2018-2019学年重庆市梁平区八年级(上)期末数学试卷(含解析)

合集下载

2019-2020学年重庆市梁平区八年级(上)期末数学试卷 及答案解析

2019-2020学年重庆市梁平区八年级(上)期末数学试卷 及答案解析

2019-2020学年重庆市梁平区八年级(上)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.下列计算中,正确的是()A. a4+a4=a8B. a4⋅a4=2a4C. (a3)4⋅a2=a14 D. (2x2y)3÷6x3y2=x3y2.下列说法中正确的是()A. 同位角相等B. 全等的两个三角形一定是轴对称C. 不相等的角不是内错角D. 同旁内角互补,两直线平行3.运用乘法公式计算(a+3)(a−3)正确的是()A. a2−9B. 9−a2C. a2+6a+9D. a2−6a+94.如图,在数轴上表示实数√13的点可能是()A. 点MB. 点NC. 点PD. 点Q5.已知a2−3=2a,那么代数式(a−2)2+2(a+1)的值为()A. −9B. −1C. 1D. 96.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A. 50°B. 40°C. 60°D. 80°7.计算20182−2019×2017的结果是()A. 1B. −1C. 2018D. 20178.下列各组线段中,能够组成直角三角形的一组是()A. 1,2,3B. 2,3,4C. 1,√2,√3D. 4,5,69.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A. 20B. 22C. 24D. 2610.甲校七(1)班为了解全班学生喜欢球类活动的情况,采取全面调查的方法,从排球、篮球、乒乓球、足球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A. 七(1)班的学生人数为40B. m的值为10C. n的值为20D. 表示“足球”的扇形的圆心角是70°11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 2812.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共24.0分)13.计算:|−√8|=______.14.利用乘法公式计算:1012+992=__________.15.如图,已知PA⊥ON于点A,PB⊥OM于点B,且PA=PB,∠MON=50°,∠OPC=30°,求∠PCA=___________.16.已知一个直角三角形的两边长分别为4和3,则它的面积为______ .17.某市初中毕业生学业考试各科的满分值如下:科目语文数学英语科学社政体育满分值1201201101508030若把表中各科满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角应是________度.(结果精确到0.1)18.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为______.三、解答题(本大题共8小题,共78.0分)3−|−6|19.计算√9+23÷√820.先化简,再求值:(3a−2)2−9a(a−5b)+12a5b2÷(−a2b)2,其中ab=−1.2 21.如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.22.为了参加学校举行的传统文化知识竞赛。

★试卷3套精选★重庆市2019届八年级上学期数学期末达标测试试题

★试卷3套精选★重庆市2019届八年级上学期数学期末达标测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我国民间,流传着许多含有吉祥意义的图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”“禄”“寿”“喜”,其中是轴对称图形的有几个( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据轴对称图形的概念即可确定答案.【详解】解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,共3个轴对称图形,故答案为C .【点睛】本题考查了轴对称图形的定义,掌握轴对称图形的定义是解答本题的关键.2.在平面直角坐标系中,点(1,-2)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据第四象限内横坐标大于零,纵坐标小于零,可得答案.【详解】点(1,-2)所在的象限是第四象限,故选D.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.3.如图,已知一次函数y kx b =+的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A .1y <;B .0y <;C .1y >;D .2y <【答案】A 【分析】观察图象可知,y 随x 的增大而减小,而当x=0时,y=1,根据一次函数的增减性,得出结论.【详解】解:把A (0,1)和B (2,0)两点坐标代入y=kx+b 中,得120bk b=⎧⎨+=⎩,解得121kb⎧=-⎪⎨⎪=⎩∴y=-12x+1,∵-12<0,y随x的增大而减小,∴当x>0时,y<1.故选A.【点睛】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.4.某市为了处理污水需要铺设一条长为2000米的管道,实际施工时,×××××××,设原计划每天铺设管道x 米,则可列方程200020001010x x-=+,根据此情景,题目中的“×××××××”表示所丢失的条件,这一条件为()A.每天比原计划多铺设10米,结果延期10天完成任务B.每天比原计划少铺设10米,结果延期10天完成任务C.每天比原计划少铺设10米,结果提前10天完成任务D.每天比原计划多铺设10米,结果提前10天完成任务【答案】D【分析】工作时间=工作总量÷工作效率.那么2000x÷表示原来的工作时间,那么()200010x÷+就表示现在的工作时间,10就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x米,那么10x+就应该是实际每天比原计划多铺了10米,而用200020001010x x-=+则表示用原计划的时间−实际用的时间=10天,那么就说明每天比原计划多铺设10米,结果提前10天完成任务.故选:D.【点睛】本题主要考查的是分式方程的实际应用,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.5.如图,在ABC∆中,已知点D,E,F分别为BC,AD,CE的中点,且16ABCS∆=,则BEF∆的面积是()A .3B .4C .5D .6【答案】B 【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E 、分别是BC 、AD 的中点,可得△EBC 的面积是△ABC 面积的一半;利用三角形的等积变换可解答. 【详解】 点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=12EC,而高相等, E 是AD 的中点,12BEF BEC S S ∴=△△,E 是AD 的中点,12BDE S S ∴=△△ABD , 12DE CD S S =△C △A12C S S ∴=△EBC △AB14BFE C S S ∴=△△AB ,且ABC S =16S ∴△BEF =4故选B.【点睛】本题主要考察三角形的面积,解题关键是证明得出14BFE C S S =△△AB .6.点E (m ,n )在平面直角坐标系中的位置如图所示,则坐标(m+1,n ﹣1)对应的点可能是()A .A 点B .B 点C .C 点D .D 点【答案】C【分析】根据坐标的平移方法进行分析判断即可.【详解】(m+1)﹣m =1,n ﹣(n ﹣1)=1,则点E(m ,n)到(m+1,n ﹣1)横坐标向右移动1单位,纵坐标向下移动1个单位,故选C .【点睛】本题考查了坐标的平移,正确分析出平移的方向以及平移的距离是解题的关键.7.如图,已知AC BD ⊥,垂足为O ,AO CO =,AB CD =,则可得到AOB COD ∆≅∆,理由是( )A .HLB .SASC .ASAD .AAS【答案】A 【分析】根据全等三角形的判定定理分析即可.【详解】解:∵AC BD ⊥∴∠AOB=∠COD=90°在Rt △AOB 和Rt △COD 中AO CO AB CD =⎧⎨=⎩∴AOB COD ∆≅∆(HL )故选A .【点睛】此题考查的是全等三角形的判定定理,掌握用HL 判定两个三角形全等是解决此题的关键.8.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 【答案】C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.9.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是20.63S =甲,20.58S =乙,20.49S =丙,20.46S =丁,则本次测试射箭成绩最稳定的是( )A .甲B .乙C .丙D .丁【答案】D【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的射箭成绩最稳定.【详解】∵甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,方差分别是20.63S =甲,20.58S =乙,20.49S =丙,20.46S =丁,丁的方差最小,∴射箭成绩最稳定的是丁.故选:D .【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键. 10.冬天到了,政府决定免费为贫困山区安装暖气,计划甲安装队为A 山区安装660片, 乙安装队为B 山区安装600片,两队同时开工且恰好同时完工,甲队比乙队每天多安装20片.设乙队每天安装x 片,根据题意,下面所列方程中正确的是( )A .66060020x x =-B .66060020x x =-C .66060020x x =+D .66060020x x=+ 【答案】D【分析】根据题意,分别求出两队完工的天数列出方程即可.【详解】设乙队每天安装x 片,则甲队每天安装x+20片,66060020x x=+ 故选:D.【点睛】此题主要考查分式方程的实际应用,解题关键是理解题意,找出等量关系.二、填空题11.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】4【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3=;②长为3、35;∴或4.考点:3.勾股定理;4.分类思想的应用.12.在等腰△ABC 中,AB=AC ,∠BAC=20°,点D 在直线BC 上,且CD=AC ,连接AD ,则∠ADC 的度数为_____.【答案】50°或40°【分析】利用等腰三角形的性质,等边对等角即可得. 【详解】解:①当点D在CB的延长线上时,∵AB=AC,∠BAC=20°,∴∠ABC=∠ACB=80°.∵CA=CD,∠ACB=80°,∴∠ADC=∠CAD=50°,②当点D在BC的延长线上时,∵AB=AC,∠BAC=20°,∴∠ABC=∠ACB=80°.∵CA=CD,∠ACB=80°,∠ACB=∠D+∠CAD,∴1402ADC ACB==︒∠∠,∴∠BDA的度数为50°或40°.故答案为:50°或40°.【点睛】掌握等腰三角形的性质为本题的关键.13.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:1【解析】试题解析:设此三角形三个内角的比为x,2x,1x,则x+2x+1x=180,6x=180,x=10,∴三个内角分别为10°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:1,故答案为5:4:1.14.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E 分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.【答案】30°【分析】利用平行线的性质求出∠ADE =75°,再由折叠的性质推出∠ADE =∠EDF =75°即可解决问题.【详解】解:∵DE ∥BC ,∴∠ADE =∠B =75°,又∵∠ADE =∠EDF =75°,∴∠BDF =180°﹣75°﹣75°=30°,故答案为30°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.15.如图,已知ABC ∆中,ABC ∠45=︒,F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为_____.【答案】1【分析】根据90ADC ∠=︒和45ABC ∠=︒得出ABD △为等腰直角三角形,从而有BD AD =,通过等量代换得出∠=∠EBC CAD ,然后利用ASA 可证BDF ADC ≅,则有DF CD =.【详解】AD BC ⊥90ADB ADC ∴∠=∠=︒45ABC ∠=︒∴ABD △为等腰直角三角形BD AD ∴=BE AC ⊥90BEC ∴∠=︒90EBC C ∴∠+∠=︒90CAD C ∠+∠=︒EBC CAD ∠∠∴=在BDF 和ADC 中,EBC CAD BD ADBDA ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩()BDF ADC ASA ∴≅4DF CD ∴==故答案为:1.【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键.16.张小林从镜子里看到镜子对面墙上石英钟指示的时间是2点30分,则实际时间为____.【答案】9点1分【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【详解】解:2:1时,分针竖直向下,时针指2,3之间,根据对称性可得:与9:1时的指针指向成轴对称,故实际时间是9:1.故答案为:9点1分【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.17.若分式211y y -+的值为0,则y 的值等于_______. 【答案】1【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【详解】根据题意,得10y -=且210y +≠.所以1y =.故答案是:1.【点睛】本题主要考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.三、解答题18.(1)()()()()10222221x x x x ---+---.(2)先化简,再求值:22131693x x x x x x x -+-÷+-+-,其中2x =. 【答案】 (1)4;(2) 1x ,12【分析】(1)本题按照先算乘方,再算多项式乘法,最后再算加减法的顺序即可完成;(2)本小题是关于分式的化简求值,先计算除法,注意分式的分子分母能因式分解的先因式分解,以便进行约分,然后进行分式的加减,在化成最简分式后,将2x =代入即可求得.【详解】解:(1)原式=22224x x x -+-4=(2)原式21331(3)(1)x x x x x x --=++-+ 111(1)x x x =+++ 1(1)x x x +=+ 1x= 当x=2时,112x = 【点睛】(1)本小题主要考查的是整式的混合运算,掌握非零的数的零次幂、负整数指数幂的计算等解题的关键,去括号时符号的变化是解题中的易错点;(2)本小题主要考查的是分式的运算,掌握分式混合运算的顺序是解题的关键.19.(1)解方程组73228x y x y-=⎧⎨+=⎩; (2)已知|x+y ﹣6|=0,求xy 的平方根.【答案】(1)24x y =⎧⎨=⎩;(2)±. 【分析】(1)利用加减消元法解方程组即可(2)利用绝对值和算数平方根的非负性,得出关于x 、y 的方程组,解出x 、y 的值代入xy 中,再求其平方根即可【详解】(1)73228x y x y -=⎧⎨+=⎩①②, ①+②×3得:13x=26,解得:x=2,把x=2代入②得:y=4,则方程组的解为24x y =⎧⎨=⎩; (2)∵|x+y ﹣6|=0,∴620x y x y +=⎧⎨-=⎩, 解得:24x y =⎧⎨=⎩,则±xy=±8=±22.【点睛】本题考查了解二元一次方程组、绝对值和算数平方根的非负性,以及平方根的性质,熟练掌握相关知识是解题的关键20.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(0,-3),B(3,-2),C(2,-4).(1)在图中作出△ABC关于x轴对称的△A1B1C1.(2)点C1的坐标为:.(3)△ABC的周长为.+【答案】(1)答案见解析;(2)C1(2,4);(3)2510【分析】(1)根据题意利用纵坐标变为相反数,图像沿x轴向上翻折在图中作出△ABC关于x轴对称的△A1B1C1即可;(2)由题意可知纵坐标变为相反数,结合图像可得点C1的坐标为;(3)由题意利用勾股定理分别求出三边长,然后相加即可.【详解】解:(1)在图中作出△ABC关于x轴对称的△A1B1C1如下:(2)因为C(2,-4),所以关于x轴对称的纵坐标变为相反数,点C1的坐标为(2,4);(3)利用勾股定理分别求出:22125,BC=+=AC=+22125,AB+=221310,所以△ABC 的周长为5510++=2510+.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质以及结合勾股定理进行分析是解答此题的关键. 21.因汽车尾气污染引发的雾霾天气备受关注,经市大气污染防治工作领导组研究决定,在市区范围实施机动车单双号限行措施限行期间为方便市民出行,某路公交车每天比原来的运行增加20车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客7000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?【答案】限行期间这路公交车每天运行100车次.【分析】根据题意可以列出相应的分式方程即可;【详解】解:设限行期间这路公交车每天运行x 车次,56007000=x-20x, 解得,x =100,经检验x =100是原分式方程的解;答:限行期间这路公交车每天运行100车次.【点睛】本题主要考查了分式方程的应用,掌握分式方程的应用是解题的关键.22.如图,在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为 A (-3,5),B (-2,1). (1)请在如图所示的网格内画出平面直角坐标系,并写出 C 点坐标;(2)先将△ABC 沿 x 轴翻折,再沿 x 轴向右平移 4 个单位长度后得到△A 1B 1C 1,请 在网格内画出△A 1B 1C 1;(3)在(2)的条件下,△ABC 的边 AC 上一点 M (a ,b )的对应点 M 1 的坐标是 .(友情提醒:画图结果确定后请用黑色签字笔加黑)【答案】 (1)图见解析; C(-1,3);(2)图见解析;(3) (a+4,-b).【分析】(1)根据A 、B 的坐标即可画出平面直角坐标系,进而得出点C 的坐标;(2)依据轴对称的性质,即可得到△ABC关于x轴对称的图形,然后利用平移的性质得到△A1B1C1; (3)利用关于x轴对称的两点坐标关系和平移规律即可求出点M1的坐标.【详解】(1)根据点A(-3,5),故将A向右移动3个单位、向下移动5个单位,即可得到原点的位置,建立坐标系,如图所示平面直角坐标系即为所求,此时点C(-1,3);(2)根据题意,翻折和平移后得到△A1B1C1,如图所示△A1B1C1即为所求:(3)点M(a,b)关于x轴对称点为(a,-b),然后向右平移4个单位后的坐标为(a+4,-b)M1的坐标为(a+4,-b).【点睛】本题考查了轴对称和平移变换,熟练掌握轴对称和平移变换的性质是解题的关键.23.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【答案】(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)1折.【分析】(1)根据图表可得小林第三次购物花的钱最少,买到A、B商品又是最多,所以小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,列出方程组求出x和y的值;(3)设商店是打m折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1012元,列出方程求解即可.【详解】(1)小林以折扣价购买商品A 、B 是第三次购物;(2)设商品A 的标价为x 元,商品B 的标价为y 元,根据题意,得651140{371110x y x y ==++, 解得:90{120x y ==.答:商品A 的标价为90元,商品B 的标价为120元;(3)设商店是打m 折出售这两种商品,由题意得,(9×90+8×120)×10m =1012, 解得:m=1.答:商店是打1折出售这两种商品的.24.某工厂准备在春节前生产甲、乙两种型号的新年礼盒共 80 万套,两种礼盒的成本和售价如下表所示;(1)该工厂计划筹资金 2150 万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒a 万套,增加生产乙种礼盒b 万套(a ,b 都为正整数),且两种礼盒售完后所获得的总利润恰为 690 万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.(3)在(2)的情况下,设实际生产的两种礼盒的总成本为W 万元,请写出W 与a 的函数关系式,并求出当 a 为多少时成本W 有最小值,并求出成本W 的最小值为多少万元?【答案】(1)甲礼盒生产30万套,乙礼盒生产50万套;(2)方案如下:① 1,6b a ==;② 2,4b a ==;③3,2b a ==;(3)=2a 时,W 最小值为2284万元.【分析】(1)设甲礼盒生产x 万套,乙礼盒生产(80)x -万套,从而列出相应的方程,即可解答本题; (2)根据表格可以求得A 的利润与B 的利润,从而可以求得总利润,写出相应的关系式,再利用正整数的特性得出可行的生产方案;(3)根据表格的数据,列出相应的函数关系式,利用一次函数的增减性即可成本W 的最小值.【详解】(1)设甲礼盒生产x 万套,乙礼盒生产(80)x -万套,依题意得:2528(80)2150x x +-=,解得:30x =,答:甲礼盒生产30万套,乙礼盒生产50万套;(2)增加生产后,甲(30)a +万套,乙(50)b +万套,依题意得:(3025)(30)(3828)(50)690a b -⨯++-⨯+= ,化简得:28a b += ,∴方案如下:1,6b a ==①;2,4b a ==②;3,2b a ==③;答:有三种方案, 1,6b a ==①, 2,4b a ==②,3,2b a ==③;(3)依题意得:()8-25(30)285025(30)28502a W a b a ⎛⎫=+++=+++⎪⎝⎭, 化简得:11262 2W a =+,∵110k =>,∴W 随a 的增大而增大,∴a 取最小值时W 最小,∴=2a 时, 2284W =最小(万元).答:当=2a 时,W 最小值为2284万元.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是根据题意找到等量关系,列出相应的方程和一次函数关系式,利用数学中分类讨论的思想对问题进行解答.25.如图,函数 483y x =-+的图像分别与 x 轴、 y 轴交于 A 、 B 两点,点 C 在 y 轴上, AC 平分 OAB ∠. (1) 求点 A 、 B 的坐标;(2) 求 ABC 的面积;(3) 点 P 在坐标平面内,且以A 、 B 、P 为顶点的三角形是等腰直角三角形,请你直接写出点 P 的坐标.【答案】(1)A(6,0),B(0,8);(2)15;(3)使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,再根据S△AOB=S△AOC+S△ABC,可求得CO,则可求得△ABC的面积;(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.【详解】解:(1)在483y x=-+中,令y=0可得0=-43x+8,解得x=6,令x=0,解得y=8,∴A(6,0),B(0,8);(2)如图,过点C作CD⊥AB于点D,∵AC平分∠OAB,∴CD=OC,由(1)可知OA=6,OB=8,∴AB=10,∵S△AOB=S△AOC+S△ABC,∴12×6×8=12×6×OC+12×10×OC,解得OC=3,∴S△ABC=12×10×3=15;(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,∵△PAB为等腰直角三角形,∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即222222(6)100(6)100(8)x yx y x y⎧-+=⎨-++=+-⎩,解得146xy=⎧⎨=⎩或26xy=-⎧⎨=-⎩,此时P点坐标为(14,6)或(-2,-6);②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,即222222(8)100(8)100(6)x yx y x y⎧+-=⎨+-+=-+⎩,解得814xy=⎧⎨=⎩或82xy=-⎧⎨=⎩,此时P点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,即22222222(6)(8)(6)(8)100x y x yx y x y⎧-+=+-⎨-+++-=⎩,解得11xy=-⎧⎨=⎩或77xy=⎧⎨=⎩,此时P点坐标为(-1,1)或(7,7);综上可知使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)中注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC的长是解题的关键,在(3)中用P点坐标分别表示出PA、PB的长,由等腰直角三角形的性质得到关于P点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D ,E 两点,并连接BD ,DE ,若∠A =30°,AB =AC ,则∠BDE 的度数为( )A .45B .52.5C .67.5D .75【答案】C 【解析】试题分析:根据AB=AC ,利用三角形内角和定理求出∠ABC 的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE 的度数:∵AB=AC ,∴∠ABC=∠ACB.∵∠A=30°,∴∠ABC=∠ACB=()118030752︒-︒=︒. ∵以B 为圆心,BC 长为半径画弧,∴BE=BD=BC .∴∠BDC=∠ACB=75°.∴∠CBD 180757530=︒-︒-︒=︒.∴∠DBE=75°-30°=45°.∴∠BED=∠BDE=()11804567.52︒-︒=︒. 故选C.考点: 1.等腰三角形的性质;2.三角形内角和定理.2.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是( ). A . B . C .D .【答案】C【分析】根据中心对称图形定义分析.【详解】A .∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误; C .此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.【点睛】考点:中心对称图形.3.化简a1 a11a+--的结果为()A.﹣1 B.1 C.a1a1+-D.a11a+-【答案】B【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:a1a1a11a11a a1a1a1-+=-==-----.故选B.4.由方程组43x my m+=-⎧⎨-=⎩可得出x与y之间的关系是()A.1x y+=B.1x y+=-C.7x y+=D.7x y+=-【答案】B【分析】根据题意由方程组消去m即可得到y与x的关系式,进行判断即可.【详解】解43x my m⎧⎨⎩+--=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B.【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.5.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E、F为AB上的一点,CF⊥AD于H,下列判断正确的有( )A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线C.AH为△ABC的角平分线D.CH为△ACD边AD上的高【答案】D【解析】根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断.连接三角形的顶点和对边中点的线段即为三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.【详解】A. 根据三角形的角平分线的概念,知AG 是△ABE 的角平分线,故本选项错误;B. 根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故本选项错误;C. 根据三角形的角平分线的概念,知AD 是△ABC 的角平分线,故本选项错误;D.根据三角形的高的概念,知CH 为△ACD 的边AD 上的高,故本选项正确;故选D.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握其定义.6.下列各数中,无理数的是( )A .03B .3.1010010001C .39D .2549【答案】C【分析】根据无理数的定义对每个选项依次判断即可.【详解】A . 03=1,是有理数,不符合题意B . 3.1010010001,是有限小数,属于有理数,不符合题意C . 39=2.0800838⋯⋯,是无限不循环小数,属于无理数,符合题意D . 255497=,分数属于有理数,不符合题意 故选:C【点睛】本题考查了无理数的定义,无限不循环小数是无理数.7.已知正比例函数y kx =(0k ≠)的函数值y 随x 的增大而增大,则函数2y kx =+的图象大致是( ) A . B . C . D .【答案】A【分析】先根据正比例函数y=kx 的函数值y 随x 的增大而增大判断出k 的符号,再根据一次函数的性质即可得出结论.【详解】解:∵y 随x 的增大而增大,∴k >0,又2y kx =+经过点(0,2),同时y 随x 的增大而增大,故选A.【点睛】本题主要考查了一次函数的图象,掌握一次函数的图象是解题的关键.8.如图,已知AB AC =,AE AF =,BE 与CF 交于点D ,则对于下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③D 在∠BAC 的平分线上.其中正确的是( )A .①和②B .②和③C .①和③D .①、②和③【答案】D 【分析】按照已知图形,证明ABE ACF ≅,得到B C ∠=∠;证明△△CDE BDF ≅,证明△△ADC ADB ≅,得到CAD BAD ∠=∠,即可解决问题;【详解】如图所示,在△ABE 和△ACF 中,AB AC EAB FAC AE AF ⎧=⎪∠=∠⎨⎪=⎩,∴()△△ABE ACFSAS ≅,∴B C ∠=∠,∵AB AC =,AE AF =,∴BF CE =,在△CDE 和△BDF 中, B C BDF CDE BF CE ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴()△△CDE BDFAAS ≅,∴DC=DB ,在△ADC 和△ADB 中,AC AB C B DC DB ⎧=⎪∠=∠⎨⎪=⎩,∴()△△ADC ADB SAS ≅,∴CAD BAD ∠=∠.综上所述:①②③正确;故选D .【点睛】本题主要考查了全等三角形的性质与判定,准确判断是解题的关键.9.已知25x y =-⎧⎨=⎩是方程0mx y +=-1的解,则m 的值是( ) A .1B .2-C .1-D .2 【答案】D【分析】把25x y =-⎧⎨=⎩代入原方程即可求出m. 【详解】把25x y =-⎧⎨=⎩代入0mx y +=-1得-2m+5-1=0, 解得m=2故选D.【点睛】此题主要考查二元一次方程的解,解题的关键是直接代入原方程.10.关于x 的方程253+x-5255ax x x =-+有增根则a= ( ) A .-10或6B .-2或-10C .-2或6D .-2或-10或6 【答案】A【分析】先将分式方程化为整式方程,再根据增根的定义求出分式方程的增根,将增根代入整式方程即可求出a 的值. 【详解】解:253+x-5255ax x x =-+ ()()55+35x ax x +=-①∵关于x 的方程253+x-5255ax x x =-+有增根 ∴0252=-x解得:x=±5将x=5代入①,得a=-10;将x=-5代入①,得a=6综上所述:a=-10或6故选A .【点睛】此题考查的是根据分式方程有增根,求方程中的参数,掌握分式方程的解法和增根的定义是解决此题的关键.二、填空题11.已知25,23m n ==,则+2m n =__________.【答案】1【分析】逆用同底数幂的乘法法则,即a m+n =a m ·a n 解答即可.【详解】解:∵2m =5,2n =3,∴2m+n =2m •2n =5×3=1.故答案为:1.【点睛】本题考查了同底数幂的乘法法则的逆运用,灵活运用公式是解题的关键.12.如图,点 P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是________(只写一个即可,不添加辅助线).【答案】∠APO=∠BPO (答案不唯一)【解析】OA=OB 结合已知条件可得△AOP=≌△BOP (ASA ),当∠OAP=∠OBP 或∠APO=∠BPO 时,利用全等三角形的判定(AAS )可得△AOP ≌△BOP .解:已知点P 在∠AOB 的平分线上∴∠AOP=∠BOP∵OP=OP ,OA=OB∴△AOP=≌△BOP .故填OA=OB .13.如图,数轴上,A B 两点到原点的距离相等,点A 表示的数是__________.【答案】2-【解析】根据题意可知A ,B 两点表示的数互为相反数,即可得出答案.【详解】∵A ,B 两点到原点的距离相等,且在原点的两侧∴A ,B 两点表示的数互为相反数又∵B∴A 点表示的数为故答案为:.【点睛】本题考查了相反数的几何意义,掌握相反数在数轴上的位置关系是解题的关键.14.若(x-1)x+1=1,则x=______.【答案】2或-1【解析】当x+1=0,即x=-1时,原式=(-2) 0 =1;当x-1=1,x=2时,原式=1 3 =1;当x-1=-1时,x=0,(-1) 1 =-1,舍去.故答案为2或-1.15.在一次对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解3(x +2)(x +8);乙同学因看错了常数项而将其分解为3(x +7)(x +1),则将此多项式进行正确的因式分解为____.【答案】23(4)x +【分析】分别将3(x +2)(x +8)和3(x +7)(x +1)展开,然后取3(x +2)(x +8)展开后的二次项和常数项,取3(x +7)(x +1)展开后的一次项,最后因式分解即可.【详解】解:3(x +2)(x +8)=3x 2+30x+483(x +7)(x +1)= 3x 2+24x+21由题意可知:原二次三项式为3x 2+24x+483x 2+24x+48=3(x 2+8x+16)=23(4)x +故答案为:23(4)x +.【点睛】此题考查的是整式的乘法和因式分解,掌握多项式乘多项式法则、提取公因式法和公式法因式分解是解决此题的关键.16.已知3a b +=,2ab =_________.【答案】2【分析】先把二次根式进行化简,然后把3a b +=,2ab =,代入计算,即可得到答案. 【详解】解:a b ab ab b a +=+ =()a b ab +, ∵3a b +=,2ab =,∴原式=3232=⨯; 故答案为:322. 【点睛】 本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.17.在ABC ∆中,10A ∠=︒,30B ∠=︒,则这个三角形是___________三角形.【答案】钝角【分析】根据三角形的内角和求出∠C 即可判断.【详解】在ABC ∆中,10A ∠=︒,30B ∠=︒,∴1801030140C ∠=︒-︒-︒=︒∴这个三角形是钝角三角形,故答案为:钝角.【点睛】此题主要考查三角形的分类,解题的关键是熟知三角形的内角和.三、解答题18.如图,在▱ABCD 中,E 、F 分别是BC 、AD 边上的点,且∠1=∠1.求证:四边形AECF 是平行四边形.【答案】详见解析【解析】由条件可证明AE ∥FC ,结合平行四边形的性质可证明四边形AECF 是平行四边形.【详解】证明:∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠1=∠EAF ,∵∠1=∠1,。

