光无源器件测试

合集下载

光无源器件的偏振模色散测量

光无源器件的偏振模色散测量

文章编号:0258-7025(2002)12-1080-05光无源器件的偏振模色散测量季杭峰1,黄德修1,张 晟1,屈红昌2(1华中科技大学光电子工程系,湖北武汉430074;2福州康顺光通讯有限公司,福建福州350014)提要 光纤通信系统中的偏振模色散(P M D)测量已越来越重要。

针对光无源器件的具体特点,以单级光隔离器和双级光隔离器为例,分析比较了几种PM D 的测量方法,指出琼斯矩阵本征法(JM E)是较适合的一种方法。

关键词 偏振模色散,双折射,测量,光无源器件中图分类号 O 436 3 文献标识码 APMD Measurement of Passive Optical ComponentsJI Hang -feng 1,HUANG De -xiu 1,ZHANG Sheng 1,QU Hong -chang21Dep ar tment of Op toelectronic Engineer ing ,Huaz hong University of Science andTechnology ,Wuhan ,H ubei 430074;2K oncent Comm unication IN C .,Fuz hou ,Fujian 350014Abstract T his paper analyzes and compares sever al PM D measurement methods based on the character istics o f passive optical components for both sing le -stage o ptical isolator and dua-l stage optical i solator.It is shown that the Jones M atrix Eig enanalysis method is suitable.Key words polar ization mo de dispersion,birefr ing ence,measurement,passive optical co mponents收稿日期:2001-09-04;收到修改稿日期:2001-12-10作者简介:季杭峰(1978 ),男,浙江浦江人,华中科技大学光电子系硕士研究生,主要从事光无源器件方面的研究。

光无源器件偏振相关损耗(PDL)的理论和测试方法

光无源器件偏振相关损耗(PDL)的理论和测试方法

但是通信网络总是 由光纤和各种光器 光纤是一个主轴方向和双折射

前言
偏移 . = 曲. 光喜 弯 在部 件 内部 的二 色性介 质 件来构成 的。因此对于光通信 系统 豹偏振 等 。以最常见 全 oai t n D p net 纤作为传导介质存在着残余双折 外界 大小不断殖机改变的传输介质 . 以沿光 P l z i ee dn a o r L s P L 是光无源器件的 项重要 的参数 环境变化导致的双折射 激光信号传输时 纤传输方向的任何位置其偏振态及偏振主 os D } 指标 .也是衡量光器件性 能对于传输 光信 其偏振态就会随机变化 而随机变化 偏 轴方向均随外界干扰而 随机改变 ,而大多
号的偏振状 态敏 感程度 的参量
亦称 偏振
数光纤 器件的
灵敏度 ,它是指传输光信号的偏 振状 态发
生 3 0 变化时 , 6。 光器件对应输 出端 口光 功 率的最大 变化 量{。 . 在实际应用中 光信 号 】 白 偏振状 态经 常会 发生变化 .如半 导体 激 勺 光器输出的激 光为偏振度大于2d 的偏 振 0B 光 园此往往要求 器件有足够小的偏振 敏
维普资讯
O P IA B  ̄ T C LFXE c。
光无源器件偏振相关损耗
De e d tL s fOpia s ie De ie p n en o so t l c Pa sv vc s
可 束 呻n 蚌L 。Ud O m ★唐 电佰 光通信分酱


— —
》0 : 1<n时 . 当『 _ 同理可以 限值
第 J 输出端 口的输出光功 个
传输性 能都与
通过光信号的
偏 振态 有 关 。 例如耦台器或

光无源器件参数测试实验

光无源器件参数测试实验

光无源器件参数测试实验光无源器件参数测试实验是光电类实验中的一种重要实验,用于测试和研究光无源器件的性能和特性。

光无源器件主要包括光电二极管、光敏电阻、光敏晶体管等。

实验目的:1.理解光无源器件的工作原理和性能特点;2.学会使用光无源器件测试仪器进行参数测试;3.掌握测试光无源器件的光电特性,如响应特性、光电流特性、电光转换效率等。

实验仪器和材料:1.光无源器件测试仪器:光源、光功率计、电源、模拟电压源、示波器等;2.光无源器件样品:光电二极管、光敏电阻、光敏晶体管等;3.光源:激光器、LED灯等。

实验步骤:1.准备工作:a.将光无源器件样品插入到测试仪器中的测试接口;b.打开测试仪器,进行仪器的预热和校准。

2.测试光线响应特性:a.将光源对准光无源器件,并调节光源的强度。

b.测量光无源器件的输出电流或电压随光源强度变化的关系曲线。

c.记录数据并分析光无源器件的响应特性。

3.测试光电流特性:a.将光源对准光无源器件,并固定光源的强度。

b.根据不同的实验要求,设置不同的电压源输出电压,测量光无源器件的输出电流。

c.记录数据并分析光无源器件的光电流特性。

4.测试电光转换效率:a.选取适当的光源和光无源器件样品。

b.测试光无源器件的光电转换效率,即测量光无源器件输出功率与输入光功率之比。

c.记录数据并分析光无源器件的电光转换效率。

5.分析实验结果:根据实验数据,进行曲线拟合、数据处理和结果分析,探讨光无源器件的性能和特点。

实验注意事项:1.实验时应注意光无源器件的灵敏度,避免直接光照到器件。

2.使用仪器和光源时要遵守相关的安全操作规程,避免产生辐射伤害。

3.实验过程中的参数设置和测试条件应根据实际需要进行调整。

通过光无源器件参数测试实验,可以深入了解光无源器件的性能和特性,为光电器件的设计、研究和应用提供了有力的支持。

同时,此实验也可以帮助学生掌握光电技术的基本原理和实验技能,培养实验观察、数据处理和问题分析解决能力。

3 无源器件测量

3 无源器件测量

性并且正在使用的光纤连接器主要有五
种结构。
套管结构
套管结构的连接器由插针和套筒组成。
双锥结构
双锥结构连接器是利用锥面定位。 V形槽结构 V形槽结构的光纤连接器是将两个插针 放入V形槽基座中,再用盖板将插针压紧, 利用对准原理使纤芯对准。
V形槽结构
球面定心结构
球面定心结构由两部分组成,一部分是 装有精密钢球的基座,另一部分是装有 圆锥面(相当于车灯的反光镜)的插针。
的使用效果往往要求器件有足够小的偏
振相关损耗。
7. 隔离度
隔离度是指某一光路对其他光路中的信号 的隔离能力。隔离度高,也就意味着线路之间 的“串话”小。其数学表达式为
式中:Pt 是某一光路输出端测到的其他光 路信号的功率值;Pin是被检测光信号的输入功 率值。
3.4 光电耦合器
定义:发光器件与光接受器件的组合器件。 类型:


光电耦合/隔离器:在电路之间传递信息,又 能实现电路间的电气隔离和消除噪声。 光传感器:用于检测物体的位置或物体有无的 状态。
发光器件:LED,LD,灯等 光接受器件:光电二极管/三极管,光电 池,光敏电阻。
工作原理与特点
发光器件与光接受器件封装一体,但不接触,有很强 的电气绝缘性,信号通过光传输。 特点:
光纤连接器特性
评价一个连接器的主要指标有4个,即插入 损耗、回波损耗、重复性和互换性。 1. 插入损耗 插入损耗是指光纤中的光信号通过活动连 接器之后,其输出光功率相对输入光功率的比 率的分贝数,表达式为: Ac=-10lgP1/P0(dB) 式中:Ac为连接器插入损耗;P0 为输入 端的光功率;P1为输出端的光功率。
CCD
CCD是一种电荷耦合器件(Charge Coupled Device) CCD的突出特点:是以电荷作为信号,而不同 于其它大多数器件是以电流或者电压为信号。 CCD的基本功能是电荷的存储和电荷的转移。 CCD工作过程的主要问题是信号电荷的产生、 存储、传输和检测。

