天线结构知识

合集下载

物理天线知识点总结

物理天线知识点总结

物理天线知识点总结一、天线的分类天线可以根据它的结构、工作频率、工作方式等不同特征进行分类。

根据天线的结构,天线可以分为线性天线、面状天线、体状天线等。

根据天线的工作频率,天线可以分为超高频天线、甚高频天线、高频天线等。

根据天线的工作方式,天线可以分为接收天线、发射天线、双工天线等。

此外,根据天线的工作原理,天线还可以分为定向天线、全向天线等。

二、天线的工作原理天线是通过改变电流和电压的分布来产生电磁波。

当电流通过天线时,会在天线上产生一个电磁场。

这个电磁场会向周围空间辐射出去,形成电磁波。

同时,当有外界的电磁波作用在天线上时,天线也会感应出电流和电压。

这样,天线在电磁波的发射和接收中发挥作用。

三、天线的设计方法天线的设计是一个复杂的过程,需要考虑多种因素,包括天线的工作频率、方向性、增益、波束宽度、阻抗匹配等。

在天线的设计中,通常需要用到一些工具,如天线模拟软件、电磁场仿真软件等。

天线的设计方法包括复合结构天线的设计、微带天线的设计、阵列天线的设计等。

这些设计方法大大提高了天线的工作性能和可靠性。

四、天线的性能分析天线的性能分析是对天线的工作性能进行评估和优化的过程。

通过对天线的参数和特性进行测试和分析,可以了解天线的工作状况和性能指标,为天线的改进和优化提供依据。

常用的天线性能分析方法包括天线参数测量、天线阻抗匹配、波束宽度测量等。

五、天线的应用天线在无线通信、雷达、卫星通信、电视广播等领域中有着广泛的应用。

在无线通信系统中,天线是信息传输的关键设备,它的工作性能直接影响到通信系统的稳定性和可靠性。

在雷达系统中,天线是用来发射和接收雷达信号,它的性能直接影响到雷达的探测性能和分辨率。

在卫星通信系统中,天线是用来与卫星间进行通信,它的性能直接影响到卫星通信的质量和覆盖范围。

在电视广播系统中,天线是用来接收广播信号的,它的性能直接影响到电视节目的清晰度和稳定性。

总结:物理天线是无线通信和雷达系统中不可或缺的重要组成部分。

天线基本知识介绍

天线基本知识介绍

天线基本知识介绍天线是将电信号转换为电磁波并将其传输或接收的装置。

它是电磁学的一个分支,用于无线通信、电视和广播接收、雷达以及天体物理学研究等领域。

本文将对天线的基本知识进行介绍。

1.天线的作用和原理:天线的主要作用是将电信号转换为电磁波并将其辐射到空间中,或者将接收到的电磁波转换为电信号。

它的工作原理基于法拉第电磁感应定律和亥姆霍兹理论,即通过电流在导体中产生的磁场和由变化的磁场产生的感应电流来实现电磁波的辐射或接收。

2.天线的分类:天线可以根据其结构、工作频率、功率和应用等方面进行分类。

根据结构,天线可分为线性天线(如偶极子天线)、面型天线(如片极天线、光波导天线)和体型天线(如反射天线、波导天线)。

根据工作频率,天线可分为超高频、高频、甚高频、极高频和微波天线等。

根据功率,天线可分为小功率天线和大功率天线。

根据应用,天线还可细分为通信天线、雷达天线、电视天线、卫星天线和微波天线等。

3.天线参数:天线的性能取决于其设计参数。

常见的天线参数包括增益、方向性、波束宽度、驻波比、频率响应、极化方式和带宽等。

增益是天线辐射功率与等效输入功率之比,方向性衡量天线在一些方向上的辐射能力,波束宽度是主瓣的半功率宽度,驻波比是反射功率与输入功率之比,频率响应表示天线在不同频率下的性能表现,极化方式表示电磁波的电场分量与地面垂直或平行的相对方向,带宽表示天线能够工作的频率范围。

4.天线设计方法:天线的设计是一个综合考虑电磁学原理、工作频率和应用要求的过程。

常见的天线设计方法包括试验法、数值法和半经验法。

试验法通过制作实物天线并进行实际测量来调整参数和优化天线性能。

数值法使用计算机模拟和数值算法来预测和分析天线性能,例如有限元法、谱域法和时域法等。

半经验法结合实验和数值方法,通过经验公式和优化算法来设计天线。

5.天线应用:天线的应用非常广泛,涵盖了通信、广播、雷达、航天、医疗和科学研究等领域。

在通信领域,天线用于无线电通信、移动通信和卫星通信等。

天线基本知识

天线基本知识

不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而
广播系统通常采用水平极化,椭圆极化通常用于卫星通信。 国标 垂直极化、+/-45度交叉极化
影响因素
振元的摆放,目前天线单元主要由振子(偶极子)和微带缝隙天线两种类型组成,偶极子的
极化方向与振子轴线相同,缝隙天线的极化方向与缝隙长度方向轴线相同,因此极化方向比 较容易判断。
提纲
〔1〕基站天线的分类 〔2〕基站天线的内部结构
〔3〕基站天线的关键指标
〔4〕美化环境天线举例