〖汇总3套试卷〗重庆市2018年八年级上学期数学期末达标测试试题

〖汇总3套试卷〗重庆市2018年八年级上学期数学期末达标测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y ==【答案】A 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 2.下列各分式中,最简分式是( )A .()()37x y x y -+ B .22m n m n -+ C .2222a b a b ab -+ D .22222x y x xy y --+ 【答案】A 【分析】根据最简分式的标准:分子,分母中不含有公因式,不能再约分逐一判断即可. 【详解】3()7()x y x y -+的分子、分母都不能再分解,且不能约分,是最简分式,故A 选项符合题意. 22m n m n-+ =m-n ,故B 选项不符合题意·, 2222a b a b ab -+ =a b ab - ,故C 选项不符合题意·, 22222x y x xy y --+=+-x y x y,故D 选项不符合题意·, 故选A.【点睛】3.一个三角形三个内角的度数的比是2:3:5.则其最大内角的度数为()A.60︒B.90︒C.120︒D.150︒【答案】B【分析】先将每份的角度算出来,再乘以5即可得出最大内角的角度.【详解】180°÷(2+3+5)=180°÷10=18°.5×18°=90°.故选B.【点睛】本题考查三角形内角的计算,关键在于利用内角和算出平分的每份角度.4.平面直角坐标系中,点A(﹣2,6)与点B关于y轴对称,则点B的坐标是()A.(﹣2,6)B.(﹣2,﹣6)C.(2,6)D.(2,﹣6)【答案】C【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(﹣2,6)关于y轴对称点的坐标为B(2,6).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2 B.﹣12C.0 D.12【答案】A【解析】反例中的n满足n<1,使n1-1≥0,从而对各选项进行判断.【详解】解:当n=﹣1时,满足n<1,但n1﹣1=3>0,所以判断命题“如果n<1,那么n1﹣1<0”是假命题,举出n=﹣1.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解析】根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:B .【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.7.若a +b =3,ab =-7,则a b b a +的值为( ) A .-145 B .-25 C .-237 D .-257【答案】C【解析】试题解析:原式=()2222a b aba b ab ab +-+=,∵a+b=3,ab=-7,∴原式=()232791423777-⨯-+==---. 故选C .8.如图,在ABC ∆中,D E ,是BC 边上两点,且满足AB BE =,AC CD =,若B α∠=,C β∠=,则DAE ∠的度数为( )A .2αβ+ B .2βα- C .()1802αβ︒-+ D .()1802βα︒-- 【答案】A【分析】根据AB BE =,AC CD =得出∠BAE=∠BEA ,∠CAD=∠CDA ,再根据∠DAE=∠BAE+∠CAD -∠BAC 算出∠DAE 的度数.【详解】解:∵AB BE =,AC CD =,∴∠BAE=∠BEA ,∠CAD=∠CDA ,=1802α︒-+1802β︒--(180°-α-β) =2αβ+故选A.【点睛】本题考查了三角形内角和定理,等腰三角形的性质的应用,关键是推出∠DAE 和∠BAE 、∠CAD 、∠BAC 的关系,从而得到运算的方法.9.如图,△ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 于Q ,PQ =3,PE =1.AD 的长是( )A .5B .6C .7D .8【答案】C 【分析】由已知条件,先证明△ABE ≌△CAD 得∠BPQ=60°,可得BP=2PQ=6,AD=BE .则易求AD 的长.【详解】∵△ABC 为等边三角形,∴AB =CA ,∠BAE =∠ACD =60°;又∵AE =CD ,在△ABE 和△CAD 中,AB CA BAE ACD AE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAD (SAS );∴BE =AD ,∠CAD =∠ABE ;∴∠BPQ =∠ABE+∠BAD =∠BAD+∠CAD =∠BAE =60°;∵BQ ⊥AD ,∴∠AQB =90°,则∠PBQ =90°﹣60°=30°;∵PQ =3,∴在Rt △BPQ 中,BP =2PQ =6;又∵PE =1,【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质及含30°的角的直角三角形的性质;巧妙借助三角形全等和直角三角形中30°的性质求解是正确解答本题的关键.10.在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=30°,以下说法错误的是()A.AC=2CD B.AD=2CD C.AD=3BD D.AB=2BC【答案】B【解析】在Rt△ABC 中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD=3,在Rt△ABC中,∠A=30°,AD3CD=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.二、填空题11.已知,ab=-1,a+b=2,则式子b aa b+=___________.【答案】-6【分析】先通分,然后进行同分母分式加减运算,此时分母是ab,分子是a2+b2,运用完全平方公式将其变形为(a+b)2-2ab,最后把已知条件代入即可.【详解】∵ab=-1,a+b=2,222()24(2)b a b a a b ab++---分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等.12.若数据的2, 3, 5, 8a ,方差是0.7,则数据12,13,15,10,18a +的方差是__________.【答案】0.7【分析】根据方差的意义与求法将第一组数据中的a 的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.13.点A (2,1)到x 轴的距离是____________.【答案】1【分析】根据点到x 轴的距离等于纵坐标的绝对值解答.【详解】解:点A (2,1)到x 轴的距离是1,故答案为:1.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.14.已知点()1,2A a --与点()2,B b -关于y 轴对称,则b a =_______. 【答案】19【分析】平面直角坐标系中任意一点P(x ,y),关于y 轴的对称点的坐标是(−x ,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数可得出a 、b 的值,即可得出答案.【详解】解:∵点()1,2A a --与点()2,B b -关于y 轴对称,∴12a -=,2b =-,解得:3a =,2b =-, ∴2139-==b a , 故答案为:1.本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.15.当x时,分式43xx+-有意义.【答案】3≠【分析】根据分式有意义的条件:分母不等于0即可求解.【详解】根据题意得:x﹣1≠0,解得:x≠1.故答案为:≠1.【点睛】本题考查了分式有意义的条件,是一个基础题目.16.25的平方根是______,16的算术平方根是______,-8的立方根是_____.【答案】5±4-1【分析】首先利用平方根的定义求解;接着利用算术平方根的定义求解;最后利用立方根的定义求解.【详解】解:15的平方根是±5,16的算术平方根是4,-8的立方根是-1.故答案为:±5,4,-1.【点睛】此题分别考查了算术平方根、平方根及立方根的定义,解题的关键是熟练掌握这些相关定义才能很好解决问题.17.若代数式(2)(1)1x xx---的值为零,则x的取值应为_____.【答案】1.【分析】分式的值为2的条件是:(1)分子=2;(1)分母≠2.两个条件需同时具备,缺一不可.【详解】解:若代数式()()211x xx---的值为零,则(x﹣1)=2或(x﹣1)=2,即x=1或1,∵|x|﹣1≠2,x≠1,∴x的取值应为1,故代数式()()211x xx---的值为零,则x的取值应为1.【点睛】由于该类型的题易忽略分母不为2这个条件,所以常以这个知识点来命题.三、解答题第1个等式:1111(1)1323a ==⨯-⨯; 第2个等式:21111()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279a ==⨯-⨯;…… 请回答下列问题:(1)按以上规律,用含n 的式子表示第n 个等式:n a = = (n 为正整数)(2)求1234100•••a a a a a +++++ 的值.【答案】(1)1(21)(21)n n -+;111()22121n n --+;(2)100201【分析】(1)观察等式数字变化规律即可得出第n 个等式;(2)利用积化和差计算出a 1+a 2+a 3+…+a 100的值.【详解】解:(1) 解: 1111(1)1323a ==⨯-⨯; 21111()35235a ==⨯-⨯; 31111()57257a ==⨯-⨯; 41111()79279a ==⨯-⨯;…… 1111()(21)(21)22121n a n n n n ==--+-+ 故答案为:1(21)(21)n n -+; 111()22121n n --+ (2)1234100a a a a a +++++ = 11111111111(1)()()...()232352572199201-+-+-++- =11111111(1...)233557199201-+-+-++- =11(1)2201- =12002201⨯ =100201【点睛】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.19.已知,如图1,我们在2018年某月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为 .(2)若将正整数依次填入6列的长方形数表中,不同位置十字星的“十字差”是一个定值吗?如果是,请求出这个定值;如果不是,请说明理由.(3)若将正整数依次填入k 列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k 有关的定值,请用k 表示出这个定值,并证明你的结论.【答案】(1)24;(2)是,这个定值是2,理由见解析;(3)定值为21k -,证明见解析.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)设十字星中心的数为x ,则十字星左右两数分别为x-1,x+1,上下两数分别为x-6,x+6,进而表示出十字差,化简即可得证;(3)设十字星中心的数为y ,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证.【详解】解:(1)根据题意得:68212482424⨯-⨯=-=,故答案为:24;(2)是,这个定值是2.理由如下:设十字星中心的数为x ,则十字星左右两数分别为1x -,1x +,上下两数分别为6x -,6x +, 十字差为:()()()()22116613635x x x x x x -+--+=--+=. 故不同位置十字星的“十字差”是一个定值,这个定值为2;(3)定值为21k -,证明如下:设设十字星中心的数为y ,则十字星左右两数分别为1y -,1y +,上下两数分别为y k -,(3)y k k +≥, 十字差为:()()()()22221111y y y k y k y y k k -+--+=--+=-, 故这个定值为21k -.【点睛】此题考查了整式运算的实际应用,正确理解题意以及熟练掌握运算法则是解本题的关键.20.三角形三条角平分线交于一点.【解析】试题分析:根据三角形的角平分线的性质即可判断,若动手操作则更为直观.三角形三条角平分线交于一点,本题正确.考点:角平分线的性质点评:熟练掌握基本图形的性质是学好图形问题的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.21.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴DM=AN ,△AON ≌△DOM (AAS ),∵DE=AB ,AO=DO ,∴△AOB ≌△DOE (HL ).22.如图,在直角坐标系中,(1,5)A -,(1,0)B -,(4,3)C -.(1)求ABC ∆的面积;(2)若把ABC ∆向下平移2个单位,再向右平移5个单位得到A B C '''∆,请画出A B C '''∆并写出C '的坐标.【答案】(1)7.5;(2)(1,1),详见解析【分析】(1)根据直角坐标系首先求出ΔABC 的高和底,利用三角形面积公式即可解答;(2)首先画出平移图形,再写出坐标即可.【详解】解:(1)根据直角坐标系知AB=5,AB 边上的高为3,∴ABC ∆的面积是:1357.52⨯⨯=; (2)作图如图所示,∴点C '的坐标为:(1,1)【点睛】本题主要考查直角坐标系中图形的平移,熟知点的坐标平移方法是解答的关键.23.若在一个两位正整数N 的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N 的“至善数”,如34的“至善数”为354;若将一个两位正整数M 加5后得到一个新数,我们称这个新数为M 的“明德数”,如34的“明德数”为1.(1)26的“至善数”是 ,“明德数”是 .(2)求证:对任意一个两位正整数A ,其“至善数”与“明德数”之差能被45整除;【答案】(1)236,2;(2)见解析.【分析】(1)按照定义求解即可;(2)设A 的十位数字是a ,个位数字是b ,表示出至善数和明德数,作差即可证明.【详解】(1)26的至善数是中间加3,故为236,明德数是加3,故为2.故答案为:236,2;(2)设A 的十位数字是a ,个位数字是b ,则它的至善数是100a+30+b ,明德数是10a+b+3.∵100a+30+b ﹣(10a+b+3)=90a+43=43(2a+1)∴“至善数”与“明德数”之差能被43整除.【点睛】本题考查了因式分解的应用,理解“明德数”、“至善数”的定义是解答本题的关键.24.如图,工厂A 和工厂B ,位于两条公路,OC OD 之间的地带,现要建一座货物中转站P ,若要求中转站P 到两条公路,OC OD 的距离相等,且到工厂A 和工厂B 的距离也相等,请用尺规作出点P 的位置.(不要求写做法,只保留作图痕迹)【答案】见解析【分析】结合角平分线的性质及作法以及线段垂直平分线的性质及作法进一步分析画图即可.【详解】如图所示,点P 即为所求:【点睛】本题主要考查了尺规作图的实际应用,熟练掌握相关方法是解题关键.25.如图,四边形ABCD 中,AD BC =,ABC ADC ∠=∠,BAD DCB ∠=∠,E 是四边形ABCD 内一点,F 是四边形ABCD 外一点,且//AF BE ,//DF CE ,(1)求证://AD BC ;(2)求证:AF BE =.【答案】(1)证明见解析;(2)证明见解析【分析】(1)证明180ABC BAD ∠+∠=︒即可得到结论;(2)证明ECB FDA ∆≅∆即可.【详解】(1)延长FA 、CB 交于点G .360ABC ADC BAD DCB ∠+∠+∠+∠=︒ABC ADC ∠=∠,BAD DCB ∠=∠,180ABC BAD ∴∠+∠=︒//AD BC ∴.(2)//AD BC ,FAD G ∴∠=∠;//AF BE ,G EBC ∴∠=∠,F EBC ∴∠=∠,同理可得:FDA ECB ∠=∠.又AD BC =,ECB FDA ∴∆≅∆()ASA ,AF BE ∴=.【点睛】此题主要考查了平行线的判定以及全等三角形的判定与性质,灵活作出辅助线是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cm【答案】C 【分析】根据线段垂直平分线的性质和三角形的周长公式即可得到结论.【详解】∵DE 是边AB 的垂直平分线,∴AE =BE .∴△BCE 的周长=BC+BE+CE =BC+AE+CE =BC+AC =1.又∵BC =8,∴AC =10(cm ).故选C .【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握计算公式.2.一次函数21y x =--的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据一次函数的图象与系数的关系即可解答.【详解】对于一次函数21y x =--,∵k=-2﹤0,∴函数图象经过第二、四象限,又∵b=-1﹤0,∴图象与y 轴的交点在y 轴的负半轴,∴一次函数21y x =--的图象经过第二、三、四象限,不经过第一象限,故选:A .【点睛】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与系数的关系是解答的关键.3.式子:62xy-,85x+,12xx+,3x y中,分式的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】根据分式的定义进行解答即可.【详解】四个式子中分母含有未知数的有:85x+,12xx+共2个.故选:B.【点睛】本题考查了分式的概念,判断一个有理式是否是分式,不要只看是不是AB的形式,关键是根据分式的定义看分母中是否含有字母,分母中含有字母则是分式,分母中不含字母,则不是分式.4.下列一些标志中,可以看作是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形的定义逐项分析判断即可.【详解】解:A、C、D不符合轴对称图形的定义,故不是轴对称图形;B符合轴对称图形的定义,故B是轴对称图形.故选B.【点睛】本题考查了轴对称图形的识别,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A.0对B.1对C.2对D.3对【答案】C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD =CE ,且∠B =∠C ,∠BOD =∠COE ,∴△BDO ≌△CEO (AAS )∴全等的三角形共有2对,故选:C .【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.6.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( )A .1B .3C .5D .7 【答案】C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数. 7.如图,在ABC 中,90B ∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M 、N ,作直线MN 交BC 于点D ,连接AD .若30C ∠=︒,12AD =,则BC 的长是( )A .12B .16C .18D .24【答案】C 【分析】由作图可知,DN 为AC 的垂直平分线,求得CD=12,再求出∠DAB=30°,BD=6,问题得解.【详解】解:由作图可知,DN 为AC 的垂直平分线,∴AD=CD=12,∴∠C=∠CAD=30°,∵90B ∠=︒,∴∠CAB=60°,∴∠DAB=30°,∴162BD AD==,∴BC=BD+CD=1.故选:C【点睛】本题考查了线段垂直平分线的尺规作图、性质,含30°角的直角三角形性质,等腰三角形性质.由作图得到“DN为AC的垂直平分线”是解题关键.8.下列各组数中不能作为直角三角形的三边长的是()A.2,3,5 B.3,4,5 C.6,8,10 D.5,12,13【答案】A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A、22+32≠52,不符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故正确;C、62+82=102,符合勾股定理的逆定理,故正确;D、52+122=132,符合勾股定理的逆定理,故正确.故选:A.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9.下列计算正确的是()A B C.=3 D【答案】D【解析】解:A不能合并,所以A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.10.已知关于x的一次函数y=(2﹣m)x+2的图象如图所示,则实数m的取值范围为()A .m >2B .m <2C .m >0D .m <0【答案】B 【分析】根据一次函数的增减性即可列出不等式,解不等式即可.【详解】由图可知:1﹣m >0,∴m <1.故选B .【点睛】此题考查的是一次函数图像及性质,掌握一次函数图像及性质与一次项系数的关系是解决此题的关键.二、填空题11.如图,长方形ABCD 的边AD 在数轴上,21AD AB ==,,点A 在数轴上对应的数是-1,以点A 为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的数是__________.51【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得点E 表示的实数.【详解】解:∵AD 长为2,AB 长为1,∴22215+=∵A 点表示-1,∴点E 51, 51.【点睛】本题主要考查了实数与数轴和勾股定理,正确得出AC 的长是解题关键.12.已知直线x+2y=5与直线x+y=3的交点坐标是(1,2),则方程组253x y x y +=⎧⎨+=⎩的解是_________. 【答案】12x y =⎧⎨=⎩【详解】解:∵直线x+2y=5与直线x+y=3的交点坐标是(1,2),∴方程组253x yx y+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩【点睛】本题考查一次函数与二元一次方程(组),利用数形结合思想解题是关键.13.已知点M(a,1)与点N(﹣2,b)关于y轴对称,则a﹣b=____.【答案】1.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后计算即可得解.【详解】∵点M(a,1)与点N(-2,b)关于y轴对称,∴a=2,b=1,∴a-b=2-1=1.故答案为:1.【点睛】此题考查关于x轴、y轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.14.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要A类卡片_____张,B类卡片_____张,C类卡片_____张.【答案】2 1 1【分析】首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.【详解】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+1ab+b2,∵A图形面积为a2,B图形面积为b2,C图形面积为ab,∴需要A类卡片2张,B类卡片1张,C类卡片1张.故答案为:2;1;1.【点睛】本题考查了多项式与多项式的乘法运算的应用,正确列出算式是解答本题的关键.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.15.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________【答案】25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222AD BD++=25cm;=1520只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222=1025=529++cm;AD BD只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm ,在直角三角形ABC 中,根据勾股定理得:∴cm ;∵25<<,∴自A 至B 在长方体表面的连线距离最短是25cm .故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.16.若m 2+m-1=0,则2m 2+2m+2017=________________.【答案】1【分析】由题意易得21m m +=,然后代入求解即可.【详解】解:∵m 2+m-1=0,∴21m m +=,∴()2222201722017220172019m m m m ++=++=+=;故答案为1.【点睛】本题主要考查整式的化简求值,关键是利用整体代入法进行求解.17.小时候我们用肥皂水吹泡泡,其泡沫的厚度约0.0000065毫米,该厚度用科学记数法表示为_____毫米.【答案】66.510-⨯【分析】一个较小的数可表示为:10n a -⨯的形式,其中1≤10a <,据此可得结论.【详解】将0.0000065用科学记数法法表示,其中 6.5a =则原数变为6.5,小数点需要向右移动6为,故n=6故答案为:66.510-⨯【点睛】本题考查用科学记数法表示较小的数,需要注意,科学记数法还可以表示较大的数,形式为:10n a ⨯.三、解答题18.已知()2219m -=,()3127n +=.(1)若点P 的坐标为(),m n ,请你画一个平面直角坐标系,标出点P 的位置;(2)求出3m n +的算术平方根.【答案】 (1)P(2,2)或P(-1,2);(2) 22.【分析】(1)依据平方根的定义、立方根的定义可求得m 和n 的值,得到点P 的坐标,最后画出点P 的坐标;(2)分别代入计算即可.【详解】(1)2(21)9m -=,∴213m -=±,即213m -=或213m -=-,∴1221m m ==-,,∵()3127n +=, 13n +=,2n =,∴1(12P -,),2(22P ,); 所求作的P 点如图所示:(2)当22m n ==,时,33228m n +=⨯+=,8的算术平方根是2,当1m =-,2n =时,()33121m n +=⨯-+=-,1-没有算术平方根.所以3m+n 的算术平方根为:2.【点睛】本题考查了立方根与平方根的定义、坐标的确定,此题难度不大,注意掌握方程思想的应用,不要遗漏. 19.如图,在某一禁毒基地的建设中,准备再一个长为()65a b +米,宽为()5b a -米的长方形草坪上修建两条宽为a 米的通道.(1)求剩余草坪的面积是多少平方米?(2)若1a =,3b =,求剩余草坪的面积是多少平方米?【答案】(1)22101525a ab b -++;(2)1.【分析】(1)根据题意和图形,可以用代数式表示出剩余草坪的面积;(2)将1a =,3b =代入(1)中的结果,即可解答本题.【详解】(1)剩余草坪的面积是:22(65)(5)(55)(52)(101525)a b a b a a a b b a a ab b +---=+-=-++平方米;(2)当1,3a b ==时,22101525a ab b -++221011513253=-⨯+⨯⨯+⨯=1,即1,3a b ==时,剩余草坪的面积是1平方米.【点睛】本题主要考查整式的混合运算,根据题意列出代数式是解题关键.20.如图,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD=∠BCE=90°,点M 为DE 的中点,过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1),求证:M 为AN 的中点;(2)将图1中的△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE 绕点B 旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)△ACN 仍为等腰直角三角形,证明见解析.【分析】(1)由EN ∥AD 和点M 为DE 的中点可以证到△ADM ≌△NEM ,从而证到M 为AN 的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)同(2)中的解题可得AB=DA=NE,∠ABC=∠NEC=180°﹣∠CBN,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【详解】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∵MAD MNEADM NEMDM EM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△NEM(AAS).∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∵AB NEABC NECBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△NEC(SAS).∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN 仍为等腰直角三角形.证明如下:如图3,此时A 、B 、N 三点在同一条直线上.∵AD ∥EN ,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A 、B 、N 三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC .∵△ADM ≌△NEM (已证),∴AD=NE .∵AD=AB ,∴AB=NE .在△ABC 和△NEC 中,∵AB NE ABC NEC BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△NEC (SAS ).∴AC=NC ,∠ACB=∠NCE .∴∠ACN=∠BCE=90°.∴△ACN 为等腰直角三角形.【点睛】本题考查全等三角形的旋转问题,熟练掌握旋转的性质是解题的关键.21.如图 1,在平面直角坐标系中,直线l 1:y =-x +5与x 轴,y 轴分别交于A .B 两点.直线l 2:y =-4x +b 与l 1交于点 D(-3,8)且与x 轴,y 轴分别交于C 、E.(1)求出点A 坐标,直线l 2的解析式;(2)如图2,点P 为线段AD 上一点(不含端点),连接CP ,一动点Q 从C 出发,沿线段CP 以每秒1个单位的速度运动到点P ,再沿着线段PD以每秒2个单位的速度运动到点D 停止,求点Q 在整个运动过程中所用最少时间与点P 的坐标;(3)如图3,平面直角坐标系中有一点G(m ,2),使得S ∆CEG =S ∆CEB ,求点G 的坐标.【答案】(1)A (5,0),y =-4x-4;(2)8秒, P (-1,6);(3)1315G G ,244-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2,2,. 【分析】(1)根据l 1解析式,y=0即可求出点A 坐标,将D 点代入l 2解析式并解方程,即可求出l 2解析式 (2)根据OA=OB 可知ABO 和DPQ 都为等腰直角三角形,根据路程和速度,可得点Q 在整个运动过。