光无源器件测试方法

光无源器件测试方法

光无源器件测试方法光无源器件是指在光通信系统中,不需要外部能源供应而能够实现光信号的传输和控制的器件。

典型的光无源器件包括光纤、光栅、光分路器、光耦合器等。

为了确保光无源器件在正常工作条件下能够稳定可靠地传输光信号,需要进行严格的测试和验证。

本文将从光纤、光栅、光分路器和光耦合器等不同类型的光无源器件入手,介绍其测试方法。

1.光纤测试方法光纤是光通信系统中最基础、最重要的光无源器件。

常用的光纤测试方法包括:(1)衰减测试:通过测试光信号从光纤中的衰减情况,来评估光纤功率损失情况。

(2)反射测试:测试光纤接口的反射损耗,确保光信号不会因为接口反射而引起干扰或损失。

(3)纤芯直径测试:测试光纤纤芯直径的尺寸,以确保光信号能够正常传输。

2.光栅测试方法光栅是一种具有周期性折射率变化的光无源器件,常用于光波的衍射和光谱分析等应用。

光栅的测试方法包括:(1)频率响应测试:测试光栅的响应频率范围和频率分辨率,以评估其衍射性能。

(2)衍射效率测试:测试光栅的衍射效率,即测试输入光功率和输出光功率之间的关系。

(3)波长选择测试:测试光栅的波长选择性能,即测试不同波长的光信号在光栅中的传输效果和衍射效率。

3.光分路器测试方法光分路器是一种能够将入射光信号分成两个或多个输出的光无源器件。

光分路器的测试方法包括:(1)分光比测试:通过测试输入光功率和输出光功率之间的关系,来评估光分路器的分光比性能。

(2)均匀性测试:测试光分路器的不同输出通道之间的功率均匀性,以确保光信号在分路器中能够平衡地分布。

4.光耦合器测试方法光耦合器是一种能够将两个或多个光纤的光信号耦合在一起的光无源器件。

光耦合器的测试方法包括:(1)插损测试:通过测试耦合器输入光功率和输出光功率之间的差异,来评估光耦合器的插损性能。

(2)均匀性测试:测试耦合器不同输出通道之间的功率均匀性,以确保光信号在耦合器中能够均匀地分布。

综上所述,光无源器件的测试方法主要包括衰减测试、反射测试、频率响应测试、衍射效率测试、波长选择测试、分光比测试、均匀性测试和插损测试等。

十光纤无源器件特性测试

十光纤无源器件特性测试

实验十光纤无源器件特性测试实验
一、实验目的
1、了解光纤无源器件,如活动连接器、Y型分路器、星型耦合器等器件的工作原理及
结构。

2、了解它们对光纤通信系统的影响。

3、掌握它们的正确使用方法。

4、掌握其主要特性参数。

二、预习要求
1、阅读光纤通信系统有关无源光器件的章节。

2、熟悉待测器件。

三、实验框图
图12-1 光纤无源器件特性测试框图
四、实验内容
1、测量光纤活动连接器的插入损耗。

读者可根据图12-1光纤无源器件特性测试框图将
光纤活动连接器接入系统进行测试,图中标注“光波信号输入”,可输入任一数字信号做光纤传输。

测量记录并填写下表:
在测试中,可通过调节发射电流来调节发射功率,也可改变输入的码元调节发射功率。

2、测量Y型分路器的插入损耗及回波损耗。

3、测量星型耦合器的插入损耗及光串扰。

五、实验要求
1、对每一器件写出测试步骤。

2、将测试结果进行记录整理。

六、无源器件结构图
Y型分路器
星型耦合器
七、实验仪器
光功率计、光无源器件。

实验五光无源器件特性测试实验

实验五光无源器件特性测试实验

实验五-光无源器件特性测试实验实验五:光无源器件特性测试实验一、实验目的1.掌握光无源器件的基本特性测试方法;2.熟悉光无源器件的性能指标;3.学习并掌握光损耗测试、光回波损耗测试、光方向性测试等基本光无源器件测试方法。

二、实验原理光无源器件是构成光通信网络不可或缺的部分,其特性测试对于确保系统的稳定性和性能至关重要。

实验中,我们将对光损耗、光回波损耗和光方向性等关键指标进行测试。

1.光损耗:光损耗是指光在传输过程中,由于各种原因导致的光功率减弱。

实验中,我们通过测量输入光功率和输出光功率之差,得到器件的光损耗。

2.光回波损耗:光回波损耗是指反射回来的光功率与入射光功率之比。

高回波损耗意味着低反射,有助于减少光信号的散射和增强系统的稳定性。

3.光方向性:光方向性描述了光在特定方向上的传播能力。

实验中,我们通过测量器件在不同角度上的透射和反射光功率,评估其方向性。

三、实验步骤1.搭建测试平台:准备好测试所需的设备和器材,包括光源、光功率计、稳定光源、光无源器件待测件、光纤跳线等。

2.初始化:对测试平台进行初始化,包括连接光纤、设置光源波长等。

3.测试光损耗:首先,调整好光源的输出功率,将稳定光源的光纤连接到光无源器件的输入端,同时将光功率计连接到输出端,测量原始的光功率P1;然后,将待测件插入到稳定光源与光功率计之间,再次测量输出光功率P2;最后,通过计算P1和P2的差值,得到光损耗=10*log10(P1/P2)。

4.测试光回波损耗:将稳定光源的光纤连接到光无源器件的输入端,同时将回波损耗仪连接到输出端,测量回波损耗值。

5.测试光方向性:通过旋转待测件,在不同角度上测量透射和反射光功率,并记录数据。

通常以角度为横坐标,以功率为纵坐标绘制曲线图,即可得到光方向性的结果。

6.数据处理与分析:对测试得到的数据进行分析,评估待测件的性能。

对比同类型器件的测试结果,可以对器件进行优化或改进设计。

7.清理现场:实验结束后,关闭设备并整理现场。

06_光无源器件的测试技术及安捷伦针对多端口器件ILPDL的测试新方案

06_光无源器件的测试技术及安捷伦针对多端口器件ILPDL的测试新方案

06_光无源器件的测试技术及安捷伦针对多端口器件ILPDL的测试新方案光无源器件是光通信系统中的重要组成部分,主要包括光纤、光连接器、光分路器等。

然而,由于光无源器件的测试与调试比较复杂,需要用到一些专业的测试设备和技术。

本文将介绍光无源器件的测试技术,并重点介绍安捷伦公司针对多端口器件ILPDL的测试新方案。

光无源器件的测试技术主要包括插损、回损、端面反射、交叉耦合等指标的测试,下面将逐一介绍这些测试技术。

1.插损测试:插损是指信号在器件中传输时的损耗程度。

插损的测试常用方法有OTDR(光时域反射仪)、光源和功率计等。

OTDR可以通过分析反射光信号的强度和时间来测量插损。

光源和功率计则可以测量输入和输出的光功率,从而计算出插损。

2.回损测试:回损是指器件在输入和输出信号方向上的反射程度。

回损的测试常用方法有OTDR、光源和功率计等。

OTDR可以通过分析反射光信号的幅度和时间来测量回损。

光源和功率计则可以测量输入和输出的光功率,从而计算出回损。

3.端面反射测试:端面反射是指器件介面表面对光的反射程度。

端面反射的测试常用方法有光源和功率计、光学显微镜等。

光源和功率计可以测量从器件端口发送的光功率和从器件端口反射回的光功率,从而计算出端面反射。

4.交叉耦合测试:交叉耦合是指多个器件之间的耦合现象。

交叉耦合的测试常用方法有光源和功率计、OTDR等。

通过在一个器件上输入光信号,然后在其他器件的输出端口测量光功率,从而计算出交叉耦合。

针对多端口器件ILPDL的测试,安捷伦提出了一种新的测试方案。

该方案采用安捷伦的高性能光子学测量系统,并结合矢量网络分析仪等设备,实现对ILPDL器件的全面测试。

该方案的主要步骤包括:首先,使用光源和功率计对器件的插损进行测试,测量输入和输出的光功率,从而计算出插损。

接下来,使用OTDR对器件的回损进行测试,通过反射光信号的幅度和时间来测量回损。

然后,使用光学显微镜对器件的端面反射进行测试,通过测量输入和输出的光功率来计算出端面反射。

(整理)光无源器件测试

(整理)光无源器件测试

光无源器件摘要目录-1.2.1概念3.2品种4.3测试图5.6.4原理及应用概念光无源器件是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。

