浅谈超声弹性成像发展最终改动版
改良超声弹性成像评分标准在乳腺肿块鉴别诊断中的价值
表2彩色超声弹性成像新、旧评分标准诊断结果比较(结节)
图2肿瘤病灶范围为蓝色,内有少许绿色
讨论
尽管采用日本Tsukuba大学UE 5分法评分标 万方数据
图3肿瘤病灶显示为绿色和蓝色相间,以蓝色为主, 且周边的组织显示为蓝色
·398。
理垡堕压医堂生塑王猩堂苤盍!!!!生筮!!鲞筮!塑』丛!i£!i!丛旦望i!!竖:Q!!!!旦呈鲤!:!!!!!塑!:!
2 hoh A,Ueno E,Tohno E,et a1.Breast disease:clinical application of US elastography for diagnosis.Radiology,2006,239:341-350.
3罗葆明,欧冰,冯霞,等.乳腺疾病实时组织弹性成像与病理对 照的初步探讨.中国超声医学杂志,2005,21:662-664.
4罗葆明,欧冰,冯霞,等.乳腺疾病实时组织弹性成像与彩色多普 勒超声的对照研究.中华医学超声杂志(电子版),2005,2:
265-267.
5欧冰,罗葆明,冯霞,等.超声弹性成像与钼靶x线成像诊断乳腺 疾病的对照研究.中华医学超声杂志(电子版),2006,3:
240_241.
6 Khalil AS,Chan RC,Chau AH.et a1.Tissue elasticity estimation with optical coherence elastography:toward mechanical characteriza- tion of in vivo soft tissue.Ann Biomed Eng,2005,33:1631—1639.
评分,弹性成像评分4分以上为恶性,3分以下为良性。结果 采用旧评分标准超声弹性成像(UE) 诊断乳腺良、恶性病灶的敏感性、特异性和准确性分别为72.6%、94.9%和89.0%;采用新评分标准 UE诊断乳腺良、恶性病灶的敏感性、特异性和准确性分别为:87.2%、94.1%和92.7%。经McNemar
超声剪切波弹性成像的技术进展
超声剪切波弹性成像的技术进展李强【摘要】E成像,又称为实时剪切波弹性成像,该技术是近来兴起的一种实时二维弹性成像技术,它与静态弹性成像技术有本质的区别,与瞬时弹性成像技术以及声辐射力弹性成像技术相比,在技术上也有了新的进展.本文介绍了弹性成像的相关原理,以及现阶段应用于临床的弹性成像技术,并着重探讨了实现E成像快速、实时、大范围检测的技术方法,尤其是在剪切波产生、检测、成像方面采用的技术,如"马赫圆锥"动态的相干增强技术,一次并行发射、接收的超高频成像技术.同时对E成像技术的研究及其临床应用进展做了综述,最后对剪切波弹性成像技术的未来应用进行了展望.%E imaging, also named shear wave elastography (SWE) is a real time elastography technology of two-dimensional emerging in recent years. It is not only fundamentally different from the static elastography technique, but also different from transient elastography and acoustic radiation force impulse. A new technology progress has occurred in SWE. In this paper, the related principle of elastography and several elastography technologies in clinical application were introduced, and the methods of achieving rapid, real-time, and extensive testing of SWE were explored. Meanwhile, emerging and detecting methods of SWE, for example, dynamic coherence enhancement technique based on "March Wave" and ultra high frequency imaging technology for one transmitting-receiving were renumbered. Moreover, this paper reviewed the technology researches and clinical applications of SWE, and the future development of SWE was discussed in the end.【期刊名称】《中国医疗设备》【年(卷),期】2017(032)007【总页数】6页(P101-105,123)【关键词】E成像;声辐射力脉冲;马赫圆锥;超高频;杨氏模量;声束形成【作者】李强【作者单位】泰安市中医医院设备科,山东泰安271000【正文语种】中文【中图分类】R445.1超声诊断技术的发展,包括A型(Amplitude)、B型(Brightness)、M型(Motion)、C型(Color)、D型(Doppler)超声等,经历了一个由“点”(A型超声)、“线”(M型超声)、“面”(二维超声)、“体”(三维超声)的发展过程[1]。
超声弹性成像
,弹性系数小,相织。施加一个外力后,比较加压(用超声探头紧压病变)前后靶组织弹性信息的超声图像、前后病变的应变来说明靶组织的硬度,后者是鉴别病变性质的重要参数。超声弹性成像即是利用生物组织的弹性信息帮助疾病的诊断。
弹性成像技术实现方法
1)弹性成像技术实现方法
这一成像技术一般采用两种方法实现:相干法和非相干法。
位为时间),t2a,12b表示压缩后这两个回波的位置。△“△t2是两个波的时延。
相干法要求组织和系统保持相对的稳定。但是由于组织压缩,相应的回波信号会产生不同程度的畸变,每段信号可能与原信号部分地重合,因此时延计算的结果不够准确。为了消除波形畸变对时延估计的影响,有一些改进的技术出现,如对数压缩法、1比特量化法和压缩扩展法(Companding)等。
相干法:通过互相关技术对施压前、后的射频信号进行时延估计,可以计算
出组织部不同位置的移动,进而计算出组织部的应变分布情况[1]。
Strain=(△t1-△t2)/^t1
=[(t1b-t1a)-(t2b-t2a)]/(t1b-t1a)
其中t1a,t1b表示没有加压前回波中相邻两个回波界面的回波位置(度量单
弹性成像的应用领域:
目前应用的领域有乳腺、甲状腺、淋巴结、前列腺病变的诊断;肝脏纤维化评估、皮肤肿瘤的检查、肌肉骨骼的应用和血管壁和静脉血栓等。目前国部分学者认为,特别在乳腺疾病的早期诊断中该方法优于常规多普勒超声和X线钼靶检查;从乳腺疾病诊断应用的结果来看,其准确性为94.4%,特异性为96.3%,敏感性为88.7%。以下三个病例乳腺癌、纤维化瘤和囊性变的弹性成像图,由百胜魅力至尊版设备所得。
技术原理:
ElaXtoTM超声弹性成像技术,亦称实时应变成像技术Real-timeElastographyImaging,其基本原理为:根据不同靶组织(正常及病变)的弹性系数不同,在加外力或交变振动后其应变(主要为形态改变)的不同,收集靶组织在某时间段的各个片段信号,通过主机处理,再以黑白、伪彩或者彩色编码的方式显示,最终通过对弹性图像的判读诊断靶组织的良恶性质或者组织的特性【图表1】。
医学超声宽景弹性成像技术研究
医学超声宽景弹性成像技术研究
医学超声成像技术经过不断的发展,以其实时性好、对患者无创、操作简便、无电离辐射等优点广泛应用于临床诊断中,已经成为一种重要的医学成像技术。
超声弹性成像通过获取组织的弹性信息进行成像,弥补了传统超声成像不能提供组织硬度信息的不足,成为对疾病诊断的有效辅助手段。
因此,超声弹性成像技术一经提出便成为医学超声成像研究中的热点。
超声弹性成像的视野通常受到探头宽度的限制,为获得较大的视野通常采用的是计算的时间复杂度较高的三维超声弹性成像技术,超声宽景成像技术的出现使获得较宽视野的超声图像成为可能,但宽景成像技术通常应用于二维或三维B超图像,因此本文着重研究实现超声弹性图像宽景成像的方法。
本文详细介绍了超声弹性成像的基本原理,着重介绍了超声宽景成像的步骤,包括图像采集,图像配准以及图像融合。
本文采用自由臂法进行超声射频(Radio Frequency,RF)信号及B超图像采集,使用基于动态规划的位移估计算法实现超声弹性成像。
本文实现了一种改进的基于位置信息的超声宽景成像算法,其基本原理是通过获取超声图像及其空间位置信息,通过获得的位置信息计算得到一系列连续空间区域,求出每个区域对应的图像信息并根据其位置进行拼接显示得到超声宽景成像图。
本文对提出的宽景成像算法增加弧度测量功能,将其应用于脊柱侧弯检查,并进行相关实验;针对提出的超声宽景成像方法应用于弹性成像分别进行了超声体模实验和人体实验。
体模实验结果表明该成像方法可以获取较为准确的弹性宽景图像,人体手臂实验结果表明成像方法可以准确的获取较大范围的组织应变信息分布。
超声弹性成像技术及其应用进展
㊃综述㊃通信作者:房勤茂,E m a i l :185********@163.c o m超声弹性成像技术及其应用进展李 凤,关义满,张巍巍,房勤茂,郭 鹏(河北医科大学第三医院超声科,河北石家庄050000) 摘 要:超声弹性成像技术是近年来新兴的检查方法,通过获取有关组织弹性信息进行成像㊂弹性成像技术能提供占位病变的良恶性㊁肝脏纤维化程度㊁慢性疼痛性肌肉神经损伤程度等组织硬度信息㊂目前应用于临床的弹性成像检查方法主要有:实时组织弹性成像技术㊁瞬时弹性成像技术㊁实时剪切波弹性成像技术(剪切波弹性成像技术)㊁超高速剪切波成像技术及声辐射力弹性成像技术㊂随着越来越多的弹性成像技术被大家认识,超声诊断的准确性会更高,超声检查对病变组织硬度的测量已经进入定量诊断的新阶段㊂关键词:弹性成像技术;超声检查;诊断中图分类号:R 445.1 文献标识码:A 文章编号:1004-583X (2016)07-0800-05d o i :10.3969/j.i s s n .1004-583X.2016.07.028 弹性成像技术由O ph i r 于1991年提出,20多年来此方法得到广泛关注并迅猛发展成为临床检查中的一种新兴技术㊂弹性成像技术通过获取有关组织弹性信息进行成像㊂弹性即可压缩性,指外力作用下组织发生变形的难易程度㊂组织的弹性值反映组织硬度,与其分子组成及病理组织结构有关[1-2]㊂弹性与组织的硬度呈反比,组织越硬,可压缩性越小,弹性越小;组织越软,可压缩性越大,弹性越大㊂超声弹性成像的基本原理为:外力对组织施加一定压力,依组织内部发生变形程度的不同,导致收集回波信号分布产生一定差异,回波信号经计算机处理在示波屏上以黑白/彩色的形式表示,得到组织弹性分布图㊂本文将对目前主要的超声弹性成像检查方法进行回顾,并对其主要应用价值进行介绍㊂1 实时组织弹性成像(r e a l -t i m e t i s s u e e l a s t o g r a p h y,R T E )R T E 为典型的助力式弹性成像方法㊂检查者需手动施加一定压力并保持一定振动频率,比较感兴趣区病变组织与周围正常组织在加压过程中的弹性差异[3-4]㊂根据组织弹性应力不同估计其内部不同位置的位移变化,计算出组织变形率,再通过灰阶或彩色编码成像㊂蓝色到红色表示感兴趣区组织从硬 到 软 的变化㊂R T E 主要应用于可压缩的表浅器官,如乳腺㊁甲状腺等,见图1㊁2㊂R T E 能有效地分辨不同硬度的物体,但反映的是与周围组织的相对硬度值而非其绝对硬度[5-6]㊂近些年,R T E 在评价慢性肌肉神经疼痛性病变中应用,R T E 能够评价冈上肌较小的撕裂伤,并对之后旋转套修复术有预后监测作用[7]㊂但是,R T E 技术无法从体外对深部组织有效施压,因此不适合深部脏器病变的检测㊂由于弹性成像图色彩的多样性及复杂性,难以对病灶及观察部位进行定量测量;操作者施加压力大小及频率成为R T E 的主要影响因素[8]㊂图1 乳腺肿物R TE图2 甲状腺肿物P T E2 瞬时弹性成像技术(t r a n s i e n t e l a s t o g r a p h y,T E )T E 是一种利用外振动器振动法测量组织弹性的方法㊂组织硬度越高,外力作用下发生变形能力小,弹性小,剪切波传播速度越快㊂基于一维T E ,可㊃008㊃‘临床荟萃“ 2016年7月5日第31卷第7期 C l i n i c a l F o c u s ,J u l y 5,2016,V o l 31,N o .7Copyright ©博看网. All Rights Reserved.