初二正比例函数讲义
八年级下册数学课件3正比例函数
新知应用 6.已知y-3与x成正比例,且x=4时,y=7. (1)求y与x之间的函数解析式; (2)当x=9时,求y的值; (3)当y=2时,求x的值.
解:(1)由题意可设 y-3=kx(k≠0) ∵当x=4时,y=7 ∴7-3=4k,则k=1 ∴y-3=x,即y=x+3.
(2)当x=9时,y=12.
(3)当y=2时,x=-1.
当堂检测
3 6
1 2.5
新知导入
用描点法画函数图象有哪几个步骤? ①列表; ②描点; ③连线
知识探究 知识点 2 正比例函数的图象
知识探究
y=2x
看图发现: 这两个图象都是经过_原__点__的_直__线__; 而且都经过第_一__、__三__象限; 从左往右,图像呈_上__升___趋势, y随x的增大而__增__大___.
新知应用
5.一个正比例函数的图像过点(2,-4),求它的解析式. 解:设这个正比例函数的解析式为 y=kx(k≠0) ∵y=kx的图像过点(2,-4) ∴2k=-4,则k=-2 ∴这个正比例函数的解析式为y=-2x.
【求正比例函数解析式的步骤】 ①设—设函数解析式为y=kx(k≠0); ②列—列出关于k的方程; ③解—解出k的值; ④定—确定函数解析式.
当堂检测
当堂检测
当堂检测
课堂小结
提示:函数 y=kx 的图象我们也称作直线y=kx
知识探究
两点 作图法
怎样画正比例函数的图 由于象两最点简确单定?一为条什直么线?,画正比
例函数图象时我们只需描点(0,0)
和点 (1,k),连线即可. Nhomakorabea巩固练习
0 0 -3
当堂检测 A
当堂检测
k>3 k>3 k<3
八年级数学 暑假同步讲义 第14讲 正比例函数的图像及性质
正比例函数的图像及性质是八年级数学上学期第三章第二节内容,主要对正比例函数的图像及性质进行讲解,重点是对正比例函数的性质的理解,难点是正比例函数表达式的归纳总结.通过这节课的学习为我们后期学习正比例函数的应用提供依据.一、 正比例函数的图像1、 一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =; 2、 图像画法:列表、描点、连线.正比例函数的图像及性质知识结构模块一:正比例函数的图像知识精讲内容分析班假暑级年八2/ 11【例1】 (1)正比例函数y kx =的图像是____________,它一定经过点_______和_______.(2)函数y kx =(0)k ≠的图像经过点1(5)2A -,,写出函数解析式,并说明函数图像经过哪几个象限?【例2】 已知2y -与x 成正比例,且x =2时,y =4; (1)求y 与x 之间的函数关系式;(2)若点(m ,2m +7),在这个函数的图象上,求m 的值.【例3】 已知正比例函数图像上的一点到x 轴距离与到y 轴距离之比为1:2,则此正比例函数的解析式是________________.【例4】 如果正比例函数的图像经过点(24)-,,说明(416)-,是否在这个图像上,并作出该正比例函数的图像.【例5】 已知函数2(2)21y t x t =-+-,当t 为何值时该函数图像经过原点?此时函数解析式是什么?例题解析【例6】 一个正比例函数的图像经过点A (13)-,,B (1)a a ---,,求a 的值.【例7】 已知y 是x 的正比例函数,且当6x =时,2y =-. (1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点P (a ,4)在这个函数的图像上,求a 的值; (4)试问点A (62)-,关于原点对称的点B 是否也在这个图像上?【例8】 已知点(60)A -,,并且点(1)B m -,在直线3y x =-上,求OAB ∆的面积.【例9】 正比例函数的图像经过点(-2,5),过图像上一点A 作y 轴的垂线,垂足B 的坐标是(0,-3),求点A 的坐标与AOB ∆的面积.班假暑级年八4/ 11PCB AOyx【例10】 已知直线y kx =过点1(3)2,,A 是直线y kx =上一点,若过点A 向x 轴引垂线,垂足为B ,且5AOB S ∆=,求点B 的坐标.【例11】 如图,长方形OABC 的边BC = 6,AB = 3, (1) 直线x 交边AB 于点P ,求k 的取值范围;(2) 直线0x <把矩形OABC 的面积分成两部分,靠近x 轴的一部分记作S ,试写出S 关于k 的解析式.二、正比例函数(0)y kx k k =≠是常数,的性质: (1) 当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值也随着逐渐增大.(2) 当0k <时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值 则随着逐渐减小.知识精讲模块二:正比例函数的性质【例12】已知点(11,x y ),(22,x y )在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少?【例13】 已知正比例函数25(3)mm y m x +-=+,那么它的图像经过____________象限.【例14】 正比例函数2mmy mx +=的图像经过第一、三象限,求m 的值.【例15】已知0mn <,那么函数my x n=经过______象限,y 的值随x 的值增大而______.【例16】 函数()2(2)2k y k x -=-是正比例函数,且y 的值随着x 的减小而增大,求k 的值.【例17】如果正比例函数y kx =(0)k ≠的自变量增加5,函数值减少2,那么当3x =时,y =_______.例题解析【例18】 (1)已知y ax =在实数范围内有意义,求a 的取值范围.(2)已知函数()21y m x =+的值随自变量x 的值增大而增大,且函数()31y m x =+的值随自变量x 的增大而减小,求m 的取值范围.【例19】 正比例函数()41y m x =-的图像经过点11(,)A x y 和22(,)B x y ,且该图像经过第 二、四象限. (1)求m 的取值范围;(2)当12x x >时,比较1y 与2y 的大小,并说明理由.【例20】 已知函数2y x =-,自变量x 的取值范围是4556x <<,求y 的取值范围.【例21】 已知在正比例函数()()22723mf x m x -=-中,y 随x 的值减小而减小.(1)求m 的值;(2)求23f ⎛⎫⎪⎝⎭(3)在直角坐标平面内画出函数图像,并根据图像说明,当x 取何值时,2y ≤-?【例22】已知正比例函数过A (2,-4),点P 在此正比例函数的图像上,若直角坐标平面内另有一点B (0,4),且8ABP S ∆=,求:点P 的坐标.