膨胀计法测定高聚物的结晶速度
膨胀计法测定聚合反应速率
实验报告课程名称: 化工专业实验 指导老师: 卜志扬 成绩: 实验名称:膨胀计法测定聚合反应速率 实验类型:高分子化学 同组: 陈玥晗一、实验目的和要求(必填) 二、实验内容和原理(必填)三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1. 掌握膨胀计法测定聚合反应速率的原理和方法。
2. 了解动力学实验数据的处理和计算方法。
二、实验内容和原理聚合动力学主要是研究聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。
连锁聚合一般可分成三个基元反应:引发、增长、终止。
若以引发剂引发,其反应式及动力学如下:引发: •−→−R I d k 2 ••→+M M R][2I fk R d i =•(1)增长: •+•−→−+1n kn M M M p]][[M M k R p p •=(2)终止: p M M tkn m −→−+••2][M k R i i =(3)式中I 、M 、R •、M •、P 分别表示引发剂、单体、初级游离基或聚合物游离基及无活性聚合物。
R i 、R p 、R t 、k d 、k p 、k t 分别表示各步反应速率及速率常数。
f 表示引发效率。
[ ]表示浓度。
聚合速率可以用单位时间内单体消耗量或者聚合物生成量来表示,即聚合速度应等于单体消失速度,dtM d R ][-≡。
只有增长反应才消耗大量单体,因此也等于增长反应速率。
在低转化率下,稳态条件成立,R f =R t ,则聚合反应速率为:][][][)2(][21211M I K M I k fk k dt M d td p == (4)式中K 为聚合反应总速率常数。
单体转化为聚合物时,由于聚合物密度比单体密度大,体积将发生收缩。
根据聚合时体积的变化,可专业: 化学工程与工艺 姓名: 沈继富学号: 3090103075 日期: 2011.11.25 地点: 西溪七教409装订线以计算反应转化率。
DSC测定聚合物等温结晶速率
存在一个结晶速度的极大值
IV区:温度下降使大分子链 段扩散减慢,晶粒生长速度 下降,导致总结晶速度下降 整个过程由晶粒生长
过程控制
成核过程:
异相成核:可以在较高温度下发生 均相成核:宜于在稍低的温度下发生
熔体中高分子链依靠热运动而形成有序排列的链束 作为晶核。温度过高,分子的热运动过于剧烈,晶核 不易形成,已形成的晶核也不稳定。
温度 均相成核的速度
晶粒的生长过程:主要取决于链段向晶核的扩散和堆砌
的速度,随着温度的降低,熔体的粘度增大,不利于链 段的扩散运动。
温度
晶粒生长速度
Tmax= 0.8~0.85 Tm (K)
T<Tg:链段被冻 结,不能运动
T>Tm:晶体被熔 融,无法固定
结晶温度范围界于玻璃化温度Tg与熔点Tm之间
I区:
Tm以下10~30℃ 速度近为零
过冷区
成核速度极慢,结晶
II区:随着温度的下降,成核速度增加,总结晶速度增加 整个过程受成核过程控制 III区:成核和晶粒生长的速度均较大,结晶的主要区域
描述聚合物等温结晶过程的Avrami方程: 1-X=exp(-Ktn)
式中:K—总结晶速率常数 X:结晶分数
Avrami指数(n):与成核机理和晶粒生长的方式有关, 其值为晶粒的生长维数和成核过程的时间维数之和。 晶粒的生长维数: 一维生长: 针状晶体 二维生长:片状晶体 1 2
三维生长:球状晶体
以 lg[-ln (1-X)对lgt 作图
斜率:n 截距:lgK 可以获得结晶过程成核的机 理以及生长速度的重要信息. 当X=1/2 时
ln 2 t1/ 2 = K
1/ n
K
实验6 膨胀计法测定苯乙烯自由基聚合反应速率
实验6 膨胀计法测定苯乙烯自由基聚合反应速率一、实验目的1、了解自由基聚合的原理和反应机理;2、掌握膨胀计的使用方法及其原理;二、实验原理聚合是一种化学反应,由许多分子组成的大分子称为聚合物。