进行肝脏硬度测值,为肝纤维化程度及肝硬化的无创诊断提供了非常有效的方法,见图3㊂S a n d r i n 等[9]利用T E 对106例慢性丙型肝炎患者进行弹性值测定,结果证明肝脏硬度与肝脏纤维化分期显著相关,诊断肝纤维化和肝硬化患者R O C 曲线下面积分别为0.88与0.99㊂P a v l o v 等[10]分析得到诊断肝纤维化各阶段的限定值(c u to f f 值):F 1ȡ5.9k P a,敏感度及特异度分别为0.83㊁0.88;F 2ȡ7.5k P a,敏感度及特异度分别为0.94㊁0.89;F 3ȡ9.5k P a ,敏感度及特异度分别为0.92㊁0.70;F 4为12.5k P a,敏感度及特异度分别为0.95㊁0.71㊂T E 能很好的区分肝脏纤维化的各期,但对于F 1和F 2有较多的重叠,还不能准确区分[11]㊂以上研究表明,T E 弥补了R T E 的不足,使深部器官的弹性值测定成为可能,其主要用于肝脏弥漫性病变导致肝脏纤维化的程度的定量评价㊂但T E 仍存在本身的不足,因其为独立于传统超声成像系统的测量仪器,无法进行常规超声成像,不具有定位引导功能;对操作者经验依赖性高,若不能准确定位,会因不能避开血管及胆道对结果产生较大影响;取样范围较局限,测量采集来源于肝脏内1c mˑ2c mˑ5c m 的区域,测值为检测区域的平均弹性值;目前对肝纤维化的分期数据有较大的重叠,对C u t o f f 值的划分仍不一样;肥胖㊁肋间隙狭小㊁腹水㊁肝实质和大血管结构的改变㊁坏死炎症及脂肪肝等因素对弹性结果的测值存在影响㊂图3 肝脏T E 图像3 实时剪切波弹性成像(r e a l -t i m es h e a r w a v e e l a s t r o g r a p h y ,S W E )/剪切波弹性成像(s h e a rw a v e e l a s t i c i t y i m a g i n g,S W E I )技术S W E /S W E I 是采用探头发射脉冲刺激产生声辐射力,在组织不同深度上连续聚焦,产生M a c hC o n e 效应,组织粒子高效振动引起位移变化产生剪切波,剪切波为传播速度约1~10m /s 的横波,波速较慢,可利用达20000帧/s 的超快速成像系统捕获㊁追踪剪切波得到实时的组织应变分布图,即弹性成像图[1,3-4,12-14]㊂S W E 较T E ㊁声辐射力弹性成像(a c o u s t i c r a d i a t i o n f o r c e i m pu l s e ,A R F I )等弹性成像技术影响因素较少,可用于腹腔积液患者,且不受气体干扰影响[15-16]㊂L e e 等[17]研究表明S W E 对乳腺良恶性病灶的鉴别有意义,良性病灶平均值为45.5k P a ,恶性病灶平均值为184.3k P a,恶性病灶S W E 值显著大于良性病灶,且差异有统计学意义,良恶性病灶的限定值为108.5k P a ,诊断敏感度及特异度分别为86.7%㊁97.3%㊂S W E 较T E 诊断肝纤维化的准确性更高[18],具有较好的临床应用前景㊂将S W E用于慢性肘部疼痛的评价,能够对肘部组织进行定量弹性值测定及动态监测尺神经的滑动,减少肘部病变的误诊率[19]㊂S W E 弹性图像有彩色编码能更直观的显示组织弹性,并可行定量测值㊂见图4㊂图4 乳腺髓样癌S W E4 超高速剪切波成像(s u p e r s o n i cs h e a ri m a gi n e ,S S I )技术S S I 是近年较新的A R F I 技术,采用马赫锥原理通过发射声辐射脉冲对组织施加压力,可在组织中产生足够强度的剪切波㊂通过超高速成像技术探测剪切波(获取剪切波信息速度最高可达20000H z),得到剪切波超高时间分辨力图像,以彩色编码技术实时显示组织弹性图,并通过定量分析系统测量组织的杨氏模量值㊂杨氏模量是应力与应变的比值,其中应力的单位为k P a ㊂它能反映组织的弹性,该值越大则组织硬度越大㊂S S I 通过声脉冲的精确控制,首先以超音速的速度在组织不同深度连续聚焦,增加剪切波的产生,将获得的超高时间分辨率图像进行彩色编码合成组织弹性图,最后定量测量反映组织弹性的杨氏模量值[1]㊂临床上应用S S I 进行的研究相对较少㊂通过对猪角膜的研究发现,S S I 能够对于角膜各向异性进行定量评价[20]㊂S S I 对于检查者超声检查操作经验依赖性较大[21]㊂㊃108㊃‘临床荟萃“ 2016年7月5日第31卷第7期 C l i n i c a l F o c u s ,J u l y 5,2016,V o l 31,N o .7Copyright ©博看网. All Rights Reserved.5A R F I技术A R F I技术目前共有3代:第一代A R F I技术,具有声辐射力定量技术(v i r t u a lt o u c h t i s s u e q u a n t i f i c a t i o n,V T Q)一种成像模式,仅能用于腹部,器官弹性值定量测量;第二代A R F I技术可用于腹部及浅表器官,具有V T Q和声辐射力成像技术(v i r t u a l t o u c h t i s s u e i m a g i n g,V T I)两种成像模式,但仅能对病灶内部某一点弹性参数进行定量测量,对于内部弹性参数分布不均的病灶测量存在困难,且重复性较差㊂第三代A R F I技术被称为V T I Q 鹰眼 技术,能进行单幅图像多次测量,重复性更佳;将定性及定量剪切波测量合为一体,更能直观对感兴趣区进行显示;取样框大小最小为1mmˑ1mm,对小病灶进行更精准的测值㊂目前只能应用于表浅器官㊂A R F I成像原理为通过超声探头脉冲激励产生声辐射力,声辐射力推动组织局部产生应力,组织发生纵向应变,同时产生横向传导的剪切波,仪器分别采集这两种信息进行成像:采集纵向应变参数形成弹性图像,即V T I;追踪测量剪切波传播速度V s,以其数值对组织进行弹性硬度定量,即V T Q[22]㊂V T Q技术即通过S WV对组织弹性进行定量评价,以m/s为单位㊂组织硬度高,剪切波在组织内传播速度增快,则S WV值大;相反组织硬度低,S WV值小㊂第一代A R F I技术仅含V T Q技术,目前应用已较少,只用于腹部㊂第二代A R F I技术应用于身体各个器官的研究较多[23-24],最早应用于肝脏㊁肾脏等弥漫性病变的研究,见图5㊂特别是在肝纤维化的评价与分级领域,其价值已经得到了基本认可㊂A R F I 在传统超声二维检查的过程中进行肝脏硬度的测量,与T E相比,能尽量避开血管及胆道对结果的影响,结果更准确[25]㊂A R F I技术最大测量深度可达8 c m,可较好的进行深部组织的弹性测量㊂在肝脏纤维化分级方面与T E结果相近㊂研究发现肝包膜下2.0~6.5c m处A R F I测值较为稳定[26]㊂患者呼吸运动㊁心脏大血管搏动及肌肉不同紧张程度等可影响测值的准确性;良恶性病灶的测值存在重叠[27-28]㊂在甲状腺㊁脾脏㊁胰腺等器官的研究也越来越多㊂D o n g等[29]通过对1617例甲状腺结节进行回顾性文献分析后认为,V T Q定量分析技术能够对甲状腺结节的良恶性进行区分,其混合敏感度㊁特异度分别为86.3%,89.5%,R O C曲线下面积为0.94㊂A R F I能对组织弹性值定量测定,评价组织损失程度,并能对病程进行预后监测[30]㊂将A R F I用于慢性肌肉骨骼疼痛性疾病临床类固醇治疗过程监测,可以避免血管及神经损伤,对治疗过程起到安全引导作用[31]㊂这些研究表明了第2代A R F I技术在肝脏等器官硬度测量方面得到大家认可,但它仅能对病灶内部某一点弹性参数进行定量测量,对于内部弹性参数分布不均的病灶测量存在困难,且重复性较差㊂图5肝脏A R F I第三代新型声触诊组织成像定量(v i r t u a l t o u c h t i s s u e i m a g i n gq u a n t i c a t i o n,V T I Q)技术目前主要应用于甲状腺㊁乳腺㊁睾丸㊁延腺等浅表器官㊂虽然目前应用V T I Q进行的研究相对还较少,但其在表浅器官弹性值测量方面的应用明显显现了它的优越性㊂将V T I Q用于睾丸病变的研究,发现对于较小的睾丸病变能够很好的显示并进行硬度测值,得出正常睾丸组织的平均V T I Q值为1.17m/s,睾丸良性病变平均V T I Q值为2.37m/s,睾丸生殖细胞肿瘤的平均V T I Q值为1.94m/s,睾丸精原细胞瘤平均V T I Q值为2.42m/s[32]㊂研究表明V T Q和V T I Q对于涎腺硬度测值存在相关性,正常腮腺与颌下腺的硬度测值相同,其V T Q和V T I Q值分别为1.92m/s㊁2.06m/s㊂腮腺及颌下腺的良恶性病灶的平均V T I Q值分别为4.24m/s㊁6.52m/s㊂而其V T Q值因部分病例剪切波测值高于S WV上限无法测得[33]㊂以上研究表明,V T I Q技术能在单幅图像上进行硬度值的多次测量,测值重复性更佳;剪切波V s测量范围增大,避免无效测量次数,对于恶性病灶的硬度值可更加准确测量,见图6㊂V T I Q技术其取样框大小可调节,对较小病灶也能进行更精准的测量,可用于睾丸㊁乳腺及甲状腺等表浅器官的微小病灶的显示及硬度测值㊂总之,超声弹性成像作为一项新兴的技术,弥补了常规超声的不足,能更全面地显示㊁定位病变及鉴别病变性质,降低超声对病变的漏诊及误诊率,其在神经肌肉疼痛性疾病方面的应用为该类疾病诊断提供了新的方法,使现代超声技术更为完善㊂相信随着研究的深入,弹性成像设备的不断完善及临床应㊃208㊃‘临床荟萃“2016年7月5日第31卷第7期 C l i n i c a l F o c u s,J u l y5,2016,V o l31,N o.7Copyright©博看网. All Rights Reserved.用技能的不断成熟,超声弹性成像将更广泛应用于临床㊂图6 A R F I 多点测值参考文献:[1] B a m b e r J ,C o s gr o v e D ,D i e t r i c h C F ,e t a l .E F S UM B gu i d e l i n e s a n d r e c o mm e n d a t i o n s o n t h e c l i n i c a l u s e o f u l t r a s o u n d e l a s t o g r a p h y .P a r t 1:B a s i c p r i n c i pl e s a n d t e c h n o l o g y [J ].U l t r a s c h a l lM e d ,2013,34(2):169-184.