《传感器技术》习题答案第5-6章
传感器与传感器技术课后答案
《传感器与传感器技术》计算题答案第1章传感器的一般特性1—5 某传感器给定精度为2%F·S,满度值为50mV,零位值为10mV,求可能出现的最大误差(以mV计)。
当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。
由你的计算结果能得出什么结论解:满量程(F▪S)为50﹣10=40(mV)可能出现的最大误差为:m=402%=(mV)当使用在1/2和1/8满量程时,其测量相对误差分别为:1—6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数和静态灵敏度K。
(1)式中, y——输出电压,V;T——输入温度,℃。
(2)式中,y——输出电压,V;x——输入压力,Pa。
解:根据题给传感器微分方程,得(1)τ=30/3=10(s),K=105/3=105(V/℃);(2) τ==1/3(s),K==(V/Pa)。
1—7已知一热电偶的时间常数=10s,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s,静态灵敏度K=1。
试求该热电偶输出的最大值和最小值。
以及输入与输出之间的相位差和滞后时间。
解:依题意,炉内温度变化规律可表示为x(t) =520+20sin(t)℃由周期T=80s,则温度变化频率f=1/T,其相应的圆频率=2f=2/80=/40;温度传感器(热电偶)对炉内温度的响应y(t)为y(t)=520+Bsin(t+)℃热电偶为一阶传感器,其响应的幅频特性为因此,热电偶输出信号波动幅值为B=20A()==15.7℃由此可得输出温度的最大值和最小值分别为y(t)|=520+B=520+=535.7℃y(t)|=520﹣B==504.3℃输出信号的相位差为(ω)= arctan(ω)= arctan(2/8010)=相应的时间滞后为t =1—8 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即式中,y——输出电荷量,pC;x——输入加速度,m/s2。
刘伟《传感器原理及实用技术》习题答案
刘伟《传感器原理及实⽤技术》习题答案习题1(1)对应于被测量、能给出易于处理的输出信号的变换器。
传感器⼀般由两个基本元件组成:敏感元件与转换元件。
在⾃动控制系统中,检测是实现⾃动控制的⾸要环节,没有对被控对象的精确检测,就不可能实现精确控制。
(2)1. 根据被测量分类2. 依据传感器的⼯作原理分类3. 按照能量的传递⽅式分类4. 根据输出信号的性质分类在实际应⽤中,传感器的命名通常⽤⼯作原理与被测量合成命名,如扩散硅压⼒传感器。
(3)静态特性要有量程、线性度、灵敏度、迟滞、不重复性、温漂及零漂等;(4)动态特性主要有幅频特性和相频特性以及响应时间。
(5)某传感器的输⼊、输出特性为532)(3++=x x x f ,试求出该传感器的灵敏度。
由于灵敏度dxdy S =,所以362+=x S (6)具有体积⼩、重量轻、可靠性⾼、响应速度快、稳定等特点,⽽且便于批量⽣产,成本较低。
采⽤集成传感器可简化电路设计,减⼩产品体积,便于安装调试,提⾼可靠性。
(7)智能传感器是将传感器与微机结合,具有⾃补偿、⾃诊断、⾃校正功能以及数据⾃动存储、分析、处理与传输。
习题2(1)相同点:都是利⽤应变效应⼯作的。
不同点:箔式应变⽚的应变主要集中在⼏何尺⼨的变化上,灵敏度较低但稳定;半导体应变⽚主要集中在电阻率变化上,灵敏度较⾼但不稳定。
(2)导体或半导体在受到外⼒作⽤变形时,其电阻值也将随之变化,这种现象称为“应变效应”。
应变⽚在受到外⼒变形时,其截⾯积变化引起的电阻变化,称为横向效应。
也就是说,导体在长度上发⽣变化时,截⾯积也会随之变化,所以应变效应包含纵向效应和横向效应。
(3)解:①由于==AEF x ε39.0µε(微应变),所以=-=x y µεε117.0µε②⼜RR S y ?=ε所以0585.02117.0-=-==?S R R y ε③ 02.71200585.0-=?-=?R Ω电阻减⼩④应变⽚是沿圆柱的圆周⽅向(径向)粘贴时受到的是拉应变,所以 195.0239.0===?S R R x ε 4.23120195.0=?=?R Ω电阻增加习题3(1)电感式传感器按⼯作原理分为⾃感式、互感式(差动变压器)和电涡流式。
传感器技术A卷答案
传感器技术( A )卷及参考答案
一、单选题(每小题3分,共计30分。
)
1. 信号的幅值和独立变量均为连续量。
A. 模拟
B. 数字
C. 离散
答案:A
知识点:第2章
难度:3
解析:信号分类描述方法。
2. 随机误差的绝对值相等的正误差与负误差出现的次数相等,称为。
A. 单峰型
B. 对称性
C. 有界性
答案:B
知识点:第6章
难度:3
解析:第六章第二节关于随机误差的统计意义。
也是以算数平均值代替真值的依据。
A.灵敏度
B.线性度
C.重复性
答案:B
知识点:第3章
难度:3
解析:测试系统的静态特性定义之一。
4. 把被测量转换为感应电动势的常规传感器之一是:。
A. 电容传感器