自由基聚合是其中一种重要的聚合形式。
自由基聚合是指通过自由基反应机理进行聚合的过程。
自由基聚合可以发生在单体中,也可以在多体中进行。
在反应中,自由基起到引导聚合的作用。
聚合反应是若干单体分子(一般为低分子量化合物)加入引发剂(称为引发单体)后,在一定的温度容器内、经过一段时间的反应,由于相互作用,形成大分子化合物(称为聚合物)。
聚合物一般为线性链状结构,可以作为高分子材料应用于制造各种化学品、塑料等材料。
苯乙烯是一种具有较高反应活性的单体,可以通过自由基反应机理进行聚合。
苯乙烯的聚合可以通过热引发、光引发等方式进行,其中以过氧化物引发方式最常用。
过氧化物引发剂(如过氧化苯甲酰)加入苯乙烯单体中,通过热的方式引发自由基聚合反应。
自由基聚合具有单分子反应特性,所以其反应速率可以用分子反应速率常数表示。
分子反应速率常数k可以通过聚合前后单体浓度变化的比值和反应时间计算得出。
膨胀计是一种用于测量高分子物质在化学反应中的膨胀量的仪器。
在实验中,将聚合单体置于一定温度下,在一定时间内进行聚合,然后利用膨胀计测量聚合物的膨胀量,从而计算出反应速率。
膨胀计的原理是利用聚合物吸收单体的性质。
在反应过程中,单体被吸收到聚合物中,导致聚合物产生膨胀。
通过测量膨胀量,可以得出聚合物的近似质量,并计算出反应速率。
膨胀计的使用方法包括以下步骤:(1) 准备苯乙烯聚合前和聚合后的试样,并记录试样的重量。
(2) 将试样装入膨胀计仪器中,加入引发剂和其他反应条件,并启动仪器。
(3) 在一定时间内进行聚合反应,并测量聚合物产生的膨胀量。
(4) 计算出聚合物的质量变化和反应速率。
三、实验操作1、实验仪器和材料膨胀计、苯乙烯、过氧化苯甲酰。
2、实验步骤(2) 在聚合前的苯乙烯试样中加入适量的过氧化苯甲酰引发剂,并将样品加入膨胀计仪器中。
高分子材料物理化学实验复习资料整理
Huggins式: sp K H C C
2
ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11
{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。
膨胀计
膨胀计法测定甲基丙烯酸甲酯本体聚合反应速率一、实验目的1. 掌握膨胀计法测定聚合反应速率的原理和方法2. 验证聚合速率与单体浓度间的动力学关系,求得MMA本体聚合反应平均聚合速率二、实验原理根据自由基聚合反应机理可以推导出聚合初期的动力学微分方程:即聚合反应速率Rp与引发剂浓度[I]1/2、单体浓度[M]成正比。
在转化率低的情况下,可假定引发剂浓度保持恒定,将微分式积分可得:式中:[M]0为起始单体浓度;[M]为t时刻单体浓度,K为常数。
如果从实验中测定不同时刻的单体浓度[M],求出不同时刻的数值,并对时间t作图应得一条直线,由此可验证聚合反应速率与单体浓度的动力学关系式。
聚合反应速率的测定对工业生产和理论研究具有重要的意义。
实验室多采用膨胀计法测定聚合反应速率:由于单体密度小于聚合物密度,因此在聚合过程中聚合体系体积不断缩小,体积降低的程度依赖于单体和聚合物的密度差,即体积的变化是和单体的转化率成正比。
如果使用一根直径很小的毛细管来观察体积的变化(参见图5-1),测试灵敏度将大大提高,这种方法就叫膨胀计法。
若以ΔV表示聚合反应t时刻的体积收缩值,为单体完全转化为聚合物时的体积收缩值,则单体转化率C可以表示为:式中,V0为聚合体系的起始体积; r为毛细管半径;h为某时刻聚合体系液面下降高度;dp为聚合物密度;dm为单体密度。
因此,聚合反应速率为:因此,通过测定某一时刻聚合体系液面下降高度,即可计算出此时刻的体积收缩值和转化率,进而作出转化率与时间关系曲线,根据直线部分斜率,即可求出平均聚合反应速率。
应用膨胀计法测定聚合反应速率既简单又准确,需要注意的是此法只适用于测量转化率在10%反应范围内的聚合反应速率。