【例23】两个正比例函数11y k x =与22y k x =,当2x =-时,122y y +=,当x12y y -=(1) 求这两个函数的解析式; (2) 当x = 3时,求2212y y -的值.班假暑级年八8/ 11【习题1】 已知11(,)x y 和22(,)x y 是直线4y x =-上的两点,且12x x >,则1y 与2y 的大小关系是( ).A .12y y >B .12y y <C .12y y =D .以上都有可能【习题2】 正比例函数(0)y kx k =≠的图像经过一、三象限,且经过点(221)k k ++,,则k ==________.【习题3】 如果正比例函数(0)y kx k =≠的自变量取值增加1,函数值相应地减少4,则k =________.【习题4】 已知y 是x 的正比例函数,且当2x =时,y =2,求y 与x 之间的比例系数,写出函数解析式,并求当43y =时,x 的值.【习题5】 已知23y -与45x +成正比例,且当x =1时,y =15,求y 与x 的函数关系式.随堂检测【习题6】 如图,在同一直角坐标系内,已知函数1y k x =中,y 随x 的增大而减小,函数2y k x =,满足120k k +=,则1y k x =与2y k x =的图像大致为( ).A BC D【习题7】 已知正比例函数的图像经过点(28)-,,经过图像上一点A 作x 轴的垂线,垂足为点B (06),,求:(1)点A 的坐标;(2)AOB ∆的面积.【习题8】 已知平面直角坐标系内一点点(23)P a a ,,过点P 作y 轴的垂线,垂足为点H ,如果15POH S ∆=. 求:(1) 点P 的坐标;(2) 直线OP 的解析式.【习题9】 如果正比例函数的图像经过点(4,3)-,请判别(2,4)A -、3(2,)2B -中哪一点离这个正比例函数的图像距离近?班假暑级年八10/ 11DPCB A【习题10】如图,已知长方形ABCD的长AB = 4cm,宽BC = 3cm,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为xcm,△ABP的面积为y2cm,(1) 当动点P在BC上运动时,求y关于x的解析式及其定义域;(2) 当动点P在DC上运动时,怎样表示y?并求x的取值范围;(3) 当x取何值时,△ABP的面积为22cm?【作业1】已知函数2(1)my m x=-是正比例函数,m=________;函数的图象经过________象限;y随x的减少而________.【作业2】已知y与x成正比例,且x = 2时y = -6,则y = 9时x =________.【作业3】点燃的蜡烛,长度按照与时间成正比例缩短,一支长21cm的蜡烛,点燃6分钟后,缩短3.6cm.设蜡烛点燃x分钟后,缩短ycm,求y的函数解析式和x的取值范围.课后作业x 【作业4】 在函数5y x =的图象上取一点P ,过P 点作P A ⊥x 轴,已知P 点的横坐标为2-,求POA S ∆的面积(O 为坐标原点).【作业5】 如图,在直角坐标系中,OA = 3,OB = 4,直线OP 与线段AB 相交于点P ,(1) 求△ABO 的面积;(2) 若直线OP 将△ABO 的面积等分,求直线OP 的解析式; (3) 若点P 是直线OP 与线段AB 的交点,是否存在点P ,使△AOP 与△BOP 中,一个面积是另一个面积的4倍?若存在,求直线OP 的解析式;若不存在,请说明理由.。
人教版八年级数学下《正比例函数》知识全解
《正比例函数》知识全解课标要求理解正比例函数的概念,会区分什么样的函数是正比例函数,理解正比例函数解析式中k的意义,会画正比例函数的图像,掌握正比例函数的图像和性质。
知识结构(1)正比例函数:一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
正比例函数都是常量与自变量的乘积的形式。
属于下节所学内容“一次函数”的特殊情况,正比例函数是一种比较简单的反映两个变量对应规律的模型。
(2)正比例函数的图象与性质①正比例函数的图象是一条经过坐标原点的直线,所以我们也称正比例函数y=kx为直线y=kx。
两点确定一条直线,因此画正比例函数图象时,只需连接(0,0)点和(1,k)点即可。
②k的值决定了直线经过的象限、图象从左到右的变化趋势以及函数的增减性:当k>0时,直线经过一、三象限,从左到右上升,y随x的增大而增大;当k<0时,直线经过二、四象限,从左到右下降,y随x的增大而减小。
内容解析我们研究函数问题是从最简单的正比例函数开始的。
教材从实例出发,对正比例函数的一般形式、函数图象、以及函数随自变量的变化规律(即函数的性质)等方面进行了详细地剖析。
这也是我们今后学习其它类型函数的研究模式。
教材还力求通过对一些实际问题的探讨,使学生能尽快地进入用函数来解决问题的情境;遇到函数问题能迅速建立起对应模型,让学生明白用函数来分析问题是一种较为实用、广泛的方法。
重点难点本节的重点是:(1)知道正比例函数的一般形式;(2)会简单、正确地画出正比例函数的图象;(3)熟练掌握正比例函数的性质。
难点是:熟练掌握正比例函数的性质。
教法引导从一些实际问题入手,让学生进一步体会函数用途的广泛性。
通过让学生动手画正比例函数的图象,总结正比例函数图象特点及性质.学法建议学习时要积极动手动脑,通过自己动手画图象,总结出正比例函数的有关知识;另外加强小组间的交流,只有生生之间不断交流、探讨,才能发现问题、解决问题。
正比例函数课件
contents
目录
• 正比例函数概述 • 正比例函数的图像性质 • 正比例函数的实际应用 • 正比例函数的解析式 • 正比例函数的图像变换 • 正比例函数与反比例函数的关系
01
正比例函数概述
正比例函数的定义
正比例函数是指形如 y=kx(k为常数, k≠0)的函数。
当k<0时,函数图像 过第二、四象限,y 随x的增大而减小。
04
正比例函数的解析式
解析式的推导过程
01
02
03
04
定义正比例函数:$y=kx$, 其中k为比例系数。
从已知的图像中,通过取不同 的x值,计算对应的y值。
利用已知数据,通过最小二乘 法进行线性回归分析,得出k
的值。
得出解析式:$y=kx$,其中 k为比例系数,x为自变量,y
为因变量。
解析式的应用实例
反比例函数的应用场景
反比例函数在工程、技术、经济等领域有广泛的应用。例如,在电子工程中描 述电阻、电容、电感之间的关系,在经济学中描述成本与产量之间的关系。
THANKS
感谢观看
日常生活中的应用
身高与年龄
在一定年龄范围内,身高与年龄 之间存在正比例关系。随着年龄
的增长,身高也会相应增加。
收入与工作时间