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。

梁平期末试卷初二数学答案

梁平期末试卷初二数学答案

一、选择题(每题3分,共30分)1. 如果a > b,那么下列哪个不等式一定成立?A. a + 1 > b + 1B. a - 1 > b - 1C. a 2 > b 2D. a / 2 > b / 2答案:A2. 下列哪个数是正数?A. -5B. 0C. 5D. -10答案:C3. 如果一个长方形的长是8厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 20B. 40C. 30D. 50答案:B4. 一个等腰三角形的底边长是10厘米,腰长是8厘米,那么这个三角形的周长是多少厘米?A. 24B. 26C. 28D. 30答案:B5. 下列哪个图形的面积可以用长乘宽计算?A. 圆B. 正方形C. 三角形D. 梯形答案:B6. 一个圆的半径是3厘米,那么它的直径是多少厘米?A. 6B. 9C. 3D. 1.5答案:A7. 下列哪个分数大于1/2?A. 1/3B. 2/3C. 1/4D. 1/5答案:B8. 一个数是另一个数的3倍,如果这两个数的和是30,那么这两个数分别是多少?A. 10, 20B. 15, 15D. 18, 12答案:C9. 下列哪个方程的解是x = 2?A. 2x + 3 = 7B. 3x - 2 = 5C. 4x + 1 = 9D. 5x - 3 = 7答案:A10. 下列哪个比例是正确的?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:4答案:C二、填空题(每题3分,共30分)11. 5 + 7 = ______,5 - 7 = ______,5 7 = ______,5 / 7 = ______答案:12, -2, 35, 5/712. 一个三角形的两边长分别是6厘米和8厘米,那么第三边长的取值范围是______ 到 ______ 厘米。

答案:2到1413. 下列图形中,是轴对称图形的是 ______。

重庆梁平县联考2019年数学八上期末教学质量检测试题

重庆梁平县联考2019年数学八上期末教学质量检测试题

重庆梁平县联考2019年数学八上期末教学质量检测试题一、选择题1.用A,B两个机器人搬运化工原料,A机器人比B机器人每小时多搬运30kg,A机器人搬运900kg所用时间与B机器人搬运600kg所用时间相等,设A机器人每小时搬运xkg化工原料,那么可列方程()A.900x=6003x-B.9003x+=600xC.60030x+=900xD.9003x-=600x2.已知a=2﹣2,b=﹣1)0,c=(﹣1)9,则a,b,c的大小关系是( ) A.a>b>c B.b>a>c C.c>a>b D.b>c>a3.若x=4是分式方程213ax x-=-的根,则a的值为()A.6B.-6C.4D.-44.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则△ABC是()A.直角三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.等腰直角三角形5.计算(x﹣y+z)(x+y﹣z)的正确结果为( )A.x2﹣y2+2xy﹣z2 B.x2﹣2xy+y2﹣z2C.x2+2xy+y2﹣z2 D.x2+y2﹣2xy+z26.脐橙是宁都县“兴国富民”的一项支柱产业.全县脐橙种植面积达14.3万亩,产量9万吨,有几个3万亩连片脐橙基地,30个千亩连片基地.种植面积14.3万用科学记数法表示为()A.14.3×104 B.1.43×104 C.1.43×105 D.0.143×1067.已知△ABC 在平面直角坐标系中,将△ABC 的三个顶点的纵坐标保持不变,横坐标都乘以-1,得到△A1B1C1,则下列说法正确的是( )A.△ABC 与△A1B1C1关于 x 轴对称B.△ABC 与△A1B1C1关于 y 轴对称C.△A1B1C1是由△ABC 沿 x 轴向左平移一个单位长度得到的D.△A1B1C1是由△ABC 沿 y 轴向下平移一个单位长度得到的8.悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是 ( )A.B.C.D.9.已知下列命题:①过一点有且只有一条直线与已知直线平行;②同旁内角互补;③等腰三角形的高线、角平分线、中线互相重合;④如果一个数的平方等于这个数本身,那么这个数一定是0;其中假命题的个数为()A.1个B.2个C.3个D.4个10.已知△ABC≌△DEF,BC=EF=6cm,△ABC面积为18cm2,则EF边上的高是( ).A.3cmB.4cmC.5cmD.6cm11.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于点D,垂足为点E,连接AD,若AD 平分∠CAB,BC=6,则BD的长为()A .2B .3C .4D .5 12.如图,在中,=55°,,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接,则的度数为( )A. B. C. D.13.如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线AD 交BC 于点D ,DE ⊥AB 于点E ,若CD =4,则DE 的长为( )A.2B.3C.4D.514.将一副三角板按图中方式叠放,则角α等于( )A.30°B.45°C.60°D.75°15.七边形的七个内角与它的一个外角的度数和可能是( )A .800° B.900° C.1000° D.1100°二、填空题16.分式()231214322x y xy x y x x y---,,的最简公母为________________. 17.分解因式:4a 2-4a+1=______.18.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_____°.19.把一副三角板按如图所示的方式放置,则图中钝角α是______o .20.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k .若2k =,则该等腰三角形的顶角为______________度.三、解答题21.计算:221001001113(0.25)4236-⎛⎫⎛⎫-+-⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭22.计算:2255574457⨯-⨯.23.已知ABC ∠及其边BC 上一点D .在ABC ∠内部求作点P ,使点P 到ABC ∠两边的距离相等,且到点B ,D 的距离相等.24.如图,已知 BC ∥EF ,BC=EF ,AF=DC .试证明:AB=DE .25.如图,点O 为直线AB 上的一点,BOC 42∠=,COE 90∠=,且OD 平分AOC ∠,求AOE ∠和DOE ∠的度数.【参考答案】***一、选择题16.()212x y y x - 17.2(21)a -18.135°19.10520.90三、解答题21.-222.77000023.见解析.【解析】【分析】由点P 到∠ABC 两边的距离相等知点P 在∠ABC 平分线上,由点P 到点B ,D 的距离相等知点P 在线段BD中垂线上,两者的交点即为所求.【详解】解:如图所示,点P 即为所求.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握角平分线和线段垂直平分线的性质.24.证明见解析【解析】【分析】首先根据平行线的性质可得∠BCA=∠EFD ,再根据AF=DC 可得AC=DF ,然后可以证明△ABC ≌△DEF ,再根据全等三角形的性质可得AB=DE .【详解】∵BC ∥EF (已知),∴∠BCA=∠EFD ( 两直线平行,内错角相等)∵AF=DC (已知),∴AF+FC=DC+FC ,即 AC=DF .在△ABC 和△DEF 中,∵()()()BC EF BCA EFD AC DF ⎧=⎪∠=∠⎨⎪=⎩已知已证已证,∴△ABC ≌△DEF ( SAS ),∴AB=DE ( 全等三角形的对应边相等).【点睛】全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS 、ASA 、SAS 、AAS .25.DOE 21∠=,AOE 48∠=.。

初二数学期末考试试卷梁平

初二数学期末考试试卷梁平

一、选择题(每题2分,共20分)1. 下列数中,有理数是()A. √2B. πC. -3/5D. 2√52. 下列各数中,绝对值最小的是()A. -3B. -2C. 1D. 03. 若a、b是实数,且a+b=0,则下列等式正确的是()A. a²+b²=0B. a²-b²=0C. a²-b²=-2abD. a²-b²=2ab4. 下列图形中,中心对称图形是()A. 等边三角形B. 等腰梯形C. 正方形D. 菱形5. 若a、b是方程x²-2ax+a²-1=0的两根,则a+b的值是()A. 2B. 1C. 0D. -16. 若∠A=∠B,且∠A=60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°7. 下列函数中,一次函数是()A. y=2x+3B. y=3x²-2x+1C. y=x³+1D. y=x+√x8. 若等差数列的前三项分别是1,2,3,则第四项是()A. 4B. 5C. 6D. 79. 下列方程中,有唯一解的是()A. 2x+3=5B. 2x+3=5xC. 2x+3=5x+1D. 2x+3=5x-110. 若m、n是方程x²-2x+m=0的两根,则下列等式正确的是()A. m+n=2B. mn=1C. m²+n²=2D. m²+n²=2mn二、填空题(每题2分,共20分)11. 2的平方根是________,3的立方根是________。

12. 若a=√2,b=-√2,则a+b=________,a²+b²=________。

13. 下列图形中,轴对称图形是________,中心对称图形是________。

14. 若等腰三角形的底边长为6cm,腰长为8cm,则顶角是________度。

重庆市梁平区2018-2019学年八年级(上)期末数学试卷

重庆市梁平区2018-2019学年八年级(上)期末数学试卷

2018-2019学年八年级(上)期末数学试卷一.选择题(共12小题)1.计算的结果为()A.±B.﹣C.D.2.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,123.下列各组数中,互为相反数的是()A.﹣3与B.|﹣3|与﹣C.|﹣3|与D.﹣3与4.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好).如表为我国某几年生活质量统计表:下列说法正确的是()A.生活质量稳步提高B.生活质量逐步下降C.生活质量有升有降D.生活质量稳定不变5.计算(x+3)(x﹣3)的结果是()A.x2﹣9 B.x2﹣3 C.x2﹣6 D.9﹣x26.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点7.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′8.化简时,甲的解法是:==,乙的解法是:==,以下判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确9.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定10.已知多项式ax2+bx+c因式分解的结果为(x﹣1)(x+4),则abc为()A.12 B.9 C.﹣9 D.﹣1211.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么其中一个直角三角形的两直角边的和等于()A.24 B.10 C.2D.212.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1 B.264﹣2 C.264+1 D.264+2二.填空题(共6小题)13.0.04的平方根是.14.如图,△ABC≌△AED,若AB=AE,∠1=27°,则∠2=度.15.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是吨.16.分解因式:x2﹣3x﹣4=.17.将4个数a,b,c,d,排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若=20,则x=.18.如图,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于点N,若AD=2,则CH 的长为.三.解答题(共8小题)19.计算:()2﹣(﹣1)+20.已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.21.化简求值.(2a+1)2﹣(2a﹣1)(2a+1),其中a=﹣.22.如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.(1)求AC的长.(2)求图中着色部分的面积.23.某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.24.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.25.有这样一对数:一个数的数字排列完全颠倒过来就变成另一个数,简单地说就是顺序相反的两个数,我们把这样的一对数互称为反序数.比如:123的反序数是321,4056的反序数是6504.根据以上阅读材料,回答下列问题:(1)已知一个三位数,其数位上的数字为连续的三个自然数,求证:原三位数与其反序数之差的绝对值等于198;(2)若一个两位数与其反序数之和是一个完全平方数,求满足上述条件的所有两位数.26.等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上的一点,连接CF,过点B作BH⊥CF交CF于G,交AC于H.(1)如图1,延长BH到点E,连接AE,当∠EAB=90°,AE=3,求BF的长;(2)如图2,若F为AB的中点,连接FH,求证:BH+FH=CF;(3)如图3,在AB上取点K,使AK=BF,连接HK并延长与CF的延长线交于点P,若G 为CP的中点,PG=2.求AH+BH的值(直接写出答案)。