[2] C o s g r o v e D ,P i s c a gl i a F ,B a m b e r J ,e t a l .E F S UM B gu i d e l i n e s a n d r e c o mm e n d a t i o n s o n t h e c l i n i c a l u s e o f u l t r a s o u n d e l a s t o g r a p h y .P a r t2:C l i n i c a la p p l i c a t i o n s [J ].U l t r a s c h a l lM e d ,2013,34(3):238-253.[3] S a r v a z ya nA ,H a l lT J ,U rb a n MW ,e ta l .A no v e r v i e w o f e l a s t o g r a p h y -a ne m e r g i n g b r a nc ho fm ed i c a l i m a g i n g [J ].C u r r Me d I m a g i n g Re v ,2011,7(4):255-282.[4] A g u i l o MA ,A q u i n o W ,B r i gh a m J C ,e t a l .A n i n v e r s e p r o b l e ma p p r o a c h f o r e l a s t i c i t y i m a g i n g t h r o u ghv i b r o a c o u s t i c s [J ].I E E ET r a n sM e d I m a g i n g,2010,29(4):1012-1021.[5] K i b r i a MG ,H a s a n MK.A c l a s so fk e r n e lb a s e dr e a l -t i m e e l a s t o g r a p h y a l go r i t h m s [J ].U l t r a s o n i c s ,2015,61:88-102.[6] S t a c h s A ,D i e t e r i c h M ,H a r t m a n n S ,e ta l .D i a gn o s i s o f r u p t u r e db r e a s ti m p l a n t st h r o u g h h i g h -r e s o l u t i o n u l t r a s o u n d c o m b i n e dw i t hr e a l -t i m ee l a s t o g r a p h y [J ].A e s t h e tS u r g J ,2015,35(4):410-418.[7] T u d i s c oC ,B i s i c c h i aS ,S t e f a n i n iM ,e t a l .T e n d o n q u a l i t y in s m a l l u n i l a t e r a l s u p r a s p i n a t u s t e n d o n t e a r s .R e a l -t i m e s o n o e l a s t o g r a p h y c o r r e l a t e s w i t hc l i n i c a lf i n d i n g s [J ].K n e e S u r g S po r t sT r a u m a t o lA r t h r o s c ,2015,23(2):393-398.[8] M e n g F ,Z h e n g Y ,Z h a n g Q ,e t a l .N o n i n v a s i v e e v a l u a t i o nof l i v e r f i b r o s i su s i ng r e a l -t i m e t i s s u ee l a s t o g r a ph y a n dt r a n si e n t e l a s t o g r a p h y (F i b r o S c a n )[J ].J U l t r a s o u n d M e d ,2015,34(3):403-410.[9] S a n d r i nL ,F o u r q u e tB ,H a s q u e n o phJ M ,e ta l .T r a n s i e n t e l a s t o g r a p h y :a n e w n o n i n v a s i v e m e t h o df o ra s s e s s m e n to f h e pa t i c f ib r o s i s [J ].U l t r a s o u n dM e dB i o l ,2003,29(12):1705-1713.[10] P a v l o v C S ,C a s a z z a G ,N i k o l o v a D ,e t a l .T r a n s i e n te l a s t o g r a p h yf o rd i ag n o s i so fs t a g e so fh e pa t i cf ib r o s i sa n dc i r r h o s i s i n p e o pl e w i t ha l c o h o l i c l i v e rd i s e a s e [J ].C o c h r a n e D a t a b a s eS ys tR e v ,2015,1:C D 010542.[11] F r i e d r i c h -R u s tM ,L u p s o rM ,d eK n e g tR ,e t a l .P o i n tS h e a r W a v e E l a s t o g r a p h y b y A c o u s t i c R a d i a t i o n F o r c e I m pu l s e Q u a n t i f i c a t i o ni n C o m p a r i s o nt o T r a n s i e n t E l a s t o g r a p h y fo r t h e N o n i n v a s i v e A s s e s s m e n t o f L i v e r F i b r o s i si n C h r o n i c H e p a t i t i sC :A P r o s p e c t i v eI n t e r n a t i o n a l M u l t i c e n t e rS t u d y [J ].U l t r a s c h a l lM e d ,2015,36(3):239-247.[12] X u W ,S h iJ ,Z e n g X ,e ta l .E U S e l a s t o g r a p h y fo rt h e d i f f e r e n t i a t i o no fb e n i g na n d m a l i g n a n t l y m p hn o d e s :am e t a -a n a l ys i s [J ].G a s t r o i n t e s tE n d o s c ,2011,74(5):1001-1009.[13] F e r r a i o l iG ,T i n e l l i C ,D a lB e l l oB D ,e t a l .A c c u r a c y o f r e a l -t i m es h e a r w a v ee l a s t o g r a p h y f o ra s s e s s i n g l i v e rf i b r o s i si n c h r o n i c h e p a t i t i sC :a p i l o ts t u d y [J ].H e p a t o l o g y ,2012,56(6):2125-2133.[14] B a v uE ,G e n n i s s o nJ L ,C o u a d eM ,e t a l .N o n i n v a s i v e i nv i v ol i v e rf i b r o s i s e v a l u a t i o n u s i n g s u p e r s o n i c s h e a ri m a g i n g:a c l i n i c a l s t u d y o n113h e p a t i t i sCv i r u s p a t i e n t s [J ].U l t r a s o u n d M e dB i o l ,2011,37(9):1361-1373.[15] B o e h m K ,B u d u s L ,T e n n s t e d t P ,e t a l .P r e d i c t i o n o fS i g n i f i c a n tP r o s t a t eC a n c e ra tP r o s t a t eB i o p s y a n d P e rC o r e D e t e c t i o n R a t e o f T a r g e t e d a n d S y s t e m a t i c B i o p s i e s U s i n g R e a l -T i m eS h e a r W a v eE l a s t o g r a p h y [J ].U r o l I n t ,2015,95(2):189-196.[16] V l a d M ,G o l u I ,B o t a S ,e t a l .R e a l -t i m e s h e a r w a v e e l a s t o g r a p h y m a y p r e d i c ta u t o i mm u n et h yr o i d d i s e a s e [J ].W i e nK l i n W o c h e n s c h r ,2015,127(9-10):330-336.[17] L e e B E ,C h u n g J ,C h a E S ,e t a l .R o l e o f s h e a r -w a v e e l a s t o g r a p h y (S W E )i nc o m p l e xc ys t i c a n d s o l i db r e a s t l e s i o n s i n c o m p a r i s o nw i t h c o n v e n t i o n a l u l t r a s o u n d [J ].E u r JR a d i o l ,2015,84(7):1236-1241.