具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。

品种▲ FC、SC、ST、LC等多种类型适配器▲ 有PC、UPC、APC三种形式▲ FC、SC、ST、LC等各种型号和规格的尾纤(包括带状和束状),芯数从单芯到12芯不等。

测试图光无源器件测试是光无源器件生产工艺的重要组成部分,无论是测试设备的选型还是测试平台的搭建其实都反映了器件厂商的测试理念,或者说是器件厂商对精密仪器以及精密测试的认识。

不同测试设备、不同测试系统搭建方法都会对测试的精度、可靠性和可操作性产生影响。

本文简要介绍光无源器件的测试,并讨论不同测试系统对精确性、可靠性和重复性的影响。

在图一所示的测试系统中,测试光首先通过偏振控制器,然后经过回波损耗仪,回波损耗仪的输出端相当于测试的光输出口。

这里需要强调一点,由于偏振控制器有1~2dB插入损耗,回波损耗仪约有5dB插入损耗,所以此时输出光与直接光源输出光相比要小6~7dB。

可以用两根单端跳线分别接在回损仪和功率计上,采用熔接方式做测试参考,同样可采用熔接方法将被测器件接入光路以测试器件的插损、偏振相关损耗(PDL)和回波损耗(ORL)。

该方法是很多器件生产厂商常用的,优点是非常方便,如果功率计端采用裸光纤适配器,则只需5次切纤、2次熔纤(回损采用比较法测试*)便可完成插损、回损及偏振相关损耗的测试。

但是这种测试方法却有严重的缺点:由于偏振控制器采用随机扫描Poincare球面方法测试偏振相关损耗,无需做测试参考,所以系统测得的PDL实际上是偏振控制器输出端到光功率计输入端之间链路上的综合PDL值。

由于回损仪中的耦合器等无源器件以及回损仪APC的光口自身都有不小的PDL,仅APC光口PDL值就有约0.007dB,且PDL相加并不成立,所以PDL测试值系统误差较大,测试的重复性和可靠性都不理想,所以这种方法不是值得推荐的方法。

光无源器件参数测试实验

光无源器件参数测试实验

光无源器件参数测试实验光无源器件参数测试实验是对光通信系统中使用的无源器件进行性能测试的一种方法。

无源器件包括光纤、光分路器、光耦合器等,它们在光通信系统中起到传输和分配光信号的作用。

在光通信系统中,无源器件的性能直接影响到系统的传输效率和稳定性,因此准确测试无源器件的参数是非常重要的。

1.实验目的测试光无源器件的参数,包括插入损耗、反射损耗、带宽、槽隔离度等,以评估器件的性能,为光通信系统的设计和优化提供依据。

2.实验仪器与设备(1)光源:常用的光源有激光二极管光源、电子脉冲激光器、气体激光器等。

光源的选择应根据实际应用需求确定。

(2)光功率计:用于测量光源的输出光功率,常用的光功率计包括光纤功率计和探头功率计。

(3)光分路器:用于将光信号分成两个或多个信号,常用的光分路器有耦合式光纤分路器和干涉式光纤分路器。

(4)光耦合器:用于将光信号从一个光纤耦合到另一个光纤中,常用的光耦合器有耦合式光纤耦合器和波导式光纤耦合器。

(5)光衰减器:用于调节光信号的光功率,常用的光衰减器有可调半波电压衰减器、可调半波电压Tipo式衰减器。

(6)光检测器:用于检测光信号的强度和特性,常用的光检测器有光电二极管、光电探测器等。

(7)光谱仪:用于测量光信号的频谱,获取光信号的频率信息,常用的光谱仪有光栅光谱仪、波长计等。

3.实验步骤(1)校准仪器:调节光源的输出光功率,使用光功率计校准光源的输出功率,并记录下来。

(2)测量插入损耗:将光无源器件与光源和光功率计连接起来,记录下光源的输出功率和光经过器件后的功率,计算插入损耗。

(3)测量反射损耗:将光无源器件与光源和光功率计连接起来,记录下光源的输出功率和光反射回来的功率,计算反射损耗。

(4)测量带宽:使用光谱仪测量无源器件的光信号频谱,记录下信号的中心频率和带宽。

(5)测量槽隔离度:使用光分路器或光耦合器将光信号分成两个或多个信号,分别测量各个信号的光功率,并计算槽隔离度。

光无源器件原理与实验

光无源器件原理与实验

光无源器件原理与实验光纤是一种光无源器件,它由一种具有相对较高折射率的芯部和一种具有较低折射率的包层组成。

光纤的原理是通过光在高折射率的芯部中的全反射,实现对光信号的传输。

光纤可以实现长距离的光信号传输,具有低损耗、大带宽等优点,在通信和光学传感领域得到了广泛应用。

衍射光栅是另一种光无源器件,它是一种用于分光和光谱分析的重要元件。

衍射光栅的原理是基于光波在光栅的周期性结构上产生衍射,从而实现对不同频率光的分散。

光栅的间距和结构决定了分光的波长范围和分辨率。

衍射光栅广泛应用于光谱仪、激光器和光通信设备等领域。

光栅耦合器是一种用于实现光纤与光波导之间能量传输和耦合的器件。

它利用光在光波导和光纤之间的耦合效应,将输入的光信号有效地耦合到输出的光波导中。

光栅耦合器的原理是通过在光波导中制作周期性的折射率变化,实现对光信号的散射和耦合。

光栅耦合器在集成光学芯片、光通信和光数据处理等领域得到了广泛应用。

光波导是一种用于实现光信号传输和调制的光无源器件。

它由具有较高折射率的光波导芯片和具有较低折射率的包层构成。

光波导的原理是通过光波在光波导芯片中的传播实现对光信号的传输和调制。

光波导可以根据其结构和材料的不同,实现对光波的分导、合并和调制等功能。

光波导广泛应用于光通信、光传感和集成光学芯片等领域。

实验上,研究光无源器件的原理和性能可以采用多种方法。

例如,使用光纤传输系统可以实现对光纤传输性能的测量和优化。

利用干涉仪等实验装置可以研究衍射光栅的性质和应用。

通过光栅耦合器的制作和测试可以了解其耦合效率和性能特点。

利用微纳加工技术可以制备光波导芯片,并通过波导损耗测试和光调制实验等方法研究其性能和特性。

综上所述,光无源器件是利用光学原理实现光传输、分光、耦合和调制等功能的重要器件。

研究光无源器件的原理和实验有助于深入了解和优化其性能,为光通信、光传感和集成光学芯片等领域的应用提供技术支持。

(整理)光无源器件测试

(整理)光无源器件测试

光无源器件摘要目录-1.2.1概念3.2品种4.3测试图5.6.4原理及应用概念光无源器件是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。

具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。

品种▲ FC、SC、ST、LC等多种类型适配器▲ 有PC、UPC、APC三种形式▲ FC、SC、ST、LC等各种型号和规格的尾纤(包括带状和束状),芯数从单芯到12芯不等。

测试图光无源器件测试是光无源器件生产工艺的重要组成部分,无论是测试设备的选型还是测试平台的搭建其实都反映了器件厂商的测试理念,或者说是器件厂商对精密仪器以及精密测试的认识。

不同测试设备、不同测试系统搭建方法都会对测试的精度、可靠性和可操作性产生影响。

本文简要介绍光无源器件的测试,并讨论不同测试系统对精确性、可靠性和重复性的影响。

在图一所示的测试系统中,测试光首先通过偏振控制器,然后经过回波损耗仪,回波损耗仪的输出端相当于测试的光输出口。

这里需要强调一点,由于偏振控制器有1~2dB插入损耗,回波损耗仪约有5dB插入损耗,所以此时输出光与直接光源输出光相比要小6~7dB。

可以用两根单端跳线分别接在回损仪和功率计上,采用熔接方式做测试参考,同样可采用熔接方法将被测器件接入光路以测试器件的插损、偏振相关损耗(PDL)和回波损耗(ORL)。