因为只有在引发剂浓度视为不变的阶段(10%以内的转化率)体积收缩与单体浓度呈线性关系,才能用上式求取平均速率;特别是在较高转化率下,体系粘度增大,导致聚合反应自动加速,用上式计算的速率已不是体系的真实速率。
膨胀计法测定苯乙烯聚合反应速率
膨胀计法测定苯乙烯聚合反应速率2.试验原理聚合反应速率可通过挺直测定用于反应的单体或所产生的聚合物的量求得,这被称为挺直法;也可以从陪同聚合反应的物理量的变幻求出,被称为间接法。
前者适用于各种聚合办法,而后者只能用于均一的聚合体系。
间接法能够延续地、精确地求得聚合物初期的聚合反应速率。
对于均一的聚合体系,在聚合反应举行的同时,体系的密度、勃度、折光度、介电常数等也都发生变幻。
本试验就是依据密度随友应物浓度变幻的原理来测定聚合反应速率的。
聚合物的密度通常也比其单体大,通过观看一定量单体在聚合时的体积收缩就可以计算出聚合反应速率。
为了增大比容随温度变幻的敏捷度,观看体积变幻是在一个很小的毛细管中举行的。
测定所用的仪器称为膨胀计,其结构主要包括两部分:下部是聚合容器,上部连有带有刻度的毛细管。
将加有定量引发剂的单体弥漫膨胀计,在恒温水浴中聚合,单体改变为聚合物时密度增强,体积收缩,毛细管内液面下降。
每隔一定时光记录毛细管内聚合混合物的弯月面的变幻,可将毛细管读数按一定关系式对时光作图。
再按照单体浓度,从而求出聚合总速率的变幻状况。
动力学讨论普通限于低转化率,在5%-10%以下。
在低转化率下,假定[I]保持不变时,引发剂引发的聚合反应速率方程式如下: Rp=d[M]/dt=k[M](1)式中,k为反应速率常数;[M]为单体浓度。
经积分得: In=[M]0/[M]t=kt(2)式中,[M]0、[M]t分离为单体的起始浓度和t时刻浓度。
设膨胀计的体积(即苯乙烯的起始体积)为V0,苯乙烯彻低聚合后的体积为V∞,则(VI一V∞)就是苯乙烯转化成聚苯乙烯总的体积收缩量,而t时刻所能达到的体积收缩量为(Vt一V∞),因为(V0一V∞)和(Vt一V∞)分离与单体的起始浓度[M]0和:时刻剩下的苯乙烯浓度[M]t相关,将它们分离代入式(2)得: ln=(V0一V∞)/(Vt -V∞)=kt(3)因为膨胀计毛细管的刻度是长度单位,故将式(3)分子、分母分离除以毛细管的横截面积即变换成长度: In=(L0一L ∞)/(Lt一L∞)=kt(4) 由式(1)可知,聚合反应速率对单体浓度为一第1页共3页。
聚合物结晶速度的测试方法 -回复
聚合物结晶速度的测试方法-回复聚合物结晶速度是指聚合物在固态下从无序状态向有序状态转变的速度。
了解聚合物的结晶速度对于聚合物的制备和性能控制非常重要。
本文将逐步介绍最常用的测试聚合物结晶速度的方法。
一、热差示扫描量热法(DSC)热差示扫描量热法是最常用的测试聚合物结晶速度的方法之一。
该方法通过测量物质在升温或降温过程中释放或吸收的热量,来确定其相变温度和结晶速度。
1. 准备样品:将聚合物样品切成均匀的小片,并进行表面处理以消除表面应力。
2. 扫描:将样品放置在DSC仪器中,根据需要选择升温或降温扫描模式。
开始时,将样品加热至高温区域,使其完全熔化。
然后,快速降温到低温区域,观察样品的结晶过程。
3. 分析结果:根据热容变化曲线和峰值位置确定结晶温度,利用半峰宽计算结晶速度。
二、X射线衍射(XRD)X射线衍射是一种可以确定聚合物结晶速度的非常重要的分析技术。
通过测量样品表面反射或绕射的X射线,在不同温度下观察结晶体和非晶体的特征峰,以及峰的强度和宽度的变化,来了解结晶速度。
1. 准备样品:将聚合物样品制备成块状或粉末状,需要确保样品表面平整。
2. 实验测量:将样品放置在X射线衍射仪器中,设置合适的入射角度和扫描范围。
逐渐升温或降温样品,记录X射线衍射图谱。
3. 数据分析:根据X射线衍射图谱的峰位、峰宽和峰强度,可以得到结晶特征参数。
