反褶积

合集下载

地震第3章 反褶积

地震第3章 反褶积
x(t ) 为地震道记录; w(t ) 为地震子波;
(3-1)
e(t ) 为地层脉冲响应,为震源是单位脉冲 (t ) 时零炮检距自
激自收的地震记录。
(3一1)式可视为一个滤波过程,如图3-1所示。
图3-1 褶积滤波过程 这个滤波过程的输入为地震子波。w(t ) 滤波器的滤波因子为地层 脉冲响应 e(t ) ,输出为地震道记录 x(t ) 。 或者输入为地层脉冲响应 e(t ) ,滤波器滤波因子为子波 w(t ) , 输出为地震道记录城 x(t ) 。
w
x(t )
w( )r (t )
0

(3-4)
实际的地震记录城 x(t ) 除了(3一4)式所表示的一系列反射波 S (t ) 而外, 还存在着干扰波 ,因此,地震记录双 的一般模型可以写为 x(t ) n(t )
x(t ) S (t ) n(t ) w( )r (t ) n(t )
式中。
—震源脉冲值,为一常数; r (t ) —反射界面的反射系数。 但是,由于地层介质具有滤波作用,这种大地的滤波作用相当 于一个滤波器。因此,由震源发出的尖脉冲经过大地滤波器的滤波 作用后,变成一个具有一定时间延续的波形 w(t ) ,通常叫作地震 子波(图3一6)。这时,地震记录是许多反射波叠加的结果,即地震 记录 x(t ) 是地震子波 w(t ) 与反射系数 r (t ) 的褶积
1.直接观测法 这种方法是用专门布置在震源附近的检波器直接记录地震子波 w(t ), 此方法只适用于海上地震勘探。 在某些地区的海上地震勘探中,在地震记录上海底反射波到达之前曾 记录到一个地震波。经过分析知道这是由于海水含盐量有分层性所形成的。 由于海水的含盐量有分层性使海水明显地分成上下两层。下层的含盐量较 上层含盐量高,形成了一个较为清楚的界面。由震源出发的地震波到达这 个界面引起反射返回到海面下的检波器,被记录下来。由于这个波没有与 其他波干涉,所以可以作为地震子波 。使用这样求取的地震子波进 w(t ) 行反褶积,得到了良好的效果。

反褶积

反褶积

震资料与假设条件的符合程度。
反褶积的名称各种各样,有的取名来源于它的假设条件,有的取名来源于它的 计算方法,有的取名来源于它的功能。我们在选用某个反褶积模块时对它的假
设条件、计算方法和功能都应该有所了解。
四川石油管理局地球物理勘探公司
改变地震记录的频谱的反褶积
这一类方法假定:虽然不知道反射系数的具体数值,但知道反射系数振幅谱的大
1 1 , 2 2
基础分为若干
小段,每段长1/ Δ,然后将各段的X(f)值相加。 由此可见,当采样率为Δ 时,离散序列的最大频率为1/2Δ, 这就是奈魁斯特频率,也称折叠频率。
四川石油管理局地球物理勘探公司
频率折叠示意图
四川石油管理局地球物理勘探公司
褶积
1、褶积的定义 褶积是一种数学运算的方式以及运算结果。定义如下:
四川石油管理局地球物理勘探公司
信号的离散化
实际地震记录是连续信号,数字仪记录时,要间隔一定的时间间隔Δ 记录一个值,由此将地震记录x(t)变成时间序列 x(nΔ) (n=1,2,…N) Δ 称为采样间隔。
将连续信号离散采样的过程就是信号的离散化。
对于离散化有以下采样定理: 若连续信号x(t)有截止频率fc,则当 1 2 fc 确定X(t): 时,离散x(nΔ) 可完全
使A(z)= 0的z值称为Z变换的根,该序列的 Z变换有n个根。
四川石油管理局地球物理勘探公司
信号的相位特征
设一两项信号 a=(a1,a2),则 1、若a1>a2,称a是最小相位延迟信号 2、若a1<a2,称a是最大相位延迟信号 3、若a1=a2,称a是等延迟信号 任一n+1项信号 b=(b0,b1,…,bn)可分解为n个两项信号 的褶积。 如果 1、所有两项信号 都是最小相位延迟信号,则b是最小相位 2、所有两项信号 都是最大相位延迟信号,则b是最大相位 3、既有最大相位延迟也有最小相位延迟,则b是混合相位 信号的相位特征也可用其z变换来定义: 1、 z 变换的根都在单位圆外,信号是最小相位 2、 z 变换的根都在单位圆内,信号是最大相位 3、单位圆内外都有根,信号是混合相位 最小相位信号的能量集中在前端。

反褶积处理方法要点

反褶积处理方法要点

反褶积处理方法要点反褶积处理是一种常用的信号处理方法,它可以用于去除信号中的卷积效应,从而提高信号的清晰度和分辨率。

在实际应用中,反褶积处理方法有着广泛的应用,例如在地震勘探、医学成像、图像处理等领域都有着重要的应用。

本文将介绍反褶积处理方法的要点,以帮助读者更好地理解和应用该方法。

一、反褶积处理的基本原理反褶积处理的基本原理是通过对信号进行卷积运算的逆运算,去除信号中的卷积效应。

在数学上,反褶积处理可以表示为:f(t) = g(t) * h(t) + n(t)其中,f(t)表示观测信号,g(t)表示真实信号,h(t)表示卷积核,n(t)表示噪声。