该方法是很多器件生产厂商常用的,优点是非常方便,如果功率计端采用裸光纤适配器,则只需5次切纤、2次熔纤(回损采用比较法测试*)便可完成插损、回损及偏振相关损耗的测试。

但是这种测试方法却有严重的缺点:由于偏振控制器采用随机扫描Poincare球面方法测试偏振相关损耗,无需做测试参考,所以系统测得的PDL实际上是偏振控制器输出端到光功率计输入端之间链路上的综合PDL值。

由于回损仪中的耦合器等无源器件以及回损仪APC的光口自身都有不小的PDL,仅APC光口PDL值就有约0.007dB,且PDL相加并不成立,所以PDL测试值系统误差较大,测试的重复性和可靠性都不理想,所以这种方法不是值得推荐的方法。

光纤无源器件实验报告

光纤无源器件实验报告

光纤无源器件实验报告1 光纤无源器件综合实验一、耦合器的测试1、插入损耗(IL ) IL =OUTIN P P lg 10 (1)对1310nm 光波长 A IL =7.93 dB B IL =0.79 dB(2)对1550nm 光波长 A IL = 1.60 dB B IL = 5.17 dB2、附加损耗(EL )(1)对1310nm 光波长EL = 0.02 dB (2)对1550nm 光波长EL = 0.03 dB3、分光比(CR )(1)对1310nm 光波长 A CR =0.16% B CR =0.83%(2)对1550nm 光波长 A CR = 0.69% B CR =0.31%测试结果分析:本次测量实验数据,计算结果略高于所给的损耗变化量和分光比变化量参考值,说明由于温度及器件等因素的影响存在一定的测量误差。

二、光纤隔离器的特性和参数测试正向插入损耗1a =OUT IN P P lg10=0.19 dB 反响隔离度比2a =OUT IN P P lg 10=20.48 dB 测试结果分析:通过比较隔离器正、反两次测量实验结果,1a 与2a 数值相差很大,说明光正向通过时衰减很小,但反向通过时衰减很大。

与隔离器的工作性能相符,此次实验结果较理想。

三、波分复用/解复用器(WDM )的测试1、插入损耗(IL ) A IL = 7.83 dB B IL = 6.46 dB2、附加损耗(EL ) EL = 4.08 dB测试结果分析:根据参考实验值,本次实验数据损耗存在一定的误差。

四、光纤衰减器(VOA )特性实验(1)对1310nm 光波长衰减器衰减量功率值变化范围 5.1-0 nW (2)对1550nm 光波长衰减器衰减量功率值变化范围 28.5-27.2 nW 测试结果分析:本实验测试了固定、可调衰减器,实验现象明显,功率变化值明显。

安捷伦光无源器件CDPMD的测试方案(可编辑)

安捷伦光无源器件CDPMD的测试方案(可编辑)

安捷伦光无源器件CDPMD的测试方案安捷伦光无源器件CD/ PMD的测试方案付军高级应用工程师安捷伦科技电子测量仪器部Fred-fj_fu@agilent 光纤中的色散种类L late arrivalE early arrival 模间色散Modal dispersion MMF输出光脉冲输入光脉冲L EL光传播 E路径色度色散Chromatic dispersion CDELn 1L光频率E 偏振模色散Polarization-mode dispersion PMDLL偏振模式EEPage 2 色度色散对光传输的影响 2.5Gbit/s光纤10Gbit/s 更宽的频谱更多展宽更窄的比特间隙对展宽更敏感Bit rate Gb/s 2.510 401Dispersion limit2. dispersion ps/nm 16,000 1,00063Bitrate. length SMF km 94159 4Page 3 色度色散的定义相对群延时tg群延时Grouppsdelay:调制光波的传输时间,如“调制包络上1g的一点”D?L零色散波长色度色散系数Dps/nm-km色散斜率Page 4 光纤的偏振模式色散PMD 是由于光纤的双折射性而引起, 它导致的光脉冲的一部分能量比另一部分能量传输速度快而导致光脉冲失真SlowIdealcoreSlow axisaxisOvalcore Fast axis 偏振模式色散对数字通道的影响DGDDtEye DiagramEye DiagramDigital PulsePage 6 光纤的偏振模式耦合Fast长光纤的偏振模式色散可按照数段双折射短光纤的方式累计SlowtFast4 delaySlowcomponents‘t2 delaycomponents‘Idealized偏振模式色散按光纤长度的开方累计tinput pulse 实测:不同波长上的DGD 随时间的变化M.Karlsson, et al., IEEE. J. Lightwave Techn127km buriedDSF OpticalDEMUXOpticalMUX光传输系统的DGD分量Long Fiber .6SONET SONETps per root kmADMs ADMsEDFAs 1 psOptical Optical& Isolators 2MUX 1-20 ps DEMUX 1-20 pspsShort ConnectorFiber .02 ps .01 psPage 9 偏振模式色散的参数 :DGD ,PMD ,PMD系数衡量极化模式色散影响的最直接、最原始参数为DGD 。

光无源器件测试方法

光无源器件测试方法

power meter
在这个测试中, 你先要测量被测设备 每个端口的输出光功率, 然后计算出 这个比值. 如果你使用两个功率计或 者简单重新连接功率器就可以不需要 使用光开关. 一些两个通道的功率计 可以直接计算出这个比值. 如果分光 器有多个通道的时候, 光开关就显得 很重要.
类似插入损耗测试, 分光比测试也是 一个相对测试. 线性, 稳定性, 和连接 的重复精度都决定了测试的可靠性.
所有的功率都集中在你所需要的通带上没有其他波长的背景辐射可以让它所有的功率都集中到一根光纤中不受从测试系统或者dut反射回来的光的影响图11理想窄带源既然我们买不到图11那样的光源那我们来分析真实世界的一些折衷方案
18 # 无源器件基本测试方法
无源光器件基本测试方法
John Flower
介绍
由于对网络带宽要求不断提高, 用于 这种全光网络的器件的市场也不断扩 大. 本文章描述了无源器件测试的基 本原理, 对比几种不同的测试方法. 特别对测量宽带源和窄带源各种方法 的利弊进行讨论.
Insertion Loss (dB) = 10 log P in Pout
因为是相对测试, 所以仪表的精度不 会直接影响到测试结果. 仪表的稳定 性, 线性, 和连接的重复精度决定了
测试结果的准确性. 仪表的长期稳定 性决定了是否经常需要进行标准测量.
裸纤测量 从裸纤尾端进行可重复的精确的测 量需要细心. 使用一个调整好的切 割机制作一个标准的90度的端面. 把光纤夹具安装到检波器上, 旋转 它并得到读数的变化. 当我们将光 纤从夹具移开放回到原处的时候, 也检查这些读数的变化. 这些”重复 性”误差(root-sum)也要添加到计量 器的精度或稳定性中. 如果使用积 分球, 效果经常会更好.

光无源器件参数测试实验

光无源器件参数测试实验

光无源器件参数测试实验系统GCPT-B实验指导书(V1.0)武汉光驰科技有限公司WUHAN GUANGCHI TECHNOLOGY CO.,LTD目录一.部分无源器件测试基础知识........................... - 3 - 二.光纤耦合器的测试 .................................. - 7 - 三.光纤隔离器(ISOLATOR)的特性和参数测试............ - 14 - 四.波分复用/解复用器(WDM)的测试................... - 18 - 五.光纤衰减器(VOA)特性实验......................... - 22 -一.部分无源器件测试基础知识近年来,光纤通信发展非常迅速,应用日渐广泛。

作为光纤通信设备的重要组成部分的光无源器件,也取得了长足的进步,并逐步形成了规模产业。

光无源器件是一种光学元器件。

其工艺原理遵守光学的基本理论,即光纤理论和电磁波理论,各项技术指标、各种计算公式和各种测量方法和纤维光学、集成光学息息相关。

光无源器件是一门新兴的、不断发展的学科。

光纤通信的发展呼唤着功能更全、指标更先进的光无源器件不断涌现;一种新型器件的出现往往会有力的促进光纤通信的进步,有时甚至使其跃上一个新的台阶。

光纤通信系统对光无源器件的期望越来越大,器件的发展对系统的影响越来越深。

除此而外,光无源器件在光纤传感和其他光纤应用领域也大有用武之地。

光纤通信元件包括光缆、光有源器件、光无源器件等。

光纤无源器件主要包括耦合器/分路器(Coupler/Splitter)、隔离器(Isolator)、衰减器、波分复用/解复用器(WDM)、光分/插复用器(OADM)、光交叉互联器(OXC)、滤波器(Filter)和光开关(Optical Swich)等,它们都是将来光网络系统中必不可少的器件。