(汇总3份试卷)2019年重庆市八年级上学期数学期末统考试题

(汇总3份试卷)2019年重庆市八年级上学期数学期末统考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【分析】∵a+b+c=0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定也无需确定).a <0,则函数y=ax+c 图象经过第二四象限,c >0,则函数y=ax+c 的图象与y 轴正半轴相交, 观察各选项,只有A 选项符合.故选A.【详解】请在此输入详解!2.下列各组数为勾股数的是( )A .6,12,13B .3,4,7C .8,15,16D .5,12,13【答案】D【解析】A 选项:62+122≠132,故此选项错误;B 选项:32+42≠72,故此选项错误;C 选项:因为82+152≠162,故此选项错误;D 选项:52+122=132,故此选项正确.故选D .【点睛】一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.3.若m >n ,下列不等式不一定成立的是( )A .m+2>n+2B .2m >2nC .>D .m 2>n 2 【答案】D【解析】试题分析:A 、不等式的两边都加2,不等号的方向不变,故A 正确;B 、不等式的两边都乘以2,不等号的方向不变,故B 正确;C 、不等式的两条边都除以2,不等号的方向不变,故C 正确;D 、当0>m >n 时,不等式的两边都乘以负数,不等号的方向改变,故D 错误;故选D .【考点】不等式的性质.4.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A 【分析】根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.5.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( ) A .4B .5C .6D .7【答案】B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案. 【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式①得:53x -解不等式②得:x <5,∴不等式组的解集为553x -< ∴不等式组的非负整数解为0,1,2,3,4,共5个,故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键.6.下列二次根式,最简二次根式是( )A.B.C.D.【答案】C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【答案】A【分析】先根据角平分线的定义∠DCE=∠DCA,∠DBC=∠ABD=37.5°,再根据三角形外角性质得∠=,再根据三角形内角和定理代入计算即可求解.BCD127.5︒【详解】解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.【点睛】根据这角平分线的定义、根据三角形外角性质、三角形内角和定理知识点灵活应用8.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③【答案】A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A .【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键. 9.下列计算正确的是( )A .a 2•a 3=a 5B .(2a )2=4aC .(ab )3=ab 3D .(a 2)3=a 5【答案】A【分析】根据同底数幂的乘法、积的乘方和幂的乘方逐一判断即可.【详解】A . a 2•a 3= a 2+3=a 5,故正确;B .(2a )2=4a 2,故错误;C .(ab )3=a 3b 3,故错误;D .(a 2)3=a 6,故错误.故选A .【点睛】此题考查的是幂的运算性质,掌握同底数幂的乘法、积的乘方和幂的乘方是解决此题的关键. 10.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是高,30A ∠=︒,2BD cm =,则AB 的长为( )A .10cmB .8cmC .6cmD .4cm【答案】B 【分析】根据同角的余角相等可得∠BCD=∠A=30°,然后根据30°所对的直角边是斜边的一半即可依次求出BC 和AB .【详解】解:∵90ACB ∠=︒,CD 是高∴∠ACB=∠ADC=90°∴∠BCD +∠ACD=∠A +∠ACD=90°∴∠BCD=∠A=30°在Rt △BCD 中,BC=2BD=4cm在Rt △ABC 中,AB=2BC=8cm故选B .【点睛】此题考查的是余角的性质和直角三角形的性质,掌握同角的余角相等和30°所对的直角边是斜边的一半是解决此题的关键.二、填空题11.因式分解:3a a -=_________.【答案】()()11a a a +-【分析】3a a -提取公因式a 得()21a a -,利用平方差公式分解因式得()()11a a a +-. 【详解】解:3a a -=()21a a -=()()11a a a +-, 故答案为:()()11a a a +-.【点睛】本题考查了因式分解,掌握提公因式法和平方差公式是解题的关键.12.如图,在平面直角坐标系中,一次函数y =2x ﹣4的图象分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是_____.【答案】y =13x ﹣1 【分析】根据已知条件得到A (2,0),B (0,﹣1),求得OA =2,OB =1,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E ,得到AB =AF ,根据全等三角形的性质得到AE =OB =1,EF =OA =2,求得F (6,﹣2),设直线BC 的函数表达式为:y =kx+b ,解方程组于是得到结论.【详解】解:∵一次函数y =2x ﹣1的图象分别交x 、y 轴于点A 、B ,∴令x =0,得y =﹣1,令y =0,则x =2,∴A (2,0),B (0,﹣1),∴OA =2,OB =1,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E ,∵∠ABC =15°,∴△ABF 是等腰直角三角形,∴AB =AF ,∵∠OAB+∠ABO =∠OAB+∠EAF =90°,∴∠ABO =∠EAF ,∴△ABO ≌△FAE (AAS ),∴AE =OB =1,EF =OA =2,∴F(6,﹣2),设直线BC的函数表达式为:y=kx+b,∴624k bb+=-⎧⎨=-⎩,解得134kb⎧=⎪⎨⎪=-⎩,∴直线BC的函数表达式为:y=13x﹣1,故答案为:y=13x﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.13.已知:如图,点E F、分别在等边三角形ABC的边CB AC、的延长线上,,BE CF FB=的延长线交AE于点G,则AGB∠=_______.【答案】60【分析】利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=BC,∠ABE=∠BCF=120°,然后结合已知条件可证△ABE≌△BCF,得到∠E=∠F,因为∠F+∠CBF=60°,即可求出AGB∠得度数. 【详解】解:∵△ABC是等边三角形,∴AB=BC∴∠ACB=∠ABC=60º,∴∠ABE=∠BCF=120°,在△ABE和△BCF中,AB BCABE BCFBE CF=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△BCF (SAS);∴∠E=∠F,∵∠GBE=∠CBF ,∠F+∠CBF=60°∴AGB ∠=∠GBE+∠B=60°,故答案为60°.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.14.如图,等腰直角ABC ∆中,AC BC =,90ACB ∠=︒D 为BC 的中点,4=AD ,P 为AB 上的一个动点,当P 点运动时,PC PD +的最小值为____【答案】4【分析】作点C 关于AB 的对称点C ′,连接DC ′、BC ′,连接DC ′交AB 于点P ,由轴对称的性质易得EC=EC ′,则线段DC ′的长度即为PC+PD 的最小值, 由等腰直角三角形的性质易得∠CBC ′=∠CBA+∠C ′BA=90︒,在Rt △DBC ′中,利用勾股定理即可求得线段DC ′的长度,问题便可得以解决.【详解】∵AC BC =,90ACB ∠=︒D 为BC 的中点,4=AD ,∴设CD=x ,则AC=2x ,∴x 2+(2x)2=42解得45∴4585 如图所示,作点C 关于AB 的对称点C ′,连接DC ′、BC ′,连接DC ′交AB 于点E.∵点C 和点C ′关于AB 对称,∴PC=PC ′,∠CBA=∠C ′BA ,∴PC+PD=PC ′+PD=DC ′,此时PC+PD 的长最小.∵△ABC 是等腰直角三角形,AC=BC ,∴∠CBC ′=∠CBA+∠C ′BA=45︒+45︒=90︒.∴在Rt △DBC ′中,由勾股定理得DC ′=22'BC BD +228545455⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴PC+PD 的最小值为4.故答案为:4.【点睛】此题主要考查轴对称的性质,解题的关键是熟知等腰三角形的性质及勾股定理的应用.15.如图,AB=AD,要证明△ABC与△ADC全等,只需增加的一个条件是______________【答案】DC=BC(答案不唯一)【分析】要说明△ABC≌△ADC,现有AB=AD,公共边AC=AC,需第三边对应相等,于是答案可得.【详解】解:∵AB=AD,AC=AC∴要使△ABC≌△ADC可利用SSS判定,故添加DC=BC(答案不唯一).故答案为:BC=DC,(答案不唯一).【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.16.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,6.现将△DEF与△ABC 按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C 重合),边DE始终经过点A,EF与AC交于点M.在△DEF运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【分析】分若AE =AM 则∠AME =∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;【详解】解:①若AE =AM 则∠AME =∠AEM =45°∵∠C =45°∴∠AME =∠C又∵∠AME >∠C∴这种情况不成立;②若AE =EM∵∠B =∠AEM =45°∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°∴∠BAE =∠MEC在△ABE 和△ECM 中,B BAE CEN AE EIIC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ECM (AAS ),∴CE =AB 6,∵AC =BC 2AB =3∴BE =36;③若MA =ME 则∠MAE =∠AEM =45°∵∠BAC =90°,∴∠BAE =45°∴AE 平分∠BAC∵AB =AC ,∴BE =12BC =3 故答案为363【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.17.已知一个样本:98,99,100,101,1.那么这个样本的方差是_____.【答案】2【分析】根据方差公式计算即可.方差S 2=1n [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]. 【详解】解:这组样本的平均值为x =15(98+99+100+101+1)=100 S 2=15[(98﹣100)2+(99﹣100)2+(100﹣100)2+(101﹣100)2+(1﹣100)2]=2 故答案为2.【点睛】本题考查方差的定义.一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2],它反映了一组数据的波动大小,方差越大,波动性越大,三、解答题18.先化简,再求值:[(x ﹣2y )2﹣(x +y )(x ﹣y )+5xy ]÷y ,其中x =﹣2,y =1.【答案】5y +x ,2.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=2222445x y xy x y xy y +++⎡⎤-⎣⎦÷-=()25y xy y +÷=5y x +, 当21x y =-,=时, 原式=523-=【点睛】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式. 19.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,其中AB AC =,AE AD =,90BAC EAD ∠=∠=︒,45ABC ACB AED ADE ∠=∠=∠=∠=︒,B 、C 、E 在同一条直线上,连结DC .(1)请在图2中找出与ABE ∆全等的三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.【答案】(1)与ABE ∆全等的三角形为△ACD ,理由见解析;(2)见解析【分析】(1)根据等式的基本性质可得∠BAE=∠CAD ,然后利用SAS 即可证出ABE ∆≌△ACD ; (2)根据全等三角形的性质和已知条件可得∠ABE=∠ACD=45°,从而求出∠DCB=90°,然后根据垂直的定义即可证出结论.【详解】解:(1)与ABE ∆全等的三角形为△ACD ,理由如下∵90BAC EAD ∠=∠=︒∴∠BAC +∠CAE=∠EAD +∠CAE∴∠BAE=∠CAD在ABE ∆和△ACD 中AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴ABE ∆≌△ACD(2)∵ABE ∆≌△ACD ,45ABC ACB AED ADE ∠=∠=∠=∠=︒∴∠ABE=∠ACD=45°∴∠DCB=∠ACD +∠ACB=90°∴DC BE ⊥【点睛】此题考查的是全等三角形的判定及性质和垂直的判定,掌握利用SAS 判定两个三角形全等、全等三角形的对应角相等和垂直的定义是解决此题的关键.20.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.【答案】(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.21.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.【答案】见解析(2)∠EBC=25°【分析】(1)根据AAS 即可推出△ABE 和△DCE 全等.(2)根据三角形全等得出EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入求出即可【详解】解(1)证明:∵在△ABE 和△DCE 中,A D{AEB DEC AB DC∠=∠∠=∠=,∴△ABE ≌△DCE (AAS )(2)∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°22.已知322x =-,求代数式2623x x x -+-的值. 2【分析】先将x 进行化简,然后再代入求值即可. 【详解】解:()()322322322322322x +===+--+原式=))2322632223223+-+++-=9122818122222++--+=22=2.【点睛】本题考查二次根式的化简与计算,掌握化简方法及运算法则是解题关键.23.阅读材料:“直角三角形如果有一个角等于30,那么这个角所对的边等于斜边的一半”,即“在ABC∆中,90,30∠=︒∠=︒C A,则12BC AB=”.利用以上知识解决下列问题:如图,已知060A B C∠=︒,是AOB∠的平分线上一点.(1)若2,OC MCN=∠与射线,OA OB分别相交于点,M N,且120MCN∠=︒.①如图1,当CM OA⊥时,求证:23OM ON+=;②当OM ON=时,求OM ON+的值.(2)若MCN∠与射线OB的反向延长线、射线OA分别相交于点,N M,且120MCN∠=︒,请你直接写出线段,,OM ON OC三者之间的等量关系.【答案】(1)①证明见解析;②23OM ON+=;(2)3OC【分析】(1)①根据题意证明CNO=90°及∠COM=∠CON=30°,可利用题目中信息得到OM=ON,再利用勾股定理即可解答;②证明△COM≌CON,得到∠CMO=∠CNO=90°,再利用①中结论即可;(2)根据题意作出辅助线,再证明△MCE≌△NCF(ASA),得到NF=ME,由30°直角三角形的性质得到2213()22OC OC-=,进而得到3OC即可.【详解】(1)①证明:∵CM⊥OA,∴∠CMO=90°,∵60AOB ∠=︒,∠MCN=120°,∴∠CNO=360°-∠CMO-∠AOB-∠MCN=90°,∵C 是∠AOB 平分线上的一点,∴CM=CN ,∠COM=∠CON=30°,∵OC=2,∴CM=CN=1,由勾股定理可得:=,∴OM ON +=②当OM ON =时,∵OC 是∠AOB 的平分线,∴∠COM=∠CON=30°,在△COM 与CON 中OM ON COM CON OC OC =⎧⎪∠=∠⎨⎪=⎩∴△COM ≌CON (SAS )∴∠CMO=∠CNO∵∠AOB=60°,∠MCN=120°,∴∠CMO+∠CNO=360°-60°-120°=180°∴∠CMO=∠CNO=90°,又①可知OM ON +=(2)如图所示,作CE ⊥OA 于点E ,作CF⊥OB 于点F ,∵∠AOB=60°,∴∠ECF=120°,又∵∠MCN=120°,∴∠MCE+∠ECN=∠NCF+∠ECN∴∠MCE=∠NCF∵OC 是∠AOB 的平分线,∴∠COM=∠CON=30°,CE=CF∴在△MCE 与△NCF 中,MCE NCF CE CFMEC NFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCE ≌△NCF (ASA )∴NF=ME又∵△OCE ≌△OCF ,∠COM=∠CON=30°,∴CE=CF=12OC ∴OE=OF=2213()22OC OC OC -=∴OM-OE=ON+OF ,∴OM-ON=OE+OF=3OC ,故答案为:OM-ON=3OC【点睛】本题考查了含30°直角三角形的性质、勾股定理的计算以及全等三角形的性质与判定,解题的关键是熟知含30°直角三角形的性质并灵活构造全等三角形.24.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出A 1、B 1、C 1的坐标.(2)将△ABC 向右平移6个单位,画出平移后的△A 2B 2C 2;(3)观察△A 1B 1C 1和△A 2B 2C 2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.【答案】(1)图详见解析,A 1、B 1、C 1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A 1B 1C 1和△A 2B 2C 2关于直线x =3对称.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)如图,△A2B2C2为所作;(3)△A1B1C1和△A2B2C2关于直线x=3对称,如图.【点睛】本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.25.如图所示,已知在△ABC中,AB=AC,BD和CE分别是∠A BC和∠ACB的角平分线,且BD和CE相交于O点.(1)试说明△OBC是等腰三角形;(2)连接OA,试判断直线OA与线段BC的关系,并说明理由.【答案】(1)详见解析;(2)直线AO垂直平分BC【分析】(1)根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;(2)首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【详解】(1)∵在△ABC中,AB=AC,∴∠ABC=∠BCA,∵ BD、CE分别平分∠ABC、∠BCA,∴∠ABD=∠CBD ,∠ACE=∠BCE,∴∠OBC=∠BCO,∴ OB=OC,∴△OBC为等腰三角形;(2)在△AOB与△AOC中,∵{AB AC AO AO BO CO===,∴△AOB≌△AOC(SSS),∴∠BAO=∠CAO,∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)【点睛】此题考查了等腰三角形的性质,综合利用了全等三角形的判定和角平分线的定义,对各知识点要能够熟练运用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点A'(2,﹣3)可以由点A (﹣2,3)通过两次平移得到,正确的是( ) A .先向左平移4个单位长度,再向上平移6个单位长度B .先向右平移4个单位长度,再向上平移6个单位长度C .先向左平移4个单位长度,再向下平移6个单位长度D .先向右平移4个单位长度,再向下平移6个单位长度【答案】D【解析】利用点A 与点'A 的横纵坐标的关系确定平移的方向和平移的距离即可.【详解】把点()2,3A -先向右平移4个单位,再向下平移6个单位得到点()A'2,3-.故选D .【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.掌握平移规律是解题的关键.2.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )A .3,-1B .1,-3C .-3,1D .-1,3 【答案】A【分析】根据题意可得方程组2127a b a b +=⎧⎨-=⎩,再解方程组即可. 【详解】由题意得:2127a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=-⎩, 故选A . 3.若13x x +=,则21x x x ++的值是 ( ) A .14 B .12 C .3 D .6【答案】A【分析】将分式的分子和分母同时除以x ,然后利用整体代入法代入求值即可. 【详解】解:21x x x ++ =()21x x x x x ÷++÷=111x x++=111x x ++ 将13x x+=代入,得 原式=11314=+ 故选A .【点睛】此题考查的是分式的化简求值题,掌握分式的基本性质是解决此题的关键.4.已知关于x 的不等式2x -m >-3的解集如图所示,则m 的取值为( )A .2B .1C .0D .-1 【答案】D【分析】本题是关于x 的不等式,应先只把x 看成未知数,求得x 的解集,再根据数轴上的解集,来求得a 的值.【详解】2x >m−3,解得x >32m -, ∵在数轴上的不等式的解集为:x >−2,∴32m -=−2, 解得m =−1;故选:D .【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.5.下列各式中,正确的有( )A .325a a a +=B .3262?2a a a =C .()236-24a a =D .a 8÷a 2=a 4【答案】C【分析】A.根据合并同类项法则,a 3与a 2不是同类项不能合并即可得A 选项不正确;B.根据同底数幂乘法法则,即可得B 选项不正确;C.根据积的乘方与幂的乘方,C 选项正确;D.根据同底数幂除法,底数不变,指数相减即可得D 选项不正确.【详解】解:A. 32a a 、不是同类项,不能合并,故A 选项不正确;B. 3252?2a a a =,故B 选项不正确;C. ()23624a a -=,故C 选项正确;D. a 8÷a 2=a 6, 故D 选项不正确.故选:C .【点睛】本题考查了合并同类项、同底数幂乘除法、幂的乘方和积的乘方,解决本题的关键是熟练运用这些法则. 6. “十一”旅游黄金周期间,几名同学包租一辆面包车前往“红螺寺”游玩,面包车的租价为180元,出发时,又增加了2名学生,结果每个同学比原来少分担3元车费,原参加游玩的同学为x 人,则可得方程( ) A .180x -180+2x =3 B .180+2x -180x =3; C .180x -1802x -=3 D .1802x --180x=3 【答案】A【分析】根据“每个同学比原来少分担3元车费”列出分式方程即可.【详解】解:由题意可得180x -180+2x =3 故选A .【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.7.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个【答案】A 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰△ABC 底边;②AB 为等腰△ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角△ABC 底边时,符合条件的C 点有2个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有4个.故选:C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.8.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个【答案】A 【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数.【详解】解:当AB 为底时,作AB 的垂直平分线,可找出格点C 的个数有5个,当AB 为腰时,分别以A 、B 点为顶点,以AB 为半径作弧,可找出格点C 的个数有3个;∴这样的顶点C 有8个.故选A .【点睛】本题考查了等腰三角形的判定,解题的关键是画出图形,利用数形结合解决问题.9.解分式方程22311x x x++=--时,去分母后变形正确的是( ) A .()()2231x x ++=-B .()2231x x -+=-C .()223x -+=D .()()2231x x -+=-【答案】D 【分析】分式方程去分母转化为整式方程,即可作出判断. 【详解】解:方程变形得22311x x x +-=-- 去分母得:()()2231x x -+=-故选:D【点睛】此题考查了解分式方程,利用了转化的思想,注意去分母时不要漏乘.10.下面计算正确的是( )A .33645x x x +=B .236a a a ⋅=C .()4312216x x -=D .()()22222x y x y x y +-=- 【答案】C【解析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=35x ,错误;B.原式=5a ,错误;C.原式=1216x ,正确;D.原式=224x y -,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.二、填空题11.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.【答案】13【分析】根据12•BC•AH =12•AB•AC ,可得AH ,根据 12AD•BO =12BD•AH ,得OB ,再根据BE =2OB ,运用勾股定理可得EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB =2, ∵12•BC•AH =12•AB•AC ,∴AH =13, ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE , ∵12AD•BO =12BD•AH ,∴OB =13,∴BE =2OB , ∵DE =DB=CD ,∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°,∴在Rt △BCE 中,EC =..【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π 【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.13.16的平方根是 .【答案】±1.【详解】由(±1)2=16,可得16的平方根是±1.14.已知点(2,4)A a b +-,点(3,2)B a b -关于x 轴对称,点(,)a b 在第___________象限.【答案】四【分析】关于x 轴对称,则横坐标相等,纵坐标互为相反数,求出a ,b 的值即可.【详解】已知点(2,4)A a b +-,点(3,2)B a b -关于x 轴对称,则2+b 3420a ab =⎧⎨-+-=⎩, 解得21a b =⎧⎨=-⎩,则点(,)a b 在第四象限. 【点睛】本题是对坐标关于x 轴对称的考查,熟练掌握二元一次方程组是解决本题的关键.15.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.【答案】()3,1-【分析】过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .先证明AOD COE BCF ∆∆∆≌≌,得到1AD CE BF ===,2OD OE CF ===,根据点的坐标定义即可求解.【详解】解:如图,过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .()2,1C --,2OE ∴=,1CE =.四边形OABC 是正方形,OA OC BC ∴==.易求AOD COE BCF ∠=∠=∠.又90ODA OEC F ∠=∠=∠=︒∴AOD COE BCF ∆∆∆≌≌,1AD CE BF ∴===,2OD OE CF ===,∴点A 的坐标为()1,2-,211EF =-=,点B 到y 轴的距离为123+=,∴点B 的坐标为()3,1-.故答案为:()3,1-【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.16.如图,已知,BE AE CF AD ⊥⊥,且BE CF =,那么AD 是ABC ∆的________(填“中线”或“角平分线”或“高”) .【答案】中线【分析】通过证明BDE CDF ≌,可得BD CD =,从而得证AD 是ABC ∆的中线.【详解】∵,BE AE CF AD ⊥⊥∴90E DFC ∠=∠=︒∵BDE CDF ∠=∠,BE CF =∴BDE CDF ≌∴BD CD =∴AD 是ABC ∆的中线故答案为:中线.【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.17.如图所示,已知△ABC 和△BDE 均为等边三角形,且A 、B 、E 三点共线,连接AD 、CE ,若∠BAD=39°,那么∠AEC= 度.【答案】21【分析】根据△ABC 和△BDE 均为等边三角形,可得∠ABC=∠DBE=60°,AB=BC,BE=BD,由此证明∠CBD=60°,继而得到∠ABD=∠CBE=120°,即可证明△ABD ≌△CBE ,所以∠ADB=∠AEC ,利用三角形内角和代入数值计算即可得到答案.【详解】解:∵△ABC 和△BDE 均为等边三角形,。

重庆市2018-2019学年第一学期期末考试八年级数学试题(解析版)

重庆市2018-2019学年第一学期期末考试八年级数学试题(解析版)