反褶积处理的目标是通过观测信号f(t)和卷积核h(t),还原出真实信号g(t)。

二、反褶积处理的要点1. 选择合适的卷积核选择合适的卷积核是反褶积处理的关键。

卷积核的选择应该考虑到信号的特点和噪声的影响。

一般来说,卷积核应该具有平滑性和高分辨率的特点,以保证反褶积处理的效果。

2. 去除噪声的影响噪声是影响反褶积处理效果的主要因素之一。

在进行反褶积处理之前,应该对信号进行去噪处理,以提高信号的清晰度和分辨率。

3. 选择合适的反褶积算法反褶积处理有多种算法,包括Wiener滤波、Tikhonov正则化、最小二乘法等。

在选择反褶积算法时,应该根据信号的特点和噪声的影响进行选择,以保证反褶积处理的效果。

4. 控制反褶积处理的参数反褶积处理的效果受到多个参数的影响,包括卷积核的大小、去噪处理的程度、反褶积算法的选择等。

在进行反褶积处理时,应该根据实际情况控制这些参数,以达到最佳的反褶积处理效果。

三、反褶积处理的应用反褶积处理在地震勘探、医学成像、图像处理等领域都有着广泛的应用。

在地震勘探中,反褶积处理可以用于提高地震数据的清晰度和分辨率,从而更好地识别地下结构。

在医学成像中,反褶积处理可以用于去除图像中的模糊效应,提高图像的清晰度和分辨率。

在图像处理中,反褶积处理可以用于去除图像中的模糊效应,提高图像的清晰度和细节。

反褶积

反褶积

四川石油管理局地球物理勘探公司
两种特殊信号
1、单位脉冲 δ(t) (狄拉克函数) (当t =0时) (当t≠0时)
1 (t ) 0
δ(t)频谱 Δ(f)=1
2、白噪声 b(t) ∑b(t)=0 Rbb(t)= δ(ห้องสมุดไป่ตู้)
四川石油管理局地球物理勘探公司
反信号
对信号x(t),如果有信号a(t),使x(t)*a(t)= δ(t),则称a(t)是 x(t)的反信号。 由于 X ( f ) A( f ) ( f ) (t )e i 2ft dt 1
反褶积的类型
反褶积的类型可按实现反褶积的方法来区分。目 前,实现反褶积的方法大致可分为两类: (1)压缩子波:多数反褶积方法都属于这一类。
(2)改变地震记录的频谱:谱白化和频率振幅补
偿等。
四川石油管理局地球物理勘探公司
以压缩子波为目标的反褶积
根据地震记录的褶积模型,地震记录x(t)可表示为地震子波函数b(t) 与反射系数函数g(t)的褶积: x(t)=b(t)*g(t) 反褶积的目标是压缩的延续长度,最好压缩成单位脉冲δ(t),使
四川石油管理局地球物理勘探公司
信号的离散化
实际地震记录是连续信号,数字仪记录时,要间隔一定的时间间隔Δ 记录一个值,由此将地震记录x(t)变成时间序列 x(nΔ) (n=1,2,…N) Δ 称为采样间隔。
将连续信号离散采样的过程就是信号的离散化。
对于离散化有以下采样定理: 若连续信号x(t)有截止频率fc,则当 1 2 fc 确定X(t): 时,离散x(nΔ) 可完全
四川石油管理局地球物理勘探公司
预测反褶积的 基本原理和计算方法
• 脉冲反褶积 • 预测反褶积的基本原理和计算方法