下面我们介绍一些基本的测试环境和条件,国标GB/T 13713-92中阐明测量条件如下:1.测试环境无源器件的测量应该在GB 2421-1989中所规定的正常大气条件下进行,即温度:15~35摄氏度;湿度:45%~75%;气压:85Kpa~106Kpa。

实验五-光无源器件特性测试实验

实验五-光无源器件特性测试实验

常用光纤器件特性测试实验实验五 光无源器件特性测试实验一、实验目的1、了解光无源器件,Y 型分路器以及波分复用器的工作原理及其结构2、掌握它们的正确使用方法3、掌握它们主要特性参数的测试方法二、实验内容1、测量Y 型分路器的插入损耗2、测量Y 型分路器的附加损耗3、测量波分复用器的光串扰三、预备知识1、光无源器件的种类,有哪些?重点学习几个特性。

四、实验仪器1、ZY12OFCom13BG3型光纤通信原理实验箱 1台2、FC 接口光功率计 1台3、万用表 1台4、FC-FC 法兰盘 1个5、Y 型分路器 1个6、波分复用器2个7、连接导线20根五、实验原理光通信系统的构成,除需要光源器件和光检测器件之外,还需要一些不用电源的光通路元、部件,我们把它们统称为无源器件。

它们是光纤传输系统的重要组成部分。

光无源器件包括光纤活动连接器(平面对接FC 型、直接接触PC 型、矩形SC 型)、光衰减器、光波分复用器、光波分去复用器、光方向耦合器(例如:Y 型分路器、星型耦合器)、光隔离器、光开关、光调制器……本实验重点介绍Y 型分路器和光波分复用器,下一实验重点讲光纤活动连接器。

在应用这些无源器件时必须考虑无源器件的各项指标,如Y 型分路器(1分2的光耦合器)的插入损耗,分光比,波分复用器的光串扰等。

下面对Y 型分路器插入损耗及附加损耗及其分光比、波分复用器的光串扰分别进行测试。

Y 型分路器的技术指标一般有插入损耗(Insertion Loss )、附加损耗(Excess Loss )、分光比和方向性、均匀性等,在实验中主要测试Y 型分路器的插入损耗,附加损耗及分光比。

就Y 型分路器而言,插入损耗定义为指定输出端口的光功率相对全部输入光功率的减少值。

插入损耗计算公式为5-1式。

)lg(10.IN outi P P Li I -=(5-1)其中,I.Li 为第i 个输出端口的插入损耗,P outi 是第i 个输出端口测到的光功率值,P IN是输入端的光功率值。