B. 压电传感器
C. 变磁阻电感传感器
答案:C
知识点:第4章
难度:3
解析:传感器的分类方法。
5.测量值与被测量真值之差,称为。
A.测量残差
B.测量标准差
C.测量误差
答案:C
知识点:第6章
难度:3
解析:测量误差的定义。
6. 传感器将非电量转换为电能量。
A. 电阻
B. 无源
C. 有源
答案:B
知识点:第4章
难度:3
解析:传感器分类方法之一。
7.通过测量仪器,将被测量参数与同一物理量的标准量直接比较的测量是。
A. 直接测量。
传感器技术习题及答案(可编辑修改word版)
传感器技术绪论习题一、单项选择题1、下列属于按传感器的工作原理进行分类的传感器是( B )。
A. 应变式传感器B. 化学型传感器C. 压电式传感器D. 热电式传感器2、通常意义上的传感器包含了敏感元件和( C )两个组成部分。
A. 放大电路B. 数据采集电路C. 转换元件D. 滤波元件3、自动控制技术、通信技术、连同计算机技术和(C ),构成信息技术的完整信息链。
A. 汽车制造技术B. 建筑技术C. 传感技术D.监测技术4、传感器按其敏感的工作原理,可以分为物理型、化学型和( A )三大类。
A. 生物型B. 电子型C. 材料型D. 薄膜型5、随着人们对各项产品技术含量的要求的不断提高,传感器也朝向智能化方面发展,其中,典型的传感器智能化结构模式是(B )。
A. 传感器+通信技术B. 传感器+微处理器C. 传感器+多媒体技术D. 传感器+计算机6、近年来,仿生传感器的研究越来越热,其主要就是模仿人的(D )的传感器。
A. 视觉器官B. 听觉器官C. 嗅觉器官D. 感觉器官7、若将计算机比喻成人的大脑,那么传感器则可以比喻为(B )。
A.眼睛 B. 感觉器官 C. 手 D. 皮肤8、传感器主要完成两个方面的功能:检测和(D )。
A. 测量B. 感知C. 信号调节D. 转换9、传感技术与信息学科紧密相连,是(C )和自动转换技术的总称。
A. 自动调节B. 自动测量C. 自动检测D. 信息获取10、以下传感器中属于按传感器的工作原理命名的是( A )A.应变式传感器B.速度传感器C.化学型传感器D.能量控制型传感器二、多项选择题1、传感器在工作过程中,必须满足一些基本的物理定律,其中包含(ABCD)。
A. 能量守恒定律B. 电磁场感应定律C. 欧姆定律D. 胡克定律2、传感技术是一个集物理、化学、材料、器件、电子、生物工程等学科于一体的交叉学科,涉及(ABC )等多方面的综合技术。
A. 传感检测原理B. 传感器件设计C. 传感器的开发和应用D. 传感器的销售和售后服务3、目前,传感器以及传感技术、自动检测技术都得到了广泛的应用,以下领域采用了传感技术的有:(ABCD )。
传感器技术课后习题答案.doc
2-4 2-5 原因:U (® NR 、 △氏斗=亍————+—△R, 1 A/?. 一 △七 A/?.R\ R 2 R$ M 衡量传感器静态特性的主要指标。
说明含义。
1、 线性度一一表征传感器输出■输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
2、 灵敏度一一传感器输出量增量与被测输入量增量之比。
3、 分辨力一一传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
1・2计算传感器线性度的方法,差别。
1、 理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
2、 端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
3、 “最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等 并且最小。
这种方法的拟合精度最高。
4、 最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
2- 1金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。
(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的 相对变化为主,而机械形变为辅。
(2)对于金属材料,灵敏系数Ko-Km=(l+2u)+C(l-2u)o 前部分为受力后金属几何尺寸变化,一•般U ^0. 3,齿I 匕(1+2 U )=1.6;后部分为电阻率随应变而变的部分。
金属丝材的应变电阻效应以结构尺寸变化为主。
对于半导体材料,灵敏系数K 。
二Ks=(l+2u)+ nE 。
前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致, 而JiE 》(1+2 u),因此Ko=Ks=JiEo 半导体材料的应变电阻效应主要基于压阻效应。
2-3简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。
传感器原理及检测技术部分课后作业答案
部分课后作业答案2-8. 标称电阻为100Ω的应变计贴在弹性试件上。