Page 1
〔1〕基站天线的分类-
全向天线
按照极化 特性划分
指标特性
单极化天线 水平极化
基站天线
按照水平方向 图的特性划分
单极化天线
按照极化 方向划分
垂直极化
定向天线
按照极化特 性划分
垂直/水平 极化
Page 6
〔3〕基站天线关键指标
项目名称 频率范围(MHz) 极化方式(°) 天线增益(dBi) 水平波瓣宽(°) 垂直波瓣宽(°) 前后比(dB) 隔离度(dB) 输入阻抗(Ω) 电压驻波比 接口 最大功率(w) 闪电保护 尺寸(mm) 支撑杆(mm) 16.5 65±6 7.5 ≥25 ≥30 50 ≤1.5 N-型阴头×2 200 直流接地 875×176×63 2300~2500 ±45° 17dBi 60±6 7 指标 2500~2700
影响因素
基站天线的垂直面波瓣宽度与天线的长度尺寸有关,垂直面波瓣宽度越宽,天线 的长度越小,比如WCDMA天线若垂直面波瓣宽度为6.5度,天线的高度约为1.4m, 而垂直面波瓣宽度为13度的天线其高度约为0.66m。

有关天线的知识点总结

有关天线的知识点总结

有关天线的知识点总结一、天线的工作原理天线的工作原理可以简单地理解为两个方面:接收信号和辐射信号。

当接收信号时,天线将接收到的电磁波转换成电信号;而在辐射信号时,天线将电信号转换成电磁波辐射出去。

这样一来,天线就起到了收发信号的作用。

二、天线的分类根据不同的分类标准,天线可以分为很多种类。

其中最常见的分类方法有以下几种:1. 按照频率分类:根据天线工作的频率范围不同,可以分为超高频天线、甚高频天线、超高频天线、微波天线等;2. 按照结构分类:根据天线的结构和形状不同,可以分为偶极子天线、单极天线、方向性天线、非方向性天线等;3. 按照用途分类:根据天线的用途不同,可以分为通信天线、导航天线、雷达天线、电视天线等。

三、天线的特性1. 增益:天线的增益是指天线辐射的电磁波功率与理想点源辐射的电磁波功率的比值。

增益越高,天线的辐射效率越高。

2. 阻抗:天线的输入阻抗是指天线在工作频率下的端口电阻。

一般来说,天线的阻抗要与传输线的阻抗匹配,否则会导致信号回波,影响通信质量。

3. 方向性:天线的方向性是指天线在空间中辐射和接收电磁波信号的能力。

方向性越好,天线的指向性就越强。

4. 带宽:天线的带宽是指天线可以工作的频率范围。

一般来说,带宽越宽,天线的适用范围就越广。

四、天线的设计和调试天线的设计和调试是天线工程师的主要工作之一。

在设计天线时,需要考虑到天线的工作频率、带宽、增益、方向性等参数,并根据具体的应用场景选择合适的天线结构和材料。

在调试天线时,需要使用专业的测试设备进行天线的性能测试,一般包括驻波比测量、辐射图测量、方向图测量等。

五、天线的应用天线的应用非常广泛,几乎涵盖了各个领域。

在通信领域,天线用于手机、基站、卫星通信等设备;在雷达领域,天线用于目标探测和跟踪;在导航领域,天线用于车载导航、航空导航等设备;在电视领域,天线用于接收地面数字电视信号等。

总的来说,天线作为一种重要的通信装置,在现代社会中有着不可替代的作用。

第一章天线基础知识

第一章天线基础知识


1 2 Pr I Rr 2 30 2 2 则 Rr f ( , ) sin d d


0
0

则方向系数与 辐射电阻之间 的联系为
120 f D Rr
2 max

若要提高天线效率,必须尽可能的减小损耗 电阻和提高辐射电阻。通常,超短波和微波 天线的效率很高,能够接近于1。

半功率点波瓣宽度 (HWFN) ,指主瓣最大 值两边场强等于最大值0.707倍的两辐射方向之 间的夹角,又叫3分贝波束宽度。

副瓣电平,指副瓣最大值与主瓣最大值之比,
一般以分贝表示,

前后比,指主瓣最大值与后瓣最大值之比。
30
(4)方向系数
方向图参数能从一定程度上描述天线方向图的 状态,仅能反映方向图中特定方向的辐射强弱程 度,未能反映全空间的分布状态。
理想点源归一化方向函数:
26



(2)方向图
方向图:将方向函数用曲线描绘出来,称为 方向图,就是与天线等距离处,天线辐射场大 小在空间中的相对分布随方向变化的图形。

工程上常采用两个正交平面方向图,自由空 间中两个最重要的平面方向图是E面和H面。E 面即电场强度矢量所在并包含最大辐射方向的 平面,H面即磁场强度矢量所在并包含最大辐 射方向的平面。
z 电流元
H E H E

r
x

y
方向图立体模型
13
E面方向图
H面方向图
E面直角坐标方向图
H面直角坐标方向图 14
(4)中间区

(1)近区与远区之间,感应场与辐射场 相差不大; (2)电场 Er 和 E 不同相,相差接近90 度且振幅不等,一般在平行于传播方向的 平面内形成一旋转矢量,矢量端点的轨迹 为一椭圆; (3)辐射功率占主导地位。