反褶积的原理和应用

反褶积的原理和应用

反褶积的原理和应用1. 什么是反褶积反褶积是一种信号处理技术,用于恢复被褶积模糊过的信号。

褶积是一种线性运算,将两个函数合成为一个函数。

在信号处理中,常常需要将一个信号与系统的脉冲响应进行褶积,从而实现信号的去模糊处理。

但在实际应用中,这种模糊操作可能会导致信息的丢失或者模糊,因此需要将模糊过的信号进行反褶积处理,恢复原信号的清晰度和准确性。

2. 反褶积的原理反褶积的原理基于褶积的可逆性。

在褶积操作中,原信号与系统的脉冲响应相乘并求和得到模糊信号。

反褶积即通过找到一个逆滤波器,将模糊信号与该逆滤波器进行滤波,从而恢复出原信号。

反褶积的数学表达式为:原信号 = 反褶积(模糊信号,脉冲响应)其中,反褶积()代表反褶积操作,模糊信号为经过褶积操作得到的信号,脉冲响应为系统的响应函数。

3. 反褶积的应用3.1 无线通信领域在无线通信领域,反褶积被广泛应用于信道均衡和符号检测。

在无线信道传输过程中,由于多径效应等因素的影响,信号可能会受到褶积模糊的影响,造成接收信号的失真。

通过使用反褶积算法对接收信号进行处理,可以有效地消除信道带来的影响,提高信号的接收质量。

3.2 显微镜图像恢复在显微镜图像的拍摄过程中,由于光学系统的限制以及物理因素的影响,得到的图像可能会存在模糊或失真等问题。

通过采用反褶积算法,可以对图像进行去模糊处理,提高图像的清晰度和准确性,从而更好地观察和分析目标物体。

3.3 地震数据处理在地震探测和勘探过程中,地震数据可能会受到地下介质的复杂反射和折射影响,导致地震图像的模糊和失真。

采用反褶积算法对地震数据进行处理,可以消除模糊和去除干扰信号,提高地震图像的分辨率和准确性,帮助地质学家更好地理解地下结构。

3.4 知觉学研究在人类视觉系统的研究中,反褶积被广泛应用于图像处理和视觉感知的研究中。

通过采用反褶积算法,可以还原图像背后的物理信息,研究人类视觉系统在感知和认知过程中的工作原理和机制,对于理解人类视觉系统的功能和性能具有重要意义。

反褶积

反褶积

第三章 反褶积反褶积是通过压缩地震记录中的基本地震子波,压制交混回响和短周期多次波,从而提高时间分辨率,再现地下地层的反射系数。

反褶积通常应用于叠前资料,也可广泛用于叠后资料。

反褶积得到具有更高时间分辨率的剖面。

反褶积的作用有时不局限在压缩子波上,它也能从记录上消除大部分的多次波能量。

在地震勘探中,岩石层由密度和地震波传播速度定义。

密度和速度的乘积称为地震波阻抗。

相邻岩石层之间的波阻抗差形成反射后,由沿地表的测线所记录。

这样得到的地震记录可表示为一个褶积模型,即地层脉冲响应与地震子波的褶积。

子波有许多成分,包括震源信号、记录滤波器、地表反射和检波器响应等。

地层脉冲响应是当子波为一个尖脉冲时所记录的。

理想的反褶积应该压缩子波并消除多次波,在地震道内只留下地层反射系数。

第一节 反褶积概念及原理1 反褶积概念我们知道,在反射法地震勘探中,由震源爆炸产生一尖脉冲,在地层中传播,经反射界面反射后又回到地面;被检波器所接收,送到仪器车,记录在数字磁带上,这就是地震信号产生过程的一个简单叙述。

由此想来,理想的地震记录应该象图3-1反射系数时间序列,其中每个脉冲代表地下存在一个反射界面,整个脉冲序列就表示地下一组反射界面。

这种理想地震记录x(t)可以表示为:()()t N t x ξ0= (3-1) 式中,N 0 为震源脉冲的强度值,是一常数; ()t ξ为反射系数序列。

但是由于震源爆炸时岩石破坏圈和岩石塑性圈的作用,使得震源发出的尖脉冲到达弹性形变区时变成一个具有一定延续时间的稳定波形b(t)(通常称为地震子波(wavelet ),图3-2)。

地层对震源脉冲的这种改造作用就相当于一个滤波器,通常称为大地滤波器。

通过这个滤波器的作用,子波的高频成分损失,脉冲的频谱变窄,从而使激发时产生的尖脉冲经大地滤波后其延续时间加大(图3-3)。

这样一来,地震记录也就变成了若干子波叠加的结果,即地震记录是地震子波和反射系数序列的褶积:()()()()()τξτξτ-=*=∑∞=t b t t b t x 0(3-2)在实际过程中,往往会有一些噪音产生,因此地震记录还应该包括干扰波n(t),即: ()()()()()()t n t b t n t S t x +-=+=∑∞=τξττ0(3-3)其结果为一复杂的记录形式(图3-4)。

论反褶积的概念及类型

论反褶积的概念及类型

论反褶积的概念及类型论文提要地震勘探技术在油气田勘探开发中起着重要作用。

地震勘探包括地震采集、处理和解释三大部分。

地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造和岩性解释,目的是确定地震反射波数据的地质特征和意义。

地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度。

探讨地震处理的基本原理和基本方法有助于全面利用采集数据,充分利用处理方法,为地震解释提供可靠的处理成果剖面。

正文地震数据处理主要包括地震反褶积、叠加和偏移成像三大技术。

地震反褶积是通过压缩地震子波提高地震时间分辨率;叠加的目的是压制随机噪声提高地震信噪比;偏移成像包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。

反褶积是地震资料最常用和最重要的处理方法之一。

反褶积可在叠前做也可在叠后做。

叠前反褶积的目的是把地震子波压缩成尖脉冲来改进时间分辨率。

叠后的预测反褶积主要是消除海上鸣震(交混回响)等多次波干扰,突出有效波,提高地震资料的信噪比。

在常规处理中反褶积的基础是最佳维纳滤波。

反褶积后要用某种类型的道均衡,以使数据达到通常的均方根振幅水平。

一、反褶积的概念(一)反褶积问题的提出实际地震记录由于受复杂子波的作用和干扰的影响,分辨能力较低,地质界面上各反射波互相叠加、彼此干涉,成为一复杂的形式,不能通过地质资料的解释,得到准确的地质界面。

反褶积的目的就是要通过某种数学方法,压缩地震子波,使地震记录分辨率提高,从而近似反射系数剖面,得到地下介质精确的反射结构。

假定地震记录不含干扰,何以得到x(t)=b(t)*ξ(t) (1-1)对应的频率域形式X(ω)=B(ω)×Ξ(ω)(1-2)令A(ω)=1/ B(ω)(1-3)则可得到Ξ(ω)= A(ω)×X(ω)(1-4)写成时间域形式ξ(t)=a(t)* x(t)(1-5)由x(t)=b(t)* ξ(t) 和ξ(t)=a(t)* x(t)可以看到:前者由子波和反射系数得到地震记录,是一褶积过程;后者则反过来,由一函数与地震记录褶积得到反射系数,这一过程可被称为反褶积。

地震数据处理第三章:反褶积

地震数据处理第三章:反褶积
b(t ) o(t ) * g (t ) * (t ) * d (t ) * i(t ) o(t ) * fg (t ) * f d (t ) (3 - 4)
式中 o(t ) — 震源子波; g (t ) — 地层响应; (t ) — 透射响应; d (t ) — 地面接收响应;
i (t ) — 仪器响应;
(3-34)
将上式两端乘以
A( z ) R( z ) Z
M
zM
,则有:

M
M ( ) Z
M
(M ) Z 2 M (M 1) Z 2 M 1 (0) Z M (1) Z M 1 ( M ) Z 0
(3-18)
B(e ) | X (e ) | e
j
j
j ( e j )
(3-19)
( e j ) 未知,现在来确定它
•假如地震子波是最小相位的物理可实现 序列,则其z变换为:
B( z) b0 b1z 1 b2 z 2
B( z ) 0 , 对下式 由物理可实现性知:当| z | 1 时,
根据“最小相位序列z域零点在单位圆内”这 一特点,选出模小于1的根,便可组成最小相位 子波,其z变换为:
B1 ( z ) b0 (1 z1 z 1 )(1 z 2 z 1 ) (1 z M z 1) b0 b1 z -1 bM z -M
由于 ( ) ( )
A( z ) 应有2M个根。鉴于系数均为实数,所以 显然, 2M个根是M对互为倒数的,即若
z01 e j , (| | 1)
则另一根为:
1 1 j z02 e z01
根据这M对根在单位圆内、外的位臵,可以组 成2M个不同相位的地震子波,其中必有一个是 最小相位,一是最大相位的。