通过对比不同温度下的数据,可以计算出聚合物的结晶速度。
三、偏光显微镜(POM)偏光显微镜是一种实时观察聚合物结晶过程的重要工具。
通过观察聚合物样品在显微镜下的反射和透射光的偏振状态来研究结晶速度。
1. 准备样品:将聚合物样品切割成薄片,并进行表面处理以消除表面应力。
2. 观察:将样品放置在偏光显微镜下,通过调节偏振光的角度和强度,观察样品在不同温度下的结晶行为。
3. 结果分析:根据观察到的结晶特征,如晶体形态、晶体尺寸和结晶速度,来评估样品结晶速度。
综上所述,热差示扫描量热法、X射线衍射和偏光显微镜是目前最常用的测试聚合物结晶速度的方法。
膨胀计法测定聚合反应速率
实验报告课程名称:化工专业实验Ⅰ 指导老师:介素云 成绩:实验名称:膨胀计法测定聚合反应速率 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得二、实验内容和原理(必填) 四、 操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的1.掌握膨胀计法测定聚合反应速率的原理和方法。
2.了解动力学实验数据的处理和计算方法。
二、实验原理聚合动力学主要是研究聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。
连锁聚合一般可分为三个基元反应;引发、增长、终止。
若以引发剂引发,其反应式及动力学如下: 引发:****22[]dk i d I R R M M R fk I −−→+−−→= (1)增长:**1*[][]p kn n p p M M M R k M M ++−−→= (2)终止:**2[]t k m n i i M M pR k M +−−→= (3)式中I 、M 、*R 、*M 、p 分别表示引发剂、单体、初级游离基或聚合物游离基及无活性聚合物。
i R 、p R 、t R 、d k 、p k 、t k 分别表示各步反应速率及速率常数。
f 表示引发效率。
[]表示浓度。
聚合速率可以用单位时间内单体消耗量或者聚合物生成量来表示,即聚合速度应等于单体消失速度,[]d M R dt≡-。
只有增长反应才消耗大量单体,因此也等于增长反应速率。
在低转化率下,稳态条件成立,f t R R =,则聚合反应速率为:1/21/21/22[]()[][]d p tfk d M k I M K I M dt k == (4)式中,K 为聚合反应总速率常数。
单体转化为聚合物时,由于聚合物密度比单体密度大,体积将发生收缩。
根据聚合时体积的变化,可以计算反应转化率。
聚合速率的测定方法有直接法和间接法两类。
直接法有化学分析法、蒸发法、沉淀法。
聚合物的结晶动力学
聚合物的结晶动⼒学聚合物的结晶动⼒学本节主要内容:讨论结晶的过程和速度问题,即结晶的动⼒学问题。
⽬的:了解聚合物的结构和外界条件对结晶速度和结晶形态的影响,进⽽通过结晶过程去控制结晶度和结晶形态,以达到控制最终产品性能的⽬的。
⼀、⾼分⼦结构与结晶的能⼒聚合物结晶过程能否进⾏,必须具备两个条件:1、聚合物的分⼦链具有结晶能⼒,分⼦链需具有化学和⼏何结构的规整性,这是结晶的必要条件——热⼒学条件。
2、给予充分的条件-适宜的温度和充分的时间——动⼒学条件。
(⼀)链的对称性⼤分⼦链的化学结构对称性越好,就越易结晶。
例如:聚⼄烯:主链上全部是碳原⼦,结构对称,故其结晶能⾼达95%;聚四氟⼄烯:分⼦结构的对称性好,具有良好的结晶能⼒;聚氯⼄烯:氯原⼦破坏了结构的对称性,失去了结晶能⼒;聚偏⼆氯⼄烯:具有结晶能⼒。
主链含有杂原⼦的聚合物,如聚甲醛、聚酯、聚醚、聚酰胺、聚砜等,虽然对称性有所降低,但仍属对称结构,都具有不同程度的结晶能⼒。
(⼆)链的规整性主链含不对称碳原⼦分⼦链,如具有空间构型的规整性,则仍可结晶,否则就不能结晶。
如⾃由基聚合制得的聚丙烯、聚苯⼄烯、聚甲基丙烯酸甲酯等为⾮晶聚合物,但由定向聚合得到的等规或间规⽴构聚合物则可结晶。