[18] C h u n g JH ,A h n H S ,K i m S G ,e ta l .T h e u s e f u l n e s s o f t r a n s i e n t e l a s t o g r a p h y ,a c o u s t i c -r a d i a t i o n -f o r c e i m p u l s e e l a s t o g r a p h y ,a n d r e a l -t i m e e l a s t o g r a p h y f o r t h ee v a l u a t i o no f l i v e r f i b r o s i s [J ].C l i n M o lH e pa t o l ,2013,19(2):156-164.[19] Ła s e c k i M ,O l c h o w y C ,P a w l u ᶄs A ,e ta l .T h e S n a p p i n gE l b o wS y n d r o m e a s aR e a s o n f o r C h r o n i c E l b o wN e u r a l gi a i n a T e n n i sP l a y e r -M R ,U Sa n dS o n o e l a s t o g r a p h y E v a l u a t i o n [J ].P o l JR a d i o l ,2014,79:467-471.[20] N g u y e nT M ,A u b r y JF ,F i n k M ,e ta l .I nv i v oe v i d e n c eo f p o r c i n e c o r n e a a n i s o t r o p y u s i n g s u p e r s o n i c s h e a rw a v e i m a g i n g [J ].I n v e s tO ph t h a l m o lV i sS c i ,2014,55(11):7545-7552.[21] G r 췍d i n a r u -T a ʂc 췍uO ,S p o r e a I ,B o t a S ,e t a l .D o e s e x p e r i e n c e p l a y a r o l e i n t h e a b i l i t y t o p e r f o r m l i v e r s t i f f n e s s m e a s u r e m e n t sb y m e a n so fs u p e r s o n i cs h e a ri m a g i n g (S S I )[J ].M e dU l t r a s o n ,2013,15(3):180-183.[22] G a r r aB S ,C e s p e d e sE I ,O p h i r J ,e t a l .E l a s t o g r a p h y of b r e a s t l e s i o n s :i n i t i a l c l i n i c a l r e s u l t s [J ].R a d i o l og y,1997,202(1):79-86.[23] P a r k M S ,K i mS W ,Y o o nK T ,e t a l .F a c t o r s I n f l u e n c i n g th e D i a g n o s t i c A c c u r a c y o f A c o u s t i c R a d i a t i o n F o r c e I m pu l s e E l a s t o g r a p h y i n P a t i e n t s w i t h C h r o n i c H e pa t i t i sB [J ].G u t L i v e r ,2016,10(2):275-282.[24] M a n s o o r S ,C o l l y e rE ,A l k h o u r iN.Ac o m pr e h e n s i v e r e v i e w o f n o n i n v a s i v e l i v e r f i b r o s i s t e s t s i n p e d i a t r i c n o n a l c o h o l i c F a t t yl i v e r d i s e a s e [J ].C u r rG a s t r o e n t e r o lR e p ,2015,17(6):23.[25] F r u l i o N ,T r i l l a u d H ,P e r e z P ,e ta l .A c o u s t i c R a d i a t i o nF o r c e I m p u l s e (A R F I )a n dT r a n s i e n tE l a s t o g r a p h y (T E )f o r ㊃308㊃‘临床荟萃“ 2016年7月5日第31卷第7期 C l i n i c a l F o c u s ,J u l y 5,2016,V o l 31,N o .7Copyright ©博看网. All Rights Reserved.e v a l u a t i o nof l i v e rf i b r o s i si n H I V-H C V c o-i n f e c t e d p a t i e n t s[J].B M CI n f e c tD i s,2014,14:405.[26] Y a m a n a k aN,K a m i n u m aC,T a k e t o m i-T a k a h a s h iA,e ta l.R e l i a b l e m e a s u r e m e n tb y v i r t u a lt o u c ht i s s u e q u a n t i f i c a t i o nw i t h a c o u s t i c r a d i a t i o n f o r c e i m p u l s e i m a g i n g:p h a n t o ms t u d y[J].JU l t r a s o u n d M e d,2012,31(8):1239-1244. [27] Göy aC,D a g g u l l iM,H a m i d i C,e t a l.T h e r o l e o f q u a n t i t a t i v em e a s u r e m e n tb y a c o u s t i cr a d i a t i o nf o r c ei m p u l s ei m a g i n g i nd i f fe r e n t i a t i n g b e n i g n r e n a l l e s i o n sf r o m m a l ig n a n t r e n a lt u m o u r s[J].R a d i o lM e d,2015,120(3):296-303. [28] C a l v e t e A C,M e s t r e J D,G o n z a l e z J M,e t a l.A c o u s t i cr a d i a t i o n f o r c e i m p u l s e i m a g i n g f o re v a l u a t i o no f t h et h y r o i dg l a n d[J].JU l t r a s o u n d M e d,2014,33(6):1031-1040.[29] D o n g F J,L i M,J i a o Y,e ta l.A c o u s t i c R a d i a t i o n F o r c eI m p u l s e i m a g i n g f o rd e t e c t i n g t h y r o i dn o d u l e s:as y s t e m a t i cr e v i e wa n d p o o l e dm e t a-a n a l y s i s[J].M e d U l t r a s o n,2015,17(2):192-199.[30] K u o WH,J i a nD W,W a n g T G,e t a l.N e c k m u s c l es t i f f n e s sq u a n t i f i e db y s o n o e l a s t o g r a p h y i sc o r r e l a t e d w i t hb o d y m a s si n d e xa n dc h r o n i cn e c k p a i ns y m p t o m s[J].U l t r a s o u n d M e dB i o l,2013,39(8):1356-1361.[31] C h i o u H J,C h o u Y H,W a n g H K,e t a l.C h r o n i cm u s c u l o s k e l e t a l p a i n:u l t r a s o u n d g u i d e d p a i n c o n t r o l[J].A c t aA n a e s t h e s i o lT a i w a n,2014,52(3):114-133.[32] T r o t t m a n n M,M a r c o nJ,D'A n a s t a s iM,e ta l.T h er o l eo fV T I Qa s an e wt i s s u e s t r a i na n a l y t i c sm e a s u r e m e n t t e c h n i q u ei n t e s t i c u l a r l e s i o n s[J].C l i n H e m o r h e o l M i c r o c i r c,2014,58(1):195-209.[33] M a t s u z u k aT,S u z u k iM,S a i j oS,e t a l.S t i f f n e s so f s a l i v a r yg l a n d a n d t u m o r m e a s u r e d b y n e w u l t r a s o n i c t e c h n i q u e s:V i r t u a l t o u c h q u a n t i f i c a t i o na n d I Q[J].A u r i sN a s u sL a r y n x, 2015,42(2):128-133.收稿日期:2016-03-24编辑:﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏王秋红(上接第799页)[16] M a Y,N i u Y,T i a n G,e t a l.P u l m o n a r y f u n c t i o na b n o r m a l i t i e si n a d u l t p a t i e n t s w i t h a c u t e e x a c e r b a t i o n o fb r o nc h i e c t a s i s:a r e t r o s p e c t i v er i s kf a c t o ra n a l y s i s[J].C h r o nR e s p i rD i s,2015,12(3):222-229.