半导体电子元器件基本知识

合集下载

半导体的基本知识

半导体的基本知识

第1章 半导体的基本知识1.1 半导体及PN 结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。

半导体器件是构成电子电路的基础。

半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。

顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。

1.1.1 半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。

通常将很容易导电、电阻率小于410-Ω•cm 的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Ω•cm 的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在410-Ω•cm ~1010Ω•cm 范围内的物质,称为半导体。

常用的半导体材料是硅(Si)和锗(Ge)。

用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。

1、热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。

半导体的电阻率对温度的变化十分敏感。

例如纯净的锗从20℃升高到30℃时,它的电阻率几乎减小为原来的1/2。

而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10℃时,它的电阻率几乎不变。

2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。

一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%。

自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。

而金属导体在阳光下或在暗处其电阻率一般没有什么变化。

3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。

在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之—。

电子元器件基础知识

电子元器件基础知识

电子元器件基础知识电子元器件是电子系统的核心,是机器的构造部件和功能元件,广泛应用于电子装置、计算机等电子系统的组成部分。

在21世纪,由于大量的新型材料的引进,电子元器件的性能和作用不断提升,日益发挥着重要的作用,受到广大科技工作者的青睐。

本文就电子元器件的基本知识给大家讲解,供大家参考。

首先,电子元器件可以分为半导体元器件、非半导体元器件、连接器元器件和接插件元器件等几大类。

它们的主要特征是结构紧凑、质量稳定、功能多样、可靠性高等。

半导体元器件是常用的电子元器件,它是以半导体材料为基础,在元件内部进行精密控制,使用各种微小元件和线路把原子组装在一起,由此产生出电学作用的元件。

常见的半导体元器件有二极管、三极管、场效应管、可控硅、隔离开关和光电器件等。

非半导体元器件是一类无机物质组成的电子元器件,具有良好的电磁屏蔽及耐压性能,可以有效滤除电磁波影响,具有较强的耐电压能力。

非半导体元器件的常见类型有:电容器、电阻器、电感器、变压器、调节器、滤波器和稳压器等。

连接器元器件是用来连接元件的电子元器件,它的作用就是将多个元件连接起来,实现信号传递,常见的连接器元器件有:插座、卡座、排插、接线端子和带状接线端子等。

接插件元器件是用来接受外界信号的电子元器件,它可以把信号从封装芯片内部传输到外部,常见的接插件元器件有:插孔、头芯片、端子、耳塞、插头等。

电子元器件的分类还有记忆器元器件、控制器元器件,它们的功能十分重要,可以将控制信号的输入转换为设备的控制作用,如晶振、芯片和单片机等。

电子元器件的性能要求高,它是机器的构造部件和功能元件,使机器具有控制、通讯、算法等功能,因此,使用电子元器件时,必须遵循一定的操作规则,以确保良好的性能。

以上就是关于电子元器件的基本知识,有了电子元器件的支持,我们才能更好地实现机械、电子设备的性能,为人类更加现代化的发展贡献力量。

电子元器件基础知识 综合版

电子元器件基础知识 综合版

IC命名规则浅析IC,即集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。

它在电路中用字母“IC”(也有用文字符号“N”等)表示。

电子元器件,又叫电子芯片,半导体集成电路,广泛应用于各种电子电器设备上.由于产品级别(民用级、工业级、军工级)、封装材料(塑料、陶瓷、金属等)、封装形式(双列直插、带引线芯片载体、格栅式、扁平封装、小型封装等)、电路制造工艺(TTL、COMS、BICMOS等)、(管)引脚数量、电路运行速度、功耗、生产厂家等不同,而派生出不少新的品种。

目前国际上没有统一的标准,各半导体制造商都有自己的一套命名方法,同一厂商对不同系列产品有不同的命名方法。

一是某个厂首先研发了一种集成电路,并得到广泛应用后,各个厂家都会仿制与其功能相同的产品,冠以本厂的标识而序列号仍沿用原厂的。

比如,某厂生产了LM324四运放通用电路,其他厂仿制时就是XX324了。

主流的品牌是ST、TI和国产品牌。

二是厂家将生产的一系列产品编号,通常采用“产品简称+序列号”或者“公司简称+序列号”的形式/en/search/search_num.php?search_all=LA&statu s4=1&preview_count=50&textfield2=&status1=under+development&status2=n ew+product&status3=present&row_count=1&Submit322.x=0&Submit322.y=0在IC产品型号里,一般后几个字母有带“N”、“P”的一般为直插封装。