在一定时间内,收入与工作时间之 间存在正比例关系。随着工作时间 的增加,收入也会相应增加。
路程与速度
当速度保持不变时,路程与时间之 间存在正比例关系。当时间增加时 ,路程也会相应增加。
图像的平移变换
上下平移
正比例函数的图像在垂直方向上平移。
左右平移
正比例函数的图像在水平方向上平移。
平移性质
平移不改变函数的值域和定义域,也不改变函数 的单调性和奇偶性。
正比例函数讲义含答案
正比例函数一、教学目标1.理解函数的定义以及函数的定义域、值域. 2.掌握正比例函数的概念、图像和性质.二、重点难点重点:正比例函数的概念、图像和性质的应用.难点:利用正比例函数的相关知识解决实际问题,学会数形结合.三、考点分析:这部分的知识应用性较强,一般以填空、判断、选择、读图题、解答题的形式考查四、提分技巧1、学会读图,加强数形结合思想2、考虑问题要全面,还要善于从问题情境中抽象出数学知识(一)函数的意义【例1】1、如果函数:()x x x f 22-=,试求:(1)()1-a f ; (2)()12+a f 【解析】(1)()1-a f ()1212---=a a(2)()12+a f ()122122+-+=a a2、如果函数:()112-=-x x f ,试求:(1)()2f ; (2)()x f【解析】(1)()2f ()813132=-=-=f(2)()1-x f ()()()()[]()()121211112-+-=+--=+-=x x x x x x()x x x f 22+=∴【拓展1】如果函数:()x x f x f =⎪⎭⎫⎝⎛+12,,试求)(x f 的解析式 【解析】()x x f x f =⎪⎭⎫⎝⎛+12x x f x f 11121=⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛⇒()xx f x f 112=⎪⎭⎫ ⎝⎛+② 联立①②,解得()332x x x f -=【拓展2】如果,()b ax x f +=,其中a 和b 是两个常数。
(1)()()34-=x x f f ,试求()x f 的表达式; (2)()()()78+=x x f f f ,求()x f 的表达式。
【解析】(1)()b ax x f +=∴()()()()342-=++=++=+=x b ab x a b b ax a b x af x f f⎩⎨⎧=-=⎩⎨⎧-==∴3212b a b a 或 ()()3212+-=-=∴x x f x x f 或(2) ()()()()()782322+=+++=+++=++=x b ab b a x a b b ab x a a b ab x a f x f f f⎪⎩⎪⎨⎧=++=∴7823b ab b a a ⎩⎨⎧==⇒12b a ()12+=∴x x f(二)正比例函数解析式【例2】已知y 与x -1成正比例,且当x =3时,y =4,求:(1)函数解析式;(2)x =1-时,y 的值【解析】设()1-=x k y ,代入x =3,y =4,解得2=k (1)所以函数解析式为22-=x y (2)当x =1-时,y =-4【拓展1】y 与3x 成正比例,当x =8时,y =-12,则y 与x 的函数解析式为___________. 【解析】设kx y 3=,代入x =8,y =-12,解得21-=k 所以函数解析式为x y 23-=【拓展2】已知2y -3与3x +1成正比例,且x=2时,y=5,求:(1)求y 与x 之间的函数关系式(2)若点(a ,2)在这个函数的图象上,求a . 【解析】设()133-2+=x k y ,代入x=2时,y=5,解得1=k(1)所以函数解析式为223+=x y (2)当2=y 时,0=a三)正比例函数的图像及性质【例3】已知直线y =kx 过点(-2,1),A 是直线y =kx 图象上的点,若过A 向x 轴作垂线, 垂足为B ,且ABO S ∆=9,求点A 的坐标。
正比例函数的图象和性质课件
们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义
正比例函数知识点总结初中
正比例函数知识点总结初中一、正比例函数的概念正比例函数是指函数的导数也是一个常数的函数,它的图象是一条通过原点的直线。
正比例函数的一般形式可以表示为y=kx,其中k是一个常数,称为比例系数。
当x增大时,y也随之增大,且它们之间的比值始终保持不变,这就是正比例函数的特点。
二、正比例函数的性质1. 正比例函数的图象是一条通过原点的直线,且斜率为k。
2. 正比例函数的导数恒为常数k。
3. 正比例函数与y轴平行,可以用y=kx表示。
4. 正比例函数的比例系数k决定了函数图象在坐标系中的倾斜程度和方向。
三、正比例函数的图象和性质分析1. 当k大于0时,正比例函数的图象向右上方倾斜;当k小于0时,图象向左下方倾斜。
2. 当k=0时,正比例函数的图象平行于x轴,函数的图象将是一条通过原点的水平直线。
3. 正比例函数的图象不会有拐点,因为它是一条直线。
四、正比例函数的应用1. 在现实生活中,许多问题可以用正比例函数来描述,比如速度和时间的关系、商品价格和数量的关系等。
2. 在数学学习中,正比例函数的性质可以帮助我们快速理解和求解一些数学问题。
3. 正比例函数也是其他函数的基础,通过研究与比例函数相似的函数,可以更好地理解其他类型的函数。
五、正比例函数的解题技巧1. 当给出一个问题时,首先要明确问题中涉及到的变量和它们之间的关系。
2. 根据问题中的已知条件,列出正比例函数的表达式,并通过图象或计算找出比例系数k。
3. 利用正比例函数的性质,解决问题。
4. 在实际问题中,要注意对函数图象的正确理解,避免出现计算错误。
六、常见错误及解决方法1. 误解正比例函数图象的性质,导致问题解法错误。
解决方法:加强对正比例函数图象特点的理解,多进行实例分析和练习。
2. 对正比例函数的比例系数k概念理解不清,导致计算错误。
解决方法:通过具体的实例及练习,加强对比例系数k的理解,掌握计算方法。
3. 在问题中容易混淆正比例函数和其他函数,导致问题解决错误。
正比例函数讲义
