氨制冷系统低温压力管道材料问题的探讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨制冷系统低温压力管道材料问题的探讨
专业技术2008-07-22 15:24:51 阅读232 评论3 字号:大中小订阅
(国内贸易工程设计研究院黄劲松申广辉)
四、执行规范中所遇问题
1.按照GB50316-2000《工业金属管道设计规范》4.3.1条规定,(见附录A)。碳素钢钢管(无缝钢管)10号、20号的使用温度下限为-20℃以上,16Mn使用温度下限为-40℃以上,09MnD使用为-50℃以上。
2.制冷压力容器执行JB/T4750-2003《制冷装置压力容器》规范,所以目前大冷、烟冷及国内制冷设备厂商所生产的压力容器,均为用碳素钢钢板。如果按照GB50316-2000《工业金属管道设计规范》要求,最终均不能通过验收。
3.阀门、弯头:在制冷系统中当前生产的阀门均为铸铁和碳素钢所制,弯头也是采用普通碳素钢,且机制弯头R均为1.5D。
4.按照当前市场价,每吨20号碳素钢无缝钢管和16Mn的差价约为3000元,09MnD的差价则更大,在全国范围内其一次投资将是一笔十分巨大的费用。
众所周知商业制冷行业,在过去的几十年里在没执行这些规范之前在低温系统一般都是采用10号、20号碳素钢无缝钢管,经过几十年的实际运行并没出现过因管道破裂而产生制冷剂泄漏事故。在执行
压力管道规范的过程中又遇上压力容器及机压弯头的配套问题,所以对氨制冷系统实际运行工况及管材选用应进行必要的探讨。
五、氨制冷系统中低压管道的应力分析
氨制冷系统管道内工质均为液化气体随着使用温度的降低,其压力(管道内的应力)也随之降低,处于低温低应力工况。低温管道的破坏方式主要是低温下的脆断,构成低温脆断需有个必要且充分的条件,一是材料低温下脆化,二是有足够的应力,二者缺一不可,所谓低温低应力工况就是容器处于低温环境,但由于介质压力随温度的降低而下降,导致应力低于或等于某个量值(材料常温屈服点的,且不大于50Mpa时),断裂的推动力过小,也不可能发生脆断,也就是说属于低温低应力工况的容器,可不按低温容器对待,可不使用压力容器用低温钢,其设计温度可按使用温度与50℃的代数和。
根据氨制冷系统几十年的实际应用结果以及GB50316-2000《工业金属管道设计规范》和JB/T4750-2003《制冷装置压力容器》中对低温低应力所下的定义,下面我们对制冷系统低温压力管道部分在实际运行中的应力进行计算。
1.JB/T4750-2003《制冷装置用压力容器》3.5.1.2低压侧设计温度中规定,当使用温度低于0℃,若使用温度下一次总体薄膜应力小于或等于材料常温屈服点的,且不大于50Mpa时,则设计温度取使用温度与50℃的代数和。
当按上述办法得到的设计温度不低于0℃且不高于38℃时其设计温度最终按38℃选取。
从上表中可看出从-20℃到-45℃,加上50℃以后的代数和均不低于0℃且不高于38℃,所以其设计温度均按38℃取P T=1.470Mpa。
a)采用φ38×2.5无缝钢管:
C1=0 C2=0.25(2.5×10%=0.25)
δe=2.5-0.25=2.25
20号碳素钢屈服应力=
10号碳素钢 屈服应力= 16MnR 屈服应力=
∴ b )采用φ108×4
C 2=0.7(7×10%=0.7)
40.8
34
>26.5<50MPa c )采用φ133×4
d )采用φ159×4.5 采用φ159×6
e )采用φ219×6 采用φ219×8
C2=0.6(6×10%=0.6)
f )采用φ273×7.0无缝钢管 采用φ273×8无缝钢管
C 2=0.7(7×10%=0.7)
40.8 >38.8<50MPa 34<38.8<50MPa g )采用φ325×8 采用φ325×10
根据以上对ф38~ф273管道应力计算(蒸发温度在t0=-20~-45℃),其管内工作应力在14.4~38.8Mpa 范围之内,20号碳素钢管从ф38~ф273其应力均满足低温低应力条件,10号碳素钢从ф38~ф
40.8 34 >14.4<50MPa
注:本表数据符合GB8163-87、GB2270-80和GB9948-88标准规定厚度允许偏差,采用高级精度的钢管应在订货时注明。
注:无损检测指采用射线或超声波检测。碳素钢做制冷剂的输送管。
六、氨制冷系统质量现状的调查分析
从以上计算结果看,氨制冷系统的运行工况符合低温低应力的条件氨制冷系统的管路及压力容器在过去几十年中一般都是采用10号20号碳素钢,全国在役制冷容器近万台,一直都在安全运行,很少有因为管道或容器破裂而造成恶性事故,全国冷冻设备标准化技术委员会曾对国内28家主要用户企业进行了现场调研,工作结果均证明制冷管道及制冷容器运行安全状况良好,多数容器使用10~20年,甚至20年以上,无腐蚀、无故障,安全可靠。在全国性的调研中共发现有问题的容器25台,其中多数是16MnR制氨贮存容器共20台,经分析16MnR制氨贮存容器的质量事故原因是多方面的,包括材质、介质、制造等诸多原因,总括而方有以下几方面主要原因:材质16MnR和低碳钢相比添加了Mn,提高了强度,但也增加了淬硬倾向,残余应力也相应增大,工艺要求也更为严格,在制造和安装过程中如控制不当,比低碳钢易产生缺陷,诱发冷裂纹。更主要的是和低碳钢比,16MnR在液氨中的应力腐蚀开裂的敏感性大为增
加,国外研究表明,几乎所有屈服强度大于320Mpa的钢材,在焊态下使用的液氨贮罐都发现了应力腐蚀裂纹。同时16MnR对焊接技术要求更高,制造、焊接技术的真正掌握也是产生问题的原因之一。
七、建议
由于氨制冷系统的运行工况符合低温低应力的条件,同时根据氨制冷系统几十年来使用10号20号碳素钢安全输送制冷剂的实际情况。本着安全、节约能源,节约材料减少投资的原则,建议有关部门应与《工业金属管道设计规范》编写组的同志进行必要的技术探讨,以解决工程中出现的一些问题。同时为建设节能型社会做出应有的工作。
氨系统冷库的安全控制与管理
时间: 2010-6-30
随着我国经济的发展进步,为确保生产顺利进行,保证人民生命财产的安全,各种规范制度逐步建立健全,对冷库氨制冷系统的安全性要求越来越严格。
一九九六年四月、劳动部颁发了《压力管道安全管理与监察规定》的通知,对在生产、生活中输送可能引起燃爆或中毒的危险性较大的管道称为压力管道,为特种设备,将压力管道的管理纳入了法制管理阶段。根据氨的毒性以及在冷库中的工作压力,属工业管道GC2级中“输送
GB50l60《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类可燃气体或甲类可燃液体介质、且设计压力P<4.0Mpa的管道”。从此将冷库氨制冷系统管道纳入了“压力管道”管理范围。
取得GC2级的资格证书的,才能从事氨为制冷剂冷库的设计和施工。
以下内容从氨的特点、设计、施工等方面阐述氨冷库制冷系统的安全与质量控制要点。