反褶积 吉布斯效应

反褶积 吉布斯效应

反褶积吉布斯效应在物理和化学领域中,反褶积和吉布斯效应是两个重要的概念。

在这篇文档中,我们将探讨这些概念是什么意思,它们如何影响我们的生活和研究,以及它们在不同领域的应用。

反褶积,也称为卷积逆反演,是一种图像处理技术,它可以恢复由卷积模糊产生的原始图像。

在图像处理中,卷积模糊通常是由于存在光学或信号传输系统的失真或扭曲引起的。

通过反褶积,可以恢复原始图像中发生失真或扭曲的部分。

反褶积具有广泛的应用,包括医学图像处理和天文学图像处理等等。

在化学中,吉布斯效应是一种表征溶解热和温度变化之间关系的现象。

吉布斯效应通常涉及到不同的相变,例如气体向液体或液体向固体的相变。

基于吉布斯自由能,温度的变化会影响相变的方向,并影响相变的速率。

吉布斯效应是理解物理和化学领域的重要概念,在许多应用中都有重要作用。

例如,这一效应在深度矿井中的地热能利用中起着至关重要的作用。

反褶积和吉布斯效应的相似之处在于,它们都是基于数学和物理算法的概念。

反褶积涉及图像处理中的信号处理和逆变换,而吉布斯效应涉及热力学和统计力学中的能量转移和相变。

这些概念对不同学科的研究和实践具有广泛的应用。

在计算机科学中,反褶积技术常常被用于图像处理。

在医学图像处理中,医生需要清晰地识别病人的内部器官,以发现疾病或病变。

此时,图像的清晰度非常重要。

反褶积可以用于恢复由图像模糊引起的失真,并提高图像的对比度和清晰度。

在物理学中,吉布斯效应的应用很广泛。

例如,吉布斯效应可以用于深度矿井中的地热能利用。

在这个过程中,地热能需要在不同深度和温度的岩石层之间传输。

在这种情况下,吉布斯效应决定了热能转化的方向和速率。

了解和控制这一过程的因素对于深度矿井中的能源开发非常重要。

总之,反褶积和吉布斯效应是两个重要而广泛应用的概念。

反褶积在图像处理中有很多应用,吉布斯效应对于物理、化学和能源行业等领域都具有非常重要的作用。

了解这些概念以及它们的应用将有助于我们更好地理解周围的世界,并开发更加高效的技术和应用。

反褶积

反褶积

Scdc test shot


Scdc test shot

D=4
ms
D=8 ms
D=12 ms
Scdc test shot
D=16m s
D=20 ms
Scdc test shot
D=24m s
D=28 ms
Scdc test shot
300ms1000ms
Scdc test shot 1200ms2000ms
D=12ms
D=16ms
prdc test
D=20ms
D=24ms
prdc test D=28ms
prdc test 1000ms2000ms
D=4 ms
D=8 ms
D=12 ms
2100ms3000ms
1000ms2000ms
prdc test
2100msD=16m3s000ms
D=20ms
D=12ms
D=16ms
Scdc test stk
D=20ms
D=24ms
Scdc test stk D=28ms
300ms1000ms
Scdc test stk 1200ms2000ms
D=4 ms
D=8 ms
D=12 ms
2100ms3000ms
300ms1000ms
1200ms2000ms
D=24 ms
D=28 ms
tseq scdc prdc
四、结论
井数据约束条件下的反褶积参数的确 定是做好反褶积的前提条件。
二、基本原理
1、脉冲反褶积 2、预测反褶积 3、地表一致性反褶积 4、同态反褶积 5、最小熵反褶积 6、L1反褶积 7、时变反褶积

反褶积-地球物理学习基础

反褶积-地球物理学习基础

4、反褶积的一般定义 反褶积就是去掉地震记录中大地的滤波作用的一种处理
方法,所以反褶积也叫反滤波。它用的运算方法归根到底仍 然是褶积。
但现在的反褶积已不局限于去除大地的滤波作用,凡是对 地震子波进行改造的处理都叫它反褶积。
5、反褶积处理的目的
提高地震记录的分辨率是反褶积处理的目的之一,但对叠 前反褶积而言,它却不是主要目的。叠前反褶积的主要目的 是使地震子波波形一致,以便获得好的叠加效果。
rxx (0)
...
rxx (m
1)

c(1)



rxx (
1)

... ...
rxx(m) rxx(m 1) ...
rxx (0)

c(m)
rxx( m)
主要参数:1、确定时窗 的参数(起始时间、时窗长度): 根据资料情况和处理目的确定。
因 为 b(t) 为 一 物 理 可 实 现 的 最 小 相 位 信 号 , 因 此 有 : 当 t<0 时 , a(t)=0 将 g(t) =a(t)*x(t)带入x’(t+τ),得:



x'(t ) b( j )[a(t) x(t)] b( j )[ a(k)x(t j k)]
将以上方程写成矩阵形式就是:
rxx(0) rxx(1) ... rxx(m) c(0) rxx( )

rxx
(1)rxx (0)...rxx (m
1)
c(1)



rxx (
1)

........
... ...
rxx(m) rxx(m 1) ... rxx(0) c(m) rxx( m)