光纤无源器件特性测试实验

光纤无源器件特性测试实验

光纤无源器件特性测试实验[实验目的]1. 了解光纤活动连接器,光分路器,光耦合器及光波分复用器的工作原理及其结构.2. 掌握光纤活动连接器,光分路器,光耦合器及光波分复用器的正确使用方法.3. 掌握它们的主要特性参数的测试方法.[实验内容]1. 测量活动连接器的插入损耗.2. 测量活动连接器的回波损耗.3. 测量波分复用器的光串扰.4. 学习光分路器和耦合器的结构及原理.[实验仪器]RC-GT-II光纤通信原理实验箱,光功率计,FC/PC光纤活动连接器两只,FC/PC Y 型光分路器(分光比1:1)一只,FC/PC波分复用器两只,FC/PC光纤跳线四根. [实验原理](一)单模光纤活动连接器一个完整的光纤线路是由许多光纤接续而成的.接续分为永久性的和可拆卸的两类,前者是用电弧放电法,使两根光纤端头熔化而连接在一起,后者是通过活动连接器使两根光纤 31的端面作机械接触.无论哪种接续,其基本的技术要点都是光纤模斑要匹配,光纤端面要平整,光纤轴线要对准.好的连接的标准是插入损耗小和反射损耗大.光纤连接处的插入损耗和反射损耗的定义为1210lgsPLP= (dB) 式10-11210lgtPLP= (dB) 式10-2式中P1为入射光功率,P2为出射光功率,P3为反射光功率,如图10-1所示.由于连接处不可免的不连续性,P2P2+P3,即使后向反射光P3小到可以略去不计,仍然有P1>P2,即插入损耗存在.图10-1 光纤连接处的功率关系光纤活动连接器是可重复拆卸的无源器件.主要的技术要求除了插入损耗小,反射损耗大外,还有拆卸方便,互换性好,重复性好,能承受机械振动和冲击以及温度和湿度的变化. 光纤活动连接器种类很多,现在使用最多的是非调心型对接耦合式活动连接器,如平面对接式(FC型),直接接触式(PC型)和矩形(SC型)活动连接器等.单模光纤的模场直径不足10um,被连接的两段光纤的轴心对准度必须小于1um.因此, 单模光纤活动连接器的机械精度应达到亚微米级,需要超精细加工技术,包括切削加工和光学冷加工工艺技术来保证.1. FC型单模光纤活动连接器.典型的FC型单模光纤活动连接器结构如图10-2 所示,它由套筒,插针体a,b和装在插针体中的光纤组成.将a,b两者同时插入套筒中再将螺旋拧紧,就完成了光纤的对接. 两插针体端面磨成平面,外套一个弹簧对中套筒,使其压紧并精确对准定位. 32图10-2 FC型单模光纤活动连接器2. PC型单模光纤的活动连接器FC型连接器中的两根光纤处于平面接触状态,端面间不免有小的气隙,从而引起损耗和菲涅尔反射.改进的办法是把插针体端面抛磨成凸球面,这样就使被连接的两光纤端面直接接触.FC型和PC型单模光纤活动连接器的插入损耗都小于0.5dB,而PC型结构可将反射损耗提高到40dB.早期的FC型和PC型光纤活动连接器的套筒和插针套管都是用合金铜或不锈钢制造的, 但铜的耐磨性差,重复插拔的磨损会破坏对中精度,磨损产生的尘粒有时还会影响光的传输, 因而使用寿命短.不锈钢比铜加工困难,使磨损程度有所改进.现在最好的方案是套筒和插针套管都用陶瓷制造.用氧化锆制作开槽套筒,用氧化铝制作插针套管,可得到最好的配合. 采用陶瓷材料后,光纤活动连接器的寿命(插拔次数)可大于10000,而温度范围可扩展至一 40~+80?.3. SC型单模光纤活动连接器图10-3 SC型单模光纤活动连接器33图10-4 FC/APC型单模光纤活动连接器SC型单模光纤活动连接器如图10-3所示.与FC型,PC型活动连接器依靠螺旋锁紧对接光纤不同,SC型活动连接器只需轴向插拔操作,能自锁和开启,体积小,最适宜于高密度安装.SC型活动连接器采用塑料模塑工艺制造,插针套管是氧化锆整体型,端面磨成凸球面. 4. FC/APC型单模光纤活动连接器为了获得更高的反射损耗,已发展了FC/APC型单模光纤活动连接器,其结构如图10-4 所示.在这种结构中,两个插针体端面被磨成8?倾斜,使反射波不能沿入射波的反方向前进而是逃逸到光纤之外,因此,FC/APC单模光纤活动连接器的反射损耗可达到60dB以上,而最小插入损耗可达到0.3dB.(二)光分路器光分路器是一种光无源元件,用来将一路输入光功率分配成若干路输出.在光纤电视分配网络中特别需要将光发送机的大功率分配给一系列光接收机.从性能,可靠性,使用方便和价格等方面考虑,现在无例外地都采用熔锥型单模光纤耦合器构成1Xn光分路器. 将2X2单模光纤耦合器(图10-5)的第4臂剪去,即得1X2光分路器.同法将3X3单模光纤耦合器(图10-6)的第5,6臂剪去即得1X3光分路器.P1 P21 24 3P4 P3图10-5 2X2单模光纤耦合器单模光纤耦合器346 2 P2P1 1 3 P35 4 P4图10-6 3X3单模光纤耦合器对于n?4,有两个办法构造1Xn光分路器,其一是若干个1X2的光分路器的级联,其二是若干个1X2光分路器和1X3光分路器级联.在1X3光分路器出现以前,只能用1X2光分路器链构造1Xn光分路器,例如:两个1X2 光分路器级联构成1X3光分路器,三个1X2光分路器级联构成1X4光分路器.依此类推, 为了构造一个n=2k的1Xn光分路器,就需要n-1个1X2光分路器作k级级联,图10-7是 1X8光分路器的例子.由于第一个1X2光分路器都有附加损耗,帮多级级联必然造成较大的附加损耗和多重反射,特别是级联是通过熔接来实现时尤其如此.采用1X3光分路器作为1Xn光分路器的构成单元,可以大大减少级联数,从而减小1Xn 光分路器的附加损耗和多重反射.图10-8是联合运用1X2和1X3光分路器单元来构造1Xn (n?4)光分路器的方案.由图可见一个1X9光发路器只需四个1X3光分路器的二级级联. 利用自动化的连续熔融拉锥设备可以实现图10-8的构成方案而级间不用熔接,并且各输出口的分光比可任意指定.这比用多个分光比5%分档的市售1X2光分路器熔接而构成的1Xn 光分路器要优越得多.图0-7 1X8分路器的构成图10-8 光分路器的构成方案单模光纤耦合器35(三)光耦合器光耦合器又称光定向耦合器(directional coupler),是对光信号实现分路,合路,插入和分配的无源器件.它们是依靠光波导间电磁场的相互耦合来工作的.1. 光耦合器的分类光定向耦合器的种类很多,最基本的是实现两波耦合的耦合器.从结构上说,两个入口的光定向耦合器有如图10-9所示的品种.第一类为微光元件型.除了图10-9(a)那样采用微型透镜,半反射透镜的结构外,多数都是以自聚焦透镜为主要的光学构件,如图24-9(b),(c),(d),(e),(f).利用λ/4的自聚焦透镜能把会聚光线变成平行光线的特点来实现两束光线的耦合.第二类为光纤成形型,如图10-9(g).星形耦合器是光纤成形中最典型的形式,可以用两根以上的光纤经局部加热融合而成.这种光纤耦合器的制作要经过几道工序:首先去掉光纤的被覆层,再在熔融拉伸设备上平行安装两根光纤,然后用丁烷氧微型喷灯的火焰将光纤局部加热融合,并渐渐将融合部分的直径从200um左右拉细到20~40um左右.由于这种细芯中的光场渗透到包层中,所以两个纤芯之间就会产生光的耦合,拉伸程度不同,耦合比也不同.这种光纤耦合器的附加损耗和分光比由光纤选型和熔融拉伸工艺所决定,若人工操作, 则成品率不高.现在已出现自动熔融拉伸设备,可以自动监测分光比和拉伸量,用计算机控制微型喷灯的工作及气流量,这样制得的熔锥型光纤耦合器的平均插入损耗可达0.1 dB以下,分光比精度可达1%以下.熔锥型光纤耦合器的结构如图10—10所示.第三类为光纤对接耦合型.它是用玻璃加工技术,把光纤磨抛成楔形,将两根光纤的楔形斜面对接胶黏后,再与另一根光纤的端面黏结.其附加损耗可以低于1dB,隔离度大于 50dB,分光比可由1:1至1:100.或者先将两根光纤在一定长度上磨掉近一半,然后把这两半光纤黏结在一起.如图10-9(h)所示.第四类为平面波导型.它是用平面薄膜光刻,扩散工艺制作的,其一致性好,分光比精度也高,但耦合到光纤的插入损耗较大.如图10-9(i)所示.在上述各类光耦合器中,熔锥型光纤耦合器制作方便,价格便宜,容易与外部光纤连接为一整体,而且可以耐受机械振动和温度变化,故应用最多.36图10-9 几种光定向耦合器的结构示意图37图10-10 熔锥型光方向耦合器2. 2X2单模光纤耦合器的性能指标2 X 2单模光纤耦合器的结构方框图如图10-11所示.图10-11 2X2单模光纤耦合器方框图2X2单模光纤耦合器按应用目的可分别制成分路器和波分复用器,前者工作于一个波长,而后者则工作于两个不同的波长.当工作于一个波长时,光源接于端口1(或4),光功率除了传输到端口2(或3)外,也耦合到端口3(或2).几乎没有光功率从端口1(或4)耦合到端口4(或1).另外系统是可互易的,端口1,4可以与端口2,3交换.这种耦合器的技术指标如下.1. 工作波长λ0通常取1.31 m或1.55 m.2. 附加损耗Le附加损耗的定义为21110lgePPLP+= (dB) 式10-3式中Pl为注入端口1的光功率,P2,P3分别为端口2,3输出的光功率.好的2 X 2单模光纤耦合器的附加损耗可小于0.2dB.3. 分束比(或分光比)Ri分束比的定义为23iiPRPP=+i=2,3 式10-438其值根据应用要求而定.4. 分路损耗Li分路损耗的定义为eiiiLRpPL+ = =lg10lg101i=2,3 式10-55. 反向隔离度Lr反向隔离度的定义为4110lgrPLP= 式10-6通常应有Lr>55dB.测量反向隔离度时,须将端口2,3浸润于光纤的匹配液中,以防止光的反射.6. 偏振灵敏度?R偏振灵敏度的定义为光源的偏振方向变化90?时,光纤耦合器分束比变化的分贝数.好的光纤耦合器的偏振灵敏度应小于0.2dB. 7. 光谱响应范围?λ光谱响应范围是指光纤耦合器的分束比保持在给定误差范围内所允许的光源波长变化范围.通常?λ值为土20nm.除此以外,尚有机械性能和温度性能指标.当工作于两个不同的波长时,若两个波长为λ1,λ2的光波都从端口l注入,则端口2为λ1光波的输出口,端口3为λ2光波的输出口.波分复用器的主要技术指标如下. 1)工作波长λ1,λ2工作波长A1,λ2值由应用要求而定,例如1.31 m/1.55 m…2)插入损耗Li插入损耗的定义为12110lgiPLPλ=或23110lgPPλ式10-7 即波长为λ1输入光功率P1与输出光功率P2之比(化成分贝数)或波长为λ2的输入光功率P1与输出光功率P2之比(化成分贝数).优良的波分复用器的插入损耗可小于0.5dB.3)波长隔离度Lλ波长隔离度的定义为3913210lgPLPλλ=或22310lgPPλ式10-8它们是一个波长的光功率串扰另一波长输出臂程度的度量(化成分贝数).Lλ值一般应达到 20 dB以上.4)光谱响应范围?λ通常指插入损耗小于某一容许值的波长范围.要根据应用要求而定.除此以外还有机械性能和温度性能指标.一个典型的1.31 m/1.55 m熔锥型单模光纤波分复用器的谱损曲线如图10-14所示. 作为波分复用器的单模光纤耦合器可单向运用,也可双向运用.在单向运用时,两个不同波长的光波从端口1注入,端口2,3分别有一个波长的光波输出,这是分波器.反之, 两个不同波长的光波分别从端口2,3注人,则端口1有两个波长光波的合成输出,这是合波器.合波器,分波器分别应用在波分复用光纤传输系统的发送端和接收端,如图10-12所示.在双向运用时,正方向和反方向传输的光波的波长不同,两个波分复用器分别置于双向光纤传输系统的两端,起按波长分隔方向的作用,如图10-13所示.波分复用器的合波状态应用较多,例如,在掺饵光纤放大器中将980nm或1480nm 波长的泵浦(pump)光与1550 nm波长的信号光合成起来注入掺饵光纤.图10-12 波分复用光纤传输系统图10-13 双向光纤传输系统40图10-14 1.31 m/1.55 m熔锥型单模光纤波分复用器的谱损曲线(四)各无源器件特性测量框图1. 测试活动连接器插入损耗的实现向光发机的数字驱动电路送入一伪随机信号(长度为24位),保持注入电流恒定.将活动连接器连接在光发机与光功率计之间,记下此时的光功率P:;取下活动连接器,再测此时的光功率,记为P1,将P1,P2代入公式24-1即可计算出其插入损耗.其实验原理框图如图10-15所示:图10-15 活动连接器插入损耗的测量原理图2. 活动连接器的回波损耗:向光发机的数字驱动电路送入一伪随机信号(长度为24位),保持注入电流恒定.测得此时的光功率记为P1.将活动连接器按图10-16接入.测得此时的光功率为P2,将P1,P2 代入公式10-2即可计算出其回波损耗.其测试框图如图10-16所示:41图10-16 活动连接器回波损耗的测量3. 波分复用器的光串扰,波分复用器的光串扰即为其隔离度,其测试原理,框图如图 10-17所示:图10-17 波分复用器光串扰的测量原理图上图中波长为1310nm,1550nm的光信号经波分复用器复用以后输出的光功率分别为 P1,P2,解复用后分别输出的光信号,此时从1310窗口输出13lOnm的光功率为P11,输出 1550nm的光功率为P12;从1550窗口输出1550nm的光功率为P21,输出1310nm的光功率为P22.将各数字代入下列公式:1122210logPLP= 式10-92211210logPLP= 式10-10上式中L12,L21即为相应的光串扰.由于便携式光功率计不能滤除波长1310nm只测1550nm的光功率,同时也不滤除421550nm只测1310nm的光功率.所以改用下面的方法进行光串扰的测量.测量1310nm的光串扰的方框图如10-18(a)所示: 测量1550nm的光串扰的方框图如10-18(b)所示: 图10-18 波分复用器光串扰的测量框图 1122210logPLP= 式10-112211210logPLP= 式10-12上式中L12,L21即是光波分复用器相应的光串扰. [实验步骤](以下实验步骤以1310nm光端机的计算机接口一部分讲解,即实验箱左边的模块.1550nm光端机部分与其相同)(一)活动连接器的插入损耗测量1. 关闭系统电源,按图10-15(a)将光发送模块的的光输出端(1310nm TX),光跳线,光功率计连接好.2. 连接导线:将固定速率时分复用接口模块的FY-OUT与光发送单元的数字信号输入端口P202连接,连接固定速率时分复用单元的D1,D2,D3到D_IN1,D_IN2,D_IN3.3. 将单刀双掷开关S200拨向数字传输端.4. 开启系统电源用光功率计测量此时的光功率P1.5. 将光跳线和活动连接器串入其中,如图10-15(b),测得此时的光功率为P2.6. 代入公式10-1计算活动连接器的插入损耗.437. 关掉交流电开关.拆除导线以及各光器件.(二)活动连接器回波损耗测量1. 按图10-16 (a)将光发送模块的的光输出端(1310nm TX),Y型分路器,光功率计连接好.2. 连接导线:关闭系统电源,保持上一个实验内容的连接不变.3. 打开电源开关,用光功率计测量此时光发端机的光功率P1.4. 再按图10-16 (b)连接测试系统,测得此时的光功率为P2.代入10-2式计算活动连接器的回波损耗.5. 关掉各直流开关,以及交流电开关,拆除导线及光器件.(三)波分复用器的光串扰测量1. 连接导线:关闭系统电源,保持上一个实验内容的连接不变,新增加1550nm光端机部分的固定速率时分复用电路的连接线,产生FY-OUT,并送到1550nm光发送模块的数字信号输入端口.将两个光发送模块的开关S200拨向模拟传输端,并将跳线J200断开. 2. 波分复用器的连接.1) 将一波分复用器标有"1550nm"的光纤接头插入"1550nm TX"端口; 2) 将另一个波分复用器的标有"1310nm"的光纤接头插入"1310nm TX"端口. 3) 用FC/PC活动转接器将两个波分复用器"IN''端相连.3. 开启系统电源,将1310nm光发模块的开关S200拨向数字传输端,将光功率计选择 1310nm档,分别测出图10-18(a)中的P1,P22.4. 将13lOnm光发送模块的开关拨向模拟传输端,将1550nm发送模块的开关S200拨向数字传输端,将光功率计选择1550nm档,分别测出图10-3(b)中的P12,P21. 5. 将P1,P22,P2,P21代入式10-11,式10-13中算出波分复用器的光串扰. 6 .做完实验关闭系统电源开关.7. 拆除导线以及光学器件.8. 将各实验仪器摆放整齐.[实验结果]1. 记录各实验数据,根据实验结果算出活动连接器的插入损耗,活动连接器的回波损耗以及波分复用器的光串扰.2. 分析活动连接器插入损耗产生原因.3. 当Y型分路器的分光比为l:4时,设计测试活动连接器的回波损耗实验,并推导出计算公式.4. 试设计实验测量波分复用器的插入损耗.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光无源器件摘要目录-1.1概念2.2品种3.3测试图4.4原理及应用概念光无源器件是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。