⼆烯类聚合物:全顺式或全反式结构的聚合物有结晶能⼒;顺式构型聚合物的结晶能⼒⼀般⼩于反式构型的聚合物。
反式对称性好的丁⼆烯最易结晶。
(三)共聚物的结晶能⼒⽆规共聚物:1、两种共聚单体的均聚物有相同类型的晶体结构,则能结晶,⽽晶胞参数随共聚物的组成⽽发⽣变化。
2、若两种共聚单元的均聚物有不同的晶体结构,但其中⼀种组分⽐例⾼很多时,仍可结晶;⽽两者⽐例相当时,则失去结晶能⼒,如⼄丙共聚物。
嵌段共聚物:各嵌段基本上保持着相对独⽴性,能结晶的嵌段可形成⾃⼰的晶区。
例如,聚酯—聚丁⼆烯—聚酯嵌段共聚物中,聚酯段仍可结晶,起物理交联作⽤,⽽使共聚物成为良好的热塑性弹性体。
影响结晶能⼒的其它因素:1、分⼦链的柔性:聚对苯⼆甲酸⼄⼆酯的结晶能⼒要⽐脂肪族聚酯低2、⽀化:⾼压聚⼄烯由于⽀化,其结晶能⼒要低于低压法制得的线性聚⼄烯3、交联:轻度交联聚合物尚能结晶,⾼度交联则完全失去结晶能⼒。
膨胀计法测定苯乙烯聚合反应速率实验报告
膨胀计法测定苯乙烯聚合反应速率实验报告
本试验旨在使用膨胀计法来测定苯乙烯聚合反应的速率。
聚合反应的速率表示聚合反应生成产物的速率,其受不同的微环境因素影响,包括反应温度、浓度等。
本实验采用膨胀计法,测定苯乙烯在恒定温度和压强下聚合反应的速率。
膨胀计法测定反应相当于利用反应液容积的变化来推断反应的进展,相当于用反应室的容积与体积之间的变化来检测反应速率。
本实验根据恒定温度和压强,在实验中采用膨胀计测定苯乙烯聚合反应的速率,主要包括实验前的准备、实验的操作以及实验结束后的数据处理等步骤。
实验前的准备主要是准备各种实验仪器,包括膨胀计、细枝毛笔及记录纸等。
其中,膨胀计的容积是1ml,两个活塞的初始位置调整在实验空膨胀值上,细枝毛笔则用来放置在反应室内测定容积变化,记录纸则用来记录反应过程中体积变化的数据。
经过实验前的准备,准备好了需要的一切,就可以正式开始实验。
实验过程是将苯乙烯放入容积为1ml的反应室里,记录反应室开始时的容积,然后置放在定温恒温蒸馏仪中进行聚合,定时截取容积数据,半个小时到一个小时的间隔不断的调整活塞的位置,记录反应室的容积,待实验结束时,反应室的容积最终稳定,表明反应结束,实验结束。
实验结束后进行数据处理,主要是对收集到的数据进行处理,根据实验结果可以得出 amountA(L)/min 来表示反应速率,从而验证反应的机理。
经过本次实验的膨胀计法,我们测定了苯乙烯聚合反应的速率,通过实验结果来证明不同的微环境因素会影响反应速率。
本实验表明,膨胀计法是一种可行的方法来测定苯乙烯聚合反应的速率。
膨胀计法测定苯乙烯本体聚合反应速率(自动保存的
膨胀计法测定苯乙烯本体聚合反应速率(自动保存的
膨胀计法是一种常用的化学反应速率测定方法,适用于热起始的低聚和高聚反应以及聚合物降解反应的速率测定。
在苯乙烯本体聚合反应中,膨胀计法可以通过测量
反应体系体积的变化来计算反应速率。
测定苯乙烯本体聚合反应速率的步骤如下:
1. 实验器材准备:需要一台膨胀计仪、移液管、计时器、恒温水槽、分液漏斗等。
2. 实验样品准备:取少量苯乙烯本体和过氧化氢,加入反应瓶中,搅拌至完全溶解。
3. 实验条件设定:将膨胀计器安装在恒温水槽中,调整温度至实验所需温度。
将反应瓶挂于膨胀计仪顶部,其中溶液顶部与仪器顶部呈水平状态。
4. 实验开始:打开膨胀计仪的阀门,将反应瓶中的反应液注入仪器中,反应开始计时。
5. 测量反应体积变化:随着反应的进行,反应体系的体积将逐渐增加,此时需要用移液管将溢出的液体移回到反应瓶中,保持体系体积不变。
6. 结束反应:当反应达到一定时间时,关闭膨胀计仪的阀门,停止反应,并记录此时体系的总体积。
7. 数据处理:通过计算反应前后体系体积的差值,以及实验中所设定的时间间隔,可以计算出反应速率。
膨胀计法的测定结果受很多因素影响,例如反应温度、反应物浓度、催化剂种类和浓度等,因此需要进行多次实验来确定最终的反应速率。