19.2正比例函数讲义知识梳理1.形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫比例系数. 正比例函数都是常数与自变量的乘积的形式.2.正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx . 当k>0时,直线y=kx 依次经过第三、一象限,从左向右上升,y 随x•的增大而增大; 当k<0时,直线y=kx 依次经过第二、四象限,从左向右下降,y 随x•的增大而减小. 3.根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象.典例精讲例1 1.函数y=2x 中自变量x 可以是任意实数.列表表示几组对应值:x -3 -2 -1 0 1 2 3 y-6-4-2246画出图象如图(1).2.y=-2x 的自变量取值范围可以是全体实数,列表表示几组对应值:x -3 -2 -1 0 1 2 3 y642-2-4-6画出图象如图(2).3.两个图象的共同点:都是经过原点的直线.不同点:函数y=2x 的图象从左向右呈上升状态,即随着x 的增大y 也增大;经过第一、三象限.函数y=-2x 的图象从左向右呈下降状态,即随x 增大y 反而减小;•经过第二、四象限. 尝试练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较.1.y=x 2.y=-x1212x -6 -4 -2 0 2 4 6 y=x -3-2-1123Y=-x3 2 1 0 -1 -2 -3比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x•的图象从左向右上升,经过三、一象限,即随x 增大y 也增大;函数y=-x•的图象从左向右下降,经过二、四象限,即随x 增大y 反而减小.总结归纳正比例函数解析式与图象特征之间的规律:正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线.•当x>0时,图象经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•图象经过二、四象限,从左向右下降,即随x 增大y 反而减小. 正是由于正比例函数y=kx (k 是常数,k ≠0)的图象是一条直线,•我们可以称它为直线y=kx例2 : 已知y=(k+1)x+k-1是正比例函数,求k 的值.分析:由正比例函数的定义可知k+1≠0且k-1=0即可解:根据题意得:k+1≠0且k-1=0,解得:k=1 ∴k=1例3:根据下列条件求函数的解析式② y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.分析:①根据正比例函数的定义,可设y=kx 2,然后由x=-2、y=12求得k 的值.•②函数y=(k 2-4)x 2+(k+1)x 是正比例函数;则k 2-4=0,y 随x 的增大而减小,则k+1<0. 解:①设y=k x 2 (k ≠0)∵x=-2时y=12 ∴(-2)2k=12 ∴k=3 ∴y=3x 2②由题意得:k 2-4=0 ∴k=2或k=-2∵y 随x 的增大而减小, ∴k+1<0 ∴k=-2 ∴y 与x 的函数关系式是:y=-x12121212例4:已知y=(k+1)x+k-1是正比例函数,求k 的值.分析:由正比例函数的定义可知k+1≠0且k-1=0即可 解:根据题意得:k+1≠0且k-1=0,解得:k=1 ∴k=1例5: 汽车由天津驶往相距120千米的北京,S(千米)表示汽车离开天津的距离,•t (小时)表示汽车行驶的时间.如图所示1.汽车用几小时可到达北京?速度是多少? 2.汽车行驶1小时,离开天津有多远?3.当汽车距北京20千米时,汽车出发了多长时间? 解法一:用图象解答:从图上可以看出4个小时可到达.速度==30(千米/时). 行驶1小时离开天津约为30千米.当汽车距北京20千米时汽车出发了约3.3个小时. 解法二:用解析式来解答:由图象可知:S与t 是正比例关系,设S=kt ,当t=4时S=120 即120=k ×4 k=30∴S=30t . 当t=1时 S=30×1=30(千米). 当S=100时 100=30t t=(小时). 以上两种方法比较,用图象法解题直观,用解析式解题准确,各有优特点例6、判断下列各式中变量x 与变量y 是否存在正比例函数关系,是,请说出它的比例系数。
正比例函数(基础)知识讲解
正比例函数(基础)【学习目标】1. 理解正比例函数的概念,能正确画出正比例函数y kx =的图象;2. 能依据图象说出正比例函数的主要性质,解决简单的实际问题.【要点梳理】要点一、正比例函数的定义1、正比例函数的定义一般的,形如y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.2、正比例函数的等价形式(1)、y 是x 的正比例函数;(2)、y k x =(k 为常数且k ≠0);(3)、若y 与x 成正比例;(4)、k xy =(k 为常数且k ≠0). 要点二、正比例函数的图象与性质正比例函数y kx =(k 是常数,k ≠0)的图象是一条经过原点的直线,我们称它为直线y kx =.当k >0时,直线y kx =经过第一、三象限,从左向右上升,即随着x 的增大y 也增大;当k <0时,直线y kx =经过第二、四象限,从左向右下降,即随着x 的增大y 反而减小.要点三、待定系数法求正比例函数的解析式由于正比例函数y kx =(k 为常数,k ≠0 )中只有一个待定系数k ,故只要有一对x ,y 的值或一个非原点的点,就可以求得k 值.【典型例题】类型一、正比例函数的定义1、已知1(2)m y m x -=+,当m 为何值时,y 是x 的正比例函数?【思路点拨】正比例函数的一般式为(0)y kx k =≠,要特别注意定义满足0k ≠,x 的指数为1.【答案与解析】 解:由题意得,2011m m +≠⎧⎪⎨-=⎪⎩解得 m =2 ∴当m =2时,y 是x 的一次函数.【总结升华】理解正比例函数的概念应抓住解析式中的两个主要特征:(1)k 不等于零;(2)x 的指数是1.举一反三:【变式】如果函数23(2)my m x -=+是正比例函数,那么m 的值是________.【答案】 解:由定义得220,31,m m +≠⎧⎨-=⎩解得 2.2.m m ≠-⎧⎨=±⎩ ∴ m =2. 类型二、正比函数的图象和性质2、已知正比例函数y kx b =+的函数值随着x 的增大而减小,则大致图象为( ) A. B. C. D.【答案】D ;【解析】因为是正比例函数,所以b =0,图象必经过原点.【总结升华】了解正比例函数图象的性质:它是经过原点的一条直线.当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.3、若正比例函数22(21)m y m x-=-中,y 随x 的增大而增大,则m 的值为________. 【答案】1;【解析】由题意可得:210m ->,221m -=,∴m =1.【总结升华】正比例函数y kx =的定义条件是:k 为常数且k ≠0,自变量次数为1.y 随x 的增大而增大,则k >0.举一反三:【变式】关于函数y =12x ,下列结论正确的是( ) A. 函数图象必经过点(1,2)B .