设试件的截面积 S=1×10-5m 2,弹性模量E=2×1011 N /m 2,若由1.0×104N 的拉力作用,使应变计的电阻相对变化为1%,试求此应变计的灵敏度系数。
解:∵灵敏度系数εRR K /∆=,又已知%1=∆RR,F=1.0×104 N ,S=1×10-5m 2,∴ )/(101101100.129254m N mN S F ⨯=⨯⨯==-σ 由εσ⋅=E ,可得321129105)/(102)/(101-⨯=⨯⨯==m N m N E σε 所以,灵敏度系数2105%1/3=⨯=∆=-εRR K2-9. 将4片相同的金属丝应变片贴在实心圆柱形测力弹性元件上,如题2.9图所示。
设应变片的灵敏度系数K=2,作用力F=1 000kg 。
圆柱形横截面半径r=1cm ,弹性元件的杨氏模量E=2×107N /cm 2,泊松比μ=0.285。
求:(1)画出应变片贴在圆柱上的位置图及相应测量电桥的原理图; (2)各应变片的应变ε;(3)若测量电路采用电桥电路,设供电桥电压E =6V ,桥路输出电压U o 为多少?(4)这种测量方法对环境温度的变化能否具有补偿作用?试说明原因。
解:⑴将R 1~R 4四片应变片按图2-9(a )所示粘贴,其中R 1、R 3沿轴向粘贴,测量轴向应变,R 2、R 4沿径向粘贴,测量径向应变。
测量电桥为全桥测量电路, R 1与R 3置于电桥的一对角线上,R 2与R 4置于电桥的另一对角线上,如右图2-9(b )所示。
题2.9 图⑵∵)(1500105.1)/(102)01.0(14.3/8.9100032722μεπσε=⨯=⨯⨯⨯====-cm N m N Er FE A FE∴εK R R R R =∆=∆3311, R 1与R 3的纵向应变(轴向应变)ε为1500με;μεεK K R R R R r -==∆=∆4422 ,式中μ为泊松比,μ=0.285。
《传感器技术》第3版课后部分习题解答
潘光勇0909111621 物联网1102班《传感器技术》作业第一章习题一1-1衡量传感器静态特性的主要指标。
说明含义。
1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。
3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。
各条特性曲线越靠近,重复性越好。
4、灵敏度——传感器输出量增量与被测输入量增量之比。
5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
7、稳定性——即传感器在相当长时间内仍保持其性能的能力。
8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。
9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。
1-2计算传感器线性度的方法,差别。
1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高。
4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
1—4 传感器有哪些组成部分?在检测过程中各起什么作用?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。
各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。
传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。
传感器技术习题答案PPT课件
即相位误差为-16.70°
9
第9页/共185页
第2章
10
第10页/共185页
2.6 材料为钢的实心圆柱形式试件上,沿轴线和圆周方向各贴一片电阻为120Ω的 金属应变片R1和R2,把这两应变片接入电桥(见图2.3.2)。若钢的泊松系数, μ=0.285应变片的灵敏系数K=2,电桥电源电压U=2V,当试件受轴向拉伸时,测得 应变片R1的电阻变化值,△R1=0.48Ω,试求①轴向应变量;电桥的输出电压。
13
第13页/共185页
2.9一测量吊车起吊重物的拉力传感器如题图2.34(a)所示。R1、R2、R3、 R4按要求贴在等截面轴上。已知:等截面轴的截面积为0.00196m2,弹性模 量E=21011N/m2,泊松比μ=0.3,且R1 =R2 =R3 =R4 =120Ω,K=2,所组成的 全桥型电路如图2.34(b)所示,供桥电压U=2 V。现测得输出电压U0=2.6mV。 求: (1)等截面轴的纵向应变及横向应变为多少? (2)力F为多少?
R 85.4
(2)当△Z=10Ω时,电源电压为4V,f=400Hz时电桥输出电压的值为
| U | 2R | Z | | U |
SC ( R R)2 (L)2
2 85.4 10
4 0.319 V
(85.4 40)2 (2π 400 30 103 )2
27
第27页/共185页
A()
1
[1 ( )2 ]2 (2 )2
0
0
7
第7页/共185页