[17] C o l e P J.I n f l a mm a t i o n:a t w o-e d g e d s w o r d--t h e m o d e l o fb r o nc h i e c t a s i s[J].E u r JR e s p i rD i sS u p p l,1986,147:6-15.[18] P a t e lI S,S e e m u n g a l T A,W i l k s M,e t a l.R e l a t i o n s h i pb e t w e e nb ac t e r i a lc o l o n i s a t i o na n dt h ef r e q u e n c y,c h a r a c t e r,a n ds e v e r i t y o fC O P D e x a c e rb a t i o n s[J].T h o r a x,2002,57(9):759-764.[19] D o n a l d s o n G C,S e e m u n g a l T A,B h o w m i k A,e t a l.R e l a t i o n s h i p b e t w e e n e x a c e r b a t i o n f r e q u e n c y a n d l u n g f u n c t i o nd e c l i n e i n c h r o n i c o b s t r u c t i v e p u l m o n a r y d i s e a s e[J].T h o r a x,2002,57(10):847-852.[20] G u r s e l G.D o e s c o e x i s t e n c e w i t h b r o n c h i e c t a s i s i n f l u e n c ei n t e n s i v e c a r e u n i t o u t c o m e i n p a t i e n t sw i t h c h r o n i c o b s t r u c t i v ep u l m o n a r y d i s e a s e[J].H e a r tL u n g,2006,35(1):58-65.[21] W e d z i c h a J A,H u r s t J R.S t r u c t u r a l a n d f u n c t i o n a l c o-c o n s p i r a t o r s i n c h r o n i c o b s t r u c t i v e p u l m o n a r yd i se a s ee x a c e r b a t i o n s[J].P r o cA m T h o r a c S o c,2007,4(8):602-605.[22]S t o c k l e y R A.B r o n c h i e c t a s i s w i t h c h r o n i c o b s t r u c t i v ep u l m o n a r y d i s e a s e:a s s o c i a t i o no ra f u r t h e r p h e n o t y p e?[J].A mJR e s p i rC r i tC a r eM e d,2013,187(8):786-788.[23] P a r rD G,G u e s t P G,R e y n o l d sJ H,e ta l.P r e v a l e n c ea n di m p a c to fb r o n c h i e c t a s i s i na l p h a1-a n t i t r y p s i nd e f i c i e n c y[J].A mJR e s p i rC r i tC a r eM e d,2007,176(12):1215-1221.[24] C h a l m e r s J D,G o e m i n n e P,A l i b e r t i S,e t a l.T h eb r o nc h i e c t a s i s s e v e r i t y i nde x.A n i n t e r n a t i o n a l d e r i v a t i o na n dv a l i d a t i o ns t u d y[J].A m JR e s p i rC r i tC a r e M e d,2014,189(5):576-585.[25] M a r tN e z-G a r cAM,D eG r a c i aJ,V e n d r e l lR e l a t M,e ta l.M u l t i d i m e n s i o n a l a p p r o a c h t o n o n-c y s t i c f i b r o s i sb r o nc h i e c t a s i s:t h eF A C E Ds c o r e[J].E u rR e s p i r J,2014,43(5):1357-1367.[26] O'D o n n e l l A E.B r o n c h i e c t a s i s i n p a t i e n t s w i t h C O P D:ad i s t i n c tC O P D p he n o t y p e[J].C h e s t,2011,140(5):1107-1108.[27] W i l s o nR,W e l t e T,P o l v e r i n o E,e ta l.C i p r o f l o x a c i n d r yp o w d e r f o r i n h a l a t i o ni nn o n-c y s t i cf i b r o s i sb r o n c h i e c t a s i s:ap h a s e I I r a n d o m i s e ds t u d y[J].E u rR e s p i rJ,2013,41(5): 1107-1115.[28] Y a n g I A,C l a r k eM S,S i m E H,e t a l.I n h a l e dc o r t i c o s t e r o i d sf o r s t a b l e c h r o n i c o b s t r u c t i v e p u l m o n a r y d i s e a s e[J].C o c h r a n eD a t a b a s eS y s tR e v,2012,7:C D002991.[29] V o g e l m e i e rC,H e d e r e rB,G l a a bT,e t a l.T i o t r o p i u mv e r s u ss a l m e t e r o l f o r t h e p r e v e n t i o no f e x a c e r b a t i o n s o f C O P D[J].NE n g l JM e d,2011,364(12):1093-1103.[30] N o v o s a d S A,B a r k e r A F.C h r o n i c o b s t r u c t i v e p u l m o n a r yd i se a s e a n d b r o n c h i e c t a s i s[J].C u r rO p i nP u l m M e d,2013,19(2):133-139.收稿日期:2016-04-14编辑:武峪峰㊃408㊃‘临床荟萃“2016年7月5日第31卷第7期 C l i n i c a l F o c u s,J u l y5,2016,V o l31,N o.7Copyright©博看网. All Rights Reserved.。
浅谈对超声医学的发展现状与前景之探究
浅谈对超声医学的发展现状与前景之探究【摘要】超声医学是一门利用超声波技术进行诊断与治疗的医学领域。
通过超声波的高频振荡,可以准确观察人体内部的结构与变化,为医生提供重要的诊断依据。
超声医学在临床各个领域都有广泛的应用,如妇产科、心脏病学、消化内科等。
随着技术的不断进步,超声医学的成像质量和精度也在不断提高,越来越多的疾病可以通过超声检查来进行诊断。
未来,随着科技的不断发展,超声医学在医学领域将有更加广阔的应用前景。
超声医学具有巨大的潜力,可以在不断拓展的领域中发挥重要作用。
对超声医学的期待也越来越高,希望能够通过这一技术来提高医疗水平,为患者提供更好的诊疗服务。
【关键词】超声医学,技术发展,应用领域,发展现状,未来前景,潜力,发展方向,期待1. 引言1.1 对超声医学的定义超声医学是一种运用超声波技术进行医学诊断和治疗的学科。
超声波是一种高频声波,可以穿透人体组织产生图像。
超声医学利用超声波的高频振动和回声特性,可以精确地观察人体内部器官的结构和功能,从而实现对疾病的诊断和监测。
超声医学的定义还包括超声波在医学领域的广泛应用,如超声心动图、超声胃镜、超声乳房检查等。
通过超声医学技术,医生可以及时发现和诊断疾病,提高治疗效果,减少不必要的手术风险。
超声医学是一门利用超声波技术对人体进行诊断和治疗的学科,具有非侵入性、安全性高、成本低等优点,被广泛应用于临床医学领域。
随着技术的不断进步和创新,超声医学在医学诊断、疾病治疗等方面的作用将越来越重要,对人类健康产生积极的推动作用。
1.2 对超声医学的重要性超声医学在临床诊断中具有独特的优势。
通过超声检查,医生可以直观地观察到人体内部的器官和结构,从而及时发现病变和异常情况。
与传统的X射线和CT检查相比,超声检查没有辐射损伤,对患者身体没有任何副作用,尤其适合孕妇和婴幼儿的检查。
超声医学在导诊和手术中发挥着重要作用。
在手术前,医生可以利用超声检查来评估病变的性质和位置,指导手术的方案和操作过程。
超声医学成像技术的发展与应用
超声医学成像技术的发展与应用超声医学成像技术是一种常见的医学成像技术,它基于超声波的回声来获取人体内部结构信息,并将其转化为图像进行诊断。
近年来,随着超声医学成像技术的不断发展和改进,已经成为临床医学中应用最广泛的一种医学成像技术之一。
本文将着重探讨超声医学成像技术的发展与应用,以及未来的前景。
一、超声医学成像技术的历史超声波是指频率高于人类能听到的20 kHz的声波。
早在1915年,法国物理学家皮埃尔·居里就发现了超声波的存在,并为其命名。
但是,直到1950年代末期,超声波才被应用于医学领域。
1956年,英国生物物理学家乔治·卢卡斯发明了第一个超声波探头,实现了对人内部器官的检测。
此后,超声医学成像技术快速发展,大大改进了临床医学的诊断手段。
二、超声医学成像技术的原理与发展超声医学成像技术是基于超声波在人体组织内的传播特性来进行成像的。
它的主要原理是利用超声波在组织和器官内反射和散射的特性来获取人体内部结构的信息。