天线基本知识汇总

天线基本知识汇总

天线基本知识汇总天线是无线通信系统的重要组成部分,它负责将电能转换为电磁波,将信号从传输介质(如空气)中发射出去或接收回来。

天线的性能直接影响着无线通信系统的质量和可靠性。

下面是关于天线基本知识的汇总。

1.天线的分类:根据应用领域和工作频率不同,天线可以分为不同的类型,如定向天线、全向天线、扇形天线、微带天线等。

2.天线的工作原理:天线的工作原理基于法拉第电磁感应定律,当电流通过天线时,它会产生一个电磁场,从而形成电磁波。

接收时,电磁波会被天线吸收,然后产生电流。

3.天线的参数:天线的主要参数包括频率范围、阻抗、增益、方向性、辐射效率等。

这些参数决定了天线的性能和适用场景。

4.天线的性能指标:-增益:天线将电能转换为电磁能的能力,通常以分贝(dB)为单位表示。

增益越高,天线的发射和接收距离越远。

-方向性:天线辐射或接收信号的特定方向能力。

定向天线具有较高的方向性,可以减少多径传播和干扰。

-阻抗:天线的输入或输出端口的电阻性质。

与发射端口匹配的阻抗可以最大程度地传递电能,减少反射损耗。

-波束宽度:天线主瓣的角度范围。

较窄的波束宽度意味着更好的方向性和更高的增益。

-辐射效率:天线将输入功率转换为有效辐射功率的能力。

辐射效率高的天线可以更好地实现远距离通信。

5.天线的结构和设计:天线的结构包含一个或多个导体元件,并且根据应用需求进行设计。

常见的天线设计包括垂直极化天线、水平极化天线、天线阵列、圆极化天线等。

6.天线的应用:天线在各种无线通信系统中广泛应用,包括移动通信、卫星通信、无线局域网、雷达、无线电广播等。

7.天线的安装和调整:为了确保天线的性能,需要正确地进行安装和调整。

安装位置和方向的选择对天线的性能和覆盖范围至关重要。

8.天线的特殊设计:根据应用需求,一些特殊设计的天线得到了广泛应用,如室内小型天线、宽带天线、增强型天线等。

9.天线的未来发展:随着无线通信技术的不断发展,天线也在不断创新和改进。

天线基础知识

天线基础知识

第一讲天线的基础知识发射电磁波所用的导线,在无线电通信中一般叫做“发射天线”。

高频电磁波在空中流传,如遇着导体,就会发生感觉作用,在导体内产生高频电流,使我们能够用导线接收来自远处的无线电信号。

接收电磁波所用的导线,一般叫做“接收天线”。

任何导线都能够作为发信天线和接收天线。

高频电子设备中每一段导线都可能向外发射电磁波,敏捷的收信机中每一段导线都可能拾取空中的各样电磁波所以需要采纳各种的障蔽举措!免得不该有的“天线”接收到扰乱信号!不一样形状、尺寸的导线在发射和接收某一频次的无线电信号时,效率相差好多,所以要获得理想的通信成效,一定采纳适合的天线才行!天线影响无线电通信成效的主要原由有极化方向、方向特征、阻抗般配、辐射效率和频带宽度等。

天线的输入阻抗输入阻抗是天线馈电端输入电压与输入电流的比值。

天线与馈线的连结,最正确情况是天线输入阻抗是纯电阻且等于馈线的特征阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频次的变化比较缓和。

天线的般配工作就是除去天线输入阻抗中的电抗重量,使电阻重量尽可能地凑近馈线的特征阻抗。

般配的好坏一般用四个参数来权衡即反射系数,行波系数,驻波比和回波消耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。