第2章反褶积-1

第2章反褶积-1

第二章反褶积反褶积是借助压缩基本地震子波来改善时间分辨率的一种处理过程。

为搞清这一过程要求综合研究正演问题,即必须首先研究记录的地震道的积木式分段单元。

地层是由不同类型岩性的岩层组成的,每种岩石类型都有地球物理学家所可利用的某种物理特性。

至于地震勘探,则根据波传播速度和岩层密度确定岩层。

密度与速度的乘积称之为地震波阻抗,地震资料分析期望的最终成果就是地震波阻抗剖面。

我们有在井中直接检测岩层速度和密度的方法,这种方法能向我们提供地震波阻抗与深度的关系。

在地面上沿测线记录到的地震反射波就是由于两地层之间的波阻抗差引起的。

记录到的反射记录可通过反射率与震源子波的褶积来模拟。

下面分别对褶积模型、各种反滤波进行介绍,并给出应用实例。

2.1褶积模型我们从图1给出的一个实际声测井记录入手,该声测井曲线是层速度与深度的关系图。

实际的速度测量是以2英尺的采样间隔在1000—5400英尺之间的深度段内完成的。

借助简单的斜坡把速度函数外延至地面。

该声测井记录显示出明显突变和强低频趋势特征,这两者构成了总的速度变化。

实际上我们通常用CM道集作速度分析进行估算的就是这种低频趋势。

对声测井曲线可通过人工分段提取其速度趋势,其结果可列表如下:由声测井记录确定的层速度趋势表1层速度深度范围地层序号(眺)(ft)1210001000 - -2000219000 探2000—22503187502250—25004126502500 - -37755196503775 - -5400探实际上该层速度是逐渐减小的。

我们所做的就是形成一组恒定层速度的层组。

把测井曲线进行这种分段多少有点类似于地质家对假想的地下模型所做的分层。

地质家是根据岩性分层,而我们根据声测井曲线的分段性质提取的分层则是以速度差为依据的。

下面对表1中所确定的地层的岩性分类:地层序号岩性1 灰岩2 泥质灰岩(泥岩含量逐渐增加)3 泥质灰岩4 泥岩5 白云岩在声测井曲线的低频趋势上附加有高频分量。

4.反褶积

4.反褶积

iφ ( eiω )
假设地震子波是最小相位的,则地震子波满足因果关系,具体 讨论见教材。
3.2反滤波
再假设地震子波是零相位的,地震信号满足
自相关法
(ω ) |= 1 |R
(ω ) | | W (ω ) || R (ω ) | | W (ω ) | |X = =
(ω ) |2 =| X (ω ) |2 |W
得到反子波时间序列并与地震记录进行褶积滤波
w '(t ) = {w '0 , w '1 , w '2 , , w 'm }
= r (t )
w '(τ )x(t − τ ) ∑ τ
最小相位-稳定 其他相位-不稳定
3.3最佳维纳滤波及最小平方反褶积
最小二乘拟合/优化思想 已知样点(x1,y1),(x2,y2),…,(xn,yn)
= r (t ) w = 't )* x(t ) w '(t )* w(t )* r (t )
子波与反子波满足
w '(t ) * w(t ) = δ (t )
已知地震子波求出反子波 ,将反子波与地震记录褶积,即可求 出反射系数,这个过程叫作反褶积。
3.2反滤波
地震子波的求取
在进行反褶积处理时,通常必须知道地震子波的形状。 地震子波求取得是否准确对反褶积结果的影响很大。 求取地震子波的方法较多,常用包括: (1)直接观测法 (2)自相关法 (3)多项式求根法 (4)测井资料求子波 (5)对数分解法
基本原理
最佳维纳滤波是数字滤波中的一大类滤波方法。它是在滤波器 实际输出与期望输出的误差平方和为最小的情况下,确定滤波 器的滤波因子的,因而称为最小平方滤波。已知输入信号 b(t ) = {b(0), b(1), b(2), , b( n)} 现在要求设计一个滤波器,其滤波因子为 使得滤波后的实际输出为

反褶积

反褶积

第二章 反褶积将地震记录看成是反射系数序列与地震子波的褶积,反褶积就是要消除这种褶积过程,从地震记录得到反射系数序列。

一般说来,反褶积的目的是消除某种已知的或未知的褶积过程的运算。

反褶积也可能用来消除震源信号或者记录仪器的响应。

反褶积也可能是用另一种褶积过程代替原来的褶积过程。

反褶积是一种滤波。

与一般滤波的区别有两点:一是着眼点在改变子波,而不是衰减噪声。

二是方法上是根据需要达到的目标由地震资料自动推导滤波器,而不是通过试验选择滤波器。

反褶积是子波级的处理,是常规处理中最精细的环节。

一 子波与反褶积原始记录上的子波不管如何千变万化,必然是单边子波。

可控震源原始记录上的子波也是单边的,即扫描信号,经过相关以后才变成双边子波。

单边子波是物理可实现的,双边子波是非物理可实现的。

单边子波可以是最小相位子波、最大相位子波或混合相位子波。

判别方法可以有很多,对于下面的讨论来说,用Z 变换大概是最方便的。

将子波的各个样点值作为系数、样点序号作为Z 的幂次,写成Z 多项式,如果Z 多项式的根的模全部大于1,即根全部在单位圆外,就是最小相位子波;如果Z 多项式的根全部在单位圆内,就是最大相位子波;如果Z 多项式的根有一些在单位圆外,有一些在单位圆内,就是混合相位子波。

Z 多项式可以因式分解,每个因式有01=+bZ 形式,它代表有一个根Z 1-=。

(b 可以是实数,也可以是复数。

如是复数,必然共轭成对出现。

)可见当1<b 时,这个因式是最小相位的;当1>b 时,这个因式是最大相位的。

如果所有因式是最小相位的,子波就是最小相位的;如果所有因式是最大相位的,子波就是最大相位的;如果有一部分因式是最小相位的,有一部分因式是最大相位的,子波就是混合相位的。