超声波探头会发射超声波,然后接受反射回来的波。
通过计算发射和接收波之间的时间差和强度差,可以确定内部器官的位置和形状,并据此绘制图像。
随着电子计算机和数字信号处理技术的发展,超声医学成像技术得到了进一步改进,并产生了多种成像模式,包括B超、彩超、Doppler超声、三维超声和超声弹性成像等。
其中B超是最常见和最基本的超声医学成像技术,它能够提供结构清晰的图像,并被广泛应用于妇科、产科、肝脏疾病、心血管疾病和乳腺癌等临床领域。
彩超则是在B超的基础上加入了彩色编码,可以更清晰地显示血流分布情况,广泛应用于血管病变的诊断。
而Doppler超声则主要用于检测心血管疾病,它可以测量血流速度和方向,诱导流体动力学参数,更全面地评估心血管病变的情况。
超声弹性成像则是一种新型的超声成像技术,它可以检测组织的弹性变形,能够帮助医生更准确地判断肿瘤、结节等病变的性质。
三、超声医学成像技术的应用超声医学成像技术是一种无创的、安全的、经济的诊断手段,已经成为临床医学中广泛应用的一种成像技术。
浅谈对超声医学的发展现状与前景之探究
浅谈对超声医学的发展现状与前景之探究超声医学是一种利用超声波在人体内部产生影像,以诊断和治疗疾病的医学技术。
它具有非侵入性、无辐射、操作简便等优点,成为现代医学中应用最广泛的成像技术之一。
本文将对超声医学的发展现状与前景进行探究。
超声医学的发展现状。
随着医学科技的不断进步,超声医学已经取得了很大的发展。
首先是超声成像技术的不断改进。
在超声医学的早期阶段,只能提供简单的二维影像,无法清晰显示组织结构。
而如今,随着超声探头的改进和信号处理算法的提升,超声成像技术已经可以提供高分辨率的三维影像,能够清晰显示心脏、肝脏、肺部等器官的结构和功能,大大提高了医生对疾病的诊断准确性。
其次是超声诊断技术的不断完善。
超声医学不仅可以提供器官的结构信息,还可以通过测量声速和声阻抗等参数,实现对组织的定量分析。
近年来,超声弹性成像技术的发展,使得医生可以通过对组织的硬度和弹性特性进行分析,帮助早期发现肿瘤、评估心脏功能等。
超声治疗技术的发展也为医学带来了新的机遇。
超声在医学中不仅可以用于诊断,还可以通过聚焦高强度超声波在人体内部产生热效应,用于治疗多种疾病。
超声聚焦技术已经在治疗肿瘤、神经疾病等领域取得了重要的进展。
超声医学在移动设备上的应用也是其发展的一个重要趋势。
传统的超声设备体积大、价格昂贵,只能在专业医疗机构中应用。
而如今,随着移动设备的普及和硬件技术的进步,越来越多的超声设备可以嵌入到手机、平板电脑等移动设备中,实现远程诊断和无线传输影像,为边远地区和医疗资源匮乏地区提供了更便捷和广泛的医疗服务。
超声医学是一种应用广泛且发展迅速的医学技术。
随着医学科技的进步和需求的增加,超声医学在成像技术、诊断技术、治疗技术和移动应用方面都有着广阔的发展前景。
我们相信,超声医学将继续引领医学影像技术的发展,并为人们的健康服务做出更大的贡献。
弹性成像的应用原理
弹性成像的应用原理弹性成像技术简介弹性成像是一种利用超声波或电磁波等方法对物体的结构和性质进行成像的技术。
它可以用于医学诊断、材料研究、地质勘探等领域。
本文将介绍弹性成像技术的应用原理及其在各领域的具体应用。
弹性成像的基本原理弹性成像利用波的传播性质和物体的力学特性来进行成像。
其基本原理是通过观测或测量波在物体内部传播时的变化,来推测物体的结构和性质。
根据测量所得到的数据,可以通过数学算法进行处理和分析,最终生成物体的图像。
弹性成像的具体应用1.医学诊断–通过弹性成像技术,医生可以观察人体内部组织和器官的结构及其变化情况,从而帮助诊断疾病。
–弹性成像在癌症的早期检测和诊断中非常有用。
癌细胞通常具有不同的弹性特性,与周围正常组织有所区别。
弹性成像可以帮助医生提前发现和区分癌细胞,进而选择合适的治疗方法。
2.材料研究–弹性成像技术可以对材料的力学性能进行评估,如材料的硬度、弹性模量等。
这对于材料的研究和开发非常重要。
–弹性成像能够实时监测材料的变形和损伤过程,可以提前发现材料可能存在的问题,避免事故的发生。
3.地质勘探–在地质勘探中,弹性成像可以帮助观测地下岩层的结构和性质。
–弹性成像可以检测地壳和岩石中的裂隙和断层,为地质灾害的预防和地下资源的探测提供重要数据。
4.其他领域的应用–弹性成像还可以被用于材料制造和质量控制、非破坏性测试、生物力学研究等领域。
弹性成像的发展趋势随着科学技术的不断进步,弹性成像技术也在不断发展和完善。
以下是一些发展趋势: - 共振频率显微成像:通过测量共振频率的变化,可以更详细地描绘材料的弹性性能,提高成像的分辨率和准确性。
- 多模态成像:将多种成像技术进行组合,例如超声波成像和电磁波成像,可以获得更全面的信息,提高成像的准确性。
- 实时成像:将弹性成像与实时图像处理技术相结合,可以实现实时成像,为医学手术和工程测量等实时应用提供支持。
结论弹性成像技术是一种重要的成像技术,它通过观察和测量波在物体内部传播时的变化来推测物体的结构和性质。
医学成像技术研究——超声弹性成像的定量分析
医学成像技术研究——超声弹性成像的定量分析第一章:引言医学成像技术是现代医学领域的重要组成部分,为医生提供了非侵入性的观察和诊断手段。
超声弹性成像作为一种新兴的医学成像技术,可以通过测量组织的弹性性质,提供有关病变的定量信息,对于疾病的早期诊断和治疗起到重要的作用。
本文将深入研究超声弹性成像的定量分析方法。
第二章:超声弹性成像的原理超声弹性成像(Elasography)是利用超声波在组织中的传播速度和幅度的变化,来反映组织的弹性特性。
其基本原理是通过对组织施加外力,观察组织的形变情况,进而推断组织的弹性性质。
常见的超声弹性成像技术有静态弹性成像和动态弹性成像。
第三章:超声弹性成像的量化分析方法为了对超声弹性成像所得到的数据进行定量分析,研究员们提出了一系列的分析方法。
其中,最常用的方法之一是应变(strain)成像分析。
该方法通过测量组织的位移和形变,得出组织的应变分布,从而进一步计算出组织的弹性模量。
另外,还有基于梯度的方法、基于频响的方法等。
第四章:超声弹性成像的应用领域超声弹性成像技术在医学领域有着广泛的应用。
一方面,它可以用于乳腺癌、肝脏疾病等肿瘤疾病的诊断和治疗监测。
另一方面,它还可以应用于心脏病、脑疾病等器官的功能评估和病理性的变化追踪。
此外,超声弹性成像还可以用于体外胚胎发育观察、皮肤老化评估等方面。
第五章:超声弹性成像的优缺点超声弹性成像作为一种新兴的医学成像技术,具有许多优点。
首先,它是一种非侵入性的成像技术,不会对患者造成伤害。
其次,超声波在组织中的传播速度和幅度的变化对于疾病的早期诊断非常敏感。
此外,超声弹性成像还具有实时性、可重复性好等优点。
然而,目前的超声弹性成像技术还存在一些缺点,如分辨率较低、对噪声和伪迹敏感等。
第六章:超声弹性成像的发展趋势随着科技的不断发展和医学领域对超声弹性成像的需求增加,该技术也在不断改进和完善。
未来的超声弹性成像技术可能会在分辨率、实时性以及成像深度等方面得到进一步提高。
超声弹性成像技术
实时成像,可动态 观察组织变化
高分辨率,可清晰 显示组织结构
操作简便,可快速 获取检测结果
高分辨率成像
超声弹性成像技术可以 提供高分辨率的图像, 能够清晰地显示组织结 构和病变情况。
高分辨率成像还可以帮 助医生更好地了解病变 的性质和程度,为治疗 提供更有针对性的方案。
高分辨率成像有助于医 生更准确地诊断疾病, 提高诊断准确性。
动态成像:超声弹性成像技术可以动态成像,提 供更准确的诊断信息。
超声弹性成像技术 的发展
技术突破
1
2
3
4
1970年代:超声弹 性成像技术的概念
提出
1980年代:超声弹 性成的广泛应
用和进一步发展
1990年代:超声弹 性成像技术的临床
应用
临床应用
肿瘤诊断:通过 测量肿瘤组织的 弹性系数,判断
肿瘤的良恶性
心血管疾病诊断: 测量血管壁的弹 性系数,评估心 血管疾病的风险
肝脏疾病诊断: 测量肝脏组织的 弹性系数,评估 肝脏疾病的严重
程度
肌肉骨骼疾病诊 断:测量肌肉骨 骼组织的弹性系 数,评估肌肉骨
骼疾病的程度
发展趋势
技术进步:不断提高成像质量和分辨率
应用领域拓展:从医学领域向其他领域拓展, 如工业检测、地质勘探等
04 弹性系数的应用:评估材料 的弹性、强度、耐磨性等性 能指标
超声弹性成像技术 的应用
肿瘤检测
01 超声弹性成像技术可以检测肿 瘤的硬度和弹性
02 肿瘤的硬度和弹性与肿瘤的恶 性程度有关
03 超声弹性成像技术可以辅助医 生判断肿瘤的性质和分期
04 超声弹性成像技术可以提高肿 瘤检测的准确性和可靠性
高分辨率成像技术还可 以减少对患者身体的辐 射伤害,提高患者的舒 适度和安全性。
211053159_超声弹性成像在妇产领域中的应用进展
·综述·超声弹性成像是近年来发展迅速的一种新兴成像技术,其可以客观测量组织弹性这一基本生物学特性,从而评估炎症、肿瘤等可能导致组织弹性改变的病理和生理变化。
目前,超声弹性成像已广泛应用于甲状腺、乳腺、肾脏、肝脏、淋巴结、血管、皮肤和肌肉系统等领域。
2006年超声弹性成像开始用于测量宫颈弹性,以评估宫颈功能不全和早产;随后该技术在妇产领域中的应用逐渐广泛。
本文就超声弹性成像在妇产领域中的应用进展进行综述。
一、超声弹性成像的概述超声弹性成像的基本原理是对组织施加一个激励,使其在形态、位移、速度等方面发生变化,通过收集组织变化所产生的不同信号,获得组织的弹性信息。
目前,应用于妇产领域的超声弹性成像可分为应变弹性成像和剪切波弹性成像(shear wave elastography ,SWE )。
1.应变弹性成像:其包括外部由手动压缩引起的变形和内部由器官运动引起的变形,由于其未监测成像组织中的任何振动或波,因此也被称为“静态”技术。
当组织被探头压缩时超声换能器可以检测其变形,通常用来量化组织应变的指标为应变比(strain ratio ,SR ),即病变部位的平均应变指数与周围正常组织的比值。
该方法可以在一定程度上量化病灶的相对硬度,但不能提供硬度的绝对值;超声图像上的应变标度通常用彩色编码表示,根据不同颜色进行弹性评分,用于评估组织硬度。
2.SWE :该方法是基于运动波创建的图像,因此被称为“动态”技术。
声波能量作用在组织上引起微小局部位移,诱发剪切波,利用超声成像监测剪切波的传播,并计算弹性模量值。
该方法检测结果相对独立于操作者,更具客观性。
此外,SWE 无需周围正常组织作为对比,因此可以用于研究弥漫性和局灶性病变。
基金项目:重庆医科大学未来医学青年创新团队发展支持计划项目(W0122);重庆医科大学附属第二医院“宽仁英才”项目(13-003-003);2023年重庆市妇幼保健科研培育项目作者单位:400010重庆市,重庆医科大学附属第二医院妇产科通讯作者:董晓静,Email :超声弹性成像在妇产领域中的应用进展唐紫露董晓静摘要超声弹性成像可以客观测量组织弹性这一基本生物学特性,具有重要的临床意义和广阔的应用前景。
超声弹性成像
临床专家看好超声弹性成像发展前景生物组织的弹性(或硬度)与病灶的生物学特性紧密相关,对于疾病的诊断具有重要的参考价值。
目前,一种对生物组织弹性(或硬度)特征成像的新技术——超声弹性成像成为临床研究的热点。
作为一种全新的成像技术,它扩展了超声诊断理论的内涵和超声诊断范围,弥补了常规超声的不足,能更生动地显示、定位病变及鉴别病变性质,使现代超声技术更为完善,被称为继A型、B型、D型、M型之后的E型超声模式。
在不久前召开的第59届中国国际医疗器械春季博览会“超声弹性成像技术论坛”上,来自广州市中山大学附属第二医院超声科的罗葆明等专家表示,超声弹性成像技术尽管起步伊始,但该技术提供了与传统影像学不同的、有助于临床诊断的新信息。