在我们平时保护中,用的许多的是驻波比和回波消耗。

一般挪动通信天线的输入阻抗为50Ω。

驻波比:它是行波系数的倒数,其值在1到无量大之间。

驻波比为1,表示完整般配;驻波比为无量大表示全反射,完整失配。

在挪动通信系统中,一般要求驻波比小于,但实质应用中VSWR应小于。

过大的驻波比会减小基站的覆盖并造成系统内扰乱加大,影响基站的服务性能。

2.回波消耗:它是反射系数绝对值的倒数,以分贝值表示。

回波消耗的值在0dB3.的到无量大之间,回波消耗越大表示般配越差,回波消耗越大表示般配越好。

4.表示全反射,无量大表示完整般配。

在挪动通信系统中,一般要求回波消耗大于14dB。

天线设计中的基础知识

天线设计中的基础知识

天线设计中的基础知识无线通信在现代社会中已经成为了不可或缺的一部分,而天线则是无线通信的核心技术。

天线设计的好坏直接影响着无线通信的质量和稳定性。

本文将介绍天线设计中的基础知识。

一、天线的类型天线的类型很多,不同的天线适用于不同的场合和需求。

根据天线的结构和原理,可以将天线分为以下几类。

1.偶极子天线:偶极子天线是最常见的一种天线,它主要用于无线电通信中,广泛应用于电视天线、拉杆天线等。

2.单极天线:单极天线和偶极子天线极为相似,也称为垂直天线,通常用于低频通信。

3.反射天线:反射天线是一种折射天线,在无线电通信网络中广泛应用,最常见的形式是发射塔、电视塔等类型。

4.全向天线:全向天线适用于需要进行全方位通信的场合,比如无线通信基站。

5.定向天线:定向天线是一种方向性天线,能够集中把无线信号发射到某一方向上,适用于需要进行定向通信的场合。

二、天线的性能指标在天线设计中,要考虑的因素较多,其主要性能指标包括以下几点。

1.增益:天线增益是指天线在某个方向上的信号强度与无指向性原点的同一方向上的信号强度之比。

增益值越大,这个方向上的信号捕捉效果就越好。

2.方向性:天线的方向性指天线在某一个方向上集中发射或接收信号的能力。

3.波束宽度:波束宽度是指天线集中发射或接收信号的范围大小,一般用立体角表示。

波束宽度越小,天线方向性越强。

4.驻波比:当天线在工作频段内的传输中遇到其它阻抗时,会引起信号的反射和干扰,这个指标就是反射能量和传输能量之间的比值,通常用于评价天线性能的优劣。

三、天线设计流程天线的设计流程一般包括如下几个步骤。

1. 定义问题:明确天线设计的应用需求及要达成的目标,进行参数筛选和定义。

2. 选取天线类型:根据实际情况选取合适的天线类型。

3. 设计实现:根据天线类型的特点及要求,进行天线设计。

根据需求制定天线的结构参数以及驱动功率、频率范围和增益等指标,以及阻抗、匹配网络等。

4. 仿真模拟:使用仿真软件模拟天线性能,优化天线设计。

串馈阵列天线基础知识

串馈阵列天线基础知识

串馈阵列天线基础知识一、引言串馈阵列天线是一种常见的天线形式,其应用广泛于通信领域。

本文将介绍串馈阵列天线的基础知识,包括其定义、结构、工作原理以及应用。

二、定义串馈阵列天线是由多个天线单元按照一定顺序串联起来的天线系统。

每个天线单元都有自己的馈线,这些馈线按照一定的规则相互连接,形成一个整体。

三、结构串馈阵列天线的结构可以分为两部分:天线单元和馈线网络。

1. 天线单元:天线单元是串馈阵列天线中的基本组成部分。

它可以是一个简单的天线,如偶极子天线或微带天线,也可以是一个复杂的天线单元,如有源天线单元。

天线单元的选择取决于具体的应用场景和设计要求。

2. 馈线网络:馈线网络是将天线单元按照一定的顺序串联起来的结构。

它的作用是将信号从一个天线单元传递到下一个天线单元,并保证信号的相位和幅度的一致性。

常见的馈线网络包括平面波导、微带线、同轴电缆等。

四、工作原理串馈阵列天线的工作原理可以简单理解为多个天线单元的合作。

当信号经过第一个天线单元时,它会产生一个辐射场。

这个辐射场会传递到下一个天线单元,然后再被辐射出去。

通过多个天线单元的串联,信号可以被放大和定向,从而实现更远距离的通信。

五、应用串馈阵列天线在通信领域有着广泛的应用。

以下是几个常见的应用场景:1. 无线通信:串馈阵列天线可以用于增强无线通信系统的覆盖范围和传输距离。

通过调整天线单元之间的相位差,可以实现波束的形成,从而提高信号强度和抗干扰能力。

2. 雷达系统:串馈阵列天线可以用于雷达系统中的天线阵列。

它可以实现高分辨率和多目标跟踪,并提高雷达系统的性能。

3. 卫星通信:卫星通信系统需要长距离的传输和高速率的数据传输。

串馈阵列天线可以提供高增益、窄波束和低副瓣等特性,从而满足卫星通信的需求。

4. 毫米波通信:毫米波通信是一种新兴的通信技术,其工作频段在30GHz到300GHz之间。

串馈阵列天线由于其高增益和窄波束的特性,被广泛应用于毫米波通信系统中。

天线知识点总结

天线知识点总结

天线知识点总结天线是电子设备中最基本的元件之一,它能够将电磁波转换为电信号或者将电信号转换为电磁波,是广泛应用在通讯、雷达、导航、电视等领域的不可或缺的元器件。

本文将简要介绍一些天线的相关知识点。

1. 天线的基础理论 - 反射、辐射以及电磁波的特性天线的工作原理基于电磁波的传播特性及其与天线之间的相互作用。

天线通过反射、辐射等方式将电磁波与电信号进行转换,因此温度、介质、空气湿度等环境因素都会对天线的性能产生影响。

2. 天线的类型 - 主动、被动及扫描式天线天线可以根据其在电路中的位置和作用方式分为主动和被动两种类型。

主动天线通常带有放大器来增加信号强度,而被动天线则不带放大器。

此外,扫描式天线可以通过旋转、摆动等方式改变辐射方向,以实现扫描覆盖目标区域的效果。

3. 天线的指标 - 增益、方向性、VSWR、带宽等天线的性能可由其各种指标来描述,其中增益、方向性、VSWR、带宽等是较为重要的指标。

增益是天线的辐射能力,方向性是天线辐射能力随方向变化的能力,VSWR是天线对来自外部信号反射时的反射率指标,带宽则是天线能够工作的频率范围。

4. 天线的尺寸 - λ/2、λ/4、全波长天线等天线的尺寸与工作频率密切相关,常见的天线长度有λ/2、λ/4、全波长天线等。

λ/2天线通常用于VHF和UHF频段,λ/4天线适用于较低频段,全波长天线则通常用于HF 等较低频段。

5. 天线的应用 - 通讯、雷达、导航、电视等天线在通讯、雷达、导航、电视等领域都有广泛的应用。

不同应用场景对天线的要求不同,例如通讯领域需要天线具有良好的增益和方向性,而雷达和导航领域则需要具有较高的扫描速度和快速响应能力。