此外,由于苯乙烯本体聚合反应是一个多步反应,其中包含自由基反应、传递反应、氧化反应等多个过程,因此需要对反应机理进行深入的研究,才能准确地测定反应速率。
膨胀计法测定苯乙烯聚合反应速率
膨胀计法测定苯乙烯聚合反应速率一、实验目的1.了解膨胀计法测定聚合反应速率的原理。
2.掌握膨胀计的使用方法。
3.掌握动力学实验的操作及数据处理方法。
二、实验原理自由基聚合反应是现代合成聚合物的重要反应之一,目前世界上,由自由基聚合反应得到的合成聚合物的数量居多。
因此,研究自由基反应动力学具有重要意义。
聚合速率可由直接测定来反应的单体或所产生的聚合物的量求得。
这被称为直接法;也可以从伴随聚合反应的物理量的变化求出。
此即被成为间接法。
前者适用于各种聚合方法,而后者只能用于均一的聚合体系。
它能够连续地、精确的求得聚合物初期的聚合反应速率。
对于均一的聚合体系,在聚合反应进行的同时,体系的密度、粘度、折光度、介电常数等也都发生变化。
本实验就是依据密度随反应物浓度变化的原理而测定聚合速率的。
聚合物的密度通常也比其单体大,通过观察一定量单体在聚合时的体积收缩就可以计算出聚合速率。
一些单体和聚合物的密度变化如下表所示:单体和聚合物的密度密度g/ml25oC单体体积收缩%单体聚合物氯乙烯0.9191.40634.4丙烯0.8001.1731.0甲基丙烯1.1027.0丙烯酸甲酯0.9521.22322.1醋酸乙烯某0.9341.19121.6甲基丙烯酸甲酯0.9401.17920.6苯乙烯0.9051.06214.5丁二烯某0.62760.90644.4某为20oC数据为了增大比容随温度变化的灵敏度,观察体积收缩是在一个很小的毛细管中进行,测定所用的仪器称为膨胀计(如图所示)。
其结构主要由两部分组成,下部是聚合容器,上部连有带有刻度的毛细管。
将加有定量引发剂的单体充满膨胀计,在恒温水浴中聚合,单体转变为聚合物时密度增加,体积收缩,毛细管内液面下降。
每隔一定时间记录毛细管内聚合混合物的弯月面的变化,可将毛细管读数按一定关系式对时间作图。
再根据单体浓度,从而求出聚合总速率的变化情况。
动力学研究一般限于低转化率,在5-10%以下。
聚合物结晶速度的测试方法 -回复
聚合物结晶速度的测试方法-回复聚合物的结晶速度是指在固态化学反应中,聚合物分子从无序状态转化为有序结晶态的速度。
了解聚合物的结晶速度对于调控聚合物材料的性能具有重要意义,因为结晶速度与材料的力学性能、热稳定性和光学性能等密切相关。
为了准确测量聚合物的结晶速度,科学家们开发出了一系列测试方法。
本文将逐步介绍这些方法以及它们的原理和操作步骤。
第一步:差示扫描量热法(DSC)差示扫描量热法是用于测量聚合物结晶速度的常用方法之一。
其原理是通过测量材料在加热或冷却过程中释放或吸收的热量来分析结晶过程。
具体操作是将样品放置在DSC仪器中,并控制加热或冷却速率进行测试。
DSC 仪器可以记录样品温度和测量到的热量,从而分析结晶速度。
第二步:动态热机械分析法(DMA)动态热机械分析法是另一种常用的测试聚合物结晶速度的方法。
该方法利用固体材料在周期性应力作用下的力学性能变化来分析结晶速度。
具体操作是将样品放置在DMA仪器中,并以一定频率施加周期性应力。
通过测量样品的变形与应力之间的关系,分析聚合物的结晶速度。
第三步:X射线衍射法(XRD)X射线衍射法是一种直接观察结晶行为的测试方法。
该方法利用X射线的散射特性来分析聚合物的晶体结构及其结晶速度。
具体操作是将聚合物样品放置在XRD仪器中,通过观察样品散射的X射线衍射图案来分析聚合物的结晶速度。
第四步:偏光显微镜法(POM)偏光显微镜法是一种间接测量聚合物结晶速度的方法。
该方法通过观察聚合物在显微镜下的偏光特性来分析结晶过程。
具体操作是将样品放置在偏光显微镜中,并调节偏光器和分析器的角度,观察样品的偏光图像变化并分析结晶速度。