“相信随着弹性成像设备的不断完善及临床应用技能的不断成熟,超声弹性成像将在临床工作中发挥更加重要的辅助作用”。
关于超声弹性成像技术据罗葆明教授介绍,超声弹性成像的基本原理是对组织施加一个内部(包括自身的)或外部的动态/静态/准静态的激励。
在弹性力学、生物力学等物理规律作用下,组织将产生一个响应,例如位移、应变、速度的分布产生一定改变。
利用超声成像方法,结合数字信号处理或数字图像处理技术,可以估计出组织内部的相应情况,从而间接或直接反映组织内部的弹性模量等力学属性的差异。
超声弹性成像可大致分为血管内超声弹性成像及组织超声弹性成像两大类。
血管内超声弹性成像是利用气囊、血压变化或者外部挤压来激励血管,估计血管的运动即位移(一般为纵向),得到血管的应变分布,从而表征血管的弹性。
它是一种对血管壁动脉硬化斑局部力学特性进行成像的技术。
我国研究人员曾以超声成像为基础的血管壁弹性显微成像试验在世界上首次获得了实际血管壁真正意义上的横断面弹性显微图像。
血管弹性成像可用于估计粥样斑块的组成成分、评价粥样斑块的易损性、估计血栓的硬度和形成时间,甚至观察介入治疗和药物治疗的效果,具有重要的临床价值。
组织超声弹性成像多采用静态/准静态的组织激励方法。
超声弹性成像技术护理课件
超声弹性成像技术在肿瘤筛查和早期 诊断中的应用前景
随着肿瘤发病率的上升和早期诊断的重要性日益凸显 ,超声弹性成像技术在肿瘤筛查和早期诊断中的应用 前景广阔,值得进一步研究和推广。
超声弹性成像技术的临床 应用案例
乳腺肿块的诊断与鉴别诊断
总结词
超声弹性成像技术对于乳腺肿块的诊断与鉴别诊断具有重要价值,能够提高诊断的准确 性和可靠性。
详细描述
超声弹性成像技术通过测量组织的弹性系数,评估乳腺肿块的硬度,有助于判断肿块的 良恶性。例如,恶性肿瘤由于其内部结构的复杂性,通常表现为较高的硬度。此外,结 合常规超声成像技术,如彩色多普勒血流显像和二维灰阶成像,可以更全面地了解肿块
超声弹性成像技术护 理课件
xx年xx月xx日
• 超声弹性成像技术概述 • 超声弹性成像技术的基本操作 • 超声弹性成像技术的护理要点 • 超声弹性成像技术的临床应用案
例
目录
• 超声弹性成像技术的护理经验分 享
• 超声弹性成像技术的护理研究进 展
目录
01
超声弹性成像技术概述
定义与原理
定义
超声弹性成像技术是一种利用超声波对组织进行检测和评估的方法,通过测量 组织的弹性模量来评估其硬度或质地。
未来,超声弹性成像技术可能会与其 他影像学检查手段相结合,形成更加 全面、准确的诊断体系。
未来,超声弹性成像技术可能会应用 于更多领域,如康复医学、美容医学 等,为患者提供更加便利、精准的护 理服务。
06
超声弹性成像技术的护理 研究进展
护理研究现状与热点
超声弹性成像技术在乳腺疾病诊断中的应用
随着乳腺癌发病率的上升,超声弹性成像技术在乳腺疾病诊断中的价值逐渐受到重视,成为护理研究的热点之一 。
超声弹性成像定量分析,可以这样理解
超声弹性成像定量分析,可以这样理解发表时间:2020-12-15T08:26:20.001Z 来源:《航空军医》2020年9期作者:刘宁[导读] 在这样的背景下就出现了一种新的诊断技术,辅助医生对患者进行诊断和治疗,这种技术就是超声弹性成像技术。
(平昌县人民医院 636400)在生物组织里面最基本的属性就是硬度和弹性。
硬度和弹性和生物组织有着密切相关的联系。
传统在评价组织硬度的时候都是通过临床医生触诊的方式来进行诊断,这样的诊断方式对医生的工作经验要求非常高,在这样的背景下就出现了一种新的诊断技术,辅助医生对患者进行诊断和治疗,这种技术就是超声弹性成像技术。
1.什么是超声弹性成像定量超声弹性成像是一种新型超声诊断技术,根据不同组织间弹性系数不同,在受到外力压迫后组织发生变形的程度不同,将受压前后回声信号移动幅度的变化转化为实时彩色图像,弹性系数小、受压后位移变化大的组织显示为红色,弹性系数大、受压后位移变化小的组织显示为蓝色,弹性系数中等的组织显示为绿色,借图像色彩反映组织的硬度。
弹性成像技术,使超声图像拓宽,弥补了常规超声的不足,能更生动地显示及定位病变。
2.超声弹性成像技术的作用超声弹性成像技术的出现能够更好的帮助医生研究肿瘤的扩散情况,现在已经在检查乳腺癌、甲状腺癌等疾病中广泛的应用。
医生在检查的时候能够通过触诊定性评价和诊断乳腺肿块来判断病情。
超声弹性定向技术的出现给医生提供了很多关于患病者的病变组织特征,超声弹性成像技术也弥补了常规超声图像的不足,更生动的显示出定位的病变情况。
超声弹性成像主要利用生物组织的弹性信息来帮助医生诊断疾病,主要的原理就是利用各组织之间的不同弹性系数,加上外力或者振动之后收集测试出现的片段信号,在使用自相关法进行分析,最后利用编码进行成像。
在成像的时候,弹性系数大的时候应变就小,相反,弹性应变小的时候弹性就大。
3.超声弹性成像定量分析的优点超声弹性成像定量分析的主要优点就是能够更好的显示出病变的性质,在临床工作的时候也起到了一个重要的保护作用。
超声弹性成像技术的临床应用及研究进展
I n n o v a t i o n o f C h i n a 。2 0 1 3 。1 0( 2 3) : 1 5 7 — 1 5 9
【 A b s t r a c t 】U l t r a s o u n d e l a s t o g r a p h y i s a n e w t e c h n o l o g y i m a g i n g a c c o r d i n g t o t h e d i f e r e n t e l a s t i c c o e f i f c i e n t o f d i f f e r e n t t i s s u e s , i t m a k e s u p t h e
he t d i a g n o s i s a n d d i f e r e n t i a l di gn a o s i s o f v a r i o u s d i s e a s e s . T h i s p a p e r r e v i e w he t c l i n i c l a a p p l i c a t i o n o f u l t r so a u n d e l a s t o g r a p h y i n t h e s e t i s s u e s nd a o r g a n s
个研究 热点。超声弹性成像 已经被广泛应用于乳腺疾病 的检查 , 近年来关 于乳腺 以外器 官的研究 报道逐 渐增 多 , 如甲状腺 、 前列腺 、 肝脏等 , 并在 多种疾病 的诊 断和鉴别诊 断中显示 出 日 益 增长的优势 。本 文就近年来超声 弹性成像技术在 这些组织器官 中的临床应用及相关发展 情况 进行综述 。
Fi r s t -a u t h o r ’ S a d dr e s s :The Af i f i a t e d Ho s p i t a l f Da o l i Co l l e g e, Da l i 6 7 1 0 0 0,Ch i n a
超声弹性成像技术在乳腺癌诊断中的应用
超声弹性成像技术在乳腺癌诊断中的应用乳腺癌是女性常见的恶性肿瘤之一,目前癌症早期诊断已经成为公认的癌症防治策略之一。
超声弹性成像技术作为一种新兴的乳腺癌诊断手段,具有良好的应用前景,引起了人们的广泛关注。
一、超声弹性成像技术的基本原理超声弹性成像技术是一种比传统超声成像更为先进的乳腺癌诊断手段。
它利用超声波的声学波传输和组织的弹性变形特性,实现对组织的弹性成像和定量分析。
在这种技术中,超声弹性成像仪会将弹性波导入乳腺组织,在组织中产生弹性波的传播和反射,最终形成对组织的弹性影像。
二、超声弹性成像技术在乳腺癌诊断中的优势与传统的乳腺癌诊断手段相比,超声弹性成像技术有如下优势:1. 非侵入性超声弹性成像技术不需要穿刺或切开组织就能对乳腺组织进行检测,不会给患者带来疼痛或伤害,具有更高的安全性和舒适度。
2. 相对较高的准确性在对乳腺癌进行诊断时,传统的超声成像技术仅能判断癌肿的部位和大小,而超声弹性成像技术还能对癌肿的性质进行评估,如癌瘤的硬度、弹性等。
这有助于医生更准确地诊断癌症并制定治疗方案。
3. 可重复性强超声弹性成像技术可对乳腺组织进行多次检测,每次检测之间不会相互影响,具有更高的重复性,能快速准确定位疑似癌症的位置。
三、超声弹性成像技术在乳腺癌诊断中的应用案例超声弹性成像技术已被广泛应用于乳腺癌的诊断和治疗评估。
下面介绍几个应用案例:1. 具体案例一患者,女性,35岁,发现右乳有肿块,大小约为2厘米。
通过超声弹性成像技术检测,发现该区域的硬度异常,提示可能为癌症。
随后进行组织活检,最终确诊为乳腺癌。
2. 具体案例二患者,女性,40岁,发现右乳有大小约为1.5厘米的肿块。
通过超声弹性成像技术检测,发现该区域弹性差异性较大,提示可能是癌症。
随后进行组织活检,未检测出癌细胞。
再经过半年的随访,该肿块无明显变化,证明该肿块是良性的。
四、超声弹性成像技术在未来的发展前景目前,超声弹性成像技术已经在乳腺癌诊断中展现了广泛的优势。
超声弹性成像的发展趋势
超声弹性成像的发展趋势
超声弹性成像是一种通过使用超声波来评估组织弹性特性的成像技术。
随着技术的不断发展,超声弹性成像呈现出以下几个发展趋势:
1. 微创性:微创性是目前医学成像技术的一个重要发展趋势。
传统的组织弹性成像需要通过穿刺或手术来获取组织样本,而超声弹性成像可以通过超声探头直接在皮肤表面进行成像,无需切割或穿刺,减少了患者的不适和感染的风险。
2. 实时性:实时性是超声弹性成像发展的另一个关键趋势。
传统的组织弹性成像需要较长的扫描时间来获取高质量的图像,而超声弹性成像可以在几秒钟内获得实时的组织弹性图像,使医生能够快速准确地评估组织的弹性特性。
3. 多模态成像:多模态成像是将超声弹性成像与其他成像技术(如超声造影、MRI、CT等)相结合的趋势。
通过融合多种成像模态的信息,可以获得更全面和准确的组织结构和功能信息,提高诊断的准确性和可靠性。
4. 三维成像:三维成像是超声弹性成像发展的另一个重要趋势。
传统的组织弹性成像通常是二维的,只能提供组织在横断面的弹性信息,而三维成像可以提供更全面和详细的组织弹性信息,有助于更准确地评估组织的病理改变。
总体而言,超声弹性成像的发展趋势是向着微创性、实时性、多模态成像和三维成像等方向发展,以提高诊断的准确性和可靠性,从而为临床医学提供更有效的
诊断和治疗手段。
浅谈超声检测未来的发展方向
0引言无损检测的发展水平在一定程度上反映了一个国家的生产技术水平和经济发展程度[1],随着我国经济的高速发展以及生产技术水平的提高,在过去的一段时间内我国无损检测水平得到了很大的提高。
目前应用较广的无损检测方法主要是渗透检测、磁粉检测、涡流检测、射线检测和超声检测[2]。
这五中方法各有使用范围,其中渗透检测只能够检测工件的表面缺陷、磁粉检测和涡流检测能够检测工件的表面以及近表面缺陷,射线检测能够检测工件的内部缺陷,超声检测不但能够检测工件的表面缺陷还能够完成对内部缺陷的检测,除此之外由于超声检测具有穿透能力强、操作简单、检测成本低[3]等优点已成为应用最为广泛的一种无损检测方法。
超声检测目前已广泛的应用在铁轨、大型压力容器、核设施安全控制等方面,主要是以分析波形的变化来判断工件质量的好坏,然而随着科技的进步,低效率的超声检测已不能适应工业的发展,以及简单的波形信号也很难分辨出缺陷是否存在,针对常规超声检测的这些缺陷,目前高效率、高分辨率的超声检测方法相继出现。
1超声检测的基本原理常规超声检测主要是利用超声换能器发射与吸收声波,根据波形的突变来判断是否有缺陷的存在[4]。