已知ω0=2π1200,ω=2π400,ξ=0.4,代入上式
A(400)
传感器技术与应用第2版-部分习题答案
第1章传感器特性习题答案:5.答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
人们根据传感器的静特性来选择合适的传感器。
9.解:10. 解:11.解:带入数据拟合直线灵敏度 0.68,线性度±7% 。
,,,,,,13.解:此题与炉温实验的测试曲线类似:14.解:15.解:所求幅值误差为1.109,相位滞后33042,所求幅值误差为1.109,相位滞后33042,16.答:dy/dx=1-0.00014x。
微分值在x<7143Pa时为正,x>7143Pa时为负,故不能使用。
17.答:⑴20。
C时,0~100ppm对应得电阻变化为250~350 kΩ。
V0在48.78~67.63mV之间变化。
⑵如果R2=10 MΩ,R3=250 kΩ,20。
C时,V0在0~18.85mV之间变化。
30。
C时V0在46.46mV(0ppm)~64.43mV(100ppm)之间变化。
⑶20。
C时,V0为0~18.85mV,30。
C时V0为0~17.79mV,如果零点不随温度变化,灵敏度约降低4.9%。
但相对(2)得情况来说有很大的改善。
18.答:感应电压=2πfCRSVN,以f=50/60Hz, RS=1kΩ, VN=100代入,并保证单位一致,得:感应电压=2π*60*500*10-12*1000*100[V]=1.8*10-2V第3章应变式传感器概述习题答案9. 答:(1).全桥电路如下图所示(2).圆桶截面积应变片1、2、3、4感受纵向应变;应变片5、6、7、8感受纵向应变;满量程时:(3)10.答:敏感元件与弹性元件温度误差不同产生虚假误差,可采用自补偿和线路补偿。
11.解:12.解:13.解:①是ΔR/R=2(Δl/l)。
因为电阻变化率是ΔR/R=0.001,所以Δl/l(应变)=0.0005=5*10-4。
传感器题库及答案
第一章检测技术的基本概念一、填空题:1、传感器有、、组成2、传感器的灵敏度是指稳态标准条件下,输出与输入的比值。
3、从输出曲线看,曲线越陡,灵敏度。
4、下面公式是计算传感器的。
5、某位移传感器的输入变化量为5mm,输出变化量为800mv,其灵敏度为。
二、选择题:12A3、?PA0.54A3倍5A微差式678A9A三、123、同一台仪表,不同的输入输出段灵敏度不同()4、灵敏度其实就是放大倍数()5、测量值小数点后位数越多,说明数据越准确()6、测量数据中所有的非零数字都是有效数字()7、测量结果中小数点后最末位的零数字为无效数字()四、问答题1、什么是传感器的静态特性,有哪些指标。
答:指传感器的静态输入、输出特性。
有灵敏度、分辨力、线性度、迟滞、稳定性、电磁兼容性、可靠性。
2、产生随机误差的原因是什么,如何减小随机误差对测量结果的影响。
答:是测量中独立的、微小的、偶然的因素引起的结果。
既不能用实验的方法消除,也不能修正。
可以通过增加测量次数,利用概率论的一些理论和统计学的方法进行数据结果处理,服从正态分布。
3、系统误差分几类,怎样减小系统误差。
答:分为恒值误差,例如刻度盘分度差错。
变值误差,环境温度的影响、零点漂移等。
系统误差有规律。
可以通过实验的方法引入修正值的方法计算修正,也可以重新调整测量仪表的有关部件予以剔除。
4、如何判断系统中存在粗大误差。
答:粗大误差是测量人员的粗心大意及电子测量仪器收到突然强大的干扰所引起的,粗大误差明显超过正常条件下的误差。
五、分析与计算题1、有一温度计,它的测量范围为0—2000C,精度为0.5级,求1)该表可能出现的最大绝对误差。
2)当示值分别为200C、1000C的示值相对误差。
2、预测123、围为04电桥5、12.03mV、6012.15mV、31234123、4、电阻应变片配有桥式测量转换电路的作用是。
5、应变测量电桥的三种接法是、、。
输出电压分别为、、。
《传感器与检测技术胡向东第》习题解答
答:相敏检测电路原理是通过鉴别相位来辨别位移的方向,即差分变压器输出的调幅波经相敏检波后,便能输出既反映位移大小,又反映位移极性的测量信号。经过相敏检波电路,正位移输出正电压,负位移输出负电压,电压值的大小表明位移的大小,电压的正负表明位移的方向。
y代表水银柱高(mm), x代表输入温度(℃)。求该温度计的时间常数及灵敏度。
解:一阶传感器的微分方程为
式中τ——传感器的时间常数;
——传感器的灵敏度。
∴对照玻璃水银温度计特性的微分方程和一阶传感器特性的通用微分方程,有该温度计的时间常数为2s,灵敏度为1。
→∞时,输出为100mv。试求该传感器的时间常数。
②霍尔电势
霍尔电势与霍尔电场E、载流导体或半导体的宽度b、载流导体或半导体的厚度d、电子平均运动速度v、磁场感应强度B、电流I有关。
③霍尔传感器的灵敏度 。
为了提高霍尔传感器的灵敏度,霍尔元件常制成薄片形状。又霍尔元件的灵敏度与载流子浓度成反比,所以可采用自由电子浓度较低的材料作霍尔元件。
解: ,
∴ ,
∴τ
解: ,
,
解:当 时共振,则
所以:
ω)和相位差φ(ω)各为多少?