6. 天线的制作和测试 - PCB天线、红外按摩仪等天线的制作和测试涉及到复杂的技术和设备,常用的制作方法包括PCB天线、红外按摩仪等。

测试方法则通常包括VSWR测试、增益测试、方向性测试等。

7. 天线的未来发展趋势 - 新材料、智能化、多功能化等随着技术的不断进步,未来天线的发展趋势将会趋向于新材料、智能化、多功能化等方向。

天线知识培训

天线知识培训

天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。

天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。

其基本原理基于电磁波的传播和辐射。

二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。

2. 按照方向性:可分为全向和定向天线。

3. 按照增益:可分为无源和有源天线。

4. 按照结构:可分为线天线和面天线。

不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。

三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。

2. 方向图:表示天线接收和辐射电磁波的方向和强度。

3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。

4. 带宽:表示天线的工作频率范围。

5. 极化:表示电场矢量的方向,影响着天线的性能。

四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。

电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。

五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。

常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。

工艺方面,需要考虑天线的精度、防腐、防水等因素。

六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。

现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。

七、天线测量与调试天线的性能需要通过实际测量来评估。

测量内容包括阻抗、方向图、增益、极化等。

一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。

八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。

基站天线基础知识

基站天线基础知识
-1-
波长,两臂各四分之一波长。(图 2)
图 2:线型半波振子示意图
而基站天线中使用的微带贴片,微带馈电方向的尺寸也相当于中心频率的约半个 波长,因此,这样一个微带振子的辐射效果相当于一个线型半波振子。(图 3)
图 3:微带贴片示意图
因此有必要记住半波振子的一些特性参数。 半波振子的两个重要特性参数:㈠半功率波瓣宽度 78°;㈡方向系数 1.64,不考 虑损耗时的增益为 10lg1.64=2.15 dBi。 对称振子用同轴线馈电时,会出现两臂电流不对称,因此要用到平衡馈电器。 反射板的主要功能是增强天线的方向性,调节水平面半功率波瓣宽度等。 馈电网络的主要功能是将来自发射机的高频电流传输给辐射振子,或将来自辐射 振子的高频电流传输给发射机。同时,馈电网络还可以控制辐射单元的幅度和相位,以 实现方向图的优化。 接头的功能是实现天线与外部馈线的连接。
基站天线基础知识一天线的作用和分类在无线电通信广播电视雷达以及航空航海的导航等工程系统中都需要利用无线电波来传递信息以完成整个系统的工作天线就是这些系统中用来发射或接收无线电波的基本器件相当于嘴巴和耳朵
移动通信基站天线基础知识
一、天线的作用和分类
在无线电通信、广播电视、雷达以及航空航海的导航等工程系统中,都需要利用 无线电波来传递信息以完成整个系统的工作,天线就是这些系统中用来发射或接收无 线电波的基本器件(相当于嘴巴和耳朵)。在无线电系统中,由发射机输出的射频信号 通过馈线(电缆)输送到天线,天线就把这些信号以电磁波的形式发射出去。发射出去 的电磁波也要由天线接收下来,再通过馈线输送到无线电接收机,这样就实现了无线电 波在空间的传播。可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线 也就没有无线电通信。(图 1)

天线基础知识

天线基础知识

第1章 天线基础知识
z I
y x
图2 基本振子立体方向图
第1章 天线基础知识
在实际中,工程上常常采用两个特定正交 平面方向图。在自由空间中,两个最重要的平面方向 图是E面和H面方向图。E面即电场强度矢量所在并包 含最大辐射方向的平面;H面即磁场强度矢量所在并包 含最大辐射方向的平面。
方向图可用极坐标绘制,角度表示方向,矢径表 示场强大小。这种图形直观性强,但零点或最小值不 易分清。方向图也可用直角坐标绘制,横坐标表示方 向角,纵坐标表示辐射幅值。由于横坐标可按任意标 尺扩展,故图形清晰。如图3所示,对于球坐标系中的 沿z轴放置的电基本振子而言,E面即为包含z轴的任一 平面,例如yOz面,
第1章 天线基础知识
1.1.3 方向图参数 实际天线的方向图要比电基本振子的复杂,通常有
多个波瓣,它可细分为主瓣、副瓣和后瓣,如图5所示。 用来描述方向图的参数通常有:
(1)零功率点波瓣宽度(Beam Widthbetween FirstNulls,BWFN)2θ0E或2θ0H(下标E、H表示E、H面,下 同):指主瓣最大值两边两个零辐射方向之间的夹角。
第1章 天线基础知识
1.1.1 方向函数 天线辐射出去的电磁波虽然是一球面波,但却不是均匀
球面波,因此,任何一个天线的辐射场都具有方向性。 所谓方向性函数,就是在相同距离r的条件下天线
辐射场的相对值与空间方向(俯仰角θ、方位角φ)的 关系f(θ,φ),如图1所示。
第1章 天线基础知识
z
S av
H
第1章 天线基础知识
图6显示了某一时刻,以+z轴为传播方向的 x方向线极化的场强矢量线在空间的分布图。图7和图8 显示了某一时刻,以+z轴为传播方向的右、左旋圆极 化的场强矢量线在空间的分布图。要注意到,固定时 间的场强矢量线在空间的分布旋向与固定位置的场强 矢量线随时间的旋向相反。椭圆极化的旋向定义与圆 极化类似。