M: MFP(mini flat package)小形扁平封装V:圆形三是包含较多信息的,如器件名称,封装形式,温度等级一些基本情况一个完整的IC型号一般都至少必须包含以下四个部分:1.前缀(首标)-----很多可以推测是哪家公司产品2.器件名称----一般可以推断产品的功能(memory可以得知其容量)3.温度等级-----区分商业级,工业级,军级等4.封装----指出产品的封装和管脚数有些IC型号还会有其它内容:1.速率-----如memory,MCU,DSP,FPGA等产品都有速率区别,如-5,-6之类数字表示2.工艺结构----如通用数字IC有COMS和TTL两种,常用字母C,T来表示3.是否环保-----一般在型号的末尾会有一个字母来表示是否环抱,如Z,R,+等4.包装-----显示该物料是以何种包装运输的,如tube,T/R,rail,tray等5.版本号----显示该产品修改的次数,一般以M为第一版本6.特定性能(较少)7.该产品的状态举例:EP 2C70 A F324 C 7 ES :EP-altera公司的产品;2C70-CYCLONE2系列的FPGA;A-特定电气性能;F324-324pin FBGA封装;C-民用级产品;7-速率等级;ES-工程样品MAX 232 A C P E + :MAX-maxim公司产品;232-接口IC;A-A档;C-民用级;P-塑封两列直插;E-16脚;+表示无铅产品前缀一一采用标准的如TI示例:SNJ -- 遵从 MIL-PRF-38535 (QML) SN 是指国家出入境检验检疫局制定的标准。