重庆市2018-2019学年第一学期期末考试八年级数学试题一、选择题(本大题共10小题,共40.0分)1.下列汽车标志的图形是中心对称图形的是()A. B.C. D.【答案】C【解析】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.故选:C.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知a>b,则下列不等式中,不成立的是()A. a+3>b+3B. 23a>23b C. −3a>−3b D. 5a>5b【答案】C【解析】解:A、由a>b,可得a+3>b+3,成立;B、由a>b,可得23a>23b,成立;C、由a>b,可得−3a<−3b,此选项不成立;D、由a>b,可得5a>5b,成立;故选:C.由不等式的性质进行计算并作出正确的判断.考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3. 下列各式从左边到右边的变形,是因式分解的是( )A. ab +ac +d =a(b +c)+dB. a 2−1=(a +1)(a −1)C. (a +b)2=a 2+2ab +b 2D. a 2b =ab ⋅a【答案】B【解析】解:A 、ab +ac +d =a(b +c)+d ,不符合因式分解的定义,故此选项错误;B 、a 2−1=(a +1)(a −1),正确;C 、(a +b)2=a 2+2ab +b 2,是多项式乘法,故此选项错误;D 、a 2b =ab ⋅a ,不符合因式分解的定义,故此选项错误; 故选:B .直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的定义,正确把握定义是解题关键.4. 把不等式组{−x >0x+1≤0的解集表示在数轴上,正确的是() A.B.C.D.【答案】A【解析】解:{−x >0 ②x+1≤0 ①,由①解得:x ≤−1, 由②解得:x <0,∴不等式组的解集为x ≤−1, 表示在数轴上,如图所示:.故选:A .求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.此题考查了在数轴表示不等式的解集,以及解一元一次不等式组,求出不等式组的解集是解本题的关键.5. 甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示: 选手 甲乙丙丁方差1.752.930.500.40则在这四个选手中,成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.先比较四个选手的方差的大小,根据方差的性质解答即可.本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A. x<3B. x>32C. x<32D. x>3【答案】C【解析】解:把x=m,y=3代入y=2x,解得:m=1.5,当x<1.5时,2x<ax+4,即不等式2x<ax+4的解集为x<1.5.故选:C.观察图象,写出直线y=2x在直线y=ax+4的下方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.等腰三角形一底角平分线与另一腰所成锐角为75∘,则等腰三角形的顶角大小为()A. 70∘B. 40∘C. 70∘或50∘D. 40∘或80∘【答案】D【解析】解:如图1,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠C,∵∠BDC=75∘,∴∠BDC+∠C+75∘=32∠C+75∘=180∘,∴∠C=70∘,∴∠A=40∘,如图2,∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠C,∵∠BDA=75∘,∴∠BDC=105∘,∴∠BDC+∠C+105∘=32∠C+105∘=180∘,∴∠C=50∘,∴∠A=180∘−50∘−50∘=80∘,∴等腰三角形的顶角大小为40∘或80∘,故选:D.根据等腰三角形的性质得到∠ABC=∠C,根据角平分线的定义得到∠CBD=1 2∠ABC=12∠C,根据三角形的内角和列方程即可得到结论.本题考查了三角形的内角和,等腰三角形的性质,正确的画出图形是解题的关键.8.已知正比例函数y=kx(k≠0)的图象如图所示,则一次函数y=k(1−x)的图象为()A. B.C. D.【答案】D【解析】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=k(1−x)的一次项系数大于0,常数项小于0,∴一次函数y=k(1−x)的图象经过第一、三象限,且与y轴的负半轴相交.故选:D.根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=k(1−x)的图象经过第一、三象限,且与y轴的负半轴相交.本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,在平面直角坐标系中,函数y=2x和y=−x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标是()A. (21008,21009)B. (−21008,−21009)C. (21009,21010)D. (−21009,−21010)【答案】A【解析】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=−x=2时,x=−2,∴点A2的坐标为(−2,2);同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).∵2017=504×4+1,∴点A2017的坐标为(2504×2,2504×2+1),即(21008,21009).故选:A.写根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=504×4+1即可找出点A2017的坐标.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律“A 4n+1(22n ,22n+1),A 4n+2(−22n+1,22n+1),A 4n+3(−22n+1,−22n+2),A 4n+4(22n+2,−22n+2)(n 为自然数)”是解题的关键.10. 若关于x 的不等式组{x −2≤03x−k>0有且只有四个整数解,且一次函数y =(k +1)x +k +5的图象不经过第三象限,则符合题意的整数k 的和为()A. −15B. −11C. −9D. −5【答案】C【解析】解:解不等式组{x −2≤0 ②3x−k>0 ①得,k3<x ≤2,∵不等式组有且只有四个整数解, ∴其整数解为:−1,0,1,2, ∴−2≤k3<−1,即−6≤k <−3.∵一次函数y =(k +1)x +k +5的图象不经过第三象限, ∴{k +5>0k+1<0,解得−5<k <−1, ∴−5<k <−1,∴k 的整数解有−4,−3,−2. 符合题意的整数k 的和为−9, 故选:C .根据关于x 不等式组{x −2≤03x−k>0有且只有四个整数解得出k 的取值范围,再由一次函数y =(k +1)x +k +5的图象不经过第三象限得出k 取值范围,再找出其公共解集即可.本题考查的是一次函数与一元一次不等式,熟知“同,大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共10小题,共40.0分)11. 函数y =√x +1中,自变量x 的取值范围是______. 【答案】x ≥−1【解析】解:由题意得,x +1≥0, 解得x ≥−1. 故答案为:x ≥−1.根据被开方数大于等于0列式计算即可得解. 本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.12.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为______.【答案】13cm【解析】解:∵ED是BC边上的中垂线∴EC=EB∵△ABE的周长=AB+AE+EC=AB+AC=5+8=13cm,故答案为:13cm.中垂线上的点到线段两端点的距离相等,所以CE=BE,△ABE的周长=AB+AE+ EC=AB+AC解答即可.本题考查三角形的周长以及中垂线定理,关键知道中垂线上的点到两端点的距离相等.13.已知一次函数y=−x+m,点A(1,y1),B(3,y2)在图象上,则y1______y2(填“>”或“<”).【答案】>【解析】解:∵一次函数y=−x+m,∴y随x的增大而减小,∵点A(1,y1),B(3,y2)在图象上,∴y1>y2.故答案为:>.直接利用一次函数的增减性进而分析得出答案.此题主要考查了一次函数的性质,正确掌握一次函数的增减性是解题关键.14.将直线y=kx−2向下平移1个单位后,正好经过点(2,3),则k=______.【答案】3【解析】解:将直线y=kx−2向下平移1个单位后所得直接解析式为y=kx−3,将点(2,3)代入y=kx−3,得:2k−3=3,解得:k=3,故答案为:3.根据平移规律可得,直线y=kx−2向下平移1个单位后得y=kx−3,然后把(2,3)代入即可求出k的值.此题主要考查了坐标与图形的变化−平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.15.如图,在四边形ABCD中,∠A+∠B=90∘,CD//AB,将AD、BC分别平移到EF和EG的位置.若AD=8cm,CD=2cm,CB=6cm,则AB的长是______cm.【答案】12【解析】解:∵AD//EF ,CB//EG ,∠A +∠B =90∘, ∴∠FEG =90∘, ∴△FEG 是直角三角形,∵AD =EF =8cm ,CB =EG =6cm , ∴FG 2=EF 2+EG 2, ∴FG =√64+36=10cm ,∵在四边形ABCD 中,AD 、BC 分别平移到EF 和EG 的位置, ∴CD =AF +BG ,∴AB =FG +AF +BG =10+2=12cm .因为在四边形ABCD 中,AD 、BC 分别平移到EF 和EG 的位置,所以有CD =AF +BG ,求证△FEG 是直角三角形,就可求得FG 的值,则AB =FG +AF +BG 可求. 此题把平移的性质和勾股定理结合求解.考查学生综合运用数学的能力.16. 关于x 、y 的二元一次方程组{x +2y =32x+y=2m+1的解满足不等式x −y >4,则m 的取值范围是______. 【答案】m >3【解析】解:{x +2y =3 ②2x+y=2m+1 ①,①−②得,x −y =2m −2, ∵x −y >4, ∴2m −2>4, 解得m >3. 故答案为m >3.先把两式相减求出x −y 的值,再代入x −y >4中得到关于m 的不等式,求出m 的取值范围即可.本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是把m 当作已知条件表示出x 、y 的值,再得到关于m 的不等式.17. 如图,在Rt △ABC 中,∠ACB =90∘,∠B =60∘,BC =2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为______.【答案】6【解析】解:∵在Rt△ABC中,∠ACB=90∘,∠B=60∘,BC=2,∴∠CAB=30∘,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30∘,∴∠ACB′=∠B′AC=30∘,∴AB′=B′C=2,∴AA′=2+4=6,故答案为6.利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=1是解题关键,此题难度不大.18.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点C′处,若AB=5,BC=3,则点C的坐标为______.【答案】(53,0)【解析】解:∵矩形纸片ABCD中,AB=5,BC=3,∴AD=3,,中,,,设BO=x,则,中,,∴x2+12=(3−x)2,解得x=43,∴CO=3−43=53,又∵点C在x轴上,∴点C的坐标为(53,0),,0).故答案为:(53依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,,列方程求解即可得到BO=4,进而3得出点C的坐标.本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长.解题时注意方程思想的运用.19.丫头和爸爸从家出发到大剧院观看“巴交有声”巴蜀中学新年演奏会,爸爸先出发,2分钟后丫头沿同一路线出发去追爸爸,当丫头追上爸爸时发现背包落在途中了,爸爸立即返回找背包,丫头继续前往大剧院,当丫头到达大剧院时,爸爸刚好找到背包并立即前往大剧院(爸爸找背包的时间不计),丫头在大剧院等了一会,没有等到爸爸,就沿同一路线返回接爸爸,最终与爸爸会合,丫头和爸爸的速度始终不变,如图是丫头和爸爸两人之间的距离y(米)与丫头出发的时间x(分钟)的函数图象,则丫头在大剧院等了爸爸______分钟.【答案】5.5【解析】解:设丫头和爸爸的行走速度分别为:v1、v2,=50(米/分钟),根据函数图象在x=0时,由题意,爸爸的行走速度v2=1002根据x=10时,丫头追上爸爸可得:10v1=(10+2)v2,丫头行走的速度v1=12×50=60(米/分钟),相10遇时行走的路程S1=12×50=600(米)观察图象在x=16时,丫头和爸爸相距最大,可知是丫头到大剧院所经历的时间,所以家到大剧院的总路程S=16×60=960(米),由(16−10=6分钟)可知爸爸返回找到背包行走路程,S2=6×50=300(米),此时设丫头在大剧院等爸爸的时间为t分钟,由图象知丫头与爸爸会合所用时间为25−16=9分钟可建立方程如下:60×(9−t)+50×9=S−(S1−S2)═960−(600−300)=660,解得t=5.5(分钟),故答案为:5.5.本题从函数图象着手,根据题意,可计算出丫头和爸爸行走的速度,然后图示一下丫头与爸爸第二次会合的情况,设未知数建立方程求解可得.本题主要考查一个相对的距离和时间的一次函数图象中所包含的意义,并从中找到有用数字来解决题意中要求的能力,属路程中常见题型.20. 春节期间,重百超市推出了甲、乙、丙、丁四种礼品套餐组合:甲套餐每袋装有15个A 礼盒,10个B 礼盒,10个C 礼盒;乙套餐每袋装有5个A 礼盒,7个B 礼盒,6个C 礼盒;丙套餐每袋装有7个A 礼盒,8个B 礼盒,9个C 礼盒;丁套餐每袋装有3个A 礼盒,4个B 礼盒,4个C 礼盒,若一个甲套餐售价1800元,利润率为20%,一个乙和一个丙套餐一共成本和为1830元,且一个A 礼盒的利润率为25%,问一个丁套餐的利润率为______.(利润率=利润成本×100%)【答案】18.75%【解析】解:设甲套餐的成本之和m 元,则由题意得1800−m =20%m ,解得m =1500(元).设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,由题意得{12x +15y +15z =183015x+10y+10z=1500, 同时消去字母y 和z ,可得x =40 所以y +z =90A 礼盒的利润率为25%,可得其利润=40×25%=10元,因此一个A 礼盒的售价=40+10=50元.设一个B 礼盒的售价为a 元,一个C 礼盒的售价为b 元,则可得15×50+10a +10b =1800,整理得a +b =105(元)所以一个丁套餐的售价=3×50+4(a +b)=150+420=570(元) 一个丁套餐的成本=3×40+4(y +z)=120+360=480(元) 因此一个丁套餐的利润率=570−480480×100%=18.75%故答案为18.75%先由甲套餐售价1800元,利润率为20%,可求出甲套餐的成本之和为1500元.设每个A 礼盒的成本为x 元,每个B 礼盒的成本为y 元,每个C 礼盒的成本为z 元,则由题意得{12x +15y +15z =183015x+10y+10z=1500,可同时消去y 和z ,得到x =40,再根据一个A 礼盒的利润率为25%,可求出一个A 礼盒的售价为50元,进而可得出一个B 礼盒与一个C 礼盒的售价之和,再由利润率公式求出一个丁套餐的利润率.本题考查了一元一次不等式组的应用以及有理数的混合运算,根据运算规律,找出关于x 的一元一次不等式组是解题的关键.三、解答题(本大题共7小题,共70.0分)21. 计算:(1)分解因式:m 3n −mn 3(2)解不等式组{x−24+2≥x1−3(x −2)<9−x【答案】解(1)m 3n −mn 3=mn(m 2−n 2)=mn(m +n)(m −n);(2){x−24+2≥x①1−3(x −2)<9−x②,解不等式①得,x ≤2, 解不等式②得,x >−1,∴不等式组的解集为:−1<x ≤2.【解析】(1)先提取公因式mn ,再用平方差公式分解即可得出结论; (2)先求出每个不等式的解集,找出公共部分,即可得出不等式组的解集. 此题主要考查了分解因式的方法,提公因式法,公式法,以及一元一次不等式组的解法,掌握分解因式的方法是解本题的关键.22. 如图,直线l 1:y =−2x +b 过点A(4,0),交y 轴于点B ,直线l 2:y =12x +3与x 轴交于点C ,两直线l 1,l 2相交于点D ,连接BC .(1)求直线l 1的解析式和点D 的坐标; (2)求△BCD 的面积.【答案】解:(1)∵直线l 1:y =−2x +b 过点A(4,0), ∴0=−8+b , ∴b =8,∴直线l 1的解析式为y =−2x +8, 解{y =−2x +8y =12x +3得{y =4x=2, ∴点D 的坐标(2,4);(2)由直线l 1:y =−2x +8可知B 的坐标为(0,8),由直线l 2:y =12x +3可知点C 的坐标为(−6,0), ∵点A(4,0), ∴AC =10,∵△BCD 的面积=△ACB 的面积−△ACD 的面积, ∴△BCD 的面积=12×10×8−12×10×4=20.【解析】(1)用待定系数法确定出直线l1解析式,进而联立方程得出点D坐标;(2)由直线的解析式得出B的坐标为(0,8),点C的坐标为(−6,0),然后根据△BCD的面积=△ACB的面积−△ACD的面积求得即可.本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.23.鲁能巴蜀中学2018年校艺术节“巴蜀好声音”独唱预选赛中,初二年级25名同学的成绩(满分为10分)统计如下:9.1,7.4,8.8,6.5,9.8,7.5,8.1,4.2,8.5,7.2,5.5,8.0,9.5,8.8,7.2,8.7,6.0,5.6,7.6,6.6,7.8,7.2,8.2,6.3,10(1)9.0分及以上为A级,7.5~8.9分为B级(包括7.5分和8.9分),6.0~7.4分为C级(包括6.0分和7.4分),6.0分以下为D级.请把下面表格补充完整;(3)若成绩为A级的同学将参加学校的汇演,请求出初二年级A级同学的平均成绩?【答案】10 3 6.97.2【解析】解:(1)根据给出的数据可得:B等级的人数有10人,D等级的人数有3人;故答案为:10,3;(2)把C级8位同学的成绩按从小到大排列为:6.0,6.3,6.5,6.6,7.2,7.2,7.2,7.4,=6.9;则C级8位同学成绩的中位数是6.6+7.22∵7.2出现了3次,出现的次数最多,∴C级8位同学成绩的众数是7.2;故答案为:6.9,7.2;(3)初二年级A级同学的平均成绩是:(9.1+9.8+9.5+10)÷4=9.6(分).(1)根据给出的数据直接找出B等级和D等级的人数即可;(2)根据中位数和众数的定义分别进行解答即可;(3)根据平均数的计算公式进行计算即可.本题考查的是平均数、众数和中位数的定义,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据种出现次数最多的数;解题的关键是正确理解各概念的含义.24.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)餐桌a270餐椅b70若购进4张餐桌19张餐椅需要1360元;若购进6张餐桌26张餐椅需要1940元.(1)求表中a,b的值;(2)今年年初由于原材料价格上涨,每张餐桌的进价上涨了10元,每张餐椅的进价上涨了m%,商场决定购进餐桌30张,餐椅170张进行销售,全部售出后,要求利润不低于7380元,求m的最大值.4a+19b=1360,【答案】解:(1){6a+26b=1940a=150,解得:{b=40∴a的值为150,b的值为40.(2)根据题意,[270−(150+10)]×30+[70−40(1+m%)]×170≥7380,解得:x≤15.∴m的值为15.【解析】(1)根据购进4张餐桌19张餐椅需要1360元;若购进6张餐桌26张餐椅需要1940元,可以列出二元一次方程组,解出a和b;(2)根据30张桌子的利润和170张椅子的利润之和不低于7380,可以列出不等式,即可解除m的取值范围.本题考查了一次函数的应用、解一元一次不等式、二元一次方程,解题的关键是:(1)根据题目,等量关系,列出二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式.25.如图,△ABC为等边三角形,CF⊥AB于点F,AH⊥BC于点,点D在AH的延长线上,连接CD,以CD为边作等边△CDE,连接AE交CF于点G.(1)若AC=4,CE=√5,求△ACD的面积.(2)证明:AG=GE.【答案】(1)解:∵△ABC,△CDE都是等边三角形,∴AC=BC=4,CE=CD=√5,∵AD⊥BC,∴BH=HC=2,AH=√AC2−CH2=2√3,在Rt△CDH中,∵∠DHC=90∘,CH=2,CD=√5,∴DH=√CD2−CH2=1,AD=1+2√3,∴S△ACD=12⋅AD⋅CH=1+2√3.(2)证明:作AN//EC交CF于N.连接BN,BD.∴∠ANC=∠ECN,∵CF⊥AB,∴FA=FB,∠BCF=12∠ACB=30∘,∵∠DCE=60∘,∴∠BCD+∠DCE+∠BCF=90∘+∠BCD=∠AFN+∠BAN=90∘+∠BAN,∴∠BAN=∠BCD,∵NF⊥AB,AF=FB,∴NA=NB,∴∠ABN=∠BAN,同法可证:∠DCB=∠DBC,∵AB=BC,∴△BAN≌△BCD(ASA),∴AN=CD=CE,∵AN//EC,∴∠NAG=∠CEG,∵∠AGN=∠EGC,∴△AGN≌△EGC(AAS),∴AG=GE.【解析】(1)利用勾股定理求出DH,AH即可解决问题.(2)作AN//EC交CF于N.连接BN,BD.先证明△BAN≌△BCD(ASA),再证明△AGN≌△EGC(AAS)即可解决问题.本题考查等边三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.阅读材料,解决下列问题:材料一:对非负实数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−12≤x<n+12,则<x>=n;反之,当n为非负整数时,如果<x>=n;则n−12≤x<n+12,例如:<0.51>=<1.49>=1,<2>=2,<3.5>=<4.15>=4,…材料二:平面直角坐标系中任意两点P1(x1,y1),P2(x2,y2),我们把|x1−x2|+ |y1−y2|叫做P1、P2两点间的折线距离,并规定D(P1,P2)=|x1−x2|+|y1−y2|.若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,我们把D(P0,Q)的最小值叫做P0到直线y=k+b的折线距离,例如:若P1(−1,2),P2(1,3)则D(P1,P2)=|−1−1|+|2−3|=3.(1)如果<2x>=5,则实数x的取值范围为______②已知点E(a,2),点F(3,3),且D(E,F)=2,则a的值为______.(2)若m为满足<m>=32m的最大值,求点M(3m,1)到直线y=x+1的折线距离.【答案】94≤x<1144或2【解析】解:(1)①∵<2x>=5,∴5−12≤2x<5+12,∴实数x的取值范围为:94≤x<114;②∵点E(a,2),点F(3,3),且D(E,F)=2,∴|a−3|+|2−3|=2,∴a的值为4或2;故答案为:94≤x<114;4或2;(2)∵<m>=32m,∴3m2−12≤m<3m2+12,∴−1<m≤1,∴m的最大值为1,∴点M(3,1),设Q(x,y)是直线y=x+1上的一动点,点M(3,1)到Q(x,y)的折线距离为:D(M,Q)=|x−3|+|x+1−1|=|x−3|+|x|,它的最小值为3,∴点M(3m,1)到直线y=x+1的折线距离为3.(1)①由<2x>=5可得5−12≤2x<5+12,解不等式组即可得出x的取值范围;②由点E(a,2),点F(3,3),且D(E,F)=2,可得|a−3|+|2−3|=2,解方程即可得出a的值;(2)先根据<m>=32m,求出m的取值范围,从而得出最大m的值,再根据点M(3m,1)到直线y=x+1的折线距离的定义求解即可.本题考查的是一次函数与不等式的知识,涉及到点到直线的距离、绝对值的几何意义等相关知识,属新定义型题目,正确理解折线距离的概念是解题的关键.27. 如图1,在平面直角坐标系中,直线AB 与y 轴交于点A(0,2√3),与x 轴交于点B ,∠ABO =30∘,直线CD 与y 轴交于点D ,与x 轴交于点C(−1,0),∠DCO =60∘,直线AB 与直线CD 交于点Q ,E 为直线CD 上一动点,过点E 作x 轴的垂线,交直线AB 于点M ,交x 轴于点N ,连接AE 、BE . (1)求直线AB 、CD 的解析式及点Q 的坐标;(2)当E 点运动到Q 点的右侧,且△AEB 的面积为9√3时,在y 轴上有一动点P ,直线AB 上有一动点R ,当△PNR 的周长最小时,求点P 的坐标及△PNR 周长的最小值.(3)在(2)问的条件下,如图2将△MNB 绕着点B 逆时针旋转60∘得到△GHB ,使点M 与点G 重合,点N 与点H 重合,再将△GHB 沿着直线AB 平移,记平移中的△GHB 为,在平移过程中,设直线与x 轴交于点F ,是否存在这样的点F ,使得为等腰三角形?若存在,求出此时点F 的坐标;若不存在,说明理由【答案】解:(1)点C(−1,0),∠DCO =60∘,OD =OCtan60∘=√3,直线CD 表达式的k 值为√3,则直线CD 的表达式为:y =√3x +b ,将点C 坐标代入上式并解得:b =√3, 故:直线CD 的表达式为:y =√3x +√3…①,同理可得直线AB 的表达式为:y =−√33x +2√3…②,∴∠ABO =30∘, 联立①②并解得:x =34,即点Q 坐标为(34,7√34); (2)如下图所示,设点E 的坐标为(x,√3x +√3),则点M(x,−√33x +2√3),S△ABE=12EM×OB=12×(√3x+√3+√33x−2√3)=9√3,解得:x=3,即点N坐标为(3,0),点M(3,√3),作点N关于直线AB和y轴的对称点N″、N′,连接N′N″交AB于点R交y轴于点P,此时,△PNR周长的最小值,最小值为:N′N″的长度,∵BN=OB−ON=6−3=3,N″N关于直线AB对称,∠ABO=30∘,△N″NB为边长为3的等边三角形,三角形高为:32√3,则点N″的坐标为(92,3√32),点N′(−3,0),则直线N′N″的表达式为:y=√35x+3√35,即点P坐标(0,3√35),△PNR周长的最小值,最小值为N′N″=√(92+3)2+(3√32)2=3√7;(3)如图2,将△MNB绕着点B逆时针旋转60∘得到△GHB,此时∠NBG=30∘,即点GM关于x轴对称,则点G(3,−√3),BH=BN=3,图形平移为时,∠B′BF=∠B′FB=30∘,即△B′BF是底角为30∘的等腰三角形,而为等腰三角形,只能B′H′=B′F,∴B′F=B′H′=BH=BN=3,BF=2B′Fcos30∘=2×3×√32=3√3,故点F的坐标为(6+3√3,0).【解析】(1)OD=OCtan60∘=√3,直线CD表达式的k值为√3,即可求解直线CD 的表达式;同理可得直线AB的表达式,联立两个表达式,即可求解点Q的坐标;(2)S△ABE=12EM×OB=9√3,求出点N坐标;作N点的两个对称点N″、N′,连接N′N″交AB于点R交y轴于点P,此时,△PNR周长的最小值,求解即可;(3)△B′BF是底角为30∘的当腰三角形,为等腰三角形,即可求解.本题为一次函数综合题,涉及到图形平移、点的对称性、解直角三角形等知识,其中(3)通过角关系,确定△B′BF是底角为30∘的等腰三角形,是本题的突破点.。

2018-2019学年八年级(上)期末数学试卷

2018-2019学年八年级(上)期末数学试卷

2018-2019学年八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④3.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.(3分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定7.(3分)如图,已知∠ADB=∠ADC,欲证△ABD≌△ACD,还必须从下列选项中选一个补充条件,其中错误的选项是()A.∠BAD=∠CAD B.AB=AC C.BD=CD D.∠B=∠C8.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm9.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短10.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③二、填空题(每小题3分,共24分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.13.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5,△ABC的周长是30,则△ABD的周长是.14.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.15.(3分)如图,线段AD与BC相交于点O,连接AB、CD,且OB=OD,要使△AOB≌△COD,应添加一个条件是(只填一个即可).16.(3分)写一个图象交y轴于点(0,﹣3),且y随x的增大而增大的一次函数关系式.17.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是.18.(3分)如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.三.解答题(46分)19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,再向下平移1个单位:作出平移后的△A2B2C220.(6分)已知:如图,∠1=∠2,∠C=∠D.求证:△ABC≌△ABD.21.(8分)为了保护学生的视力,课桌的高度m与椅子的高度xcm(不含靠背)都是按y是x的一次函数关系配套设计的,如表列出了两套符合条件课桌椅的高度:(1)请求出y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.22.(8分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)23.(8分)如图,AC是某座大桥的一部分,DC部分因受台风侵袭已垮塌,为了修补这座大桥,需要对DC的长进行测量,测量人员在没有垮塌的桥上选取两点A和D,在C处对岸立着的桥墩上选取一点B(BC⊥AC),然后测得∠A=30°,∠ADB=120°,AD=60m.求DC的长.24.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF.求证:CE∥DF.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据横纵坐标的符号可得相关象限.【解答】解:∵点的横纵坐标均为负数,∴点(﹣1,﹣2)所在的象限是第三象限.故选:C.【点评】考查点的坐标的相关知识;用到的知识点为:横纵坐标均为负数的点在第三象限.2.(3分)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称的定义,结合所给图形进行判断即可.【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.【点评】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.6.(3分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【分析】利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论.【解答】解:∵P1(﹣3,y1)、P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,∴y1=﹣6﹣b,y2=4﹣b.∵﹣6﹣b<4﹣b,∴y1<y2.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(3分)如图,已知∠ADB=∠ADC,欲证△ABD≌△ACD,还必须从下列选项中选一个补充条件,其中错误的选项是()A.∠BAD=∠CAD B.AB=AC C.BD=CD D.∠B=∠C【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∵∠ADB=∠ADC,∠BAD=∠CAD,AD=AD,利用ASA可以证明△ABD ≌△ACD,正确;B、∵∠ADB=∠ADC,AD=AD,AB=AC,不能证明△ABD≌△ACD,错误;C、∵∠ADB=∠ADC,AD=AD,BD=CD,利用SAS能证明△ABD≌△ACD,正确;D、∵∠ADB=∠ADC,∠B=∠C,AD=AD,利用AAS可以证明△ABD≌△ACD,正确;故选:B.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【解答】解:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm,∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm;故选:C.【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.9.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.10.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误故选:C.【点评】本题考查了全等三角形的性质和判定,平行线的判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题(每小题3分,共24分)11.(3分)函数y=中,自变量x的取值范围是x≤4.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:4﹣x≥0,解得:x≤4.故答案是:x≤4.【点评】本题考查了求函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(3分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(0,0).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1﹣1=0,纵坐标为2﹣2=0.即对应点的坐标是(0,0).故答案填:(0,0).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5,△ABC的周长是30,则△ABD的周长是20.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BD+DC+AE+EC=30,代换即有AB+BD+DA=20,从而得到△ABD的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABC的周长是30,即AB+BD+DC+AE+EC=30,∴AB+BD+DC=20,∴AB+BD+DA=20,即△ABD的周长是20.故答案为20.【点评】本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了三角形周长的定义.14.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第2块.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.15.(3分)如图,线段AD与BC相交于点O,连接AB、CD,且OB=OD,要使△AOB≌△COD,应添加一个条件是OA=OC(只填一个即可).【分析】观察图形可知:已有一角一边对应相等.根据三角形全等的判定方法解答.【解答】解:添加条件OA=OC,∵OB=OD,∠AOB=∠COD (对顶角相等),在△AOB和△COD中,,∴△AOB≌△COD(SAS),故答案为:OA=OC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.(3分)写一个图象交y轴于点(0,﹣3),且y随x的增大而增大的一次函数关系式答案不唯一,如:y=x﹣3.【分析】根据题意得,一次函数的解析式为y=kx+b中的b=﹣3,k>0,符合条件的即可.【解答】解:设一次函数的解析式为y=kx+b,∵图象交y轴于点(0,﹣3),∴b=﹣3;∵y随x的增大而增大,∴k=2.(答案不唯一,k>0即可)【点评】此题利用的规律:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小.17.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是根据SAS证明△AOB≌△COD.【分析】本题让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,只需要测量易测量的边CD上.测量方案的操作性强.【解答】解:连接AB,CD,如图,∵点O分别是AC、BD的中点,∴OA=OC,OB=OD.在△AOB和△COD中,OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,∴△AOB≌△COD(SAS).∴CD=AB.答:需要测量CD的长度,即为工件内槽宽AB.其依据是根据SAS证明△AOB≌△COD;故答案为:根据SAS证明△AOB≌△COD【点评】本题考查全等三角形的应用,根据已知条件可用边角边定理判断出全等.18.(3分)如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=7.【分析】根据角平分线的定义可得∠BCD=∠DCE,再根据两直线平行,内错角相等可得∠BCD=∠CDE,然后求出∠DCE=∠CDE,再根据等角对等边可得CE=DE,然后根据AC=AE+CE代入数据计算即可得解.【解答】解:∵CD是∠ACB的平分线,∴∠BCD=∠DCE,∵DE∥BC,∴∠BCD=∠CDE,∴∠DCE=∠CDE,∴CE=DE,∵DE=3,AE=4,∴AC=AE+CE=4+3=7.故答案为:7.【点评】本题考查了等腰三角形的判定与性质,角平分线的定义,平行线的性质,熟记性质并求出CE=DE是解题的关键.三.解答题(46分)19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,再向下平移1个单位:作出平移后的△A2B2C2【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用点平移的坐标规律写出A2、B2、C2的坐标,然后描点即可;【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.20.(6分)已知:如图,∠1=∠2,∠C=∠D.求证:△ABC≌△ABD.【分析】根据AAS定理可判定:△ABC≌△ABD.【解答】证明:在△ABD和△ABC中,∴△ABC≌△ABD(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.(8分)为了保护学生的视力,课桌的高度m与椅子的高度xcm(不含靠背)都是按y是x的一次函数关系配套设计的,如表列出了两套符合条件课桌椅的高度:(1)请求出y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.【分析】(1)根据题意和表格中的数据可以计算出y与x的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【解答】解:(1)设y=kx+b,,得,即y与x的函数关系式是y=2.4x﹣21;(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们不配套,理由:当x=42.0时,y=2.4×42.0﹣21=79.8,∵78.2≠79.8,∴现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们不配套.【点评】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式.22.(8分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.23.(8分)如图,AC是某座大桥的一部分,DC部分因受台风侵袭已垮塌,为了修补这座大桥,需要对DC的长进行测量,测量人员在没有垮塌的桥上选取两点A和D,在C处对岸立着的桥墩上选取一点B(BC⊥AC),然后测得∠A=30°,∠ADB=120°,AD=60m.求DC的长.【分析】由∠ADB的度数可求出∠BDC的度数,由三角形外角的性质结合∠A=30°可得出∠ABD=∠A,进而可得出AD=BD,再通过解含30°角的直角三角形即可求出CD的长度.【解答】解:∵∠ADB=120°,∴∠BDC=60°,∵∠A=30°,∴∠ABD=30°=∠A,∴AD=BD.在Rt△BCD中,∠BCD=90°,∠BDC=60°,BD=60m,∴∠CBD=30°,CD=BD=30m.【点评】本题考查了三角形的外角性质、等腰三角形的性质以及含30度角的直角三角形,根据三角形外角的性质结合等腰三角形的性质找出BD=AD是解题的关键.24.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF.求证:CE∥DF.【分析】根据平行线的性质得出∠A=∠B,根据全等三角形的判定得出△ACO≌△BDO,求出OA=OB,求出OE=OF,根据全等三角形的判定得出△COE≌△DOF,根据全等三角形的性质得出∠OEC=∠OFD即可.【解答】证明:∵AC∥BD,∴∠A=∠B,在△ACO和△BDO中∴△ACO≌△BDO∴OA=OB,∵AE=BF,∴OE=OF,在△COE和△DOF中∴△COE≌△DOF,∴∠OEC=∠OFD,∴CE∥DF.【点评】本题考查了平行线的性质和判定定理、全等三角形的性质和判定定理,能灵定理进行推理是解此题的关键.。