因此,最小相位子波的尾点的绝对值必然小于其首点的绝对值,最大相位子波的尾点的绝对值必然大于其首点的绝对值,混合相位子波则可以是任何情形。

根据这个简单规则,至少在看到尾点的绝对值大于首点的绝对值的子波时,立刻就能判断它绝对不可能是最小相位子波。

反褶积处理方法

反褶积处理方法

反褶积处理方法论文提要反褶积即反滤波是常用的地震资料处理方法。

反褶积的目的是由地震数据恢复反射系数。

反滤波的作用主要是压缩地震反射脉冲的长度,提高反射地震记录的分辨能力,并进一步估计地下反射界面的反射系数。

这不仅是常规地震资料处理所需要的,而且是对直接找油找气的亮点技术和岩性研究的地层地震学的地震资料处理尤为重要。

另外,反滤波还可以清除短周期鸣震和多次波等干扰波。

当前地震资料处理解释已经基本实现了数据化、自动化,我国各大解释公司、研究所、高等院校都已有了较为先进数字化处理软件,在处理数字化的地震数据时表现出了很好的速度性和准确性。

反褶积可分为确定性反褶积和估计性反褶积两种。

目前常用的反褶积有最小平方反褶积、预测反褶积、同态反褶积、地表一致性反褶积、最大熵反褶积、变模反褶积、Q反褶积等等;特殊的反褶积有Noah反褶积、最小信息反褶积等。