函数图象经过二、四象限C .y 随x 的增大而减小D .y 随x 的增大而增大【答案】D ;提示:A 、当x =1时,y =12,错误;B 、因为k >0,所以图象经过第一、三象限,错误;C 、因为k >0,所以y 随x 的增大而增大,C 错误.4、如图所示,在同一直角坐标系中,一次函数1y k x =、2y k x =、3y k x =、4y k x =的图象分别为1l 、2l 、3l 、4l ,则下列关系中正确的是( )A .1k <2k <3k <4kB .2k <1k <4k <3kC .1k <2k <4k <3kD .2k <1k <3k <4k【答案】B ;【解析】首先根据直线经过的象限,知:2k <0,1k <0,4k >0,3k >0,再根据直线越陡,|k |越大,知:2||k >|1k |,|4k |<|3k |.则2k <1k <4k <3k【总结升华】此题主要考查了正比例函数图象的性质,首先根据直线经过的象限判断k 的符号,再进一步根据直线的平缓趋势判断k 的绝对值的大小,最后判断四个数的大小. 类型三、正比函数应用5、如图所示,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程s 与时间t 的函数关系,则他们行进的速度关系是( ).A .甲比乙快B .乙比甲快C .甲、乙同速D .不一定【思路点拨】观察图象,在t 相同的情况下,有s s >乙甲,故易判断甲乙的速度大小.【答案】A ;【解析】由s vt =知,s v t=,观察图象,在t 相同的情况下,有s s >乙甲,故有s s v v t t=>=甲乙乙甲. 【总结升华】此问题中,l 甲、l 乙对应的解析式y kx =中,k 的绝对值越大,速度越快. 举一反三:【变式】如图,OA ,BA 分别表示甲、乙两名学生运动的函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )A.2.5米B.2米C.1.5米D.1米【答案】C ;提示:从图中可以看出甲用了8秒钟跑了64米,速度是8米/秒,乙用了8秒钟跑了52米,速度是132米/秒,所以快者的速度比慢者的速度每秒快1.5米.。
正比例函数知识讲解
正比例函数知识讲解
正比例函数的特点是,自变量x和因变量y成正比关系,当x的值增加时,y的值也随之增加。
斜率k表示了y每增加一个单位,x增加的单位数。
如果k是正数,则y随着x的增加而增加,如果k是负数,则y随着x的增加而减少。
1.定义:
2.斜率和截距:
在正比例函数 y = kx 中,斜率 k 表示了直线的倾斜程度。
斜率大于 0 时,曲线向上倾斜;斜率小于 0 时,曲线向下倾斜。
截距 b 表示函数图像与 y 轴的交点位置。
3.表示形式:
4.性质:
- 常数比例:对于一个给定的正比例函数 y = kx,k 是一个恒定的比例常数,即函数图像上任意两个点的斜率都相同。
-零值:正比例函数不包括(0,0)这个点,因为零值不属于定义域。
-相关变量:正比例函数中的两个变量是相关的,即当x值发生变化时,y值也会发生相应变化。
-数量比较:可以通过比较不同x值时y的大小来比较两个相关量的大小关系。
5.应用举例:
-资金计算:金融领域中的利息计算和复利计算都可以通过正比例函数进行建模。
-物理学:速度和时间、距离和时间之间的关系可以通过正比例函数进行描述。
-经济学:供求关系中的供应量和价格之间的关系可以用正比例函数表示。
-比例问题:在解决比例问题时,常常需要使用正比例函数来建立比例关系。
总结:
正比例函数是一种重要的数学函数,它的性质和应用非常广泛。
正比例函数能够帮助我们建立和描述各种实际生活中的关系,并进行数量上的比较和计算。
对于理解和应用正比例函数,我们需要掌握其基本定义、性质和应用场景,以及如何确定斜率和截距。
人教版初二下册第十九章一次函数第19讲正比例函数讲义(无答案)
人教版初二下册第十九章一次函数第19讲正比例函数讲义(无答案)第19讲:正比例函数一:知识点讲解知识点一:正比例函数➢ 定义:一般地,形如kx y =(k 是常数,0≠k )的函数,叫做正比例函数,此中k 叫做比例系数。
➢ 举例:如x y 3-=,x y 21=均为正比例函数,比例系数分别为-3,21 ➢ 要是两个变量的比值是一个常数,那么这两个变量之间的干系便是正比例函数干系。
➢ 正比例函数kx y =(k 是常数,0≠k )必须满足两个条件: ✧ 比例系数0≠k✧ 自变量x 的次数是1例1:下列函数中,是正比例函数的是( )① kx y = ② x y 31= ③ xy 1= ④ 2x y -= ⑤ x y +-=1 A. ①③B. ②C. ①③⑤D. ①②④知识点二:正比例函数的图象及性质正比例函数kx y =(0≠k )的图象是一条议决原点(0,0)的直线,我们称它为直线kx y =(0≠k ),正比例函数图象的位置和函数的增减性完全由比例系数k 的标记决定。
➢ 当0>k ,图象形状是过原点,从左向右是上升的直线,议决第一、三象限,y 随x 的增大而增大➢ 当0<k ,图象形状是过原点,从左向右是下降的直线,议决第二、四象限,y 随x 的增大而减小 例2:画正比例函数x y 21=的图象。
例3:已知正比例函数()x m y 1+=,y 随x 的增大而减小,则m 的取值范畴是( )A.1-<mB.1->mC.1-≥mD.1-≤m知识点三:确定正比例函数的剖析式➢ 步骤:1. 设出含有未知系数的函数剖析式kx y =(0≠k )2. 把已知条件(自变量与函数的对应值)代入剖析式,得到关于未知系数k 的方程3. 解方程,求出未知系数k4. 将求得的未知系数k 的值代入所设的剖析式➢ 注意:由于正比例函数只有一个未知系数k ,所以只需知道图象上的一个点(非原点)的坐标,就可以求出正比例函数的剖析式。
八年级数学正比例函数说课(附教案)
八年级数学正比例函数说课(附教案)第一章:正比例函数的定义与性质1.1 教学目标了解正比例函数的定义掌握正比例函数的性质能够运用正比例函数解决实际问题1.2 教学内容正比例函数的定义正比例函数的性质正比例函数的图像1.3 教学步骤1. 引入正比例函数的概念,引导学生思考实际生活中的正比例关系。
2. 给出正比例函数的定义,解释自变量与因变量之间的关系。
4. 讲解正比例函数的图像特点,让学生掌握正比例函数的图像特征。
1.4 教学评价通过课堂讲解和实例分析,评价学生对正比例函数的理解程度。
学生能够正确描述正比例函数的性质和图像特征。
第二章:正比例函数的图像与解析式2.1 教学目标了解正比例函数的图像特点掌握正比例函数的解析式能够通过解析式确定正比例函数的图像2.2 教学内容正比例函数的图像特点正比例函数的解析式通过解析式确定正比例函数的图像2.3 教学步骤1. 回顾正比例函数的定义和性质,引导学生思考正比例函数的图像特点。