★试卷3套精选★重庆市2019届八年级上学期数学期末考试试题

★试卷3套精选★重庆市2019届八年级上学期数学期末考试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100 131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩【答案】B【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选:B.【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.2.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【答案】B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.26,26 B.26,22 C.31,22 D.31,26【答案】B【分析】根据中位数,众数的定义进行解答即可.【详解】七个整点时数据为:22,22,23,26,28,30,1.所以中位数为26,众数为22,故选:B.【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.4.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.(a﹣2)2D.a(a+2(a﹣2)【答案】A【分析】原式利用提取公因式法分解因式即可.【详解】解:原式=a(a﹣4),故选:A.【点睛】本题考查因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.510最接近的数是()A.2 B.3 C.4 D.5【答案】B10的平方是10,距离10最近的完全平方数是9和16,通过比较可知10距离9比较近,由此即可求解.解答:解:∵12=9,42=16,又∵11-9=2<16-9=5∴与10最接近的数是1.故选B .6.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D【答案】B 【分析】观察解题过程,找出错误的步骤及原因,写出正确的解题过程即可.【详解】上述计算过程中,从B 步开始错误,分子去括号时,1没有乘以1.正确解法为:23311x x x-+-- ()()33111x x x x -=-+--()()()()()3131111x x x x x x +-=-+-+- ()()33(1)11x x x x --+=+-()()33311x x x x ---=+-()()2611x x x --=+-. 故选:B .【点睛】本题考查了分式的加减法,熟练掌握运算法则是解答本题的关键.7.若分式22x x +-的值为0,则x 的值是( ) A .2-B .2C .2±D .任意实数 【答案】A【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可求出x 的值. 【详解】解:∵分式22x x +-的值为0 ∴2020x x +=⎧⎨-≠⎩ 解得:2x =-故选A .【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0,是解决此题的关键. 8.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是( )A .2,4,6B .4,6,8C .3,4,5D .6,8,10 【答案】D【分析】根据连续偶数相差是2,设中间的偶数是x ,则另外两个是x-2,x+2根据勾股定理即可解答.【详解】解:根据连续偶数相差是2,设中间的偶数是x ,则另外两个是x-2,x+2根据勾股定理,得 (x-2)2+x 2=(x+2)2,x 2-4x+4+x 2=x 2+4x+4,x 2-8x=0,x (x-8)=0,解得x=8或0(0不符合题意,应舍去),所以它的三边是6,8,1.故选:D .【点睛】本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.9.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,若215FAC B ∠=∠,则FAB ∠的度数为( )A.25°B.30°C.35°D.50°【答案】A【分析】根据等腰三角形的性质和线段垂直平分线的性质可得∠B=∠C=∠BAF,设∠B=x,则△ABC的三个内角都可用含x的代数式表示,然后根据三角形的内角和定理可得关于x的方程,解方程即得答案.【详解】解:∵AB AC=,∴∠B=∠C,∵EF垂直平分AB,∴FA=FB,∴∠B=∠BAF,设∠B=x,则∠BAF =∠C=x,215 FAC x ∠=,根据三角形的内角和定理,得:2131805x x+=︒,解得:25x=︒,即25FAB∠=︒.故选:A.【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质和三角形的内角和定理,属于常见题型,熟练掌握上述基本知识是解题的关键.10.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为()A.3 B.10 C.12 D.15【答案】D【分析】作DH⊥AC于H,如图,先根据勾股定理计算出AC=10,再利用角平分线的性质得到DB=DH,进行利用面积法得到12×AB×CD=12DH×AC,则可求出DH,然后根据三角形面积公式计算S△ADC.【详解】解:作DH⊥AC于H,如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,∴226810AC=+=,∵AD为∠BAC的角平分线,∴DB=DH,∵12×AB×CD=12DH×AC,∴6(8﹣DH)=10DH,解得DH=3,∴S △ADC =12×10×3=1. 故选:D .【点睛】本题结合三角形的面积考查角平分线的性质定理,熟练掌握该性质,作出合理辅助线是解答关键.二、填空题11.计算:23()a a -⋅-=_______________.【答案】5a【分析】先把3()a -化成3a -,再根据同底数幂的乘法计算即可.【详解】解:原式=352)(a a a -⋅-=. 【点睛】本题是对同底数幂乘法的考查,熟记同底数幂相乘,底数不变,指数相加.12.已知关于x ,y 的方程组4375x y m x y m +=⎧⎨-=-⎩的解满足不等式2x+y >8,则m 的取值范围是____. 【答案】m <﹣1.【分析】先解方程组,然后将x 、y 的值代入不等式解答.【详解】解:解方程组得x=2m ﹣1,y=4﹣5m ,将x=2m ﹣1,y=4﹣5m 代入不等式2x+y >8得4m ﹣2+4﹣5m >8,∴m <﹣1.故答案为:m <﹣1.【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.13.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上以动点,则CDM 周长的最小值为_____________【答案】10【分析】根据线段的垂直平分线定理,可知C 点与A 点关于点E 对称,此时MC=AM ,CDM C CD CM MD MA MD CD =++=++,由于CD 为定值,当MA+MD 最小时,CDM 的周长才有最小值,而当A 、M 、D 三点处于同一直线时,CDM 的周长取得最小值.【详解】如图,连接AM ,可得:∵腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点∴AM MC =CDM C CD CM MD MA MD CD =++=++根据两点之间线段最短,可得min CDM C AD CD =+在等腰三角形ABC 中,底边BC 长为4,面积是16, ∴1162ABC S AD BC =⋅⋅=,解得AD=8, min8210CDM C AD CD =+=+= 【点睛】本题考查等腰三角形的面积计算以及线段的垂直平分线性质,熟练运用线段的垂直平分线性质是解题的关键.14.如图,ABC △中,6AC =cm ,8AB =cm ,10BC =cm ,DE 是边AB 的垂直平分线,则ADC 的周长为______cm.【答案】16【解析】根据垂直平分线的性质得到AD=BD,AE=BE ,再根据三角形的周长组成即可求解.【详解】∵DE 是边AB 的垂直平分线,∴AD=BD,AE=BE∴ADC 的周长为AD+CD+AC=BD+CD+AC=BC+AC=10+6=16cm ,故填16.【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知垂直平分线的性质.15.生命在于运动,小张同学用手机软件记录了4月份每天行走的步数(单位:万步),将记录结果绘制成如下图所示的统计图.在这组数据中,众数是_____万步.【答案】1.1【分析】根据众数的定义求解可得.【详解】因为1.1万步的人数最多为10人,所以这组数据的众数是1.1万步,故答案为:1.1.【点睛】考查的是众数的定义及其求法,牢记定义是关键.16.圆周率π=3.1415926…精确到千分位的近似数是_____.【答案】3.1【解析】近似数π=3.1415926…精确到千分位,即是保留到千分位,由于千分位1后面的5 大于4,故进1,得3.1.【详解】解:圆周率π=3.1415926…精确到千分位的近似数是3.1.故答案为3.1.【点睛】本题考查了近似数和精确度,精确到哪一位,就是对它后边的一位进行四舍五入.1753a+是最简二次根式,则最小的正整数a为______.【答案】1【分析】根据最简二次根式的定义求解即可.a+是最简二次根式,【详解】解:∵a53a+=∴当a=1538当a=1时,5313a +=,是最简二次根式,则最小的正整数a 为1,故答案为:1.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题18.小明在证明“有两个角相等的三角形是等腰三角形”这一命题时,先画出图形,再写出“已知”,“求证”(如图),证明时他对所作的辅助线描述如下:“过点A 作BC 的中垂线AD ,垂足为D ”.(1)请你判断小明辅助线的叙述是否正确;如果不正确,请改正.(2)根据正确的辅助线的做法,写出证明过程.【答案】(1)不正确,应该是:过点A 作AD BC ⊥;(2)见解析【分析】(1)不正确.过一点可以作已知直线的垂线,不能作线段的中垂线.(2)利用ASA 证明ADB ADC ∆≅∆即可.【详解】解:(1)不正确.应该是:过点A 作AD BC ⊥.(2)∵AD BC ⊥, ∴90ADB ADC ∠=∠=︒,∵AD AD =,B C ∠=∠,∴()ADB ADC ASA ∆∆≌,∴AB AC =.【点睛】本题考查等腰三角形的判定,线段的垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19.(11031820162-⎛⎫-+ ⎪⎝⎭; (2)求()21250x --=中的x 的值.【答案】(1)-3;(2)6x =或4-【分析】(1)根据负整数指数幂和零次幂的性质以及立方根的定义,即可求解,(2)根据直接开平方法,即可求解.【详解】(1)原式221=--+3=-;(2)∵()21250x --=,∴15x -=±,∴6x =或4-.【点睛】本题主要考查实数的混合运算以及解一元二次方程,掌握负整数指数幂和零次幂的性质以及直接开平方法,是解题的关键.20.小明与他的爸爸一起做“投篮球”游戏,两人商定规则为:小明投中1个得3分,小明爸爸投中1个得1分.结果两人一共投中20个,经计算,发现两人得分恰好相等.你能知道他们两人各投中几个吗?【答案】小明投中了5个,爸爸投中15个.【分析】本题有两个相等关系:小明投中的个数+爸爸投中的个数=20,小明投篮得分=爸爸投篮得分;据此设未知数列方程组解答即可.【详解】解:设小明投中了x 个,爸爸投中y 个,依题意列方程组得203x y x y +=⎧⎨=⎩,解得515x y =⎧⎨=⎩. 答:小明投中了5个,爸爸投中15个.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 21.(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE .填空:①∠AEB 的度数为 ;②线段AD ,BE 之间的数量关系为 .(2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.【答案】结论:(1)60;(2)AD=BE;应用:∠AEB=90°;AE=2CM+BE;【详解】试题分析:探究:(1)通过证明△CDA≌△CEB,得到∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°-60°= 60°;(2)已证△CDA≌△CEB,根据全等三角形的性质可得AD=BE;应用:通过证明△ACD≌△BCE,得到AD = BE,∠BEC = ∠ADC=135°,所以∠AEB =∠BEC-∠CED =135°-45°= 90°;根据等腰直角三角形的性质可得DE = 2CM,所以AE = DE+AD=2CM+BE.试题解析:解:探究:(1)在△CDA≌△CEB中,AC=BC,∠ACD=∠BCE,CD=CE,∴△CDA≌△CEB,∴∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°-60°= 60°;(2)∵△CDA≌△CEB,∴AD=BE;应用:∠AEB=90°;AE=2CM+BE;理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC,CD = CE,∠ACB =∠DCB =∠DCE-∠DCB,即∠ACD = ∠BCE,∴△ACD≌△BCE,∴AD = BE,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC-∠CED =135°-45°= 90°.在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.考点:等边三角形的性质;等腰直角三角形的性质;全等三角形的判定和性质.22.如图所示,在△ABC中:(1)下列操作中,作∠ABC的平分线的正确顺序是怎样(将序号按正确的顺序写出).①分别以点M、N为圆心,大于12MN的长为半径作圆弧,在∠ABC内,两弧交于点P;②以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于N点;③画射线BP,交AC于点D.(2)能说明∠ABD=∠CBD的依据是什么(填序号).①SSS.②ASA.③AAS.④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S△ABC=120,过点D作DE⊥AB于点E,求DE的长.【答案】(1)作∠ABC的平分线的正确顺序是②①③;(2)①;(3)DE=1.【分析】(1)根据基本作图方法即可得出;(2)证明△MBP≌△NBP即可;(3)过点D作DF⊥BC与F,由题意推出DE=DF,再由S△ABC=S△ABD+S△CBD即可求出DE的长度.【详解】(1)作∠ABC的平分线的正确顺序是②①③,故答案为②①③;(2)在△MBP和△NBP中,,∴△MBP≌△NBP(SSS),∴∠ABD=∠CBD,故答案为①;(3)过点D作DF⊥BC与F,∵∠ABD=∠CBD,DE⊥AB,DF⊥BC,∴DE=DF,S△ABC=S△ABD+S△CBD,即×AB×DE+×BC×DF=120,∴×11×DE+×12×DE=120,解得,DE=1.【点睛】本题考查的知识点是作图-基本作图及全等三角形,解题的关键是熟练的掌握作图-基本作图及全等三角形. 23.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少,小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树,他先让爸爸开车驶过这段公路,发现速度为60千米/时,走了约3分钟(1)由此估算这段路长约____千米;(2)然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米,小宇计从路的起点开始,每a米种一棵树,绘制出了示意图,考虑到投入资金的限制,他设计了一种方案,将原计划的a扩大一倍,则路的两侧共计减少400棵树,请你求出a的值【答案】(1)1;(2)7.5【分析】(1)利用路程=速度×时间可求出这条路的长度;(2)设原计划每a米种一棵树,则现设计每2a米种一棵树,根据需种树的棵数=路的长度÷树间距结合现设计的每一侧都减少12⨯400棵树,即可得出关于a的分式方程,解之经检验后即可得出结论.【详解】(1)这段路长约603360⨯=(千米).故答案为:1.(2)设原计划每a米种一棵树,则现设计每2a米种一棵树,依题意,得:由愿意可得30003000140022a a-=⨯,解方程得7.5a=,经检验,7.5a=满足方程且符合题意.答:a的值是7.5.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.注意单位的统一.24.大伟老师购买了一辆新车,加满油后,经过一段时间的试驾,得到一组行驶里程与剩余油量的数据:行驶里程x(km)和剩余油量y(L)的部分关系如表:x 100 200 300 350 400y 43 36 29 25.5 22(1)求出y与x之间的关系式;(2)大伟老师驾车到4158公里外的拉萨,问中途至少需要加几次油.【答案】(1)750100y x=-+(2)6【分析】(1)根据表格可知行驶里程x(km)和剩余油量y(L)的关系符合一次函数,故代入两组数据即可求解;(2)先求出加满油能行驶的距离,再求出x=4158,y的值,故可求解.【详解】(1)设y与x之间的关系式为y=kx+b(k≠0)把(100,43)、(200,36)代入得43100 36200k bk b=+⎧⎨=+⎩解得710050kb⎧=-⎪⎨⎪=⎩∴y与x之间的关系式为750100y x=-+(2)令y=0,即7050100x=-+,解得x=50007把4158÷50007≈5.8故中途至少需要加6次油.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意求出一次函数解析式.25.为了了解400名八年级男生的身体发育情况,随机抽取了100名八年级男生进行身高测量,得到统计表:估计该校八年级男生的平均身高为______________cm.【答案】161.6cm【分析】根据平均数的计算公式列出算式,再计算即可.【详解】该校七年级男生的平均身高为:1502216045170281805161.6()100cm.【点睛】本题考查了平均数的计算,熟悉相关性质是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D 【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质. 2.点A (3,3﹣π)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】由点A (,)a b 中0a >,0b <,可得A 点在第四象限【详解】解:∵3>0,3﹣π<0,∴点A (3,3﹣π)所在的象限是第四象限,【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 3.王师傅想做一个三角形的框架,他有两根长度分别为11cm 和12cm 的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么他可以把( )分为两截.A .11cm 的木条B .12cm 的木条C .两根都可以D .两根都不行【答案】B【分析】根据三角形的三边关系:三角形的任意两边之和大于第三边解答即可.【详解】解:∵三角形的任意两边之和大于第三边,∴两根长度分别为11cm 和12cm 的细木条做一个三角形的框架,可以把12cm 的木条分为两截.故选:B .【点睛】本题考查了三角形的三边关系在实际中的应用,属于基本题型,熟练掌握三角形的三边关系是关键. 4.如图,AD 是△ABC 的中线,点E 、F 分别是射线AD 上的两点,且DE=DF ,则下列结论不正确的是( )A .△BDF ≌△CDEB .△ABD 和△ACD 面积相等C .BF ∥CED .AE=BF【答案】D 【解析】利用SAS 判定△BDF ≌△CDE ,即可一一判断;【详解】解:∵AD 是△ABC 的中线,∴BD=CD ,∴S △ABD =S △ADC ,故B 正确,在△BDF 和△CDE 中,BD DC BDF CDE ED DF =⎧⎪∠=∠⎨⎪=⎩, ∴△BDF ≌△CDE (SAS ),故A 正确;∴CE=BF ,∵△BDF ≌△CDE (SAS ),∴∠F=∠DEC ,∴FB ∥CE ,故C 正确;故选D .【点睛】此题主要考查了全等三角形判定和性质,解题的关键是正确寻找全等三角形解决问题.5.如图,在ABC ∆中,10AB AC ==,AB 的垂直平分线DE 交AC 于点D ,连接BD ,若BCD 的周长为17,则BC 的长为( )A .6B .7C .8D .9【答案】B 【分析】根据线段垂直平分线的性质可得AD=BD ,AB=2AE ,把△BCD 的周长转化为AC 、BC 的和,然后代入数据进行计算即可得解.【详解】∵DE 是AB 的垂直平分线,∴AD=BD ,AB=2AE=10,∵△BCD 的周长=BD+CD+BC=AD+CD+BC=AC+BC=11,∵AB=AC=10,∴BC=11-10=1.故选:B .【点睛】此题考查线段垂直平分线的性质.此题比较简单,解题的关键是掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用.6.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A .B .C .D.【答案】B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.7.下列各命题是真命题的是()A.过一点有且只有一条直线与已知直线垂直.B.三角形任意两边之和小于第三边.C.三角形的一个外角大于它的任何一个内角.D.同位角相等.【答案】A【分析】根据命题的真假依次判断即可求解.【详解】A.过一点有且只有一条直线与已知直线垂直,正确.B. 三角形任意两边之和大于第三边,故错误.C. 三角形的一个外角大于它的任何一个不相邻的内角,故错误.D. 两直线平行,同位角相等,故错误.故选A.【点睛】此题主要考查命题真假的判断,解题的关键是熟知三角形的性质及平行线、相交线的性质.8.已知A,B两点的坐标是A(5,a),B(b,4),若AB平行于x轴,且AB=3,则a+b的值为()A.6或9 B.6 C.9 D.6或12【答案】D【分析】根据平行于x轴的直线上的点的纵坐标相等求出a的值,再根据A、B为不同的两点确定b的值.【详解】解:∵AB∥x轴,∴a=4,∵AB=3,∴b=5+3=8或b=5﹣3=1.则a+b=4+8=11,或a+b=1+4=6,故选D .【点睛】本题考查了坐标与图形性质,是基础题,主要利用了平行于x 轴的直线上的点的纵坐标相等,需熟记. 9.如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍B .缩小3倍C .缩小6倍D .不变【答案】A【分析】把原分式中的x 换成3x ,把y 换成3y 进行计算,再与原分式比较即可.【详解】解:把原分式中的x 换成3x ,把y 换成3y ,那么 23333x y x y ⋅⋅+=6xy x y+=3×2xy x y +. 故选:A .【点睛】考核知识点:分式性质.运用性质变形是关键.10.下列数据不能确定物体位置的是( )A .6排10座B .东北方向C .中山北路30号D .东经118°,北纬40°【答案】B【分析】平面内要确定点的位置,必须知道两个数据才可以准确确定该点的位置.【详解】解:A 、6 排10座能确定物体位置,此选项不符合题意;B 、东北方向不能确定物体位置,此选项符合题意;C 、中山北路 30 号能确定物体位置,此选项不符合题意;D 、东经 118°,北纬 40°能确定物体位置,此选项不符合题意;故选:B .【点睛】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.二、填空题11.如图,在Rt △ABC 中,∠BAC =90°,AC 的垂直平分线分别交BC 、AC 于点D ,E ,若AB =5cm ,AC =12cm ,则△ABD 的周长为_____cm .【答案】1【分析】根据勾股定理求出BC,根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【详解】解:由勾股定理得,BC=2222AB AC+=+=,51213∵DE是AC的垂直平分线,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=1(cm),故答案为:1.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B 的度数为__________.【答案】70°【解析】解:∵∠AEN=∠A+∠ADE,∠AEN=133°,∠A=63°,∴∠ADE=70°.∵MN∥BC,∴∠B=∠ADE=70°.故答案为70°.13.如图,等边OAB的边长为23,则点B的坐标为__________.【答案】()3,3【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,∴OD=AD=12OA=12×23=3, 在Rt △BDO 中,由勾股定理得:BD=22(23)(3)3-=,∴点B 的坐标为(3,3),故答案为:(3,3).【点睛】本题考查了等边三角形的性质,坐标与图形性质和勾股定理等知识点,能正确作出辅助线是解此题的关键. 14.当x________时,分式52x -有意义. 【答案】≠2【解析】x 20-≠,所以 x ≠2.点睛:分式有意义:(0)A B B≠,分式无意义:(0)A B B =,分式值为0:(0,0)A A B B =≠,是分式部分易混的3类题型.15.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE .图中,BAC ∠=____度.【答案】36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】(52)1801085ABC -⨯︒∠==︒,ABC ∆是等腰三角形, 36BAC BCA ∴∠=∠=度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质. 解题关键在于知道n 边形的内角和为:180°(n ﹣2).16.已知2,3m n a a ==,则32m n a +=______________.【答案】1【分析】根据题意直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【详解】解:∵2,3m na a ==,∴2332m m n n a a a +⨯=()()3223=⨯=1. 故答案为:1.【点睛】本题主要考查同底数幂的乘法运算以及幂的乘方运算,运用相关运算法则正确将原式进行变形是解题的关键.17.如图,在Rt ABC △中,90C ∠=︒,点D 为边AC 上的一点,3CD CB ==,//DE BC ,BF CE ⊥交AC 于点F ,交CE 于点G .若1DE =,图中阴影部分的面积为4,229+=BG OG ,则BCG 的周长为______.133+【分析】设CG x =,=GB y ,结合题意得90CDE ∠=,90ACE BCE ∠+∠=,再根据BF CE ⊥交AC 于点F ,交CE 于点G ,从而得到ACE CBF ∠=∠;通过证明≌CDE BCF △△;得=CDE CBF S S △△,从而得四边形DFGE 面积12CGB S xy ==△;根据勾股定理,得x y +,即可完成求解. 【详解】设CG x =,=GB y∵//DE BC , 90C ∠=︒∴90CDE ∠=,90ACE BCE ∠+∠=∵BF CE ⊥交AC 于点F ,交CE 于点G∴90BGC ∠=∴90BCE CBF ∠+∠=∴ACE CBF ∠=∠ ∵90CDE BCF CD CB ACE CBF ⎧∠=∠=⎪=⎨⎪∠=∠⎩∴≌CDE BCF △△∴=CDE CBF S S △△∴四边形DFGE 面积12CGB S xy ==△ ∵阴影面积4=∴()113132422⨯+-⨯=xy ∴2xy =∵229+=CG GB∴229x y +=∴()222213+=++=x y x y xy∵0x y +>∴13+=x y∴CGB △的周长为:133+故答案为:133+.【点睛】本题考查了全等三角形、勾股定理、算术平方根的知识;解题的关键是熟练掌握全等三角形、勾股定理、算术平方根的性质,从而完成求解.三、解答题18.已知,在平行四边形ABCD 中,BD =BC ,E 为AD 边的中点,连接BE ;(1)如图1,若AD ⊥BD ,5BE =,求平行四边形ABCD 的面积;(2)如图2,连接AC ,将△ABC 沿BC 翻折得到△FBC ,延长EB 与FC 交于点G ,求证:∠BGC =∠ADB .【答案】(1)4;(2)证明见解析.【分析】(1)先推出∠ADB =90°,设AE =DE =a ,则BD =AD =2a ,根据勾股定理得出a 2+4a 2=5,解出a =1或﹣1(舍弃),可得AD =DB =2,即可求出S 平行四边形ABCD ;(2)延长BE 到M ,使得EM =BE ,连接AM ,先证明四边形ABDM 是平行四边形,然后证明△BDM ≌△CBF ,得出∠DBM =∠BCF ,根据AD ∥BC ,得出∠GBC =∠BED ,根据∠BGC+∠GCB+∠GBC =180°,∠ADB+∠EBD+∠BED =180°,即可证明∠BGC =∠ADB .【详解】(1)解:∵四边形ABCD是平行四边形,∴AD=BC,∵BD=BC∴DA=DB,∵AD⊥BD,∴∠ADB=90°,设AE=DE=a,则BD=AD=2a,∵BE=5,∴a2+4a2=5,∴a=1或﹣1(舍弃),∴AD=DB=2,∴S平行四边形ABCD=AD•BD=4;(2)证明:延长BE到M,使得EM=BE,连接AM,∵AE=DE,EM=EB,∴四边形ABDM是平行四边形,∴DM=AB,由翻折的性质可知:BA=BF,∠ABC=∠CBF,∴DM=BF,∵CD∥AB,∴∠ABC+∠DCB=180°,∴∠CBF+∠DCB=180°,∵BD=BC,∴∠DCB=∠CDB,∵∠BDM+∠CDB=180°,∴∠BDM=∠CBF,∴△BDM≌△CBF(SAS),∴∠DBM=∠BCF,∵AD∥BC,∴∠GBC =∠BED ,∵∠BGC+∠GCB+∠GBC =180°,∠ADB+∠EBD+∠BED =180°,∴∠BGC =∠ADB .【点睛】本题考查了求平行四边形的面积,平行四边形的判定和性质,全等三角形的判定和性质,翻折的性质,掌握这些知识点灵活运用是解题关键.19.解分式方程2212323x x x +=-+. 【答案】x=7.5【分析】先两边同乘(2x-3)(2x+3),得出整式方程,然后合并同类项,进行计算即可.【详解】解:方程两边同乘(2x ﹣3)(2x+3),得4x+6+4x 2﹣6x=4x 2﹣9,解得:x=7.5,经检验x=7.5是分式方程的解.【点睛】本题主要考察了解分式方程,解题的关键是正确去分母.20. “构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例: 实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S 四边形ABCD =S △ABC +S △ADE +S △ABE 得22111()2222a b ab c +=⨯+,化简得:222+=a b c 实例二:欧几里得的《几何原本》记载,关于x 的方程22ax x b +=的图解法是:画Rt △ABC ,使∠ABC=90°,BC=2a ,AC=b ,再在斜边AB 上截取BD =2a ,则AD 的长就是该方程的一个正根(如实例二图)请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是 ,乙图要证明的数学公式是(2)如图2,若2和-8是关于x 的方程x 2+6x =16的两个根,按照实例二的方式构造Rt △ABC ,连接CD ,求CD 的长;(3)若x ,y ,z 都为正数,且x 2+y 2=z 2,请用构造图形的方法求x y z +的最大值.。