电子元器件知识

电子元器件知识

电子元器件知识电子元器件是一种非常重要的物理器件,它们在现代电子系统中扮演着至关重要的角色。

电子元器件是电子设备的基础,没有这些器件,我们现在接触的高科技产品是无法实现的。

电子元器件是将电路的各个部分组合在一起实现特定功能的零部件,理解元器件的类型和功能对于设计电路和维护电子设备的人来说是必不可少的知识。

一、分类和特点1、半导体器件半导体器件在现代电子设备中占据了很大的份额,比如晶体管和集成电路等。

半导体器件是在半导体材料中掺杂少量的杂质来改变它的电性质而制成的。

它们主要的特点是电阻随着电压的变化而变化,还可以控制电流。

半导体器件主要包括:(1)二极管:一种只能带电流一个方向的元器件。

(2)三极管:一种用于放大和开关电路的元器件。

(3)场效应管:一种电子器件,用于控制电流。

2、真空器件真空器件是将电子应用于真空环境中的设备。

这些器件使用空气中的电离来发射电子。

真空器件的主要特点是使用真空管技术来控制电子流动。

真空器件主要包括:(1)电子管:传统真空电子器件。

(2)魔镜管:一种数字化电子器件。

(3)光电管:一种检测光线的电子器件。

3、电容器件电容器是储存电荷的一种设备。

电容器的主要特点是它们可以储存电能和释放电能,这种电能与电容器内的电荷密度有关。

电容器的内部有两个电极,其间有绝缘材料,使电荷在电容器内平衡。

电容器主要包括:(1)电解电容器:一种使用电解质的电容器。

(2)电容继电器:一种使用悬浮传送电荷的开关元器件。

(3)固定电容器:一种封装电容器。

二、应用1、电磁炉电感器件是电磁炉的重要部分,它们控制电磁场并将电能转换为热能。

放置在电磁炉控制器中的晶体管转换器控制了电力,以便适应各种食物。

2、电脑晶体管是电脑的基本部件。

计算机使用了成千上万的晶体管来执行其命令。

在CPU 中,晶体管与电容器结合使用,在数据上排列& 算术运算。

3、电子手表电池驱动的电子电路为手表提供了能量。

在电路中,一个晶体管控制了手表上的步进电机,这使得它能够计时。

电子元器件基础知识大全

电子元器件基础知识大全

电子元器件基础知识大全
1、电子元器件
电子元器件是一种用于电子设备的基本元素,由电路板、电子集成电路、电容器、电阻器、变压器、晶体管和开关等组成。

它们可以用来控制电子设备的功能和性能。

2、电路板
电路板是电子元器件的基础,它是一种由电子元件连接在一起的平面结构,用于连接电子元件,以实现电子设备的功能。

3、电子集成电路
电子集成电路是由一组电子元件集成在一个小型的半导体器件上,它可以实现电子设备的多种功能。

4、电容器
电容器是一种电子元件,它可以存储电能,并在需要的时候释放出来。

它们常用于滤波器和电源线路中,以防止电路中的颠簸。

5、电阻器
电阻器是一种电子元件,它可以限制电路中通过的电流,以稳定电路的电压和电流。

它们常用于电源线路和控制电路中,以防止过载和短路。

6、变压器
变压器是一种电子元件,它可以将一个电压转换为另一个电压,以满足电子设备的需求。

它们常用于电源线路中,以提供不同
的电压。

7、晶体管
晶体管是一种电子元件,它可以控制电路中的电流,从而实现电子设备的功能。

它们常用于控制电路中,以控制电子设备的功能和性能。

8、开关
开关是一种电子元件,它可以控制电路中的电流,从而实现电子设备的开启和关。

电子元器件基础知识(4)——半导体器件

电子元器件基础知识(4)——半导体器件

电子元器件基础知识(4)——半导体器件一、中国半导体器件型号命名方法半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、激光器件的型号命名只有第三、四、五部分)组成。

五个部分意义如下:第一部分:用数字表示半导体器件有效电极数目。

2-二极管、3-三极管第二部分:用汉语拼音字母表示半导体器件的材料和极性。

表示二极管时:A-N型锗材料、B-P型锗材料、C-N型硅材料、D-P型硅材料。

表示三极管时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型硅材料、D-NPN型硅材料。

第三部分:用汉语拼音字母表示半导体器件的内型。

P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc<1W)、G-高频小功率管(f>3MHz,Pc<1W)、D-低频大功率管(f<3MHz,Pc>1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-激光器件。

第四部分:用数字表示序号第五部分:用汉语拼音字母表示规格号例如:3DG18表示NPN型硅材料高频三极管日本半导体分立器件型号命名方法二、日本生产的半导体分立器件,由五至七部分组成。

通常只用到前五个部分,其各部分的符号意义如下:第一部分:用数字表示器件有效电极数目或类型。

0-光电(即光敏)二极管三极管及上述器件的组合管、1-二极管、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。

第二部分:日本电子工业协会JEIA注册标志。

S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。

第三部分:用字母表示器件使用材料极性和类型。

电气基础(半导体元器件)3

电气基础(半导体元器件)3
2、电子在基区的扩散和复合过程: 由于基区很薄,其多数载流子空穴浓度 很低,所以从发射极扩散过来的电子只有很 少一部分和基区空穴复合,剩下的绝大部分 都能扩散到集电结边缘。 3、集电区收集从发射区扩散过来的电子过 程: 由于集电结反向偏置,可将从发射区 扩散到基区并到达集电区边缘的电子拉入 集电区,从而形成较大的集电极电流IC。
半导体器件
晶体管的种类很多,按照频率分,有高频管、低频管;按照功 率分,有小、中、大功率管;按用途不同分为放大管和开关管;按 照半导体材料分,有硅管、锗管等等。晶体管的符号如图所示:
硅管热稳定性好,多数为NPN型;锗管受温度 影响大,多数为PNP管。
半导体器件
• 2、三极管的电流放大作 IC 用
PN结的“正偏导通,反偏阻断”称为其单向 导电性质,这正是PN结构成半导体器件的基础。
半导体器件
• 3.2半导体二极管
1. 二极管的结构和类型
一个PN结加上相应的电极引线并用管壳封装起来,就构成了 半导体二极管,简称二极管,接在P型半导体一侧的引出线称为阳 极;接在N型半导体一侧的引出线称为阴极。 半导体二极管按其结构不同可分为点接触型和面接触型两类。 点接触型二极管 PN 结面积很小,因而结电容小,适用于高频 几百兆赫兹下工作,但不能通过很大的电流。主要应用于小电流的 整流和高频时的检波、混频及脉冲数字电路中的开关元件等。 面接触型二极管PN结面积大,因而能通过较大的电流,但其结 电容也小,只适用于较低频率下的整流电路中。
(3)饱和区:发射结正向偏置,集电结正向偏置
iB>0,uBE>0,uCE≤uBE
iC iB
半导体器件
• 4、三极管的主要参数
1、电流放大倍数β :iC= β iB 2、极间反向电流iCBO、iCEO:iCEO=(1+ β )iCBO 3、极限参数 (1)集电极最大允许电流 ICM:下降到额定值的2/3时所允 许的最大集电极电流。 (2)反向击穿电压U(BR)CEO:基极开路时,集电极、发射极间 的最大允许电压:基极开路时、集电极与发射极之间的最大允许 电压。为保证晶体管安全工作,一般应取:

半导体行业专业知识-wafer知识

半导体行业专业知识-wafer知识

半导体行业专业知识-wafer知识半导体行业中的基本元器件是晶体管、二极管、场效应管、电阻、电容等,其中以晶体管为代表。

晶体管是一种能够控制电流的元器件,也是现代电子技术的基础之一。

晶体管是由p型半导体和n型半导体组成的,这些半导体在一个共同的单晶硅片中制成,这个单晶硅片就是wafer。

Wafer(圆片)是单晶硅片的俗称,是制造半导体器件的基础。

Wafer的种类有很多,如:直径125mm、150mm、200mm、300mm等。

在生产过程中,需要将晶体管等元器件在wafer上加工出来。

进一步,wafer上的晶体管等元器件需要经过电测试、工艺修正、包装等步骤,才能成为可实际使用的电子产品。

换句话说,wafer是半导体制造的基石。

制造wafer的方式通常是从多晶硅开始。

多晶硅是由小晶粒组成的晶体,其中尚含有杂质。

先将多晶硅置于炉中,并加热至一定温度使其融化然后凝结,并在此过程中控制加入杂质的数量与质量。

由于杂质会改变硅的电子特性,因此控制其数量与质量对于晶圆的电子性能有重大的意义。

在制造过程中,生产厂需对wafer表面进行多次加工,以便制造出所需的电子元器件。

在加工之前,需要对wafer进行光洁度处理,以使其表面的污垢和缺陷最小化。

接下来,需要在wafer上涂上光刻胶并通过光刻过程来形成具体的电路。

光刻胶是一种光敏感树脂,在涂刷后可以通过紫外光曝光获得所需的芯片图案。

完成光刻后,接下来就是wafer刻片阶段,将不需要的区域和多余的金属等程深度刻蚀掉,具体步骤包括干法刻蚀和液共刻蚀,以及对已经完成刻蚀的部分进行清洗和光敏胶的去除等。

除了这些基本操作以外,还需要针对性的加工wafer,定制各种不同的电子芯片,最终将它们与其他元器件组装在一起,形成具体的电子设备。

需要指出的是,在整个半导体产业链中,wafer是最基础的组成部分。

尽管其并不直接参与到电子设备的生产过程中,但是其质量对系统整体电子性能的影响非常大。

华大半导体181页PPT基础知识培训——常用半导体器件讲解

华大半导体181页PPT基础知识培训——常用半导体器件讲解
有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
另有一类物质的导电特性处于导体和绝缘体 之间,称为半导体,如锗、硅、砷化镓和一些 硫化物、氧化物等。
((112--22
半导体的导电机理不同于其它物质,所 以它具有不同于其它物质的特点。比如: 热敏性、光敏性、掺杂性。
当受外界热和光的作用时,它的导 电能力明显变化。
((118--88
硅和锗的共价键结构
+4表示除 去价电子 后的原子
+4
+4
+4
+4
共价键共 用电子对
((119--99
形成共价键后,每个原子的最外层电 子是八个,构成稳定结构。
+4
+4
+4
+4
共价键有很强的结合力, 使原子规则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键 中,称为束缚电子,常温下束缚电子很难脱 离共价键成为自由电子,因此本征半导体中 的自由电子很少,所以本征半导体的导电能 力很弱。
(1) 最大整流电流IF (2) 反向击穿电压VBR和最大反向工作电压VRM
(3) 反向电流IR
(4) 最高工作频率 fM
((114--74477
补充参数:
(电信专业)
(5)最大整流电流 IOM
二极管长期使用时,允许流过二极管的最大正
向平均电流。
——注意与IF的关系
(6) 正向压降VF
(7) 极间电容CB、 CD
半导体和N型半导体,经过载流子的扩散, 在它们的交界面处就形成了PN结。
((112--12211
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -

电子元器件与半导体行业概述

电子元器件与半导体行业概述

行业历史与发展
全球产业格局与竞争态势
全球电子元器件与半导体行业呈现出复杂多变的产业格局与竞争态势。主要制造国家包括 美国、中国、日本、韩国等,这些国家在研发、生产和市场份额上展开激烈竞争。中国在 近年来不断加大投入,逐步缩小与发达国家的差距,涌现出一批高质量芯片企业。全球供 应链的紧密联系也使得国际合作与竞争并存,企业需适应市场需求的快速变化,保持灵活 性。
电子元器件与半导体行业概述
材料与可持续性挑战
材料与可持续性挑战
材料与可持续性挑战
电子元器件与半导体行业在迅速发展的同时也面临着材料与可持续性挑战。这包括稀有金 属的供应不稳定性,对环境的影响以及废弃电子产品的处理问题。如何寻找替代材料,降 低对稀有资源的依赖,以及推动绿色制造与回收变得至关重要。
行业历史与发展
行业历史与发展
从电子元器件的初创阶段到今天的高度成熟市场,电子元器件与半导体行业经历了令人 瞩目的发展历程。20世纪初,电子元器件作为通信和放大装置开始崭露头角。随着半导 体技术的崛起,1950年代标志着集成电路的诞生,为行业带来了巨大的革命性变革。 之后,摩尔定律的提出和持续演进,推动了集成度的飞速增长,带来了更小、更快、更 强大的芯片。行业在电子消费品、通信、工业自动化等领域持续壮大,成为全球经济的 重要支柱之一。
工艺自动化与智能制造
工艺自动化和智能制造在电子制造业中发挥着重要作用。机器人、自动化装置和智能控制 系统可以提高生产效率、降低人为误差并实现生产过程的实时监控。通过使用大数据分析 和人工智能,制造商可以预测生产中的问题并进行及时调整,从而提高生产线的稳定性和 可靠性。
制造工艺与技术创新
环保与节能措施
产业政策与法规影响
电子元器件与半导体行业受到各国政策和法规的影响较大。政府的产业政策、创新基金等 扶持措施,对企业研发和生产具有积极影响。同时,国际贸易争端和知识产权保护问题也 影响着行业的发展。企业需要密切关注政策动向,灵活调整战略,以应对外部环境的不确 定性。

电子元器件基础知识

电子元器件基础知识

电子元器件基础知识第一篇:电子元器件基础知识1. 电子元器件的种类电子元器件是指用于电子设备中的各种组件,包括半导体器件、电容器、电阻器、电感器、变压器、晶体管、二极管、三极管、集成电路等几十种,每种电子元器件都有其特殊的功能和用途。

2. 电子元器件的作用电子元器件是构成电子设备的基础,不同的元器件具有不同的作用。

例如,半导体器件可以控制电流的通过,实现电路的开关功能;电容器可以储存电能,实现能量的转换;电阻器可以调节电路中的电压和电流;电感器可以产生电场和磁场,被广泛应用于变压器和电源等方面。

3. 电子元器件的工作原理电子元器件的工作原理基本上都是基于物理的原理,例如,半导体器件的工作原理是利用电子、空穴和杂质之间的复杂相互作用、电容器的工作原理是利用电场的效应,电阻器的工作原理是利用电流通过材料的阻力效应,电感器的工作原理是利用磁场的效应等等。