正文一、反褶积(一)研究目的和意义1、研究目的(1)弄清各种反褶积处理方法的原理。

(2)弄清反褶积处理模块的参数意义。

(3)掌握地震资料数字处理的基本流程及处理方法。

(4)完善反褶积方法,提高地震资料处理的分辨率,保持信噪比,振幅均匀化。

2、研究意义反褶积是地震资料数字处理流程中最关键的一环,也是提高地震勘探分辨率最有效的方法。

一个处理流程包括许多处理步骤。

而每一个处理步骤又要涉及到好几个处理模块。

一个处理流程通常由预处理、叠前处理和叠后处理三部分组成。

其中反褶积是最重要的一个部分,如图1所示。

反褶积的目的就是为了分离子波和反射系数序列。

子波就像无线电中的载波,反射系数序列就像无线电中的声波。

只有消除高频载波才能提取声波。

子波在地层中传播,携带着反射系数序列这种有用的地质信息返回地面,只有消除子波才能恢复反射系数序列的本来面目。

反射系数序列中有波阻抗随时间变化的信息,这就提供了速度和密度随时间变化的信息,随之就可得到地层、岩性及构造在地下中间分布的信息。

在有利条件下还可得到岩石孔隙率、渗透率、孔隙流体性质(油、气、水)乃至地层压力的信息。

反褶积的含义与作用

反褶积的含义与作用

反褶积的含义与作用稿子一:嘿,朋友!今天咱们来聊聊反褶积这个听起来有点神秘的家伙。

你知道吗?反褶积啊,简单说就是一种处理信号或者数据的方法。

就好像我们在一堆乱糟糟的声音里,要把真正想听的那个清晰地找出来。

比如说,地震勘探里,从接收到的复杂信号中,反褶积能帮咱们把地下岩层的真实信息给挖出来。

它就像个神奇的魔法棒,把那些混在一起的东西分开,让我们能更清楚地看到本质。

在通信领域,它也大有用处呢!能让信号传输得更准确、更清晰,减少干扰和误差。

想象一下,打电话的时候没有杂音,那得多爽!反褶积还能用于图像处理。

比如说让模糊的照片变得清晰,这可太厉害了!就好像给照片来了个“一键美颜”,但不是变漂亮,而是变清晰。

呀,反褶积就是个能让复杂变简单,让模糊变清晰的厉害工具,让我们在各种领域都能更准确地获取和处理信息。

是不是很神奇呢?稿子二:亲,咱们来唠唠反褶积哈!反褶积到底是啥呢?其实呀,它就像是个超级整理大师。

比如说,你听到一段嘈杂的音乐,里面有各种声音混在一起,反褶积就能把每个声音单独拎出来,让你听得清清楚楚。

在科学研究里,它的作用可大啦!像地质学家研究地下结构,靠的就是反褶积从那些乱糟糟的地震波里找出有用的信息,弄明白地下到底是啥情况。

还有哦,医学上也能看到它的身影。

比如说一些医学影像,通过反褶积能让医生更准确地判断病情,就像给医生配了一副超级清晰的眼镜。

对于工程师们来说,反褶积也是个宝贝。

在信号处理中,它能提高系统的性能,让一切都变得井井有条。

而且呀,反褶积还在不断发展和进步呢。

未来,它可能会变得更厉害,帮我们解决更多复杂的问题。

怎么样,是不是觉得反褶积很牛呀?。

反褶积

反褶积

技术交流
2004/04/20
最小相位、混合相位和最大相位子波具有相 同的自相关,因而有相同的反褶积算子。以这个 反褶积算子应用于三种子波的结果完全不同。
② INVERSE FILTER
为了将震源波形压缩为一个零延迟尖脉冲, 假定存在一个反滤波器算子 f ( t ),则:
h( t )* f ( t ) ( t )
(10)
基于(10)式求解反滤波器的方法很多,比 如在频率域求逆、地震子波自相关的z变换、地震 子波z变换的多项式除法、最佳维纳滤波器等,这 里介绍前两种。
技术交流
2004/04/20
频率域计算反滤波器
将(10)作FT得到:
H( )F( ) 1
(11)
将(11)式代入(3.c)式得到:
F( ) 1/{ A ( )exp[i ( )]} (12)
技术交流
2004/04/20
在地表一致性反褶积形式中,地震道分解为 震源、接收器、偏移距、及地层脉冲响应的褶积影 响,这样就可以清楚地估计由于地表震源及地表接 收条件以及炮检间隔对子波形态的变化,分解后进 行反滤波以恢复地层的脉冲响应。根据地表一致性 给出的褶积模型为:
x ( t ) s ( t )* e ( t )* o ( t )* g ( t ) n( t )
实窗际统资计料方表法明,,在反一射定系程数度序上列减的弱振反幅射谱系远数不
是序光列滑的的影,响如。果谱采模用拟白反色褶假积设后,(则19必96然,将赵反 射波系而数代序之列以振子幅波谱振的幅不谱光光滑滑性的转假移设到)子,波才振 幅比谱较上理,想对地反解褶决积了产这生个不问良题后。果这。时本已来经是是要 消反除褶子积波方的法影问响世,40在年这了个。假设下将反射系数 序列的一部分性质也成为消除的对象。