∥3套精选试卷∥2019年重庆市八年级上学期数学期末经典试题

∥3套精选试卷∥2019年重庆市八年级上学期数学期末经典试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是( ) A .m >﹣1B .m ≥1C .m >﹣1且m ≠1D .m ≥﹣1且m ≠1 【答案】D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程2.若22123a a +=,则12a a +-的值为( ) A .5B .0C .3或-7D .4【答案】C【分析】根据完全平方公式的变形即可求解. 【详解】∵22211225a a a a ⎛⎫+=++= ⎪⎝⎭ ∴1a a+=±5, ∴12a a +-的值为3或-7 故选C.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的变形应用.3.一个多边形的内角和等于外角和的两倍,那么这个多边形是( )A .三边形B .四边形C .五边形D .六边形 【答案】D【解析】根据多边形的外角和为360°得到内角和的度数,再利用多边形内角和公式求解即可.【详解】解:设多边形的边数为x ,∵多边形的内角和等于外角和的两倍,∴多边形的内角和为360°×2=720°,∴180°(n ﹣2)=720°,解得n=6.故选D.【点睛】本题主要考查多边形的内角和与外角和,n 边形的内角的和等于: (n - 2)×180°(n 大于等于3且n 为整数);多边形的外角和为360°.4.若a b <,则下列各式成立的是( )A .a b -<-B .22a b ->-C .22a b ->-D .33a b > 【答案】C【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,a b ∴->-,此项错误 B 、a b <,22a b ∴-<-,此项错误C 、在A 选项已求得a b ->-,两边同加2得22a b ->-,此项正确D 、a b <,33a b ∴<,此项错误 故选:C .【点睛】本题考查了不等式的性质:(1)不等式的两边同加(或同减)一个数,不改变不等号的方向;(2)不等式的两边同乘以(或除以)一个正数,不改变不等号的方向;两边同乘以(或除以)一个负数,改变不等号的方向,熟记性质是解题关键.5.已知直线y = kx + b 的图象如图所示,则不等式kx + b > 0的解集是( )A .x > 2B .x > 3C .x < 2D .x < 3【答案】C 【分析】根据函数图象可得当y >0时,图象在x 轴上方,然后再确定x 的范围.【详解】直线y =kx+b 中,当y >0时,图象在x 轴上方,则不等式kx+b >0的解集为:x <2,故选:C .【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想,利用图象可直接确定答案. 6.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数【答案】D【分析】根据众数和中位数的概念可得出结论.【详解】一组数据中出现次数最多的数值是众数;将数据从小到大排列,当项数为奇数时中间的数为中位数,当项数为偶数时中间两个数的平均数为中位数;由题可知,小明所说的是多数人的分数,是众数,小英所说的为排在中间人的分数,是中位数.故选为D.【点睛】本题考查众数和中位数的定义,熟记定义是解题的关键.7.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )A .各项消费金额占消费总金额的百分比B .各项消费的金额C .消费的总金额D .各项消费金额的增减变化情况【答案】A【分析】读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.因此,【详解】解:从图中可以看出各项消费金额占消费总金额的百分比.故选A .8.在平面直角坐标系中,点()1,2A -关于x 轴的对称点坐标为( )A .(1,2)-B . (1,2)C . (2,1)-D .(1,2)--【答案】B【分析】根据关于x 轴对称的点的特点:横坐标相同,纵坐标互为相反数即可得出答案.【详解】根据关于x 轴对称的点的特点:横坐标相同,纵坐标互为相反数,可知点()1,2A -关于x 轴的对称点坐标为 (1,2).故选:B .【点睛】本题主要考查关于x 轴对称的点的特点,掌握关于x 轴对称的点的特点是解题的关键.9.若(x+4)(x ﹣2)=x 2+ax+b ,则ab 的积为( )A .﹣10B .﹣16C .10D .﹣6 【答案】B【分析】首先利用多项式乘以多项式计算(x+4)(x ﹣2),然后可得a 、b 的值,进而可得答案.【详解】(x+4)(x ﹣2)=x 2﹣2x+4x ﹣8=x 2+2x ﹣8,∴a=2,b=﹣8,∴ab=﹣1.故选:B .【点睛】本题考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.下列计算正确的是( )A .a 3+a 2=a 5B .a 6÷(﹣a 3)=﹣a 3C .(﹣a 2)3=a 6D .111a b a b +=+ 【答案】B【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、分式的加减运算法则化简得出答案.【详解】解:A 、32a a +,无法合并;B 、()633a a a ÷-=-,正确; C 、236()a a -=-,故此选项错误;D 、11a b a b ab++=,故此选项错误; 故选:B .【点睛】此题主要考查了分式的加减运算、同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.二、填空题11.若一个正多边形的每个外角都等于36°,则它的内角和是_____.【答案】1440°【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【详解】解:∵一个正多1440°边形的每个外角都等于36°, ∴这个多边形的边数为36060=10, ∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点睛】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n 的多边形的内角和=(n-2)×180°.12.比较大小:3______8.(填“>”、“<”、“=”)【答案】>【分析】首先将3放到根号下,然后比较被开方数的大小即可.【详解】39,98=>,38∴>,故答案为:>.【点睛】本题主要考查实数的大小比较,掌握实数大小比较的方法是解题的关键.13.已知关于x ,y 的二元一次方程组224x y m x y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____ 【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①② , ②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.不等式组31x x ≥-⎧⎨<⎩的解是____________ 【答案】31x -≤<【分析】根据一元一次不等式组解集的确定方法,即可求解.【详解】由31x x ≥-⎧⎨<⎩,可得:31x -≤<; 故答案是:31x -≤<.【点睛】本题主要考查确定一元一次不等式组的解集,掌握确定一元一次不等式组解集的口诀:“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.15.己知点(01)P ,,4(5)Q ,,点M 在x 轴上运动,当MP MQ +的值最小时,点M 的坐标为___________.【答案】(1,0)【分析】作P 点关于x 轴对称点P ₁,根据轴对称的性质PM =P ₁M ,MP +MQ 的最小值可以转化为QP ₁的最小值,再求出QP ₁所在的直线的解析式,即可求出直线与x 轴的交点,即为M 点.【详解】如图所示,作P 点关于x 轴对称点P ₁,∵P 点坐标为(0,1)∴P ₁点坐标(0,﹣1),PM =P ₁M连接P ₁Q ,则P ₁Q 与x 轴的交点应满足QM +PM 的最小值,即为点M设P ₁Q 所在的直线的解析式为y =kx +b把P ₁(0,﹣1),Q (5,4)代入解析式得:145b k b⎧⎨+⎩-== 解得: 11k b ⎧⎨⎩==- ∴y =x -1当y =0时,x =1∴点M 坐标是(1,0)故答案为(1,0)【点睛】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.16.因式分解:328a a -=________.【答案】()()222a a a +-【分析】根据因式分解的要求是将多项式分解为几个因式相乘的形式进行化简即可,注意要分解到不可分解为止.【详解】()()()322824222a a a a a a a -=-=+-, 故答案为:()()222a a a +-.【点睛】本题主要考查了对多项式的因式分解,熟练掌握公式法进行因式分解并确保将式子分解彻底是解决本题的关键.错因分析 较容易题.失分的原因是:1.因式分解不彻底,如 ;2.混淆平方差公式与完全平方差公式.17.点(2+a ,3)关于y 轴对称的点的坐标是(﹣4,2﹣b ),则a b =_____. 【答案】12. 【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a ,3)关于y 轴对称的点的坐标是(-4,2-b ),∴2+a=4,2-b=3,解得a=2,b=-1,所以,a b =2-1=12 , 故答案为12【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.三、解答题18.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.【答案】(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.19.先阅读后作答:我们已经知道.根据几何图形的面积可以说明完全平方公式,实际上还有一些等式也是可以用这种公式加以说明.例如勾股定理a 2 + b 2 = c 2就可以用如图的面积关系来说明.(1)根据图2写出一个等式: ;(2)已知等式()()()2x p x q x p q x pq +-=+--,请你画出一个相应的几何图形加以说明. 【答案】(1)22()()4a b a b ab +=-+;(2)见解析【分析】(1)根据图2中大正方形的面积的两种算法,写出等式即可;(2)根据已知等式得出相应的图形即可.【详解】(1)根据图2得:22()()4a b a b ab +=-+;故答案为:22()()4a b a b ab +=-+;(2)等式()()()2x p x q x p q x pq +-=+--可以用以下图形面积关系说明:大长方形的面积可以表示为:长⨯宽()()x p x q =+-,大长方形的面积也可以表示为:一个正方形的面积+1个小长方形的面积-2个小长方形的面积()22x px qx pq x p q x pq =+--=+--,∴()()()2x p x q x p q x pq +-=+--. 【点睛】本题考查了多项式乘多项式,正确利用图形结合面积求出是解题关键.20.如图,已知ABC .(1)画ABC 关于x 轴对称的'''A B C ;(2)在y 轴上画出点D ,使AD CD +最短.【答案】(1)见解析;(2)见解析【分析】(1)作出A、C两点关于x轴的对称点,再顺次连接即可;'',交y轴于点D,点D即为所求.(2)作点A关于y轴的对称点A'',连接A C【详解】(1)如图所示:(2)①作点A关于y轴的对称点A'','',交y轴于点D,②连接A C点D即为所求.【点睛】此题主要考查了轴对称变换以及利用轴对称求最短路线,正确得出对应点的位置是解题关键.21.如图,已知:AD平分∠CAE,AD∥BC.(1)求证:△ABC是等腰三角形;(2)当∠CAE等于多少度时△ABC是等边三角形,证明你的结论.【答案】(1)证明见解析;(2)120°,证明见解析.【分析】(1)由已知条件易得∠EAD=∠CAD,∠EAD=∠B,∠CAD=∠C,从而可得∠B=∠C,进一步可得AB=AC,由此即可得到△ABC是等腰三角形;(2)由(1)可知△ABC 是等腰三角形,因此当∠BAC=60°,即∠CAE=120°时,△ABC 是等边三角形.【详解】解:(1)∵AD 平分∠CAE ,∴∠EAD=∠CAD ,∵AD ∥BC ,∴∠EAD=∠B ,∠CAD=∠C ,∴∠B=∠C ,∴AB=AC .故△ABC 是等腰三角形.(2)当∠CAE=120°时,△ABC 是等边三角形,理由如下:∵∠CAE=120°,∴∠BAC=180°-∠CAE=180°-120°=60°,又∵AB=AC ,∴△ABC 是等边三角形.22.甲乙两个仓库要向A 、B 两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A 地需70吨水泥,B 地需110吨水泥,两库到A ,B 两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)(1)设甲库运往A 地水泥x 吨,求总运费y (元)关于x (吨)的函数关系式;(2)当甲、乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省的总运费是多少?【答案】(1)3039200y x =-+(070)x ≤≤;(2)甲仓库运往A 地70吨,甲仓库运往B 地30吨,乙仓库运往A 地0吨,乙仓库运往B 地80吨时,运费最低,最低总运费是37100元.【解析】试题分析:(1)由甲库运往A 地水泥x 吨,根据题意首先求得甲库运往B 地水泥(100-x )吨,乙库运往A 地水泥(70-x )吨,乙库运往B 地水泥(10+x )吨,然后根据表格求得总运费y (元)关于x (吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y 最省,然后代入求解即可求得最省的总运费.试题解析:(1)设甲库运往A 地水泥x 吨,则甲库运往B 地水泥(100−x)吨,乙库运往A 地水泥(70−x)吨,乙库运往B 地水泥[80−(70−x)]=(10+x)吨,根据题意得:y=12×20x+10×25(100−x)+12×15×(70−x)+8×20(10+x)=−30x+39200(0⩽x⩽70),∴总运费y(元)关于x(吨)的函数关系式为:y=−30x+39200;(2)∵一次函数y=−30x+39200中,k=−30<0,∴y的值随x的增大而减小,∴当x=70时,总运费y最省,最省的总运费为37100元.点睛:此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数性质求解.23.在综合实践课上,老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰三角形纸片ABC中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN (∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)特例感知当∠BPC=110°时,α=°,点P从B向A运动时,∠ADP逐渐变(填“大”或“小”).(2)合作交流当AP等于多少时,△APD≌△BCP,请说明理由.(3)思维拓展在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.【答案】(1)40°,小;(2)当AP=5时,△APD≌△BCP,理由详见解析;(3)当α=45°或90°时,△PCD是等腰三角形.【分析】(1)先根据三角形内角和定理求出∠B的度数,再一次运用三角形内角和定理即可求出α的度数;根据三角形内角和定理即可判断点P从B向A运动时,∠ADP的变化情况;(2)先根据三角形外角等于与它不相邻的两个内角和得到∠APC=∠B+α=30°+∠PCB,再证明∠APD=∠BCP,根据全等三角形的判定定理,即可得到当AP=5时,△APD≌△BCP.(3)根据等腰三角形的判定,分三种情况讨论即可得到;【详解】解:(1)∵CA=CB=5,∠ACB=120°,∴∠B=∠A=1801202︒-︒=30°,∴1801103040α=︒-︒-︒=︒,∵三角尺的直角边PM 始终经过点C ,∴再移动的过程中,∠APN 不断变大,∠A 的度数没有变化,∴根据三角形的内角和定理,得到∠ADP 逐渐变小;故答案为:40°,小.(2)当AP =5时,△APD ≌△BCP .理由如下:∵∠ACB =120°,CA =CB ,∴∠A =∠B =30°.又∵∠APC 是△BPC 的一个外角,∴∠APC =∠B+α=30°+∠PCB ,∵∠APC =∠DPC+∠APD =30°+∠APD ,∴∠APD =∠BCP ,当AP =BC =5时,在△APD 和△BCP 中,A B AP BCAPD BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BCP (ASA );(3)△PCD 的形状可以是等腰三角形.根据题意得:∠PCD =120°﹣α,∠CPD =30°,有以下三种情况:①当PC =PD 时,△PCD 是等腰三角形,∴∠PCD =∠PDC =°°180-302=75°,即120°﹣α=75°, ∴α=45°;②当DP =DC 时,△PCD 是等腰三角形,∴∠PCD =∠CPD =30°,即120°﹣α=30°,∴α=90°;③当CP =CD 时,△PCD 是等腰三角形,∴∠CDP =∠CPD =30°,∴∠PCD =180°﹣2×30°=120°,即120°﹣α=120°,∴α=0°,此时点P 与点B 重合,不符合题意,舍去.综上所述,当α=45°或90°时,△PCD 是等腰三角形.【点睛】本题主要考查了全等三角形的判定(ASA )、等腰三角形的判定、三角形的内角和定理(三角形的内角和是180°),熟练掌握全等三角形的判定定理是解题的关键.24.已知y m +与x n -成正比例,m ,n 为常数(1)试说明:y 是x 的一次函数;(2)若2x =时,3y =;1x =时,5y =-,求函数关系式;(3)将(2)中所得的函数图象平移,使它过点()2,1-,求平移后的直线的解析式.【答案】(1)见解析;(2)813y x =-;(3)817y x =-【分析】(1)根据题意可设()y m k x n +=-(k ≠0),然后整理可得()y kx kn m =-+其中k ≠0,k 和()kn m -+均为常数,根据一次函数的定义即可证出结论;(2)根据y 是x 的一次函数,重新设关系式为y kx b =+,然后利用待定系数法求一次函数解析式即可; (3)根据平移前后两直线的k 值相等,可设平移后的解析式为8y x b =+,然后将点()2,1-代入即可求出平移后的解析式.【详解】解:(1)根据y m +与x n -成正比例,可设()y m k x n +=-(k ≠0)整理,得()y kx kn m =-+其中k ≠0,k 和()kn m -+均为常数∴y 是x 的一次函数;(2)∵y 是x 的一次函数,∴可设y kx b =+将2x =时,3y =;1x =时,5y =-,代入,得325k b k b=+⎧⎨-=+⎩ 解得:813k b =⎧⎨=-⎩∴函数关系式为813y x =-;(3)根据题意,可设平移后的解析式为8y x b =+将点()2,1-代入,得182b -=⨯+解得:b=17-∴平移后的解析式为817y x =-【点睛】此题考查的是一次函数的判断、求一次函数的解析式和一次函数图象的平移,掌握一次函数的定义、用待定系数法求一次函数的解析式和平移前后两个一次函数的k 值相等是解决此题的关键.25.某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果和提子分别是多少千克?【答案】该水果店购进苹果50千克,购进提子10千克【解析】设该水果店购进苹果x 千克,购进提子y 千克,根据该水果店购进苹果与提子共60千克且销售利润为210元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】设该水果店购进苹果x 千克,购进提子y 千克,根据题意得:()()6080.83100.84210x y x y +=⎧⎨⨯-+⨯-=⎩, 解得:5010x y =⎧⎨=⎩. 答:该水果店购进苹果50千克,购进提子10千克.故答案为该水果店购进苹果50千克,购进提子10千克.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC ∠=∠D .CDE BAD ∠=∠【答案】B 【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确 AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.2.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .18【答案】A 【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.3.下列各数中是无理数的是( )A .﹣1B .3.1415C .πD .13【答案】C【分析】根据有理数与无理数的定义求解即可.【详解】解:﹣1是整数,属于有理数,故选项A 不合题意;3.1415是有限小数,属于有理数,故选项B 不合题意;π是无限不循环小数,属于无理数,故选项C 符合题意;13是分数,属于有理数,故选项D 不合题意. 故选:C .【点睛】 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.4.如图,在ABC ∆中,D E ,分别是边BC AC ,上的点,若EAB ∆≌EDB ∆≌EDC ∆,则C ∠的度数为( )A .15B .20C .25D .30【答案】D 【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【详解】∵EDB ∆≌EDC ∆,∴∠BDE=∠CDE ,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵EAB ∆≌EDB ∆≌EDC ∆,∴∠AEB=∠BED=∠CED ,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D .【点睛】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.5.下列函数中,y 随x 值增大而增大的是:① =87y x -;② =65y x -;③83y x =-;④57)y x =;⑤9y x =;⑥10y x =-( )A .①②③B .③④⑤C .②④⑤D .①③⑤【答案】D【分析】根据一次函数的性质对各小题进行逐一分析即可.【详解】解:一次函数y=kx+b ,当k>0时,y 随x 值增大而增大,① =87y x -,k=8>0,满足;② =65y x -,k=-5<0,不满足;③8y =-+,,满足;④y x =,,不满足;⑤9y x =,k=9>0,满足;⑥10y x =-,k=-10<0,不满足;故选D.【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性与系数k 的关系是解答此题的关键.6.下列各分式中,最简分式是( )A .()()37x y x y -+ B .22m n m n -+ C .2222a b a b ab -+ D .22222x y x xy y --+ 【答案】A 【分析】根据最简分式的标准:分子,分母中不含有公因式,不能再约分逐一判断即可. 【详解】3()7()x y x y -+的分子、分母都不能再分解,且不能约分,是最简分式,故A 选项符合题意. 22m n m n-+ =m-n ,故B 选项不符合题意·, 2222a b a b ab-+ =a b ab - ,故C 选项不符合题意·, 22222x y x xy y--+=+-x y x y ,故D 选项不符合题意·, 故选A.【点睛】本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.最简分式的标准:分子,分母中不含有公因式,不能再约分,熟练掌握最简分式的标准是解题关键.7.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于( )A.65°B.50°C.60°D.1.5°【答案】B【解析】试题分析:∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=65°,∴∠BDF=180°﹣∠B﹣∠BFD=180°﹣65°﹣65°=50°.考点:翻折变换(折叠问题)8.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A.1 B.2 C.3 D.4【答案】D【分析】直接利用轴对称图形的性质得出符合题意的答案.【详解】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选D.【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.9.估计411的值为()A.0到1之间B.1到2之间C.2到3之间D.3到4之间【答案】A1111的范围,再确定411的值即可.【详解】解:∵91116∴311<4,∴﹣4<﹣11<﹣3,∴0<4﹣11<1,故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.10.下列运算正确的是( )A .235325x x x +=B .0( 3.14)0π-=C .α8÷α4= α2D .()236x x =【答案】D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A .2332x x +两项不是同类项,不能合并 ,错误;B .0( 3.14)1π-=,错误;C .844÷a a a =,错误;D .()623x x =,正确【点睛】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.二、填空题11.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.【答案】16【解析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE ,然后证明△ΔBCA ≌ΔAED ,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD ,∠BCA=∠AED=90°,∴∠ABC=∠DAE ,∴ΔBCA ≌ΔAED(ASA),∴BC=AE ,AC=ED ,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b 的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA ≌ΔAED ,而利用全等三角形的性质和勾股定理得到b=a+c 则是解题的关键.12.已知ABC ∆中,3AB =,8AC =,BC 长为奇数,那么三角形ABC 的周长是__________.【答案】18或20【分析】根据三角形三边关系定理得到第三边的范围,再根据BC 为奇数和取值范围确定三角形ABC 的周长即可.【详解】解:根据三角形的三边关系可得:8-3<BC <8+3,即:5<BC <11,∵BC 为奇数,∴BC 的长为7或9,∴三角形ABC 的周长为18或20.故答案为:18或20.【点睛】本题主要考查三角形的三边关系,关键是掌握三角形三边关系定理即三角形任意两边之和大于第三边;三角形的任意两边之差小于第三边.13.Rt ABC 中,90C ∠=︒,12AC cm =,16BC cm =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于点E ,交斜边于点F ,则CDE △的周长为__________.【答案】20cm 或22cm【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A 和∠B 两种情况求解即可.【详解】当∠B 翻折时,B 点与D 点重合,DE 与EC 的和就是BC 的长,即DE+EC=16cm ,CD=12AC=6cm ,故△CDE 的周长为16+6=22cm ; 当∠A 翻折时,A 点与D 点重合.同理可得DE+EC=AC=12cm ,CD=12BC=8cm , 故△CDE 的周长为12+8=20cm .故答案为20cm 或22cm .【点睛】本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.14.计算:(a-b )(a 2+ab+b 2)=_______.【答案】a 3-b 3【分析】根据多项式乘以多项式法则进行计算即可求解.【详解】3222322233()()=a a b ab a b ab b a b a b a ab b ++---=--++故答案为:33a b -【点睛】本题考查了多项式乘以多项式法则,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.15. 5-的绝对值是______.【答案】5【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:-5的绝对值是5.故答案为5.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.16.计算(x -a)(x+3)的结果中不含x 的一次项,则a 的值是________.【答案】3【分析】先根据多项式乘以多项式法则展开,合并同类项,令x 的一次项系数为0,列出关于a 的方程,求出即可.【详解】解:()2()=(333)x a x a x a x +--+-, ∵不含x 的一次项,∴3-a=0,∴a=3,故答案为:3.【点睛】本题考查了多项式乘以多项式法则,理解多项式中不含x 的一次项即x 的一次项的系数为0是解题的关键.不要忘记合并同类项.17.如图,在ABC ∆中,E 是BC 上的一点,2EC EB =,点D 是AC 的中点,,AE BD 交于点F ,3AF FE =.若ABC ∆的面积为18,给出下列命题:①ABE ∆的面积为16;②ABF ∆的面积和四边形DFEC 的面积相等;③点F 是BD 的中点;④四边形DFEC 的面积为152;其中,正确的结论有_____________.。