具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。

品种▲ FC、SC、ST、LC等多种类型适配器▲ 有PC、UPC、APC三种形式▲ FC、SC、ST、LC等各种型号和规格的尾纤(包括带状和束状),芯数从单芯到12芯不等。

测试图光无源器件测试是光无源器件生产工艺的重要组成部分,无论是测试设备的选型还是测试平台的搭建其实都反映了器件厂商的测试理念,或者说是器件厂商对精密仪器以及精密测试的认识。

不同测试设备、不同测试系统搭建方法都会对测试的精度、可靠性和可操作性产生影响。

本文简要介绍光无源器件的测试,并讨论不同测试系统对精确性、可靠性和重复性的影响。

在图一所示的测试系统中,测试光首先通过偏振控制器,然后经过回波损耗仪,回波损耗仪的输出端相当于测试的光输出口。

这里需要强调一点,由于偏振控制器有1~2dB插入损耗,回波损耗仪约有5dB插入损耗,所以此时输出光与直接光源输出光相比要小6~7dB。

可以用两根单端跳线分别接在回损仪和功率计上,采用熔接方式做测试参考,同样可采用熔接方法将被测器件接入光路以测试器件的插损、偏振相关损耗(PDL)和回波损耗(ORL)。

该方法是很多器件生产厂商常用的,优点是非常方便,如果功率计端采用裸光纤适配器,则只需5次切纤、2次熔纤(回损采用比较法测试*)便可完成插损、回损及偏振相关损耗的测试。

但是这种测试方法却有严重的缺点:由于偏振控制器采用随机扫描Poincare球面方法测试偏振相关损耗,无需做测试参考,所以系统测得的PDL实际上是偏振控制器输出端到光功率计输入端之间链路上的综合PDL值。

由于回损仪中的耦合器等无源器件以及回损仪APC的光口自身都有不小的PDL,仅APC光口PDL值就有约0.007dB,且PDL相加并不成立,所以PDL测试值系统误差较大,测试的重复性和可靠性都不理想,所以这种方法不是值得推荐的方法。

改进测试方法见图2所示。

在图2测试系统中,由于测试光先通过回损仪再通过偏振控制器,所以光源输出端与偏振控制器输入端之间的光偏振状态不会发生大的变化,也就是说系统可测得较准确的DUT PDL值。

然而问题还没有解决,PDL是可以了,但回波损耗测试却受到影响。

我们知道,测试DUT回波损耗需要先测出测试系统本身的回光功率,然后测出系统与DUT共同的回光功率,相减得出DUT回光功率。

从数学上容易理解,系统回光功率相对越小,DUT回损值的精确度、可靠性以及动态范围就会越好,反之则越差。

在第二种系统中,系统回光功率包含了偏振控制器回光功率,所以比较大,进而限制了DUT回损测试的可靠性和动态范围。

但一般而言,只要不是测试-60dB以外的回损值,这种配置的问题还不大,因此它在回损要求不高的场合是一种还算过得去的测试方法。

除了上述两种测试方案以外,还有一种基于Mueller矩阵法的测试系统(图3)。

这种测试系统采用基于掺铒光纤环的可调谐激光器(EDF TLS)而并非普通外腔式激光器,这点很重要,后文还有论述,此外它还加上Mueller 矩阵分析法专用的偏振控制器、回损仪和光功率计。