反褶积

反褶积
技 术 交 流
2004/04/20
采用这个假设的目的是为了在这个假设 为解决这个问题, 为解决这个问题,有人采用多道多时 下可以将记录振幅谱作为子波振幅谱应用。 下可以将记录振幅谱作为子波振幅谱应用。 窗统计方法, 实际资料表明, 窗统计方法,在一定程度上减弱反射系数 实际资料表明,反射系数序列的振幅谱远不 是光滑的,如果采用白色假设, 1996,赵 是光滑的,如果采用白色假设,则必然将反 序列的影响。谱模拟反褶积后( 序列的影响。谱模拟反褶积后( , 射系数序列振幅谱的不光滑性转移到子波振 ),才 波而代之以子波振幅谱光滑的假设 ),才 幅谱上,对反褶积产生不良后果。 幅谱上,对反褶积产生不良后果。本来是要 比较理想地解决了这个问题。 比较理想地解决了这个问题。这时已经是 消除子波的影响, 年了。 消除子波的影响,在这个假设下将反射系数 反褶积方法问世40年了 反褶积方法问世 年了。 序列的一部分性质也成为消除的对象。 序列的一部分性质也成为消除的对象。
反射系数序列是白色的假设
反射系数序列是白色的,亦即它的振幅谱是平的: 反射系数序列是白色的,亦即它的振幅谱是平的:
A (ω ) = A =常数 e 0
(5)
将(5)式代入(4.a)式: )式代入( )
A (ω ) = A A (ω ) s 0 h
(6)
(6)式表明地震记录的振幅谱与震源 ) 子波的振幅谱是一种线性关系。 子波的振幅谱是一种线性关系。
技 术 交 流
2004/04/20
1、反褶积的目的 、 2、反褶积的数学基础 、 3、地表一致性反褶积 、 4、其它常用的反褶积形式 、 5、影响反褶积的两个因素 、
技 Байду номын сангаас 交 流
2004/04/20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分解为振幅谱及相位谱分量为:
A ( ) A ( )A ( )A ( )A ( ) (23.a)
x
s
e
o
g
( ) ( ) ( ) ( ) ( ) (23.b)
x
s
e
o
g
作最小相位假设,则(23)式只须估计振 幅谱,对(23.a)两边取对数使之线性化:
lnA lnA lnA lnA lnA
技术交流
2004/04/20
子波最小相位假设
到目前为止,除非已知反射系数序列,还没 有一种方法能够有效地从地震记录得到子波。对 于未知子波,是不能保证它是最小相位的。假设 子波是最小相位是不牢靠的。很多人早就对此有 所质疑。在非最小相位子波情况下,用最小相位 算子反褶积,结果是子波的最小相位部分得到消 除,而子波的最大相位部分则与反褶积算子的相 应的最小相位部分的褶积,输出只能是混合相位 子波。
技术交流
2004/04/20
在地表一致性反褶积形式中,地震道分解为 震源、接收器、偏移距、及地层脉冲响应的褶积影 响,这样就可以清楚地估计由于地表震源及地表接 收条件以及炮检间隔对子波形态的变化,分解后进 行反滤波以恢复地层的脉冲响应。根据地表一致性 给出的褶积模型为:
x ( t ) s ( t )* e ( t )* o ( t )* g ( t ) n( t )
技术交流
2004/04/20
①Some assumptions
地震记录上的子波往往是未知的。不能使用确定性反 褶积方法。从地震记录上消除子波的影响,是反褶积的主 要应用。在解决反褶积问题中,要消除子波而获得反射系 数序列是不可能的。反褶积作为一种处理方法得以在工业 中应用,得益于几点假设。主要有反射系数序列白色的假 设,反射系数序列随机的假设,子波时不变的假设,子波 最小相位的假设等。这几点假设非同小可,使本来不可能 解决的问题迎刃而解,从而地震数据处理得以进入一个新 的阶段。
h
h
又 f ( t )的FT为:
F( ) A ( )exp[i ( )]
f
f
技术交流
(13)
2004/04/20
比较方程(12)和(13)式,可以得到:
A ( )1/ A ( )
f
h
( ) ( )
f
h
(14.a) (14.b)
方程(14)表示,反滤波器的振幅谱是地震 子波振幅谱的逆,反滤波器的相位谱是地震子波 相位谱的负值。地震子波的相位谱是不能用确定 性算法得到的,但根据反射系数序列是白色的假 设,我们可以用地震记录的振幅谱代替地震子波 的振幅谱,从而得到反滤波器算子。
从子波自相关的ZT计算反滤波器
地震子波自相关的ZT为:
R ( z ) H( z )H( 1/ z ) (15) H
(10)式的ZT为:
H( z )F( z ) 1
(16)
结合(15)(16)得到:
R ( z )F( z ) H( 1/ z ) H
(17)
技术交流
2004/04/20
我们假设地震子波是最小相位的(因果的及 可实现的),因此反滤波器也是最小相位的。考 虑三点反滤波器的特殊情况,将(17)式中的各 项用ZT展开代替得到:
实窗际统资计料方表法明,,在反一射定系程数度序上列减的弱振反幅射谱系远数不
是序光列滑的的影,响如。果谱采模用拟白反色褶假积设后,(则19必96然,将赵反 射波系而数代序之列以振子幅波谱振的幅不谱光光滑滑性的转假移设到)子,波才振 幅比谱较上理,想对地反解褶决积了产这生个不问良题后。果这。时本已来经是是要 消反除褶子积波方的法影问响世,40在年这了个。假设下将反射系数 序列的一部分性质也成为消除的对象。
阶系数方程写成矩阵形式为:
r
0
r
1
r 2
r 1
r 0
r 1
r 2
r 1
r 0
f 0
f 1
f 2
h0 0 0
(19)
方程(19)左边的方阵代表地震子波的自相 关,而这我们是不知道的,根据反射系数序列是随 机的假设,可以用地震记录的自相关来代替它。即 便如此,方程(19)有四个未知数和三个方程,对 f0归一化,便得到三个未知数和三个方程的(20) 式,由此可求出反滤波算子。
技术交流
2004/04/20
子波时不变假设
子波时不变指的是在子波在传播过程中不发生
变化但。这个一问点题显也然许是并站不特住别脚严的重。,首现先在已理经论有上 站播了不速补住度偿脚均办。与法地频。震率例波 有 如在 关 在传 , 反播 即 褶过 子 积程 波 之在 前中传做的播反衰过减Q滤程程波中度,是、可变传 化使的地,震这记在录提基出本反 符褶 合积 子之 波前 时就 不已 变经的是假经设典。理然论而,,
Trace
反褶积:
s( t )* h( t ) e( t )* h( t )* h( t ) e( t ) ⑸
Recorded s(t)
Trace
Inverse of h(t)
h(t)
Reflection e(t)
Coefficient
技术交流
2004/04/20
将地震记录看成是反射系数序列与地震子波的褶 积,反褶积就是要消除这种褶积过程,从地震记录得 到反射系数序列。一般说来,反褶积的目的是消除某 种已知的或未知的褶积过程的运算。
反射系数序列是白色的假设
反射系数序列是白色的,亦即它的振幅谱是平的:
A ( ) A 常数
(5)
e
0
将(5)式代入(4.a)式:
A ( ) A A ( )
(6)
s
0h
(6)式表明地震记录的振幅谱与震源 子波的振幅谱是一种线性关系。
技术交流
2004/04/20
采用这个假设的目的是为了在这个假设 下可以为将解记决录这振个幅问谱题作,为有子人波采振用幅多谱道应多用时。
技术交流
2004/04/20
最小相位、混合相位和最大相位子波具有相 同的自相关,因而有相同的反褶积算子。以这个 反褶积算子应用于三种子波的结果完全不同。
② INVERSE FILTER
为了将震源波形压缩为一个零延迟尖脉冲, 假定存在一个反滤波器算子 f ( t ),则:
h( t )* f ( t ) ( t )
第反二Q滤在波逻是辑迟上至站9不0年住代脚才。出如现果的子方波法是(时H不a变le,的D,. 那没,么有19深反92部褶,反积Q-射的ad波必a的 要pti子 。ve波 既d就 然ec是 反on震 褶v源 积olu激要ti发消on的除)子子,波波上,的距就影 响反,褶就积承方认法子的波提是 出传 时播 间的 差结 不果 多,已就经不有能40不年承了认!子 波是时变的。
r
0
r
1
r 2
r 1
r 0
r 1
r 2
r 1
r 0
1
a
1
a 2
L 0 0
(20)
1、反褶积的目的
2、反褶积的数学基础
3、地表一致性反褶积
4、其它常用的反褶积形式
5、影响反褶积的两个因素
技术交流
2004/04/20
①Surface-consistent model
The concept that all raypaths which pass through a spatial region will be affected in the same way and that the total effect for any element can be obtained by summing up along the raypath. The contributions for the different regions can be obtained statistically from a multitude of observations. Used for determining and removing changes because of statics, amplitude effects, and waveshape changes
s
e
o
g
根据(26)式产生一组正则方程,他们的 解提供与震源、接收点位置、偏移距及地层脉冲 响应有关的各个谱分量,因此,地表一致性反褶 积算子就是s(t)*o(t)*g(t)的最小相位逆。
1、反褶积的目的
2、反褶积的数学基础
3、地表一致性反褶积
4、其它常用的反褶积形式
5、影响反褶积的两个因素
技术交流
2004/04/20
① WHITENING DECONVOLUTION
谱白化反褶积的名称由设计算子的想法而得名。 就是通过设计的算子与地震道褶积后,使输出结果所 包含的所有频率成份具有相同的振幅。
谱白化反褶积是在频率域的操作,对应的时间域 相当于把一个地震波形变成一个尖脉冲,因此也叫脉 冲反褶积。
( r z 2 r z 1 r r z r z 2 )( f f z f z 2 )
2
1
0
1
2
0
1
2
h0
h z1 1
h z2 2
(18)
从(18)式中求出(f0 ,f1 , f2 )就可 得反滤波器f(t),(f0 ,f1 , f2 )通过确定 方程(18)中Z 的各阶系数来求出, Z 的各
反射系数序列是随机的
一个随机时间序列是一个不相关序列其自相关为:
r ( ) 0 , 0 e
r ( ) r 常数, 0
e
0
(7.a) (7.b)
另,由(1)通过z和1/z的变换,可产生:
r r *r
s
e
h
(8)
相关文档
最新文档