4. 电子元器件的分类电子元器件根据其用途和功能的不同,可以分成几大类,例如,功率元器件、信号元器件、封装元器件、芯片元器件等等。

其分类标准包括尺寸、电气性能、功能、材料、工作环境、结构等因素。

5. 电子元器件的选型选择适当的电子元器件是组成各种电路的关键所在。

正确的选型应该考虑电气规格、尺寸、质量、价格和供应等因素。

根据实际需求,可以通过参考电子元器件数据手册、供应商提供的技术参数、试验和模拟仿真等手段,选择最适合的电子元器件。

6. 常用电子元器件的名称和图示电子元器件的命名方式有时比较独特,例如罗马数字、字母等。

通过电子元器件的标识,可以快速准确地进行元器件的售后维修、更换和选型。

常见的电子元器件还包括二极管、电容器、电阻器、电感器、晶体管、集成电路等。

第二篇:电子元器件的应用领域1. 电子元器件在通信领域的应用通信领域是电子元器件的主要应用领域之一。

在通信领域,电子元器件主要用于移动通信、室内通信、卫星通信、电视广播、无线电广播、军事通信等。

应用的电子元器件包含了射频芯片、Baseband芯片、功率放大器、滤波器、晶振、电容器等。

电子元器件基本知识

电子元器件基本知识

电子元器件基本知识一、半导体半导体导电性能介于导体与绝缘体之间。

1、导电特性1)导电能力随外界温度升高或光照强度增加而明显增加。

2)在纯半导体中掺入微量杂质,半导体的导电能力将成万倍增加。

2、导电形式半导体是四价元素,呈晶体结构,内部原子按一定规律整齐排列。

高温或光照下,其电子冲破束缚,成为自由电子。

电子跑出后留下的空位称空穴。

故半导体有电子导电和空穴导电两种形式。

3、P型半导体在半导体中掺入少量三价元素即成空穴型半导体,称为P型半导体。

4、N型半导体在半导体中掺入少量五价元素成即成电子型半导体,称为N型半导体。

5、PN结采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。

PN结具有单向导电性。

二、二极管1、二极管的结构二极管是由在一个PN结上装上两个引出电极,经特殊封装后制成。

P区引出的是正极即阳极;N区引出的是负极即阴极。

二极管可用于检波、调幅、整流、稳压等方面。

2、二极管的特性二极管的主要特性是单向导电性,当阳极处于高电位,阴极处于低电位时,二极管正向导通,即处于低阻状态。

当阳极处于低电位,阴极处于高电位时,二极管反向截止,即处于高阻状态。

二极管的特性可用两种方式来说明,一种是用伏安特性曲线,另一种是二极管的参数。

二极管的主要参数有:1)最大整流电流是指二极管长期工作时允许通过的最大正向平均电流。

2)最高反向工作电压是指二极管不被击穿所允许的最高反向电压,一般规定最高反向工作电压为反向击穿电压的1/2~1/3。

3)最大反向电流是指在规定温度下,二极管加上最高反向工作电压时的反向电流值。

此值越小,二极管的单向导电性越好。

温度升高时,反向电流会显著增加。

4)最高工作频率最高工作频率取决于PN结结电容的大小,结电容越大,二极管允许的最高频率越低。

3、二极管使用注意事项1)二极管使用中电流不能超过最大正向电流,电压不能超过最高反向工作电压(峰值),否则会损坏。

第一章常用半导体器件 (2)

第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

半导体知识基础培训

半导体知识基础培训
半导体知识基础培训涵盖了诸多关键领域。首先,对常用术语进行了详细解释,如组装图、轴向引线元件、单端引线元件等,这些都是半导体行业中的基础概念。进一步地,培训深入探讨了印刷电路板(PCB)的不同类型,包括单面板、双面板以及层板,并解释了如焊盘、元件面、焊接面等关键概念。此外,对于元件的符号与极性也进行了阐述,强调了极性元件插入电路板时的定向重要性。在工艺方面,培训涉及了金属化孔、连接孔的应用,以及焊接过程中可能出现的空焊、假焊、冷焊垫损伤、板面污染等也进行了讲解。这些内容共同构成了半导体相关专业培训课程的核心,旨在帮助学员建立坚实的行业知识基础,提升实际操作技能。