2. 讲解正比例函数的图像特点,如通过原点、斜率为常数等。
3. 引导学生通过解析式来确定正比例函数的图像,解释k的取值对图像的影响。
2.4 教学评价通过课堂讲解和图像分析,评价学生对正比例函数图像的理解程度。
学生能够正确写出正比例函数的解析式,并能够通过解析式确定函数的图像。
第三章:正比例函数的应用3.1 教学目标掌握正比例函数在实际问题中的应用能够解决涉及正比例函数的问题培养学生的实际问题解决能力3.2 教学内容正比例函数在实际问题中的应用解决涉及正比例函数的问题的方法3.3 教学步骤1. 通过实例引入正比例函数在实际问题中的应用,如速度与时间的关系。
2. 引导学生分析实际问题中的正比例关系,确定自变量和因变量。
3. 讲解解决涉及正比例函数问题的方法,如设置方程、求解等。
3.4 教学评价通过实例分析和问题解决,评价学生对正比例函数应用的理解程度。
学生能够正确解决涉及正比例函数的实际问题。
正比例函数 讲义
(1)圆的周长l随半径r的大小变化而变化;
解:l= 2πr
(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的大小变化而变化;
解:m= 7.8V
(3)每个练习本的厚度为0.5 cm,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化;
经过原点与点(1,k)的直线是正比例函数y=kx(k是常数,k≠0)的图象,由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.
已知某种小汽车的耗油量是每100 km耗油15升.所使用的90#汽油今日涨价到5元/升.
(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;
龙文个性化辅导教案
授课教师
授课对象
授课时间
授课题目
正比例函数
课型
新课
使用教具
讲义,水笔,白纸
参考教材
八年级数学教参
学生分析
对新知识接受比较理想
参考教材与分析
八年级函数章节内容
考点分析与比例
考点较多,需熟练掌握
学习要求
知识与技能
使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质.
一般地,正比例函数y=kx(k是常数,k≠0 )的图象是一条经过原点的直线,我们称它为直线y=kx .当k>0时,直线y=kx经过第三、一象限,从左向右上升,即函数值y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即函数值y随x的增大而减小.
经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么?
正比例函数的图像与性质讲义全
龙文教育个性化辅导教案讲义任教科目:数学授课题目:正比例函数的图像及性质年级:八年级任课教师:任老师授课对象:武汉龙文个性化教育校区教研组组长签字:教学主任签名:日期:武汉龙文教育学科辅导讲义知识点1.形如___________(k是常数,k≠0)的函数是正比例函数,其中k叫,正比例函数都是常数与自变量的乘积的形式2.正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx.当k>0时,图像位于第象限,从左向右,y随x的增大而,也可以说成函数值随自变量的增大而_________;当k<0时,图像位于第 象限,从左向右 ,y 随x 的增大而 ,也可以说成函数值随自变量的增大而_________.3.正比例函数的图像是经过坐标 点和定点__ __两点的一条 。
根据两点确定一条直线,可以确定两个点(两点法)画正比例函数的图象. 例1:已知y=(k+1)x+k-1是正比例函数,求k 的值.例2:根据下列条件求函数的解析式 ①y 与x 2成正比例,且x=-2时y=12.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而减小.选择题1、如图函数y =-x (x <0)的图象是()2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .y=-5xD .y=x3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能两条直线的位置关系与系数K 之间的关系6.若正比例函数x k y 1 和x k y 2 的图像是两条平行直线,那么( )(A )21k k (B )21k k (C )21k k (D )K1和K2不确定7.若正比例函数x k y 1 和x k y 2 的图像是两条平行直线,那么(K1与K2有什么数量关系 ) 8.若正比例函数x k y 1 和x k y 2 的图像关于坐标轴对称,那么( ) (A )21k k (B )21k k (C )21k k (D )K1和K2不确定平移规律8、.若正比例函数Y=2X 向上平移2个单位,那么平移后的解析式( ) 9、若正比例函数Y=2X 向下平移2个单位,那么平移后的解析式( ) 10、若正比例函数Y=2X 向左平移2个单位,那么平移后的解析式( ) 11、若正比例函数Y=2X 向右平移2个单位,那么平移后的解析式( )一 根据正比例函数解析式的特点求值1、若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则的值为?2、果y=x-2a+1是正比例函数,则a 的值为?3、若y =(n-2)x ︳n ︳-1 ,是正比例函数,则n 的值为?4、已知y=(k+1)x+k-5是正比例函数求k 的值.5、若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( )6、已知函数y=(2m+1)x+m -3 若函数图象经过原点,求m 的值?二 求正比例函数的解析式1、正比例函数图象过(-2,3),则这个正比例函数的解析式?2、已知y与x成正比例,且x=2时y=-6,则y=9时x的值是多少?.3.一个函数的图像是经过原点的直线,并且这条直线过第四象限及点(2,-3a)与点(a,-6),求这个函数的解析式.4.已知y与x-1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4和x=-3时y的值.