第五步:红外光谱法(IR)红外光谱法是一种测试聚合物结晶速度的非常有效的方法。
该方法通过红外光的吸收特性来分析聚合物的晶态结构及其结晶速度。
具体操作是将样品放置在红外光谱仪中,通过测量样品对红外光的吸收程度来分析其结晶速度。
总结上述所述的差示扫描量热法、动态热机械分析法、X射线衍射法、偏光显微镜法和红外光谱法是常用于测试聚合物结晶速度的方法。
膨胀计测定原理及使用方法
膨胀计测定原理及使用方法哇塞,今天咱就来好好聊聊膨胀计测定原理及使用方法。
膨胀计测定呀,简单来说就是利用物体在受热或受冷时会发生膨胀或收缩的特性来进行测量和分析。
使用膨胀计的步骤呢,首先要准备好膨胀计和待测样品,将样品放入膨胀计中,然后根据具体的实验要求进行加热或冷却操作。
在这个过程中可得注意啦,要确保膨胀计的安装和操作正确无误,不然得出的数据可就不准确喽!同时,还要注意控制温度变化的速率,不能太快也不能太慢,就像跑步一样,得保持一个合适的节奏。
说到安全性和稳定性,这可太重要啦!在使用膨胀计的过程中,一定要严格遵守操作规程,避免发生意外。
就好像走钢丝一样,得小心翼翼地保持平衡,稍有不慎可能就会出问题呢。
而且要保证膨胀计本身的质量可靠,这样才能确保实验过程稳定进行呀。
那膨胀计都有哪些应用场景和优势呢?它的应用场景那可多了去了,比如在材料科学领域,可以用来研究材料的热膨胀性能;在化学领域,可以监测化学反应过程中的体积变化。
它的优势就在于能够非常精确地测量微小的体积变化,这就好比是在茫茫人海中精准地找到那个特别的人一样厉害!而且操作相对简单,成本也不高,多好呀!
咱来举个实际案例吧,在研究一种新型材料的热膨胀性能时,使用膨胀计进行测定。
通过实验,清楚地了解到这种材料在不同温度下的膨胀情况,为进一步的研究和应用提供了重要的数据支持。
你看,这效果多明显呀!
膨胀计测定真的是一种非常有用的技术呀,它就像是一把神奇的钥匙,可以打开很多科学领域的大门,让我们更深入地了解物质的性质和变化。
所以呀,大家一定要重视和好好利用它哟!。
膨胀计法测定聚合反应速率PPT课件
2020/10/13
8
2.聚合反应
准确称取甲基丙烯酸甲酯15.0000克和0.1500克BPO
在50ml的小烧杯中混合均匀后由加料口加入锥形瓶
中。插入毛细管,料液弯月面刻度值和瓶的体积相
加为起始液体体积V0,关闭活塞,将膨胀计固定在
60+0.5℃的恒温水浴中。由于热膨胀,毛细管内液
面不断上升,当液面稳定不动时即达到了热平衡,
2020/10/13
3
膨胀计示意图
1.锥形瓶(储存器) 2.活塞磨口及挂钩 3.毛细管
2020/10/13
4
如果膨胀计用单体和引发剂混合物充满到毛细管下部 的刻度线,然后浸入到恒温水浴中,最初毛细管中的 液面由于单体的热膨胀作用而上升,但几分钟后可以 观察到毛细管的液面下降,此时即聚合反应开始,从 管内液体升至最高点到开始下降的这段时间称为诱导 期。如果毛细管的体积已经测定,用此体积V对时间t 作图,得到单位时间的体积变化△V/V。
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
2020/10/13
汇报人:XXXX 日期:20XX年XX月XX日
14
9
数据处理
1.诱导期:从热平衡至反应开始为止的时间。 2.转化率-时间曲线:根据式(2)求出不同反应时间t
下的转化率C%,其中dMMA=0.8959, dPMMA=1.179。以C%对t作图得到转化率-时间曲 线,从斜率求得反应速率R=[M]0*(dc%/dt)。(假 定引发剂在大量MMA中不影响其浓度)
记录时间及膨胀计液面高度作为实验起点,当液面
开始下降时,表示聚合反应已开始,记下时间t,以
后每5分钟记录一次液面变化情况直到实验结束,取
实验一膨胀计法测聚合反应速度