解:二阶传感器的频率响应特性:
幅频特性:
相频特性:
∴当f=600Hz时,
,
;
当f=400Hz时,
。
第3章电阻式传感器
答:常用的电阻应变片有两种:金属电阻应变片和半导体电阻应变片。金属电阻应变片的工作原理是主要基于应变效应导致其材料几何尺寸的变化;半导体电阻应变片的工作原理是主要基于半导体材料的压阻效应。
传感器技术练习题与答案
《传感器技术》习题答案1-3 用测量范围为-50~150kPa 的压力传感器测量140kPa 的压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:已知: 真值L =140kPa 测量值x =142kPa 测量上限=150kPa 测量下限=-50kPa∴ 绝对误差 Δ=x-L=142-140=2(kPa)实际相对误差 %==43.11402≈∆L δ标称相对误差 %==41.11422≈∆x δ引用误差%--=测量上限-测量下限=1)50(1502≈∆γ1-10 对某节流元件(孔板)开孔直径d 20的尺寸进行了15次测量,测量数据如下(单位:mm ):试用格拉布斯准则判断上述数据是否含有粗大误差,并写出其测量结果。
解:序号 测量值20()d mm残余误差2020()()i i v d d mm =-残余误差2020((7))()i i v d d i mm =-≠1 2 3 4 5 6 7 ―――8 9 10 11 12 13 14 1520120.404d mm =14.450.10-2.70-0.122015210.0327151ii d vmm σ===-∑200.0788()d G mm σ=20270.0161141ii d vmm σ≠==-∑14.450.10-2.76-0.0614.39-2.70当n =15时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.41。
则 2072.410.03270.0788()0.104d G mm v σ=⨯=<=-,所以7d 为粗大误差数据,应当剔除。
然后重新计算平均值和标准偏差。
当n =14时,若取置信概率P =0.95,查表可得格拉布斯系数G =2.37。
则 20 2.370.01610.0382()d i G mm v σ=⨯=>,所以其他14个测量值中没有坏值。
《传感器与检测技术(胡向东,第2版)》习题解答
《传感器与检测技术(胡向东,第2版)》习题解答传感器与检测技术习题解答王涛第1章概述什么是传感器?答:传感器是能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常敏感元件和转换元件组成。
传感器的共性是什么?答:传感器的共性就是利用物理定律或物质的物理、化学或生物特性,将非电量输入转换成电量输出。
传感器一般哪几部分组成?答:传感器的基本组成分为敏感元件和转换元件两部分,分别完成检测和转换两个基本功能。
另外还需要信号调理与转换电路,辅助电源。
被测量敏感元件传感元件信号调节转换电路辅助电源传感器是如何分类的?答:传感器可按输入量、输出量、工作原理、基本效应、能量变换关系以及所蕴含的技术特征等分类,其中按输入量和工作原理的分类方式应用较为普遍。
①按传感器的输入量进行分类按输入量分类的传感器以被测物理量命名,如位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。
②按传感器的工作原理进行分类根据传感器的工作原理,可以分为电阻式传感器、电感式传感器、电容式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。
③按传感器的基本效应进行分类根据传感器敏感元件所蕴含的基本效应,可以将传感器分为物理传感器、化学传感器和生物传感器。
改善传感器性能的技术途径有哪些?答:①差动技术;②平均技术;③补偿与修正技术;④屏蔽、隔离与干扰抑制;⑤稳定性处理。
第2章传感器的基本特性什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是它在稳态信号作用下的输入、输出关系。
静态特性所描述的传感器的输入-输出关系中不含时间变量。
衡量传感器静态特性的主要指标是线性度、灵敏度、分辨率、迟滞、重复性和漂移。
利用压力传感器所得测试数据如下表所示,计算非线性误差、迟滞和重复性误差。
设压力为0MPa时输出为0mV,压力为时输出最大且为。
压力/MPa 输出值/mV 第一循环第二循环第三循环正行程反行程正行程反行程正行程反行程解:①求非线性误差,首先要求实际特性曲线与拟合直线之间的最大误差,拟合直线在输入量变化不大的条件下,可以用切线或割线拟合、过零旋转拟合、端点平移拟合等来近似地代表实际曲线的一段。
《传感器技术》习题答案完整
《传感器技术》习题答案目录第一章传感器的基本概念及一般特性 (1)第二章电阻式传感器 (3)第三章电容式传感器 (5)第四章电感式传感器 (6)第五章磁电式传感器 (8)第六章压电式传感器 (9)第七章光电式传感器 (12)第八章热电及红外辐射传感器 (13)第九章数字式传感器 (14)第十章气敏和湿敏传感器 (15)第十三章传感器的标定与校准 (19)第一章 传感器的基本概念及一般特性4.解:对于一阶传感器,其幅频特性为21j )()()(ωτωω+==k H A要求幅值误差不超过5%,即a (j )115%H X k ω=-=≤因为ω=2πf=200π,带入解得0≤τ≤5.23×10-4s = 523 μs5.解:一阶传感器,其微分方程为)()()(t x b t y a dtt dy a 001=+ 对照题目所给微分方程可见:a 1=1,a 0=3,b 0=0.15。
静态灵敏度00a b k =;时间常数01a a =τ。
于是可求得∴ τ=a 1/a 0=1/3=0.33 (s )k=b 0/a 0=0.15/3=0.05 (mV/ oC )6./()/由()k ω=()k k ω=令00f x f ωωτω=== (1) 当()0.97k kω=时 421.960.0630x x --=解得,23 1.99x =(舍去负值),即3 1.41x =(舍去负值) 301.4128.28f f kHz ∴==(2) 当()1.03k kω=时, 421.960.05740x x -+=解得,211.39()0.172x x ==舍去负值, (舍去负值) 110 3.44f x f kHz ∴== 22027.8f x f kHz ==所以,工作频率为0~3.44kHz ,27.8~28.28kHz 。
但由于27.8~28.28kHz 距离0f 太近,易引起共振,工程上一般不予采用,故最终的工作频率范围为0~3.44kHz 。
[整理版]传感器原理与应用习题_第6章压电式传感器
[整理版]传感器原理与应用习题_第6章压电式传感器《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章压电式传感器6-1 何谓压电效应,何谓纵向压电效应和横向压电效应,答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS单位制中即电荷密度σ)与外应力张量T成正比: D = dT 式中 d—压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S与外电场强度E成正比: S=dE 式中 d——逆压电常数矩阵。
这种现象称为逆压电tt效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些,试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型()的含意。
yxlt,50:/45:6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C′,2C,q′=2q,U′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
传感器原理及其应用(第二版)部分习题答案
第4章 电容式传感器及其应用
当 d <<d0 时,即 d/d0<<1 ,则:
∴ 灵敏度为:
由此可见,与单极式相比,其灵敏度提高了一倍(单极式为 )。
第4章 电容式传感器及其应用
5、为什么高频工作时电容式传感器的连接电缆的长度不能任意 改变?