三正比例函数图象的性质1、正比例函数y=(m-1)x的图象经过一、三象限,则m的取值范围是2、若正比例函数图像又y=(3k-6)x的图像经过点A(x1,x2)和B(y1,y2),当x1<x2时,y1>y2,则k的取值范围是3、点A(-5,y1)和点B(-6,y2)都在直线y= -9x的图像上则y1与y2的大小关系是?4、已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2•的大小关系是()5、正比例函数y=(3m-1)x的图像经过点A(x1,x2)和B(y1,y2),且该图像经过第二、四象限.(1)求m的取值范围(2)当x1>x2时,比较y1与y2的大小,并说明理由.4已知y-4与x成正比例,且当x = 6时,y =-4.(1)求y与x的函数关系式;(2)画出(1)中函数的图象;(3)设点P在y轴上,(1)中函数的图象与x轴、y轴分别交于A、B两点,△ABP的面积等于9,求点P的坐标探究题 1、在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).2、如图,三个正比例函数的图像分别对应的解析式是 ①y=ax ② y=bx ③ y=cx,则a 、b 、c 的大小关系是( )A.a>b>cB.c>b>aC.b>a>cD.b>c>a1.2.已知y = y 1+ y 2,y 1与x 2成正比例,y 2与x -2成正比例,当x =1时,y =0,当x =-3时,y =4,求x =3时,y 的值.3.有一长方形AOBC 纸片放在如图3-3所示的坐标系中,且长方形的两边的比为OA :AC =2:1.(1)求直线OC 的解析式;(2)求出x =-5时,函数y 的值; (3)求出y =-5时,自变量x 的值; (4)画这个函数的图象;(5)根据图象回答,当x 从2减小到-3时,y 的值是如何变化的?①②③武汉龙文教育学科辅导教案附:跟踪回访表家长(学生)反馈意见:学生阶段性情况分析:自我总结及调整措施:主任签字:龙文教育教务处。
正比例函数(第一课时)课件
1 2
物理计算
在物理学中,许多物理量之间的关系可以用正比 例函数来描述,如电流与电压、质量与重力等。
环境监测
在环境监测中,一些污染物浓度与时间、距离等 参数成正比,可以用正比例函数来描述这种关系。
3
生物医学研究
在生物医学研究中,许多生理参数如心率、血压 等与年龄、体重等因素成正比,可以用正比例函 数来描述。
04
正比例函数的应用
生活中的实例
速度与时间的关系
01
当物体以恒定速度运动时,时间与距离成正比,这是正比例函
数的一个常见应用。
物质浓度计算
02
在化学和生物学中,物质浓度与溶液体积成正比,可以通过正
比例函数来描述这种关系。
弹簧伸长与力的关系
03
在弹性限度内,弹簧的伸长量与作用在其上的力成正比,可以
用正比例函数表示。
反比例函数的概念
反比例函数是一种与正比例函数相反的函数,其函数表达 式为y=k/x,其中k为比例常数。
反比例函数的图像
反比例函数的图像位于第一和第三象限,且随着x的增大, y的值逐渐趋近于0。
反比例函数的性质
反比例函数具有一些特殊的性质,如当k>0时,函数图像 位于第一和第三象限;当k<0时,函数图像位于第二和第 四象限。
02
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
正比例函数的图像
图像
正比例函数的图像是一条经过原点的 直线。
图像的画法
图像的性质
正比例函数的图像是一条经过原点的 直线,其斜率为k。当k>0时,图像位 于第一、三象限;当k<0时,图像位 于第二、四象限。
在直角坐标系中,取两点(0,0)和 (1,k),连接两点得到一条直线, 即为正比例函数的图像。
八年级数学上册《14.2.1 正比例函数》讲学稿
正比例函数学习目标:一、明白得正比例函数的概念,能在用描点法画正比例函数图象过程中发觉正比例函数图象性质;二、通过“燕鸥飞行线路问题”的研究,体会成立函数模型的思想方式,感知数形结合思想;3、结合描点作图,培育认真、细心、严谨的学习态度和适应,熟悉数学是由于生活需要而产生。
学习重点:正比例函数的概念。
学习难点:正比例函数图形的特点。
学习进程:一、导学提纲:(一)温习导入描点法画函数图象的一样步骤:第一步:。
第二步:。
第三步:。
(二)阅读导学:自学讲义P110~112内容,完成以下问题:1、1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上了标志环:大约在128天后,人们在25600千米外的澳大利亚发觉了它。
(1)这只百余克重的小鸟大约平均天天飞行多少千米?(2)这只燕鸥的行程y(千米)与飞行时刻x(天)之间的关系如何?(3)这只燕鸥飞行一个半月(15天)的行程大约是多少?2、写出以下问题中的函数表达式:(1)圆周长L随半径R的大小转变而转变;(2)铁的密度为7.8g/3cm)的大小转变而转变;cm,铁块的质量m(g)随它的体积V(3(3)每一个练习本的厚度为0.5cm,一些练习本摞在一路的总厚度h(cm)随练习本的本数n的转变而转变;(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体的温度T(℃)随冷冻时刻t(分)的转变而转变。
观看上面四个函数,讨论如下问题:(1)、他们有什么一起特点?(2)四个函数解析式用一个一样形式如何表达呢?(3)一样地,形如 ( )函数,叫做正比例函数,其中k 叫做 。
3、①用描点法画出以下函数的图像(1) y=2x (2) y=-2x②观看上面两个函数的图像(1)、它们有什么相同点与不同点?(2)、试归纳正比例函数的性质。
①正比例函数是一条 ,它必然通过 。
②因为过 点有且只有一条直线,咱们在画正比例函数图象时,只需确信两点,一般是( , )和( , )③当k > 0时,直线通过 象限,从左到右呈 趋势,即y 随x 的增大而 ;当k<0时,直线通过 象限,从左到右呈 趋势,即y 随x 的减小而 。
数学八下19.2.1.1-正比例函数的概念ppt课件
19.2.1 正比例函数
第1课时 正比例函数的概念
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.理解正比例函数的概念;
2.会求正比例函数的解析式,能利用正比例函数解
决简单的实际问题.(重点、难点)
导入新课
情景引入
如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量, 眼睛的数量,腿的数量,扑通声,你能列出相应的 函数解析式吗?
y=x y=2x
y=4x y=x
讲授新课
一 正比例函数的概念
问题1 下列问题中,变量之间的 对应关系是函数关系吗?如果是, 请写出函数解析式:
(1)圆的周长l 随半径r的变化 而变化.(1)l 2πr
(2)铁的密度为7.8g/cm3,铁块的 质量m(单位:g)随它的体积V (单位:cm3)的变化而变化.
