOLID62). 带有标量势自由度的单元只能模拟静态现象(SOLID5)。
•学习每种单元的自由度和允许的载荷。
耦合场单元允许的相同位置(节点,单元面等)施加多种类型的载荷(D, F, SF, BF) 。
•耦合场分析可以使高度非线性的。
考虑使用Predictor 和Line Search 功能改善收敛性。
•考虑使用Multi-Plots功能将不同场的结果同时输出到多个窗口中。
Ansys 耦合 不同单元之间的连接问题
Ansys 耦合不同单元之间的连接问题ansys耦合-不同单元之间的连接问题问题:如下图所示block单元和beam单元如何连接在一起?先看例子:fini/cle/filname,beam_and_solid_elements_connection!定义工作文件名/title,couple_and_constraint_equation!定义工作名/prep7et,1,solid95!定义实体单元类型为solid95et,2,beam4!定义梁单元类型为beam4mp,ex,1,3e4!定义材料的弹性模量mp,prxy,1,0.3!定义泊松比r,1!定义实体单元实常数r,2,10.0,10/12.0,1000/12.0,10.0,1.0!定义梁单元实常数blc4,,,20,7,10!建立矩形块为实体模型wpoffs,0,3.5!将工作平面向y方向移动3.5wprota,0,90!将工作平面拖x轴转动90度vsbw,all!将实体沿工作平面剖开wpoffs,0,5!将工作平面向y方向移动5wprota,0,90!将工作平面绕x轴旋转90度vsbw,all!将实体沿工作平面切开wpcsys,-1!将工作平面设为与总体笛卡儿坐标一致k,100,20,3.5,5!建立关键点k,101,120,3.5,5!建立关键点l,100,101!相连接关键点分解成梁的线实体lsel,s,loc,x,21,130!挑选梁线latt,1,2,2!选定梁的单元属性lesize,all,,,10!选定梁上的单元份数lmesh,all!划分梁单元vsel,all!选择所有实体vatt,1,1,1!设置实体的单元属性esize,1!指定实体单元尺寸mshape,0,2d!设置实体单元为2dmshkey,1!设置为映射网格划分方法vmesh,all!分割实体单元alls!全选fini!退出前处理/solu!进入求解器asel,s,loc,x,0!挑选实体的端面da,all,all!约束实体端面alls!全选fk,101,fy,-3.0!在两端施予y向压力cp,1,ux,1,21!耦合节点1和节点21x方向自由度cp,2,uy,1,21!耦合节点1和节点21y方向自由度cp,3,uz,1,21!耦合节点1和节点21z 方向自由度ce,1,0,626,ux,1,2328,ux,-1,1,roty,-abs(nz(626)-nz(2328))!设置约束方程ce,2,0,67,ux,1,4283,ux,-1,1,rotz,-abs(ny(67)-ny(4283))!设置约束方程ce,3,0,67,uz,1,4283,uz,-1,1,rotx,-abs(ny(67)-ny(4283))!设置约束方程alls!全选solve!保存fini!退出求解器/post1!进入通用后处理plnsol,u,y,0,1.0!显示y方向位移plnsol,s,eqv,0,1.0!显示等效应力etable,zl1,smisc,1!加载梁单元上i节点x方向的力etable,zl2,smisc,7!加载梁单元上j节点x方向的力etable,mz1,smisc,6!加载梁单元上i节点z方向的力矩etable,mz2,smisc,12!加载梁单元上j节点z方向的力矩pletab,zl1!显示梁单元x方向的力pletab,mz1!表明梁单元z方向力矩ansys中联系自由度的方法(ce)――耦合和约束方程ce命令1耦合当须要逼使两个或多个自由度获得相同(但未明)值,可以将这些自由度耦合在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS的耦合命令【ZZ】
1 耦合
当需要迫使两个或多个自由度取得相同(但未知)值,可以将这些自由度耦合在一起。
耦合自由度集包含一个主自由度和一个或多个其它自由度。
典型的耦合自由度应用包括:
•模型部分包含对称;
•在两重复节点间形成销钉、铰链、万向节和滑动连接;
•迫使模型的一部分表现为刚体。
如何生成耦合自由度集
1.在给定节点处生成并修改耦合自由度集
命令:CP
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Couple DOFs
在生成一个耦合节点集之后,通过执行一个另外的耦合操作(保证用相同的参考编号集)将更多节点加到耦合集中来。
也可用选择逻辑来耦合所选节点的相应自由度。
用CP命令输入负的节点号来删除耦合集中的节点。
要修改一耦合自由度集(即增、删节点或改变自由度标记)可用CPNGEN命令。
(不能由GUI直接得到CPNBGEN命令)。
2.耦合重合节点。
CPINTF命令通过在每对重合节点上定义自由度标记生成一耦合集而实现对模型中重合节点的耦合。
此操作对“扣紧”几对节点(诸如一条缝处)尤为有用。
命令:CPINTF
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Coincident Nodes
3.除耦合重复节点外,还可用下列替换方法迫使节点有相同的表现方式:
o如果对重复节点所有自由度都要进行耦合,常用NUMMRG命令(GUI:Main Menu>Preprocessor>Numbering Ctrls>Merge Items)合并节点。
o可用EINTF命令(GUI:Main Menu> Preprocessor>Create> Elements >At Coincid Nd)通在重复节点对之间生成2节点单元来连接它们。
o用CEINTF命令(GUI:Main Menu>Preprocessor> Coupling/Ceqn >Adjacent Regions)将两个有不相似网格模式的区域连接起来。