第3章 电感式传感器及其应用
16、有一只差动电感位移传感器,已知电源电压U 4V,f 400Hz,传感
器线圈电阻与电感分别为R 40 ,L 30mH,用两只匹配电阻设计成四 臂等阻抗电桥,如图所示。试求: (1)匹配电阻 R3和 R4 的值为多少时才能使电压灵敏度达到最大。 (2)当 Z 10 时,分别接成单臂和差动电桥后的输出电压值。
称重传感器的灵敏度
(2) 当传感器输出电压为68mV时,物体的荷重m为
第2章 电阻应变式传感器及其应用
7. 图2.43为应变式力传感器的钢质圆柱体弹性元件,其直径d = 40 mm,
钢的弹性模量E = 2.1×105 N/mm2 ,泊松比μ=0.29 ,在圆柱体表面粘
贴四片阻值均为120Ω、灵敏系数κ=2.1的金属箔式应变片( 不考虑应变
∴ ∴
第3章 电感式传感器及其应用
(2) 接成单臂电桥后的电桥输出电压值为: 接成差动电桥后的电桥输出电压值为:
第4章 电容式传感器及其应用
• 作业:习题2、5、8、14 (P67)
第4章 电容式传感器及其应用
2、推导差动式电容传感器的灵敏度,并与单极式电容传感器相比较 。 答:设在初始状态下,动极板位于两块定极板中间位置,则:
y理论
2.2 4.6875 7.175 9.6625 12.15 14.6375 17.125 19.6125 22.1
传感器习题集及答案
传感器习题集及答案第01章检测与传感器基础1.1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?1.1答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。
我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。
我国国家标准(GB7665—87)对传感器(Sensor/transducer)的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。
定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。
按使用的场合不同传感器又称为变换器、换能器、探测器。
1.2 传感器由哪几部分组成?试述它们的作用及相互关系。
1.2答:组成——由敏感元件、转换元件、基本电路组成;关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。
传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。
1.3 简述传感器主要发展趋势1.3答:数字化、集成化、智能化、网络化等。
1.4传感器的静态特性是什么?由哪些性能指标描述?它们一般可用哪些公式表示?1.4答:静特性是当输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
人们根据传感器的静特性来选择合适的传感器。
1.5传感器的线性度是如何确定的?确定拟合直线有哪些方法?传感器的线性γ表征了什么含义?为什么不能笼统的说传感器的线性度是多少。
1.5答:度L1)实际传感器有非线性存在,线性度是将近似后的拟合直线与实际曲线进行比较,其中存在偏差,这个最大偏差称为传感器的非线性误差,即线性度,2)选取拟合的方法很多,主要有:理论线性度(理论拟合);端基线性度(端点连线拟合);独立线性度(端点平移拟合);最小二乘法线性度。
《检测与传感技术》思考题答案
3-4有一个以空气为介质的变面积型平板电容传感器,如图3-5所示,其中a=8mm,b=12mm,两极板间距离为1mm。一块板在原始位置上平移了5mm后,求该传感器的位移灵敏度K(已知空气相对介电常数=1F/m,真空时的介电常数0= 8.854×10-12F/m)。
4.4根据螺管型差动变压器的基本特性,说明其灵敏度和线性度的主要特点。
答:差动变压器的结构如图所示,主要由一个初级线圈、两个次级线圈和插入线圈中央的圆柱形铁芯等组成。
差动变压器传感器中的两个次级线圈反相串联,并且在忽略铁损、导磁体磁阻和线圈分布电容的理想条件下,当衔铁位于中心位置时,两个次级线圈感应电压大小相等、方向相反,差动输出电压为零,但实际情况是差动变压器输出电压往往并不等于零。差动变压器在零位移时的输出电压称为零点残余电压,它的存在使传感器的输出特性不经过零点,造成实际特性与理论特性不完全一致,使传感器的灵敏度降低,分辨率变差和测量误差增大。
第一章思考题和习题参考答案
1—1什么叫传感器?它由哪几部分组成?它们的相互作用及相互关系如何?