小灯泡(灯座)2个,电压表,电源,导线,电键
用电压表测量串联电路的电压
[步骤] 设计电路图并连接实 物图,使两个小灯泡 连接成串联电路。
用电压表测量串联电路的电压
[步骤]
按电路图连接实物图,
U1
使电压表测量小灯泡
L1两端的电压U1
L1
L2
L1
L2
V
S
用电压表测量串联电路的电压
[步骤]
U2
按电路图连接实物图, 使电压表测量小灯泡L2 两端的电压U2
(4)若 y (m 2)xm23 是关于x的正比例函数, m= -2 .
4.已知y-3与x成正比例,并且x=4时,y=7,求 y与x之间的函数关系式. 解:依题意,设y-3与x之间的函数关系式为y-3=kx, ∵x=4时,y=7,∴7-3=4k,解得k=1. ∴y-3=x,即y=x+3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于正比例函数的知识点:
1、正比例函数的解析式是 ,它的图象是 。
当k >0时,y 随x 的增大而 ,这时函数的图象从左到右 , 当k <0时,y 随x 的增大而_____,这时函数的图象从左到右_____;图象一定过点(0 , )。
例题讲解:
1、下面哪个点不在函数32+-=x y 的图像上( )
A.(-5,13)
B.(0.5,2) C (3,0) D (1,1)
2、关于x 的一次函数35-+=m x y ,若要使其成为正比例函数,则m= ;
3.下列函数中,一定是正比例函数的是( )
A .y=3x 2
B .y=-4x
C .3x+y=1
D .y=
1x
4.下面给出的几个函数关系中,成正比例函数关系的是( )
A .正方体的体积与棱长;
B .正方形的周长与边长
C .长方形的面积一定,它的长和宽;
D .圆的面积和它的半径
5.已知y=(3-m )x (m 为常数),若y 随着x 的增大而增大,则m 的取值范围是______.
6.小明在进行长跑训练时,以每小时20千米的速度进行耐力训练,小明最多能跑4小时,你能写出小明跑的路程s (km )与时间t (h )的函数关系式吗?并画出图象吗?
7.函数y=m 23m x -+m-2是正比例函数,则m=_______,此函数图象一定过点______•和点_______,且y 随x 的增大而______.
8.函数y=-4x 中自变量的取值范围如果是-3≤x•≤3,•则y=•-•4x•的图象是一条_________,此函数的最大值是_______,最小值是________.
9.一枝钢笔5元钱,你能写出购买钢笔的钱数y (元)与枝数n (枝)之间的函数关系式吗?并画出图象吗?
正比例函数同步测试教材基础知识针对性训练
一、选择题
1.一根水管均匀地向一个容器里注水,水面高度与时间之间的关系如图所示,该容器的形状可能是( )
2.正比例函数y=kx 的图像如图所示,则这个函数的表达式是( ).
A .y=x
B .y=-x
C .y=-2x
D .y=-12x 3.已知正比例函数y=(2m-1)x 的图像上有两点A (x 1,y 1),
B (x 2,y 2),当x 1<x 2时,y 1>y 2,•那么m 的取值范围是( ).
A .m<12
B .m>12
C .m<2
D .m>0 4.若y+2与x-3成正比例,且当x=0时,y=1,则当x=1时,y
等于( ).
A .1
B .0
C .-1
D .2
5.函数y=2x ,y=-3x ,y=-12
x 的共同特点是( ). A .图像位于同样的象限 B .y 随x 的增大而减小
C .y 随x 的增大而增大
D .图像都经过原点
6.点A (-5,y 1),B (-2,y 2)都在直线y=-12
x 上,则y 1与y 2的关系是( ). A .y 1≤y 2 B .y 1≥y 2 C .y 1<y 2 D .y 1>y 2
7.在同一坐标系内,作出下列直线,则比较靠近y 轴的直线是( ).
A .y=2x
B .y=-
32x C .y=32x D .y=-52x 8.若y=(m-2)23m x 为正比例函数,则m 的值是( ).
A .2
B .-2
C .2或-2
D .不存在
二、填空题
1.某物体运动的路程s(km)与运动时间t(h)成正比例关系,它的图像如图所示,则当t=3时,物体运动所经过的路程为________km.
2.已知y-2与x成正比例,当x=3时,y=1,那么y与x之间的函数关系式为______.
3.在函数y=1
3
x,y=
1
2
x+3,y=
1
3
x
,y=2x2-3,y=2(x-3)中,________是y关于x的
正比例函数.
4.在函数y=(m+6)x+(m-2)中,当m_____时,y是x的正比例函数.5.若函数y=kx的图像经过点(2,-6),则k=______.
6.当m=_______时,函数y=(4-m)x m-2是正比例函数.
7.y=-3
2
x的图像是经过原点和点(2,_______)的一条直线,这条直线经过_____象限.
8.正比例函数y=kx,若自变量取值增加1,那么函数值相应的减小4,则k=_____.三、解答题
1.y与x1),求表达式.
2.一个小球从静止开始沿斜坡由上向下滚动,其滚动速度每秒增加2m/s.(1)求小球速度v(单位:m/s)与滚动时间t(单位:s)之间的函数关系.
(2)求滚动3:5s时,小球的速度.
3.已知正比例函数y=kx的图像过点P()
(1)写出函数关系式.
(2)已知点A(a,-4),B(,b)都在它的图像上,求a,b的值.
探究应用拓展性训练
1.(学科内综合题)已知y与x2成正比例,且当x=2时,y=2,求y与x•之间的函数关系式.
2.(学科内综合题)正比例函数的图像如图所示,且点A(-6,y1),B(-2,y2)都在其图像上,则y1与y2的大小关系如何?
3.(探究题)在同一直角坐标系中,分别作出下列函数的图像:y=2x,y=1
2
x,y=x,y=-
1
2
x,
y=-2x,并通过观察图像,看它们离x轴的远近与x的系数之间有什么关系.
4.已知正比例函数y=kx(k≠0)的图像过第二、四象限,则().
A.y随x的增大而减小
B.y随x的增大而增大
C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小
D.不论x如何变化,y不变。