这项操作使一个区域的选定节点与另一个区域的选定单元连接起来生成约束方程。
生成更多的耦合集
一旦有了一个或多个耦合集,可用这些方法生成另外的耦合集:
1.用下列方法以相同的节点号但与已有模式集不同的自由度标记生成新的耦合集。
命令:CPLGEN
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Gen w/Same Nodes
2.用下列方法生成与已有耦合集不同(均匀增加的)节点编号但有相同的自由度标记的新的耦合集:
命令:CPSGEN
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Gen w/Same DOF
使用耦合注意事项
1.每个耦合的节点都在节点坐标系下进行耦合操作。
通常应当保持节点坐标系的一致性。
2.自由度是在一个集内耦合而不是集之间的耦合。
不允许一个自由度出现在多于一个耦合集中。
3.由D或共它约束命令指定的自由度值不能包括在耦合集中。
4.在减缩自由度分析中,如果主自由度要从耦合自由度集中选取,只有主节点的自由度才能被指定为主自由度。
5.在结构分析中,耦合自由度以生成一刚体区域有时会引起明显的平衡破坏。
不重复的或不与耦合位移方向一致的一个耦合节点集会产生外加力矩但不出现在反力中。
2约束方程
约束方程提供了比耦合更通用的联系自由度的方法。
有如下形式:
这里U(I)是自由度,N是方程中项的编号。
如何生成约束方程
1.直接生成约束方程
直接生成约束方程:
命令:CE
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Constraint Eqn
下面为一个典型的约束方程应用的例子,力矩的传递是由BEAM3单元与PLANE42单元(PLANE42单元无平面转动自由度)的连接来完成的:
图12-1建立旋转和平移自由度的关系
如果不用约束方程则节点2处表现为一个铰链。
下述方法可在梁和平面应力单元之间传递力矩,自由度之间满足下面的约束方程:
ROTZ2 = (UY3 - UY1)/10
0 = UY3 - UY1 - 10*ROTZ2
相应的ANSYS命令为:
CE,1,0,3,UY,1,1,UY,-1,2,ROTZ,-10
修改约束方程
在PREP7或SOLUTION中修改约束方程中的常数项:
命令:CECMOD
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Modify ConstrEqn
Main Menu>Preprocessor>Loads>Other>Modify ConstrEqn
Main Menu>Solution>Other>Modify ConstrEqn
如果要修改约束方程中的其它项,必须在求解前在PREP7中用使CE命令(或相应GUI 途径)。
2.自动生成约束方程
生成刚性区域
CERIG命令通过写约束方程定义一个刚性区域。
通过连接一主节点到许多从节点来定义刚性区。
(此操作中的主自由度与减缩自由度分析的主自由度是不同的)
命令:CERIG
GUI: Main Menu>Preprocessor>Coupling / Ceqn>Rigid Region
将CERIG命令的Ldof设置为ALL(缺省),此操作将为每对二维空间的约束节点生成三个方程。
这三个方程在总体笛卡尔空间确定三个刚体运动(UX、UY、ROTZ)。
为在二维模型上生成一个刚性区域,必须保证X─Y平面为刚性平面,并且在每个约束节点有UX、UY和ROTZ三个自由度。
类似地,此操作也可在三维空间为每对约束节点生成六个方程,在每个约束节点上必须有(UX、UY、UZ、ROTX、ROY和ROTZ)六个自由度。
输入其它标记的Ldof域将有不同的作用。
如果此区域设置为UXYZ,程序在二维(X,Y)空间将写两个约束方程,而在三维空间(X、Y、Z)将写三个约束方程。
这些方程将写成从节点的平移自由度和主节点的平移和转动自由度。
类似地,RXYZ标记允许生成忽略从节点的平移自由度的部分方程。
其它标记的Ldof将生成其它类型的约束方程。
总之,从节点只需要由Ldof标记的自由度,但主节点必须有所有的平移和转动自由度(即二维的UX、UY和ROTZ;三维的UX、UY、UZ、ROTX、ROTY、ROTZ)。
对由没有转动自由度单元组成的模型,应当考虑增加一个虚拟的梁单元以在主节点上提供旋转自由度。
将疏密不同的已划分网格区域连在一起
可将一个区域(网格较密)的已选节点与另一个区域(网格较稀)的已选单元用CEINTF 命令(菜单途径Main Menu>Preprocessor>Coupling / Ceqn>Adjacent Regions)连起来生成约束方程。
这项操作将不相容网格形式的区域“系”在一起。
在两区域的交界处,从网格稠密的区域选择节点A,从网格粗糙区域选择单元B,用区域B单元的形函数,在相关的区域A和B界面的节点处写约束方程。
ANSYS允许这些节点位置使用两公差准则。
节点在单元之外超过第一公差就认为节点不在界面上。
节点贴近单元表面的距离小于第二公差则将节点移到表面上,见下图。
对CEINTF命令有些限制:应力或热通量可能会不连续地穿过界面。
界面区域的节点不能指定位移。
可用每节点有六个自由度的单元接合6自由度实体。
从已有约束方程集生成约束方程集
可用CESGEN命令从已有约束方程集生成约束方程。
那么已有约束方程集内的节点编号将增加以生成另外的约束方程集。
另外约束方程集的标记和系数保持与原集的一致。
命令:CESGEN
GUI: Main Menu>Preprocessor>Coupling / Ceqn >Gen w/same DOF
使用约束方程的注意事项
•所有的约束方程都以小转动理论为基础。
因此,它应用在大转动分析中〔NLGEOM〕应当限制在约束方程所包含的自由度方向无重大变化的情况。
•约束方程的出现将产生不可预料的反力和节点力结果。
•由于相邻区域网格疏密不同,边界上的相容性仍然存在。
但是当网格越密,这种不相容的危害就越小。