如果工件内没有缺陷,超声波在传播的过程中相当于在同介质之间传播,这样声波不会发生突变,直到声波传播到达工件的底部才会有反射声波,这时候整个示波屏上显示有端面回波和底面回波;当工件内有缺陷的时候,相当于工件内的材料组织特性发生了明显的变化,这样声波在与异质材料发生相互作用的时候会产生另一个回波,这个回波就是缺陷回波,而没有缺陷的地方,声波还会继续传播直到与工件底部发生相互作用,因此在有缺陷的工件中不但有端面回波、底面回波还会有缺陷回波。
2超声检测发展趋势2.1相控阵超声检测常规的超声检测只能够以波形的方式显示缺陷的位置,但是当缺陷较小的时候缺陷波就很容易埋藏在噪声中,这样以来缺陷就很难发现,针对这些问题,相控阵超声检测[5]以缺陷成像的技术能够成功的发现较小的缺陷,并且此方法对缺陷的定位相当的精确,依据实验数据基本能够达到90%之上,目前相控阵超声检测已经能够成功的检测出汽轮机叶片缺陷、发动机曲轴、核装置等,而且近年来生产的便携检测设备的生产更是在一定程度上促进了相控阵超声检测的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈超声弹性成像发展何为弹性成像?这是一个超声成像术语,顾名思义这种成像模式旨在评估组织的弹性大小,提供更全面的疾病信息。
弹性是物质的一种固有属性,同密度、硬度、温度等一样,反映物质的一个特性。
日常生活中人们粗略评估物质的弹性主要看给一种物质施压外压后物质的形变大小,例如海绵与金属:施加大体相同的压力后海绵发生巨大的形变,人们认为它是软的;而金属受压后无明显的变化,人们认为它是硬的。
物质的硬度越大,其弹性越小;硬度越小,弹性越大。
为何要测量物质的弹性?正常组织中不同的解剖结构之间会存在弹性差异。
例如,在正常乳腺中,纤维组织通常比乳腺腺体组织硬,而乳腺腺体组织又比脂肪组织硬。
绵羊肾脏的肾实质与肾髓质或者肾锥体的弹性系数差异大约为 6dB。
不同组织弹性模量的差别能达到几个数量级之上(如表1)。
表1 人体不同组织的弹性值传统的超声成像中,不同组织的回声强度差异大小主要取决于组织的声阻抗,而其弹性系数差异却远较声阻抗差大(如表2)。
表2 不同人体组织及介质的声阻抗及密度这决定了超声弹性成像对不同组织、同一组织的不同病理状态的分辨力较传统超声成像灰阶图高。
换言之,同一组织中弹性的变化通常与其病理现象有关,正常组织与病变组织之间存在巨大的弹性差异。
例如,恶性的病理损害,例如乳腺硬癌、前列腺癌、甲状腺癌及肝癌等,通常表现为硬的小结节。
越硬的物质受到外压时应变越小,硬度可反映物质的弹性大小。
一些弥散性的疾病例如肝硬化也会使得肝组织的硬度显着增大。
此外脂肪过多或者胶原质沉积也会改变组织的硬度。
什么是物质弹性的基本参数?杨氏模量(E),亦称弹性模量/弹性系数。
工程物理学上评估机械材料弹性大小的基本包括杨氏模量、刚性指数等,其实反映的都是物质的弹性。
杨氏模量,1807年由英国科学家young thomas提出,反映物质弹性与硬度的基本参数,单位为Kpa。
此弹性模量(杨氏模量)与人们日常生活中提到的弹性(好/不好)不同,超声弹性成像中用到的杨氏模量值与硬度呈正比。
即物质越硬,物质受压时产生的形变越小,弹性模量(杨氏模量)值越大。
如海绵与金属,施加同一大小的外力,海绵形变大而杨氏模量小,金属形变小而杨氏模量大。
怎么计算杨氏模量?目前的几种超声弹性成像模式中应用的推算公式主要包括2种:1.E=S/e (E为应变大小,间接反映弹性系数;S为外加压力;e为物质受压后形变的大小。
主要应用于静态型弹性成像以及定性型ARFI)2. E = 3ρCs 2(E为弹性模量绝对值大小;ρ为组织密度;Cs为人体组织内剪切波的传播速度。
主要应用于一维瞬时剪切波成像、点式剪切波速度测量法以及2D-剪切波弹性成像)以上提到剪切波,那么什么是剪切波,它有哪些特点呢?剪切波是一种对人体施加一定机械扰动后组织层面间产生的粘弹滑动力传播的横波(即波传播的方向与质点震动的方向垂直),属于机械波的一种,在液体及真空中不传播。
而剪切波又是一种极为微弱、振幅与传播距离(数个毫米)都极短的波,传播速度较慢(1-10m/s)且在组织中传播时间极短(10-20ms即衰减消失)。
越硬的介质中剪切波的传播速度越快。
根据公式2,测得剪切波的传播速度即可计算出局部组织的杨氏模量。
可是剪切波的独特特性使得捕捉并获得其传播参数极为困难。
实际上,人体几乎所有的脏器和组织密度均较为相近(如表1),传统超声纵波在人体组织传播的速度也较为近似(约1540m/s);而不同人体组织的杨氏模量差却十分巨大,同一组织中软硬不同的区域剪切波(依靠组织层面间的剪切滑动力传播)的传导速度亦是数倍甚至数百倍的差异。
真正的剪切波弹性成像从基本原理上是完全独立于传统超声成像的另外一种成像模式,科学、客观的反映人体组织的弹性。
超声弹性成像的发展历程及基本分类超声弹性成像最初于1990年左右出现,发展至今已有20余年的历史,经历了静态应力型弹性成像、一维瞬时剪切波成像与单点剪切波速度测量,到最近应用的2D-剪切波弹性成像。
2013年由欧洲超声生物学与医学委员会(EFSUMB)出版的《超声弹性成像分类及应用指南》(EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography)中对目前的几种超声弹性成像模式从原理、应用步骤、临床应用价值、各种技术的优缺点等方面做了较为详细的介绍,根据成像原理的不同大致分为3大类:早期传统的静态型弹性成像、剪切波速度测量法及2D-实时剪切波弹性成像(SWE, shearwave elastography)。
不同的弹性成像模式原理及应用究竟有何不同呢?静态型弹性成像用于评估人体组织弹性大小是基于物质受压后产生形变大小不同的原理,评估的是受压物质的应变(strain)及应变率(strain ratio),主要包括:应变成像(strain elasto- graphy ,SE)以及应变率成像(strain-rate imaging ,SRI),代表技术产品有hitachi、toshiba等推出的彩色应变弹性成像(彩色的外压受力后形成的彩色应变图),而定性型ARFI( qualitativeacoustic ridiational force impulse imaging ,即VTI技术,灰阶型应变图)亦归属于这类弹性成像范畴。
这种半定性的弹性成像技术计算物质受压后的形变:E=S/e(E为应变大小,S为外加压力,e为物质受压后形变的大小)。
其基本原理:利用外力沿着声束方向(轴向)缓慢压缩组织(通常在 1%左右),分别采集组织压缩前、后的超声射频信号,然后估计组织的位移分布,从而计算得到组织内部的轴向应变分布。
假设要观察的组织横向边界无明显变化的条件下,组织受压后纵向应变分布同组织的弹性模量分布有很大的关联,弹性模量小(硬度小)的部位将比弹性模量大(硬度大)的部位有更大的应变,因此应变分布一定程度上能够代表硬度分布。
这种技术的外力成因又分为:手动外力式、生理助力式、机械振动式(如图1)。
然而这几种外力形成模式中施压外力的大小都不可知,从而这种弹性成像技术最大的弱点在于重复性不佳,人为依赖性过大。
另外,这种技术存在一些共同的缺陷:a.不同深度的组织形变大小不同,离外力施压源越远的组织受到的压力越小形变也越小,因此,图1 几种静态应变弹性成像的应力来源随着深度的增加静态应变弹性成像的准确度下降;b.同一组织深度上,病灶越大受力也越大,因而病灶大小对静态应力弹性成像的准确性影响也越大;c.静态弹性成像的彩色编码图提供占位整体的形变信息,导致占位病灶内部软硬度分布缺失;d.静态应变弹性图上呈现的是病灶相对于周边组织的相对硬度,在患者脏器存在弥漫性病变(如肝硬化、桥本氏甲状腺炎、结节性甲状腺肿等)的情况下,弹性成像本底硬度增加,占位病灶的硬度可能与本底相同或者比本底要软,此时极易导致恶性肿瘤的漏诊及误诊;e.这种应变弹性成像无法提供准确的弹性模量值。
图2 静态型弹性成像示例图后来研发的基于剪切波速度测量的弹性技术都致力于对人体组织的弹性模量进行定量。
基于剪切波的几种弹性成像模式都应用同一个弹性模量计算公式:E =3ρCs 2(E为弹性模量值大小,ρ为组织密度,Cs为人体组织内剪切波的传播速度)。
依据欧超联2013发表的超声弹性成像技术分类及应用指南:基于剪切波的弹性技术发展经过了2个阶段。
最先产生的剪切波速度测值法,是继静态应力型弹性成像后一个较大的突破,初步做到了单点的弹性模量值定量测量。
两种代表技术为:TE(transient elasto- graphy,瞬时剪切波成像)和定量型ARFI(ARFI quantification,定量型声辐射力脉冲成像,欧超联弹性指南中称其为单点式剪切波弹性成像;另一种名称为ARFI-VTQ,acoustic radiation force impulse - virtual touch tissue quantification)。
图3 TE技术应用示例图TE技术的基本原理是在体表施压一个低频机械扰动产生垂直于体表传播的剪切波,通过超声检测组织内部的剪切波的振幅,相位及波速等参数来得到其机械属性相关信息。
目前主要应用于慢性肝病患者肝纤维化分期诊断(如图3)。
作为第一个可以定量提供人体组织弹性模量值的技术,它在传染病领域内受到了医生的很广泛的认可与应用,对肝炎患者早期肝纤维化的发现与分期诊断以及早期干预逆转肝纤维化作出了很重大的贡献。
然而它只能提供剪切波的机械信号,无通用超声图像,只是简单的测值,在临床中应用相当有限,目前只应用到肝脏,其他器官均不适用。
另外人们也发现了TE技术的其他众多缺点:a.TE技术测量剪切波平均速度值,测量深度不定,重复性不佳,因此每次测量需重复10次取平均值,操作时间长;b.产生剪切波的机械扰动体感明显,部分患者不易接受;c.探头使用6个月左右需更换,严重降低整体机器的性价比;d.由于其激发产生的剪切波垂直人体体表向深部传播,而剪切波液体中不传播,因此晚期伴腹水的失代偿期肝硬化患者不能应用;e.安装心脏起搏器及较为肥胖的患者亦不适用。
定量型ARFI问世有3年余的时间,目前应用于临床医学科研领域引起了不少医者的关注。
图4 定量型AFRI成像技术的成像原理基本原理是利用不同角度的声束聚焦到人体组织激发组织产生平行于体表扩散的剪切波,计算激发点旁的数毫米(固定的取样框)距离内剪切波传播的平均速度(如图4)。
它可以应用于肝脏和小器官,利用增加声束聚焦点声能来激发组织自发产生剪切波(增加剪切波的振幅与传播距离),测量剪切波通过固定取样框两端之间的速度平均值,得出取样框内组织杨氏模量的平均值(如图5),初步做到了相对于TE更为完善(可定位)的单点式剪切波速度测量。
由于不依赖于外力,剪切波在人体组织中传播的速度与组织的硬度关系密切(声能、温度等因素的影响可以忽略不计),ARFI-VTQ技术有效规避了传统静态弹性成像外力不可定的缺点。
图5 点式剪切波速度测量法示例图但是这种技术推出3年来在临床中的应用相当有限:a.由于其产生剪切波源所需的声能过大,一次聚焦后局部探头晶体过热因而需要3-8s冷却时间方可进行下次聚焦,从而做不到实时的测量;b.在实际应用中发现这种技术的可重复性及成功率欠佳,常需进行3次以上的测量取平均值应用,因而完成整个检查耗时较长,无法作为常规检查应用于临床;c.这种技术激发组织产生剪切波所需声能过大一直受到超声界的质疑,其应用于临床及科研对病人的损伤程度亦颇有争议,至今ARFI-VTQ技术未通过FDA认证;d.应用于肝硬度测量时,定量型AFRI技术只可提供剪切波的传播速度值,无法直接提供弹性模量值;e.部分使用类似技术的机器提供弹性模量值,但量程最大达到30Kpa,硬度超过30Kpa的组织无法测量,这与其超声成像采集帧频有限及后台信号收集处理平台不成熟都有关系。