天线基本知识PPT课件

天线基本知识PPT课件

天线的主要电参数
1对单极化天线
方向图 增益 输入阻抗(电压驻波比) 极化 带宽 功率容量 3阶无源互调(PIM)
2 对双极化天线
除具有单极化天线的电参数 外还具有
隔离度
交叉极化比
2021
48
天线的方向图
把天线在空间辐射强度随方位、俯仰角度分布 的曲线图形叫天线方图。
天线方向图通常是一个三维空间的曲面图形。 为了表示方便起见,在工程中常用归一化方向图。
自适应天线是一种控制反馈系统它根据一定的准则采用应天线是一种控制反馈系统它根据一定的准则采用数字信号处理技术形成天线阵列的加权向量通过对接数字信号处理技术形成天线阵列的加权向量通过对接收到的信号进行加权合并在有用信号方向上形成主波收到的信号进行加权合并在有用信号方向上形成主波束而在干扰方向上形成零陷从而提高信号的输出信束而在干扰方向上形成零陷从而提高信号的输出信多波束天线采用多个波束覆盖整个用户区每个波束的多波束天线采用多个波束覆盖整个用户区每个波束的指向固定波束宽度随天线阵元数目的确定而确定系指向固定波束宽度随天线阵元数目的确定而确定系统根据用户的空间位臵选取相应的波束使接收的信号统根据用户的空间位臵选取相应的波束使接收的信号最佳
对无线通信系统也同样是这样。再先进的基站通信设 备,没有好的天线,也无法发挥优良的性能。可见天线是 无线通信系统的重要组成部分。
2021
43
天线的作用
将传输线中的高频电磁能量转成为自由空间的电磁波 ,或反之将自由空间中的电磁波转化为传输线中的高频电 磁能。因此,要了解天线的特性就必然需要了解自由空间 中的电磁波及高频传输线的一些相关的知识。
2021
22
E(r,,)
若天线辐射的电场强度为
把电场强E(r度,,()绝6对0f值(,)) 写成

天线基础知识

天线基础知识

目录天线 (1)一、天线理论知识 (1)二、天线的选择原则 (18)三、常用天线的分类 (23)天线一、天线理论知识天线是将射频信号转化为无线信号的关键器件,其质量的优良和是否合理使用对无线通信工程的成败起到重要作用。

所以我们必须全面了解天线。

1、天线的方位图:天线辐射电磁波是有方向性的,它表示天线向一定方面辐射电磁波的能力。

反之,作为接收天线的方向性表示了它接收不同方向来的电磁波的能力。

天线方向图的定义:天线辐射的电磁场在一定距离上随空间角坐标分布的图形。

由于电磁场的矢量特征包含了幅度、相位、极化方向等信息,因此,对应有:幅度方向图、相位方向图。

而电磁场的幅度可用场强和功率密度表示,所以,幅度方向图又分为场强方向图和功率方向图。

除非特殊说明,在一般情况下,通常天线方向图指的是功率方向图,幅度以dB为单位。

根据定义,天线的方向图是三维立体图,但实际获得完整的三维方向图是非常困难的。

通常根据天线的结构特点,选择两个或多个特征面测得该平面内的二维方向图如:E面方向图:通过最大辐射方向并与电场矢量平行的平面;水平面方向图(Horizontal):是指与地面平行的平面内的方向图;垂直面方向图(Vertical):是指与地面垂直的平面内的方向图。