实验一膨胀计法测聚合反应速度实验报告课程名称: 化工专业实验 指导老师: 成绩:________________实验名称: 膨胀计法测聚合反应速度 实验类型: 高分子化学实验 同组学生姓名:一、实验目的和要求 二、实验内容和原理三、主要仪器设备 四、操作方法和实验步骤五、实验数据记录和处理 六、实验结果与分析七、讨论、心得一、实验目的1.掌握膨胀计法测定聚合反应速率的原理和方法。
2.了解动力学实验数据的处理和计算方法。
二、实验原理聚合动力学主要是研究聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。
专业:姓名: 学号:连锁聚合一般可分成三个基元反应:引发、增长、终止。
若以引发剂引发,其反应式及动力学如下: 引发:*2R I dk −→−**M M R →+ []I fk R d i 2*=(1)增长:*1*+−→−+n knM M Mp]][[*M M k R p p =(2)终止:p M M t k n m−→−+**[]2M k R t i =(3)式中:I 、M 、R *、M *、P 分别表示引发剂、单体、初级游离基或聚合物游离基及无活性聚合物。
R i 、R p 、R t 、k d 、k p 、k t 分别表示各步反应速率及速率常数。
f 表示引发效率,[ ]表示浓度。
聚合速率可以用单位时间内单体消耗量或者聚合物生成量来表示,即聚合速度应等于单体消失速度,[]dtM d R -≡。
只有增长反应才消耗大量单体,因此也等于增长反应速率。
在低转换率下,稳态条件成立,R f = R t ,则聚合反应速率为:[][][][]M I K M I k fk k dt M d td p 2/12/12/12=⎪⎪⎭⎫⎝⎛=(4)式中K 为聚合反应总速率常数。
单体转化为聚合物时,由于聚合物密度比单体密度大,体积将发生收缩。
根据聚合时体积的变化,可以计算反应转化率。
实验名称: 膨胀计法测定聚合反应速率 姓名:学号:本实验采用膨胀计法测聚合反应速率,膨胀计法的原理是利用聚合过程中体积收缩与转化率的线性关系。
膨胀计法测定聚合反应速率实验报告
实验报告课程名称: 化工专业实验 指导老师: 卜志扬 成绩: 实验名称:膨胀计法测定聚合反应速率 实验类型:高分子化学 同组:一、实验目的和要求(必填) 二、实验内容和原理(必填)三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1. 掌握膨胀计法测定聚合反应速率的原理和方法。
2. 了解动力学实验数据的处理和计算方法。
二、实验内容和原理聚合动力学主要是研究聚合速率、分子量与引发剂浓度、单体浓度、聚合温度等因素间的定量关系。
连锁聚合一般可分成三个基元反应:引发、增长、终止。
若以引发剂引发,其反应式及动力学如下:引发: •−→−R I dk 2 ••→+M M R][2I fk R d i =•(1)增长: •+•−→−+1n kn M M M p]][[M M k R p p •=(2)终止: p M M tkn m −→−+••2][M k R t t =(3)式中I 、M 、R •、M •、P 分别表示引发剂、单体、初级游离基或聚合物游离基及无活性聚合物。
R i 、R p 、R t 、k d 、k p 、k t 分别表示各步反应速率及速率常数。
f 表示引发效率。
[ ]表示浓度。
聚合速率可以用单位时间内单体消耗量或者聚合物生成量来表示,即聚合速度应等于单体消失速度,dtM d R ][-≡。
只有增长反应才消耗大量单体,因此也等于增长反应速率。
在低转化率下,稳态条件成立,R i =R t ,则聚合反应速率为:-][][][)(][212121M I K M I k fk k dt M d td p == (4)式中K 为聚合反应总速率常数。
单体转化为聚合物时,由于聚合物密度比单体密度大,体积将发生收缩。
根据聚合时体积的变化,可以计算反应转化率。
聚合速率的测定方法有直接法和间接法两类。
直接法有化学分析法、蒸发法、沉淀法。