答:传感器是把被测量转换成电化学量的装置,传感器由敏感元件和转换元件组成,其中,敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。由于传感器输出信号一般都很微弱,需要信号调理与转换电路进行放大、运算调制等,此外信号调理转换电路以及传感器的工作必须有辅助电源,因此信号调理转换电路以及所需的电源都应作为传感器组成的一部分。
2-7在题2-6条件下,如果试件材质为合金钢,线膨胀系数g= 1110−6/℃,电阻应变片敏感栅材质为康铜,其电阻温度系数= 1510−6/℃,线膨涨系数s= 14.910−6/℃。当传感器的环境温度从10℃变化到50℃时,所引起的附加电阻相对变化量(R/R)t为多少?折合成附加应变t为多少?
传感器与检测技术课后答案
第一章课后习题答案1.什么是传感器?它由哪几个部分组成?分别起到什么作用?解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。
敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。
2.传感器技术的发展动向表现在哪几个方面?解:(1)开发新的敏感、传感材料:在发现力、热、光、磁、气体等物理量都会使半导体硅材料的性能改变,从而制成力敏、热敏、光敏、磁敏和气敏等敏感元件后,寻找发现具有新原理、新效应的敏感元件和传感元件。
(2)开发研制新型传感器及组成新型测试系统①MEMS技术要求研制微型传感器。
如用于微型侦察机的CCD传感器、用于管道爬壁机器人的力敏、视觉传感器。
②研制仿生传感器③研制海洋探测用传感器④研制成分分析用传感器⑤研制微弱信号检测传感器(3)研究新一代的智能化传感器及测试系统:如电子血压计,智能水、电、煤气、热量表。
它们的特点是传感器与微型计算机有机结合,构成智能传感器。
系统功能最大程度地用软件实现。
(4)传感器发展集成化:固体功能材料的进一步开发和集成技术的不断发展,为传感器集成化开辟了广阔的前景。
(5)多功能与多参数传感器的研究:如同时检测压力、温度和液位的传感器已逐步走向市场。
3.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。
衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。
1)传感器的线性度是指传感器的输出与输入之间数量关系的线性程度;2)传感器的灵敏度S是指传感器的输出量增量Δy与引起输出量增量Δy的输入量增量Δx 的比值;3)传感器的迟滞是指传感器在正(输入量增大)反(输入量减小)行程期间其输出-输入特性曲线不重合的现象;4)传感器的重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
《传感器技术》习题答案完整
《传感器技术》习题答案目录第一章传感器的基本概念及一般特性 (1)第二章电阻式传感器 (3)第三章电容式传感器 (5)第四章电感式传感器 (6)第五章磁电式传感器 (8)第六章压电式传感器 (9)第七章光电式传感器 (12)第八章热电及红外辐射传感器 (13)第九章数字式传感器 (14)第十章气敏和湿敏传感器 (15)第十三章传感器的标定与校准 (19)第一章 传感器的基本概念及一般特性4.解:对于一阶传感器,其幅频特性为21j )()()(ωτωω+==k H A要求幅值误差不超过5%,即a (j )115%H X k ω=-=≤因为ω=2πf=200π,带入解得0≤τ≤5.23×10-4s = 523 μs5.解:一阶传感器,其微分方程为)()()(t x b t y a dtt dy a 001=+ 对照题目所给微分方程可见:a 1=1,a 0=3,b 0=0.15。
静态灵敏度00a b k =;时间常数01a a =τ。
于是可求得∴ τ=a 1/a 0=1/3=0.33 (s )k=b 0/a 0=0.15/3=0.05 (mV/ oC )6./()/由()k ω=()k k ω=令00f x f ωωτω=== (1) 当()0.97k kω=时 421.960.0630x x --=解得,23 1.99x =(舍去负值),即3 1.41x =(舍去负值) 301.4128.28f f kHz ∴==(2) 当()1.03k kω=时, 421.960.05740x x -+=解得,211.39()0.172x x ==舍去负值, (舍去负值) 110 3.44f x f kHz ∴== 22027.8f x f kHz ==所以,工作频率为0~3.44kHz ,27.8~28.28kHz 。
但由于27.8~28.28kHz 距离0f 太近,易引起共振,工程上一般不予采用,故最终的工作频率范围为0~3.44kHz 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 磁电式传感器 4.
000/2/21
2/f k m m k f f m k n =⇒=⇒==πππω
f 0 =20 Hz , k=3200 N/m 时, 2220/32002==
m π
f 0′=10 Hz 时,由'20f m k π= 则 ()()()m f m k /8001022'222
202N =⨯==π
6.