当天线为垂直极化时,H面近似为水平面,E面近似为垂直面,如果天线为水平极化则情况正好相反。

E面图和H面图只是描述了天线的功率密度的分布情况,但不能定量的反映天线的主要特征。

为了更好的描述天线的方向图,常使用半功率波束宽度、副瓣电平、前后比、第一上副瓣抑制、第一下零点填充等都是描述方向图特征的指标。

2、波瓣:零功率点波瓣宽度:主瓣最大值两边两个零辐射方向之间的夹角。

半功率点波瓣宽度:在E面或H面的等距线上,主瓣最大值两边场强等于最大场强的0.707倍(或一半功率密度)的两辐射方向之间的夹角。

副瓣电平:在E面或H面的等距线上,副瓣最大值与主瓣最大值之比,通常用dB表示。

uwb天线的基础知识及应用场景

uwb天线的基础知识及应用场景

UWB天线的基础知识及应用场景随着无线通信技术的不断发展,UWB(Ultra Wideband,超宽带)技术逐渐受到了人们的关注。

UWB天线作为UWB技术的重要组成部分,具有独特的特性和广泛的应用场景。

本文将从UWB天线的基础知识入手,介绍其工作原理、设计要点以及应用场景,希望能为读者对UWB天线有一个更全面的了解。

一、UWB天线的工作原理1. UWB天线概述UWB天线是一种能够实现超宽频带通信的天线。

在UWB通信中,信号的带宽通常是射频频段的20或更大,这就要求天线在宽频带范围内具有均匀的频率响应和高效的辐射特性。

2. UWB天线的发展历程UWB天线最早是在雷达系统中应用,在20世纪90年代后期逐渐应用于通信系统。

由于其宽频带特性和高速数据传输能力,UWB技术被认为是未来无线通信的重要发展方向。

3. UWB天线的工作原理UWB天线的工作原理主要是利用其特殊的结构和材料来实现对超宽频带信号的辐射和接收。

相比传统窄带天线,UWB天线需要考虑更多的频率响应、辐射效率和阻抗匹配等问题。

二、UWB天线的设计要点1. UWB天线的结构UWB天线的结构多种多样,常见的有螺旋天线、宽缝天线、双极子天线等。

不同结构的UWB天线在频率响应、辐射特性和阻抗匹配上有各自特点。

2. UWB天线的频率响应由于信号的超宽频带特性,UWB天线需要具有较为均匀的频率响应,以保证在整个通信频段内都能获得良好的信号传输效果。

3. UWB天线的辐射特性UWB天线的辐射特性对于通信系统中的信号传输距离、穿透能力、抗干扰能力等都有着重要影响,因此需要通过合理的设计和优化来实现良好的辐射特性。

三、UWB天线的应用场景1. 无线通信系统UWB天线在无线通信系统中得到了广泛的应用,包括室内定位、室内通信、传感器网络等领域。

由于其超宽频带特性,UWB天线能够实现更高的数据传输速率和更稳定的通信质量。

2. 雷达系统UWB天线在雷达系统中也具有重要的应用价值,能够实现对目标的高精度检测和跟踪。

第1章--天线基础知识

第1章--天线基础知识
f ( , ) f ( ) l sin
第1章 天线基础知识
为了便于比较不同天线的方向性,常采用归一化 方向函数,用F(θ,φ)表示,即
F( , )
f ( , )
E( , )
fmax ( , )
Emax
第1章 天线基础知识
式中,fmax(θ,φ)为方向函数的最大值;Emax为最大辐射方 向上的电场强度;E(θ,φ)为同一距离(θ,φ)方向上的电场强 度。
归一化方向函数F(θ,φ)的最大值为1。因此,电基本 振子的归一化方向函数可写为
F(θ,φ)=|sinθ| 为了分析和对比方便,今后我们定义理想点源是无 方向性天线,它在各个方向上、相同距离处产生的辐射 场的大小是相等的,因此,它的归一化方向函数为
F(θ,φ)=1
第1章 天线基础知识
1.2.2 方向图 天线的方向函数,它与r及I无关。将方向函数用
y
图1―2―3 电基本振子E平面方向图
第1章 天线基础知识
z
x
y |sin 90°|= 1
图1―2―4 电基本振子H平面方向图
第1章 天线基础知识
但是要注意的是,尽管球坐标系中的磁基本振子方 向性和电基本振子一样,但E面和H面的位置恰好互换。
有时还需要讨论辐射的功率密度(坡印廷矢量模值) 与方向之间的关系,因此引进功率方向图(Power Pattern)Φ(θ,φ)。容易得出,它与场强方向图之间的关 系为
第1章 天线基础知识 z
Er
H
Ir
E
lO y
x
图1―1 电基本振子的坐标
第1章 天线基础知识
E Erer E e
H He
式中,E为电场强度,单位为V/m;
H为磁场强度,单位为A/m;

天线01_天线的基础知识

天线01_天线的基础知识
電流分佈
z=h
z=-h
I ( z )=I 0 sin k ( h z )
第一章 天線的基礎知識
36
§ 1-4-2 線型天線上的電流分佈
<2>半波天線的電流分佈
z= 4
i(t)
電流分佈
= =
2
z=-
I(z)=I 0 cos kz
i(t)
4
I ( z )=I 0 sin(