半导体电子元器件基本知识

半导体电子元器件基本知识

半导体电子元器件基本知识四、光隔离器件光耦合器又称光电耦合器,是由发光源和受光器两部分组成。

发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。

常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。

受光器引出的管脚为输出端。

光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。

光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。

具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。

如在:高压开关、信号隔离转换、电平匹配等电路中。

光隔离常用如图:五、电容有电解电容、瓷片电容、涤纶电容、纸介电容等。

利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。

电解电容是有极性的(有+、-之分)使用时注意极性和耐压。

电路原理图一般用C1、C2、C?等表示。

半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。

导电能力介于导体和绝缘体之间的物质称为半导体。

具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。

PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。

PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。

一、二极管将PN结加上相应的电极引线和管壳就成为半导体二极管。

P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。

二极管正向导通特性(死区电压):硅管的死区电压大于0。

5V,诸管大于0。

1V。

用数字式万用表的二极管档可直接测量出正极和负极。

利用二极管的单向导电性可以组成整流电路。

将交流电压变为单向脉动电压。

半导体基础知识答辩ppt课件

半导体基础知识答辩ppt课件

1.2.2 V—A特性曲线
实验曲线
i

击穿电压UBR
(1) 正向特性 i
u
V
mA
(2) 反向特性
i u
V
uA
0
u
反向饱和电流
导通压降 硅:0.7 V
死区

电压
E
锗:0.3V
硅:0.5 V 锗: 0.1 V
E
(1)正向特性:
对应于图1-12曲线的第①段,为二极管伏特性的正向特 性部分。这时加在二极管两端的电压不大,从数值上看,只 有零点几伏,但此时流过二极管的电流却较大,即此时二极 管呈现的正向电阻较小。一般硅管正向导通压降约为0.6~ 0.7V, 锗管约为0.2~0.3V。
少子—电子
少子—空穴
少子浓度——本征激发产生,与温度有关 多子浓度——掺杂产生与,温度无关
1.2.1 PN结
1 . PN结的形成
PN结合 因多子浓度差 多子的扩散 空间电荷区
形成内电场 阻止多子扩散,促使少子漂移。 内电场E
P型半导体 空间电荷区 N型半导体
- - --
++ ++
- - --
++ ++
正向电流
- - --
++ ++
内电场 E
EW
R
(2) 加反向电压——电源正极接N区,负极接P区
外电场的方向与内电场方向相同。
动画演示
外电场加强内电场 →耗尽层变宽 →漂移运动>扩散运动
→少子漂移形成反向电流I R
P
空间电 荷区
N
- - --
++ ++
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体电子元器件基本知识四、光隔离器件光耦合器又称光电耦合器,是由发光源和受光器两部分组成。

发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。

常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。

受光器引出的管脚为输出端。

光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。

光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。

具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。

如在:高压开关、信号隔离转换、电平匹配等电路中。

光隔离常用如图:五、电容有电解电容、瓷片电容、涤纶电容、纸介电容等。

利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。

电解电容是有极性的(有+、-之分)使用时注意极性和耐压。

电路原理图一般用C1、C2、C?等表示。

半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。

导电能力介于导体和绝缘体之间的物质称为半导体。

具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。

PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。

PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。

一、二极管将PN结加上相应的电极引线和管壳就成为半导体二极管。

P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。

二极管正向导通特性(死区电压):硅管的死区电压大于0。

5V,诸管大于0。

1V。

用数字式万用表的二极管档可直接测量出正极和负极。

利用二极管的单向导电性可以组成整流电路。

将交流电压变为单向脉动电压。

使用注意事项:1、在整流电路中流过二极管的平均电流不能超过其最大整流电流;2、在震荡电路或有电感的回路中注意其最高反向击穿电压的使用问题;3、整流二极管不应直接串联(大电流时)或并联使用,串联使用时,每个二极管应并联一个均压电阻,其大小按100V(峰值)70K左右计算,并联使用时,每个二极管应串联10欧的电阻均流,以免个别元件过载。

4、二极管在容性负载线路中使用时,额定整流电流值应降低20%使用。

分类:稳压二极管、光敏二极管、发光二极管、变容二极管、肖特基二极管、快恢复二极管等。

1、光敏二极管,又称光电二极管,其PN结也是工作在反偏状态(和稳压二极管一样),是一种光接受器件;其反向电流随光照强度的增加而上升,反向电流与照度成正比。

其可用于光的测量,当制成大面积的光电二极管时,能将光能直接转换成电能,就是光电池。

2、光敏电阻也是利用半导体光电材料制成的,在光的照射下其电阻值随光的强度变化,光照越强阻值越小,其符号如图:二、三极管三极管顾名思义,就是器件有三个电极,本站只做简单的介绍;三极管的物理结构是由PN结构成的,这样因PN 结有正负和方向性,所以其不同的组合就构成NPN、PNP两种类型符号如图:NPN型正确使用为Vc>Vb>Ve;PNP型正确使用为:V e>Vb>Vc三极管结构上的特点是:含有两个背靠背的PN结,发射区掺杂浓度高,基区很薄且掺杂浓度低,集电结面积大等。

以上特点就使三极管具有电流放大的作用。

其放大倍数用β表示,使用时可以根据需要选用。

原理图中常用Q1、Q2、Q?等表示。

三极管的主要参数:1。

电流放大系数/β、β(1)共射直流放大倍数/β:当三极管接成共发射电路时,在静态(无输入信号)时集电极电流Ic(输出电流)与基极电流Ib(输入电流)的比值称为共发射静态电流(直流)放大系数/β=Ic/Ib(2)共射交流电流放大倍数β:当三极管工作在动态(有输入信号)时,基极电流的变化量为△Ib,它引起集电极电流的变化量△Ic. β=△Ic/△Ib2。