由 K H =1/ned ,得
(1) n=1/ (K H ed)=1/(22×1.6⨯10-19×1×10-3 )=2.84×1020 个/m 3
(2)输出霍尔电压
U H = K H IB=22V/A•T ×1.0mA×0.3T
=6.6×10-3 V=6.6 mV
第六章 压电式传感器
3.
答:压电传感器不能用于静态测量。
压电元件输入前置放大器的电压为 22233
)(1i c a m im C C C R R
F d U +++=ωω
由上式可知,用作用在压电元件上的力是静压力(ω=0)时,前置放大器输入电压等于零。
因为电荷就会通过放大器的输入电阻和传感器本身的泄漏电阻漏掉。
所以压电传感器不能测量静态物理量。
4.
答:对应压电元件两种等效电路形式,压电式传感器的灵敏度有电压灵敏度K u 和电荷灵敏度K q 两种,分别表示单位应力产生的电压和单位应力产生的电荷,即F U K u =
,F Q K q =,且电压灵敏度K u 与电荷灵敏度K q 之间关系为a q u C K K =。
5.
答:并联接法如a)图所示,串联接法如b)图所示。
a) 并联接法 b) 串联接法
当两压电元件并联连接,是将相同极性端连接在一起,总电容量C ′、总电压U ′、总电荷Q ′与单片的C 、U 、Q 关系为
Q Q U U C C 2''2'===
当两压电元件串联连接,是将不同极性端连接在一起,总电容量C ′、总电压U ′、总电荷Q ′与单片的C 、U 、Q 关系为
Q Q U U C C ==='2'2/'
可见,并联接法输出电荷大,本身电容大,时间常数大,适宜用在测量慢变信号并且以电荷作为输出量的地方;串联接法输出电压大,本身电容小,适宜用于以电压作输出信号,且测量电路输入阻抗很高的地方。
6.
解:(1)系统总灵敏度=90 pC/kPa × 0.005 V/pC ×20 mm/V=9 mm/kPa
(2)偏移量=3.5×9=31.5 (mm )
7.
解:(1)C F d Q x 1112111031.2101031.2--⨯=⨯⨯==
F h S
C r 12241201031.510
6.01085.41085.8----⨯=⨯⨯⨯⨯⨯==εε V C Q U 35.410
31.51031.21211
=⨯⨯==-- (2)串联连接,C Q Q x 11'1031.2-⨯==
F C C 1212'10655.221031.521--⨯=⨯==
8. 解:传感器相对幅频特性为
950>2+12=+1==22.)()()∞()()(1τf πτf πωτωτu ωu ωk im im
f =1 Hz ,τ=RC ,解之得到R>9.5×109 Ω。
9.
答:超声波探头有许多不同的结构,可分直探头、斜探头、表面波探头、兰姆波探头、双探头等。
以直探头为例,主要由压电晶片、阻尼块和保护膜组成,可发射和接收纵波,其结构如图所示。
压电晶片是换能器中的主要元件,一般采用
PZT压电陶瓷材料制作,利用压电材料的正逆压
电效应实现能量转换。
发射探头是利用逆压电效
应进行工作的,极化的压电陶瓷在周期电信号激
励下,产生伸缩振动(机械振动),推动周围介质
运动,激发出超声波。
接收探头则利用正压电效
应工作,超声波在传播过程中引起介质机械振动,
压电陶瓷接收机械振动,转化为相应的电信号。
11.
答:SAW是沿弹性体表面传播的弹性波,是一种机械波,在SAW传感器中是通过叉指换能器激励产生,并通过SAW谐振器产生振荡,测量振荡频率的变化实现被测量的测量。
a) 延迟线型振荡器b) 振子型振荡器
叉指换能器是由若干沉积在压电基底材料上的金属膜电极组成,这些电极条互相交叉放置,两端由汇流条连在一起。
其形状如同交叉平放的两排手指,故称为叉指换能器(IDT)。
叉指换能器激励SAW的物理过程是通过压电材料的压电效应实现的,当在叉指换能器上施加适当频率的交流电信号,由于基片的逆压电效应,这个电场使指条电极间的材料发生形变,使质点发生位移。
周期性的应变就产生沿叉指换能器两侧表面传播出去的SAW,频率等于所施加电信号的频率。
SAW谐振器基本结构如图所示,有延迟线型和振子型两种型式。
延迟线型振荡器,两个叉指换能器,一个用作发射SAW,另一个用作接收SAW,并通过压电效应将接收到的SAW转化为电信号,经放大后,正反馈到输入端,只要满足一定条件,这样组成的谐振器就可起振,并且输出单一振荡频率,与压电石英谐振器工作原理相类似。
振子型振荡器,叉指换能器做在基片材料表面中央,并在其两侧配置两组反射栅阵,形成起谐振器。
对于起振后的SAW谐振器,其谐振频率正比于SAW速度,且会随着温度、压电基底材料的变形等因素影响而发生变化,频率的变化量可以作为被测量的量度。