2
kz) I ( z )=I 0 cos( kz)
31
§ 1-3-3 天線參數(Antenna Parameters)
<5>增益(Gain)
G D
第一章 天線的基礎知識
32
§ 1-4 半波偶極天線
(Half-Wave Dipole Antenna) § 1-4-1 § 1-4-2 § 1-4-3 § 1-4-4 簡介 線型天線上的電流分佈 半波天線之求解 半波天線之重要參數
第一章 天線的基礎知識
33
§ 1-4-1 簡介
<1>短天線之三大問題 <2>線型天線之解題概念
LA
LA= HD
HD
第一章 天線的基礎知識
34
§ 1-4-1 簡介
<3>線型天線的三種表達方式
i(t)
(a)
(b)
(c)
第一章 天線的基礎知識
35
§ 1-4-2 線型天線上的電流分佈
<1>任意長度線型天線的電流分佈
CH1 天線的基礎知識
2
大綱
§ 1-1. 前言 § 1-2. HFSS11.0概述 § 1-3. 短偶極天線 § 1-4. 半波偶極天線 § 1-5. 線性天線的微型化技術 § 1-6. 參考文獻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样 品 确 认(模具样)
A:(支架)确认支架样品时需注意以下常见问题点,如(批峰、缩水、缺胶、 多胶、顶白、水口料严重及尺寸与图纸不符等),另支架柱子尺寸及位置是 否正确需实配弹片而定。 B:(弹片)确认弹片时需注意以下几个问题,如(变形、尺寸与图纸不符、材 质方面是否可通过盐雾测试、弹性等方面,另性能需经RF验证是否OK。 质方面是否可通过盐雾测试、弹性等方面,另性能需经RF验证是否OK。 C:(FPC)确认时需注意的问题,如(表面涂油、厚度要求、背胶、手撕工艺 :(FPC)确认时需注意的问题,如(表面涂油、厚度要求、背胶、手撕工艺 等)是否按图纸要求加工,其性能需经RF验证是否OK。 等)是否按图纸要求加工,其性能需经RF验证是否OK。 D:(泡棉、3M胶)确认时需注意的问题如(材质、厚度、结构尺寸、背胶等) :(泡棉、3M胶)确认时需注意的问题如(材质、厚度、结构尺寸、背胶等) 是否与图纸要求相同。
改模
一、改模时间:
A:(支架模)支架改模视客户修改的结构大小而定,一般加胶时间为2 :(支架模)支架改模视客户修改的结构大小而定,一般加胶时间为2 天左右,减胶3 天左右,减胶3天左右(改动较大则时间另行评估)。加热熔柱(正 面)加工时间为1天左右,侧面加柱子3 面)加工时间为1天左右,侧面加柱子3天左右。 B:(五金模)弹片改模一般时间为1-2天左右即可。 :(五金模)弹片改模一般时间为1 C:(FPC模)FPC改内部线路,不动刀模的情问下时间为1天左右,如改 :(FPC模)FPC改内部线路,一天时间。
样品制作
四、样品包装:
A:折弯好的样品(包括单弹片,单支架在内)均需用吸塑合装好,外面 再用纸皮封成标准的四方形状、贴上样品标签。(避免在运输的过程 中受到挤压而变形) B:FPC、顶针及导线等需用相应规格的PE袋装好,贴上标签出样。 FPC、顶针及导线等需用相应规格的PE袋装好,贴上标签出样。 PE C:样品较多的情况下,包装时需做到平均规范化(如一格吸塑合内装几 个样品),数量要准确,不能出现短装多装。
弹片) 图 纸 制 作(弹片)
开模
开模流程:
• 由市场部填写开模申请单、经相关责任人签名后给到结构这边,待结
构图纸搞好再发至采购确定供应商开模。
开模
一、开模要求:
A:(支架模)需与客户确认图档是否为最终图,以避免支架结构与之前 评估的不一样而造成后续改模,如结构改动较多则可能会使整套模具 报废。 B:一般支架在开模时会再次对其结构进行评估与修改,所修改后的图纸 必须给到客户确认OK后方可投模下去。 必须给到客户确认OK后方可投模下去。 C:(五金模、FPC模)开模前需与RF确定客户所承认的样品,经核对与 :(五金模、FPC模)开模前需与RF确定客户所承认的样品,经核对与 图纸无误便可开模。
开模
二、开模时间:
A:支架开模至送样时间一般为7-8天左右(以采购发至供应商时间为准) :支架开模至送样时间一般为7 B:弹片开模至送样时间一般为4-5天左右(以采购发至供应商时间为准) :弹片开模至送样时间一般为4 C:FPC开模至送样时间一般为4-5天左右(以采购发至供应商时间为准) FPC开模至送样时间一般为4 D:3M胶、泡棉开模至送样时间一般为1-2天左右(以采购发至供应商时 3M胶、泡棉开模至送样时间一般为1 间为准)
样品制作
二、打样时间 :
A:弹片打样时间一般为1天时间,不包括折弯(如批量打样则时间往 :弹片打样时间一般为1 后推迟)。 B:FPC打样时间一般为3天时间(如批量送样则需我们公司自己剪样, FPC打样时间一般为3 时间另算) C:顶针打样时间一般为2天时间(如供应商没有其相同规格,时间则 :顶针打样时间一般为2 为4-5天左右)。 D:TV打样时间一般为3天时间。 TV打样时间一般为3 E:另泡棉、支架手板样、导线等打样时间约为1-2天左右。 :另泡棉、支架手板样、导线等打样时间约为1
样品制作
三、样品加工:
A:弹片折弯时需按结构提供的图纸、支架参照加工,另市场这边需提 供主板进行实配确认。 B:FPC样品加工时(外形很难控制好),需先由结构这边剪一个标准 FPC样品加工时(外形很难控制好),需先由结构这边剪一个标准 的形状后再转交给相应人员参照加工。 C:依公司客户等级而定,样品要求严格的客户在制样时需尽量按图纸 加工到位,且样品表面要光洁干净,触角凸包及孔位置需打好。 D:(以本公司规定要求)样品数量在100PCS以下由线割房折弯, :(以本公司规定要求)样品数量在100PCS以下由线割房折弯, 100PCS以上则由生产部折弯 100PCS以上则由生产部折弯
ZTX结构部培训教材 ZTX结构部培训教材
培训内容
1:样品制作 2:开模 3:改模 4: 样品确认 5:图纸制作与识别
样品制作
一、打样流程:
A:(射频打样流程)由RF填写样品申请单及提供初步调试的铜箔线路 :(射频打样流程)由RF填写样品申请单及提供初步调试的铜箔线路 给到结构再图线割样品(或打FPC样)给RF确认性能。 给到结构再图线割样品(或打FPC样)给RF确认性能。 B:(客户打样流程) 需市场相关人员填写样品需求单导入至研发部 这边,由性能RF确认是否OK再出图线割(或打FPC)送样。 这边,由性能RF确认是否OK再出图线割(或打FPC)送样。
相关文档
最新文档