极间反向电流(1)Icbo为发射极开路时,集电极和基极间的反向饱和电流,小功率硅管的Icbo小于1uA,诸管的Icbo约为10uA左右。

(2)Iceo为基极开路时,由集电极穿过基极流入发射区的穿透电流,它是Icbo的(1+/β)倍。

Iceo=(1 +/β)*Icbo由于Icbo受温度影响很大,故温度变化对Iceo和Ic的影响更大,选用管子时,一般希望极间反向饱和电流尽量小些。

三极管在使用时其输出特性分为四个工作区:1。

放大区,在放大区,Ic=/βIb,Ic和Ib成正比的关系。

三极管处于放大状态的条件是发射结正偏,集电结反偏。

2。

截止区,硅管Ube小于0.5V时,即截止,3。

饱和区,指Ic不能随Ib的增大而成比例增大,即Ic处于“饱和”状态。

此时发射结和集电结都处于正向偏置。

4。

击穿区,当Uce大于某一值后,Ic开始剧增,这个现象称为一次击穿,三极管一次击穿后,集电极电流突增,只要电路中有合适的限流电阻,击穿电流不过大,时间短时,三极管是不至于烧毁的。

在集电极电压降低后,三极管仍能恢复正常工作,所以一次击穿过程是可逆的。

三、电阻电阻是:起限流、降压作用。

电阻的分类与命名方法:第一部分:主称第二部分:材料第三部分:特征分类第四部分符号意义符号意义符号意义电阻器电位器R 电阻器 T 碳膜 1 普通普通W 电位器 H 合成膜 2S 有机实心 3 超高频N 无机 4 高阻J 金属膜 5 高温Y 氧化膜 6C 沉积膜 7 精密I 玻璃 8 高压P 硼碳 9 特殊U 硅碳 G 高功率X 线绕 T 可调M 压敏 W 微调G 光敏 D 多圈R 热敏 B 温度CP 旁热W 稳压Z 正温度如:RJ7,就表示精密金属膜电阻器;WXD---表示多圈线绕电位器。

电阻的阻值及精度等级一般用文字或数字印于电阻器上,现常用色环表示;现在电阻有四色环的也有精度高达1%的五色环电阻。

颜色和数字对应如下:棕红橙黄绿蓝紫灰白黑金银半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。

事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。

一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、G aP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。

因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。

此外,在一定条件下,它还具有发光特性。

在正向电压下,电子由N区注入P区,空穴由P 区注入N区。

进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。

假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。

除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。

发光的复合量相对于非发光复合量的比例越大,光量子效率越高。

由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。

若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3. 26~1.63eV之间。

比红光波长长的光为红外光。

现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

(二)LED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。

超过此值,LED发热、损坏。

(2)最大正向直流电流IFm:允许加的最大的正向直流电流。

超过此值可损坏二极管。

(3)最大反向电压VRm:所允许加的最大反向电压。

超过此值,发光二极管可能被击穿损坏。

(4)工作环境topm:发光二极管可正常工作的环境温度范围。

低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。

2.电参数的意义(1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。

由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。

(2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。

若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。

由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。

(3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔.(4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。

半值角的2倍为视角(或称半功率角)。

图3给出的二只不同型号发光二极管发光强度角分布的情况。

中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。

显然,法线方向上南喽苑⒐馇慷任?,离开法线方向的角度越大,相对发光强度越小。

由此图可以得到半值角或视角值。

(5)正向工作电流If:它是指发光二极管正常发光时的正向电流值。

在实际使用中应根据需要选择IF在0.6·IFm以下。

(6)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。

一般是在IF=20mA时测得的。

发光二极管正向工作电压VF在1.4~3V。

在外界温度升高时,VF将下降。

(7)V-I特性:发光二极管的电压与电流的关系可用图4表示。

在正向电压正小于某一值(叫阈值)时,电流极小,不发光。

当电压超过某一值后,正向电流随电压迅速增加,发光。

由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。

正向的发光管反向漏电流IR<10μA以下。

(三)LED的分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。

另外,有的发光二极管中包含二种或三种颜色的芯片。

根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。

散射型发光二极管和达于做指示灯用。

2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。

圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。

国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。

由半值角大小可以估计圆形发光强度角分布情况。

相关文档
最新文档