由于采用Mueller矩阵法测试PDL时要求测试光有稳定的偏振状态,所以可调谐光源与偏振控制器之间以及偏振控制器与回损仪之间要用硬跳线连接,这样可以排除光纤摆动对测试的影响。

用Mueller矩阵法测试PDL需要做参考,所以在一定程度上可以排除测试链路对PDL测试的影响,因此这个系统可以得到较高的PDL测试精度以及回损与插损精度,测试的可靠性和可操作性都很好。

在该系统中每个测试单元不是独立地工作,它们必须整合为一体,可调谐光源不停扫描,功率计不停采集数据,测试主机分析采集所得数据,最后得出IL、PDL和ORL随波长变化的曲线。

这种方法目前主要用在像DWDM器件等多通道器件测试上,是目前非常先进的测试方法。

上述三种测试方法中,笔者认为除了最后一种方法是测试DWDM多通道器件实现快速测试的最佳方案以外,其它两种方法都不足取,原因是它们都一味强调方便,而忽略了精密测试的精确、可靠性及重复性的要求。

这也是为什么很多器件厂家测试同样的产品,今天测和明天测结果会大相径庭的原因。

解决办法参见图4的耦合器测试装配方式。

利用图4的配置可以一次得出器件的回损和方向性参数,以及器件PDL和平均IL。

由于测试激光光源为偏振光源,这样对于器件插损测试就有一个PDL值大小系统测试的不确定性,如果器件本身PDL较大会比较成问题,所以采用去偏振器进行平均损耗测试。

这种测试方法的优点是测试稳定准确,基本排除了理论或系统误差,甚至抑制了随机误差,如插损采用无源去偏振器测试,缺点是需要搭建三个工位。

EXFO公司资深专家、国际电联PMD组主席Andre Girard有一句口头禅,叫做Nothing perfect!器件测试也是这样,是想要测试方便,但测试可靠性、重复性下降,还是想要测试可靠性与精度较高,但测试相对麻烦呢?一切都在个人取舍之间。

上面是从测试工位的搭建即测试工位的拓扑关系来讨论器件最佳测试,其实测试工艺中测试设备的选型占有更重要的位置。

下面分别论述测试光源、功率计、偏振控制器以及测试系统对测试精确性、可靠性和重复性的影响。

1.光源选择测试光源是测试系统的激励源,由于用于测试而非用于传输,一般来说不需要功率太高,激光光源0dBm,宽谱源-10dBm/nm足以满足测试要求。

同样因为是用于测试,光源的功率稳定度相当重要,除此之外还有一个相干长度的问题。

其实任何激光光源都有相干长度的问题,一般FP或DFB 激光光源的相干长度为1,000米或更长,人为使激光器的线宽变宽后也有10米左右,这就是说,只要测试系统的光路短于这个长度,就会有干涉,测试就会测不准或者可靠性降低。

有一种基于掺铒光纤环的可调谐激光器很好地解决了这一问题,该激光器相干长度只有15厘米,而器件测试长度一般1~3米,所以一定不会有相干的影响,从而使测试值的稳定度、重复性和可靠性都非常高,是一种非常适合于器件测试的光源。

除了相干长度,激光光源信噪比是另一个关键参数,激光光源的信号与源自发辐射噪声的比值(S/SSE)是限制测试动态范围的关键因素。

如果S/SSE只有60dB,那么当测试65dB的滤光片时由于滤光片不能滤去自发辐射噪声,所以测试只能显示60dB,导致测试失败。

一般而言,可调谐激光光源的S/SSE有75dB,所以在要求测试大动态范围器件时应注意光源的S/SSE值。

对于宽谱源或ASE光源而言,波谱稳定度是一个关键参数,波谱稳定度是比积分功率稳定度更严格、更有意义的参数,它表征宽谱源在一段时间内波谱峰峰值变化的最大值。

由于宽谱源一般配合光谱仪或波长计之类波长选择设备使用,所以积分功率稳定度对于测试没有太大意义。

2.功率计选择功率计探测器的材料大致决定了功率计的整体性能,一般有Ge、Si、InGaAs等材料的探测器,除此之外还有一种低偏振反映度(PDR)探测器,这种探测器是在InGaAs探测器的基础上添加一些材料使得其对PDL非常不敏感,所以很适合用于PDL的测试。

除了材料之外,探测器面积是决定其用途的重要参数,探测器面积越大,其受光能力就越强,但灵敏度则会降低,反之亦然。

所以一般用于校准的光功率计探测器面积都大于3mm2,用于探测很小的光功率如-100dBm 光能量探测器面积一般为1mm2。

一般来说如果光功率计采用裸光纤适配器,则要求光功率计探测器面积大于3mm2,否则光纤出射光很难充分耦合到探测器上,使测试重复性和可靠性大大降低。

其实即使采用大面积探测器,裸光纤适配器中的光纤也极有可能触及探测器,导致探测器老化,使测试精度降低,所以一般建议采用熔接的方法,这样虽然增加了一次熔纤,但是确保了测试的长期稳定性和可靠性。

除了以上传统的探测器类型,还有一种宽口径积分球探测器技术。

这种探测器的探测器面积相当于7mm2,由于采用积分球技术,所以它没有传统大口径探测器的表面不均匀性、光纤对准和光纤头容易触及探测器表面的问题,测试重复性也是传统探测器所无法相比的。

3.偏振控制器选择对随机扫描Poincare球偏振控制器(PC)而言,扫描周期、覆盖Poincare球面积、偏振光经过PC情况以及由于PC导致的光功率波动值等都是一些关键参数。

这些参数的意思很容易理解,这里只想着重论述由于PC导致的光功率波动对测试的影响。

我们知道PDL的测试其实就是探测当传输光偏振态(SOP)发生变化时,通过被测器件的光功率变化的最大值,所以如果由于其它原因导致光功率发生变化,测试系统就会误以为这也是PDL,导致PDL测试过大。

所以对于PC而言,光功率波动值将直接影响测试的准确度。

4.测试系统的选择所谓测试系统主要是指两个以上测试表或模块联合工作,形成组合之后新的操作界面,并完成自动测试的测试设备。

传统系统搭建是通过一台计算机,用GPIB口控制几台光测试仪表进行,这里着重介绍通过模块组装系统的方法。

其主要思路是,测试主机本身就是一台标准电脑,测试主机带有5个插槽,可以插入测试模块,组成简单的系统,对于大的测试系统还可添加扩展机,主机与扩展机之间通过数据线连接。

这样扩展机上的槽位与主机上的槽位没有任何区别,插在扩展机上的模块与插在主机上的模块在数据传输速率上也没有任何区别,所以这种组建测试系统的方法使得系统数据传输速度非常快,操作也很方便。

扩展机上还可级联扩展机,以组成更大的系统,所以扩容性非常好,例如EXFO的IQS-12004B DWDM测试系统将可调谐光源、快速光功率计、Muller矩阵法偏振控制器和波长校准单元有机地结合起来,测试波长精度达5pm,只需点击鼠标就可测得IL、ORL和PDL随波长的变化曲线,并得出串扰矩阵,这也恰恰展示了利用主机+扩展机进行系统搭建的优势。

本文结论本文从测试工位的拓扑结构以及测试设备选择两个角度论述了测试工艺的可靠性、精度与重复性。

其实光器件的生产工艺是很复杂的学问,不是简单几句话就可说清楚,不同的产品工艺均有所不同,值得深入研究,这样才不至于出了问题还不清楚出了什么问题而手忙脚乱。

*所谓比较法测试回损是指采用标准回损跳线(一般为回损值14.7dB 并经过国际相关组织认证的标准跳线)对系统进行校准,被测器件的回光与之比较得出回损值。

这种测试回损的方法较传统法更为方便,测试值精度更高,且受光源、光功率计等的不稳定影响较小。

原理及应用光无源器件是光纤通信设备的重要组成部分。

它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。

相关文档
最新文档