【精选3份合集】2018-2019年重庆市八年级上学期数学期末调研试题

【精选3份合集】2018-2019年重庆市八年级上学期数学期末调研试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点A 关于x 轴的对称点为A 1(3,-2),则点A 的坐标为( ) A .(-3,-2)B .(3,2)C .(3,-2)D .(-3、2) 【答案】B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”进行求解即可.【详解】∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数,且A 1(3,-2)∴A 的坐标为(3,2).所以答案为B 选项.【点睛】本题主要考查了点关于x 轴对称相关问题,熟练掌握相关规律是解题关键.2.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1, 3 【答案】B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可: A 、42+52=41≠62,不可以构成直角三角形,故本选项错误;B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、222133+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3.下列关于一次函数:123y x =-+的说法错误的是( ) A .它的图象与坐标轴围成的三角形面积是6B .点()3,1P 在这个函数的图象上C .它的函数值y 随x 的增大而减小D .它的图象经过第一、二、三象限【答案】D 【分析】求出一次函数123y x =-+的图象与x 轴、y 轴的交点坐标,再利用三角形的面积公式可求出与坐标轴围成的三角形面积,可判断A ;将点P (3,1)代入表达式即可判断B ;根据x 的系数可判断函数值y 随x 的变化情况,可判断C ;再结合常数项可判断D.【详解】解:令x=0,则y=2,令y=0,则x=6,∴123y x=-+图象与坐标轴围成的三角形面积是12662⨯⨯=,故选项A正确;令x=3,代入,则y=1,∴点P(3,1)在函数图象上,故选项B正确;∵13-<0,∴一次函数123y x=-+的函数值y随x的增大而减小,故选项C正确;∵13-<0,2>0,∴它的图象经过第一、二、四象限,故选项D错误.故选D.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及三角形的面积,逐一分析四个选项的正误是解题的关键.4.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.2【答案】B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【详解】解:如图,∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16∴AB2=AC2=1,∴正方形的面积=AB2=1.故选:B.【点睛】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.如图, 直线y=kx(k 为常数, k ≠0)经过点A, 若B 是该直线上一点, 则点B 的坐标可能是()A .(-2,-1)B .(-4,-2)C .(-2,-4)D .(6,3)【答案】C 【分析】先根据点A 的坐标求出k 的值,从而可得直线的解析式,再逐项判断即可.【详解】由平面直角坐标系得:点A 的坐标为(2,4)A将(2,4)A 代入直线y kx =得:24k =,解得2k =因此,直线的解析式为2y x =A 、令2x =-,代入直线的解析式得22(2)4y x ==⨯-=-,则点(2,1)--不符题意B 、令4x =-,代入直线的解析式得22(4)8y x ==⨯-=-,则点(4,2)--不符题意C 、令2x =-,代入直线的解析式得22(2)4y x ==⨯-=-,则点(2,4)--符合题意D 、令6x =,代入直线的解析式得22612y x ==⨯=,则点(6,3)不符题意故选:C .【点睛】本题考查了正比例函数的图象与性质,依据图象求出直线的解析式是解题关键.6.如图,以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画出射线OB ,则∠AOB=( )A .30°B .45°C .60°D .90°【答案】C 【分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【详解】解:连接AB ,根据题意得:OB=OA=AB ,∴△AOB 是等边三角形,∴∠AOB=60°.故选C .【点睛】本题考查了等边三角形的判定与性质,解题的关键是能根据题意得到OB=OA=AB .7.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为( ) 尺码37 38 39 40 41 42 人数3 4 4 7 1 1 A .4和7B .40和7C .39和40D .39.1和39 【答案】C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C .【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.8.如图,在ABC ∆中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD AC =,25B ∠=,则ACB ∠的度数为( )A .25B .50C .80D .105【答案】D 【分析】根据作图方法可知:MN 是BC 的中垂线,根据中垂线的性质可得:DC=DB ,然后根据等边对等角可得∠DCB=∠B=25°,然后根据三角形外角的性质即可求出∠CDA ,再根据等边对等角即可求出∠A ,然后利用三角形的内角和定理即可求出∠ACB .【详解】解:根据作图方法可知:MN 是BC 的中垂线∴DC=DB∴∠DCB=∠B=25°∴∠CDA=∠DCB +∠B=50°∵CD AC =∴∠A=∠CDA=50°∴∠ACB=180°-∠A -∠B=105°故选D .【点睛】此题考查的是用尺规作图作垂直平分线、垂直平分线的性质、等腰三角形的性质、三角形的内角和定理和三角形外角的性质,掌握线段垂直平分线的做法、垂直平分线的性质、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键.9.下列数据:75,80,85,85,85,则这组数据的众数和中位数是( )A .75,80B .85,85C .80,85D .80,75【答案】B【分析】众数是一组数据中出现次数最多的数; 将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.【详解】解:此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选:B .【点睛】本题为统计题,考查众数与中位数的意义,解题的关键是认真理解题意.10.若将一副三角板按如图所示的方式放置,则下列结论:①13∠=∠;②如果230∠=︒,则有//AC DE ;③如果230∠=︒,则有//BC AD ;④如果230∠=︒,必有4C ∠=∠;其中正确的有( )A .①②③B .①②④C .②③④D .①②③④【答案】B 【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,∴∠1=∠3,故本选项正确.②∵∠2=30°,∴∠1=90°-30°=60°,∵∠E=60°,∴∠1=∠E ,∴AC ∥DE ,故本选项正确.③∵∠2=30°,∴∠3=90°-30°=60°,∵∠B=45°,∴BC 不平行于AD ,故本选项错误.④由∠2=30°可得AC ∥DE ,从而可得∠4=∠C ,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.二、填空题11.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围为__________. 【答案】6m >-且4m ≠- 【分析】首先求出关于x 的方程232x m x +=-的解,然后根据解是正数,再解不等式求出m 的取值范围. 【详解】解关于x 的方程232x m x +=-得x =m +6, ∵x−2≠0,解得x ≠2,∵方程的解是正数,∴m +6>0且m +6≠2,解这个不等式得m >−6且m ≠−1.故答案为:m >−6且m ≠−1.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x 的不等式是本题的一个难点.12.若分式11a a -+的值为0,则a 的值为________. 【答案】1【分析】根据分式值为零的条件,分子为零且分母不为零,求解. 【详解】解:若分式11a a -+的值为0 ∴a-1=0且a+1≠0解得:a=1故答案为:1.【点睛】本题考查分式为零的条件,掌握分式值为零时,分子为零且分母不能为零是解题关键.13.若实数m,n 满足()2220190m n -+-=,则10m n -+=_______. 【答案】32【分析】根据()2220190m n -+-=,可以求得m 、n 的值,从而可以求得10m n -+的值. 【详解】∵()2220190m n -+-=,∴m-2=0,n-2019=0,解得,m=2,n=2019, ∴1011m n m -+=+13122=+=, 故答案为:32. 【点睛】本题考查非负数的性质、负指数幂和零指数幂,解答本题的关键是明确题意,利用非负数的性质求出m 和n 的值.14.如图,在△ABC 与△AEF 中,AB=AE ,BC=EF ,∠B=∠E ,AB 交EF 于点D.给出下列结论:①∠EAB=∠FAC ;②AF=AC ;③∠C=∠EFA ;④AD=AC.其中正确的结论是_____(填序号).【答案】①②③【解析】解:在△AEF和△ABC中,∵AB=AE,∠B=∠E,BC=EF,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,故①②③正确,④错误;所以答案为:①②③.点睛:本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.15.我们把[a,b]称为一次函数y=ax+b的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n的值为_____.【答案】﹣1【分析】根据正比例函数是截距为0的一次函数可得n+1=0,进而求出n值即可.【详解】∵“特征数”是[2,n+1]的一次函数为正比例函数,∴n+1=0,解得:n=﹣1,故答案为:﹣1.【点睛】本题考查正比例函数的定义,理解新定义并掌握正比例函数的一般形式y=kx(k≠0),是解题关键.16.如图,,A B两地相距20千米,甲、乙两人都从A地去B地,图中1l和2l分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法: ①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的是__________.(填序号)【答案】:①③④【分析】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,乙晚出发1小时,故①正确;∵3-1=2小时,∴乙出发2小时后追上甲,故②错误;∵12÷3=4千米/小时,∴甲的速度是4千米/小时,故③正确;∵相遇后甲还需8÷4=2小时到B 地,相遇后乙还需8÷(12÷2) =43小时到B 地,∴乙先到达B 地,故④正确;故答案为:①③④.【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答. 17.在Rt ABC ∆中,90C ∠=°,10AC cm =,5BC cm =,某线段PQ AB =, P ,Q 两点分别在AC 和AC 的垂线AX 上移动,则当AP =__________.时,才能使ABC ∆和APQ ∆全等.【答案】5㎝或10㎝【分析】本题要分情况讨论:①Rt △ABC ≌Rt △QPA ,此时AP=BC=5cm ,可据此求出P 点的位置;②Rt △ABC ≌Rt △PQA ,此时AP=AC ,P 、C 重合.【详解】解:∵PQ=AB ,∴根据三角形全等的判定方法HL 可知,当P 运动到AP=BC 时,在Rt △ABC 和Rt △QPA 中PQ AB AP BC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP=BC=5cm ;当P 运动到与C 点重合时,在Rt △ABC 和Rt △QPA 中PQ AB AP AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP=AC=10cm .故答案为5㎝或10㎝.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题18.一辆汽车开往距离出发地300km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.2倍匀速行驶,并比原计划提前半小时到达目的地.求汽车前一小时的行驶速度.【答案】汽车前一小时的速度是75km/时【分析】设汽车前一小时的行驶速度为km/x 时,则一小时后的速度为1.2xkm/时,根据“原计划所需时间=1小时+提速后所用时间+半小时”的等量关系列方程求解.【详解】解:设汽车前一小时的行驶速度为km/x 时 根据题意得,30030011 1.22x x x -=++ 去分母得,360 1.23000.6x x x =+-+解得75x =经检验75x =是原方程的根答:汽车前一小时的速度是75km/时.【点睛】本题考查分式方程的应用,理解题意找准等量关系是解题关键,注意分式方程结果要检验.19.如图,点B ,F ,C ,E 在一条直线上,∠A=∠D ,AC=DF ,且AC ∥DF .求证:△ABC ≌△DEF .【答案】见解析;【解析】首先根据平行线的性质可得∠ACB=∠DFE ,再根据ASA 定理证明△ABC ≌△DEF 即可.【详解】证明:∵ AC ∥DF ,∴ ∠ACB=∠DFE .在△ABC 和△DEF 中,∠A =∠D ,AC =DF ,∠ACB =∠DFE ,∴ △ABC ≌△DEF .(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

2019-2020学年重庆市梁平区八年级(上)期末数学试卷 及答案解析

2019-2020学年重庆市梁平区八年级(上)期末数学试卷 及答案解析

2019-2020 学年重庆市梁平区八年级(上)期末数学试卷一、选择题(本大题共 12 小题,共 48.0 分) 1. 下列计算中,正确的是( )B.D.A. C.+ =⋅=4 4 4 84 4) ⋅ =÷=3 233 4 2 14 23 2. 下列说法中正确的是( )A. C.B. D. 同位角相等全等的两个三角形一定是轴对称 同旁内角互补,两直线平行不相等的角不是内错角3. 运用乘法公式计算+− 3)正确的是( )B. C.D.A.− 99 −+ + 9− + 92 22 2 4. 如图,在数轴上表示实数 13的点可能是( )√ A. B. C. C. D. 点 点 点 点 MNPQ5. 已知 − 3 =,那么代数式− 2) ++ 1)的值为( )2 2 A. B. D.9 −96. 如图,△的度数为( )−1上一点, 为 1中, 为 上一点,且===,= 40°,则D ABE B C A. B. C. D. D. D. 50° 40° 60°80°7. 计算2018 − 2019 × 2017的结果是()2 A. B. C.20181−120178. 下列各组线段中,能够组成直角三角形的一组是( )A. B. C. 1,2,3 2,3,41,√2, 34,5,6√ 9. 直角三角形有一条直角边为 6,另两条边长是连续偶数,则该三角形周长为( )A. B. C. D.2620 22 2410.甲校七(1)班为了解全班学生喜欢球类活动的情况,采取全面调查的方法,从排球、篮球、乒乓球、足球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.七(1)班的学生人数为40B. C. D.的值为10mn的值为20表示“足球”的扇形的圆心角是70°11.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式+的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算+8的展开式中从左起第四项的系数为()A. B. C. D.2884563512.如图,A D是△的角平分线,⊥交的E恰好平分,=B C=;=;⊥;论共有()A. B. C. D.4个3个2个1个二、填空题(本大题共6小题,共24.0分)13.计算:|−8|=______.√14.利用乘法公式计算:101+99=__________.22A⊥于点,⊥=,=30°,求16.已知一个直角三角形的两边长分别为4和3,则它的面积为______.17.某市初中毕业生学业考试各科的满分值如下:科目语文数学英语科学社政体育1201201101508030满分值若把表中各科满分值按比例绘成扇形统计图,则表示数学学科的扇形的圆心角应是________度.(结果精确到0.1)18.如图,已知点、点分别是等边三角形D E+的最小值为______.三、解答题(本大题共8小题,共78.0分)19.计算√9+2÷3√8−|−6|320.1先化简,再求值:−2)2−−+52÷22,其中=−.2 21.如图,=,=,=求证:=.22.为了参加学校举行的传统文化知识竞赛。

重庆梁平县联考2018-2019学年八上数学期末试卷

重庆梁平县联考2018-2019学年八上数学期末试卷

重庆梁平县联考2018-2019学年八上数学期末试卷一、选择题1.某足球生产厂计划生产4800个足球,在生产完1200个后,采用了新技术,工作效率比原计划提高了20%,结果共用了21天完成全部任务.设原计划每天生产x个足球,根据题意可列方程为()A.12004800(120%)x++=21B.120048001200(120%)x x-++=21C.12004800120020%x x-+=21D.480048001200(120%)x x-++=212.下列运算正确的是( )A.(﹣a2)2=﹣a4B.a2+a2=a4C.(x﹣0)0=0 D.3﹣2=1 93.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.24.下列运算正确的是()A.a2•a3=a6 B.2a2+a2=3a4C.(﹣2a2)3=﹣2a6 D.a4÷(﹣a)2=a25.下列多项式乘法中,能用平方差公式进行计算的是()A.(x+y)(﹣x﹣y)B.(﹣a﹣b)(a﹣b)C.(2x+3y)(x﹣y)D.(m﹣n)(n﹣m)6.下列运算中,计算结果正确的是()A. B. C. D.7.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,DE⊥AC,垂足为E,ED的延长线与直线AB交于点F,则图中与∠EDC相等的角(∠EDC除外)有()A.1个B.2个C.3个D.4个8.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.15cmD.15cm或12cm9.如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M 、N ,则△AMN 的周长为( )A.10B.6C.4D.不确定10.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =72°,那么∠DAC 的大小是( )A .30°B .36°C .18°D .40° 11.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一个动点,若PA 3=,则PQ 的最小值为( )A.1.5B.2C.3D.412.如图,已知AB DE =,BE CF =,添加下列条件中哪一个能使ABC ≌DEF( )A .A D ∠∠=B .AB//DEC .BE EC =D .AC//DF 13.如图,在锐角中,分别是边上的高,交于点,,则的度数是( )A. B. C. D.14.下列说法正确的有( )①同位角相等;②过直线外一点有且只有一条直线与这条直线平行;③相等的角是对顶角;④三角形两边长分别为3,5,则第三边c 的范围是28c ≤≤.A .1个B .2个C .3个D .4个15.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为 ( )A .16B .20C .20或16D .12二、填空题16.已知分式(2)(3)2x x x -+-的值为0,则x =_____. 17.若23440a b b -+-+=,则11a b+=____ 18.如图,点B 、A 、E 在同一直线上,△ADB ≌△ACE ,∠E=40°,∠C=25°,则∠DAC=______°.19.已知60AOB ∠=︒,其角平分线为OM ,20BOC ∠=︒,其角平分线为ON ,则MON ∠=____.20.已知在平面直角坐标系中,点A (-1,-2),点B (4,12),试在x 轴上找一点P ,使得|PA -PB |的值最大,求P 点坐标为_________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年重庆市梁平区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.计算的结果为()A.±B.﹣C.D.2.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,123.下列各组数中,互为相反数的是()A.﹣3与B.|﹣3|与﹣C.|﹣3|与D.﹣3与4.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好).如表为我国某几年生活质量统计表:下列说法正确的是()年份(年)1989 1997 2001 2002恩格尔系数(%)54.5 46.6 38.2 37.7A.生活质量稳步提高B.生活质量逐步下降C.生活质量有升有降D.生活质量稳定不变5.计算(x+3)(x﹣3)的结果是()A.x2﹣9 B.x2﹣3 C.x2﹣6 D.9﹣x26.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点7.在△ABC和△AˊB′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′8.化简时,甲的解法是:==,乙的解法是:==,以下判断正确的是()A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确9.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定10.已知多项式ax2+bx+c因式分解的结果为(x﹣1)(x+4),则abc为()A.12 B.9 C.﹣9 D.﹣1211.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么其中一个直角三角形的两直角边的和等于()A.24 B.10 C.2D.212.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1 B.264﹣2 C.264+1 D.264+2二、填空题(每小题4分,共24分)13.0.04的平方根是.14.如图,△ABC≌△AED,若AB=AE,∠1=27°,则∠2=度.15.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是吨.16.分解因式:x2﹣3x﹣4=.17.将4个数a,b,c,d,排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若=20,则x=.18.如图,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于点N,若AD=2,则CH的长为.三、解答题(共78分)19.(8分)计算:()2﹣(﹣1)+20.(8分)已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.21.(8分)化简求值.(2a+1)2﹣(2a﹣1)(2a+1),其中a=﹣.22.(10分)如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.(1)求AC的长.(2)求图中着色部分的面积.23.(10分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.24.(10分)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.25.(12分)有这样一对数:一个数的数字排列完全颠倒过来就变成另一个数,简单地说就是顺序相反的两个数,我们把这样的一对数互称为反序数.比如:123的反序数是321,4056的反序数是6504.根据以上阅读材料,回答下列问题:(1)已知一个三位数,其数位上的数字为连续的三个自然数,求证:原三位数与其反序数之差的绝对值等于198;(2)若一个两位数与其反序数之和是一个完全平方数,求满足上述条件的所有两位数.26.(12分)等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上的一点,连接CF,过点B作BH⊥CF交CF 于G,交AC于H.(1)如图1,延长BH到点E,连接AE,当∠EAB=90°,AE=3,求BF的长;(2)如图2,若F为AB的中点,连接FH,求证:BH+FH=CF;(3)如图3,在AB上取点K,使AK=BF,连接HK并延长与CF的延长线交于点P,若G为CP的中点,PG =2.求AH+BH的值(直接写出答案)1.【解答】解:=,故选:C.2.【解答】解:根据勾股定理的逆定理知,三角形三边满足c2=a2+b2,三角形就为直角三角形,四个选项,只有D中不满足,故选D.3.【解答】解:A、﹣3+≠0,不符合相反数的定义,故A选项错误;B、|﹣3|=3,3与﹣不符合相反数的定义,故B选项错误;C、|﹣3|=3,3与不符合相反数的定义,故C选项错误;D、﹣3与=3,只有符号相反,故是相反数,故D选项正确.故选:D.4.【解答】解:∵系数值越小代表生活质量越好,从1989年到2002年系数值越来越小,∴生活质量稳步提高.故选:A.5.【解答】解:(x+3)(x﹣3)=x2﹣9.故选:A.6.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选:D.7.【解答】解:A,正确,符合SAS判定;B,不正确,因为边BC与B′C′不是∠A与∠A′的一边,所以不能推出两三角形全等;C,正确,符合AAS判定;D,正确,符合ASA判定;故选:B.8.【解答】解:甲的做法是将分母有理化,去分母;乙的做法是将分子转化为平方差公式,然后约分去分母.均正确.故选:C.9.【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故选:C.10.【解答】解:∵(x﹣1)(x+4),=x2+3x﹣4,=ax2+bx+c,∴a=1,b=3,c=﹣4.则abc=﹣12.故选:D.11.【解答】解:设三角形的两直角边分别为x,y,则,由②得x2+y2﹣2xy=4…③,①﹣③得2xy=48则(x+y)2=x2+y2+2xy=52+48=100,x+y==10.故选:B.12.【解答】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:B.13.【解答】解:∵(±0.2)2=0.04,∴0.04的平方根是±0.2.故答案为:±0.2.14.【解答】解:∵△ABC≌△AED,AB=AE,∴∠BAC=∠EAD∴∠2=∠1=27°.15.【解答】解:这6天的平均用水量是=32t.故答案为32.16.【解答】解:x2﹣3x﹣4=(x+1)(x﹣4).17.【解答】解:由题意可得:=20,则(x+1)2﹣(1﹣x)2=20,解得:x=5.故答案为:5.18.【解答】解:设DH=x,CH=2﹣x,由翻折的性质,DE=1,EH=CH=2﹣x,在Rt△DEH中,DE2+DH2=EH2,即12+x2=(2﹣x)2,解得x=,∴CH=2﹣x=;故答案为:.19.【解答】解:原式=3﹣3+1+2=3.20.【解答】证明:∵AB∥DE,∴∠B=∠DEF.∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.21.【解答】解:(2a+1)2﹣(2a﹣1)(2a+1)=4a2+4a+1﹣4a2+1=4a+2,当a=﹣时,原式=﹣3+2=﹣1.22.【解答】解:(1)在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m(取正值).(2)在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).23.【解答】解:(1)由两个统计图可知该校报名总人数是(人);(2)选羽毛球的人数是400×25%=100(人),因为选排球的人数是100人,所以,因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.(3)如图:24.【解答】解:(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.25.【解答】解:(1)设连续自然数中间的一个为x,则其他的两个为x﹣1,x+1,根据题意得:[100(x+1)+10x+x﹣1]﹣[100(x﹣1)+10x+x+1]=100x+100+11x﹣1﹣100x+100﹣11x﹣1=198,则原三位数与其反序数之差的绝对值等于198;(2)设两位数十位数字为a,个位数字为b,根据题意得:10a+b+10b+a=11(a+b),由和为完全平方数,得到a+b=11,a=2,b=9;a=3,b=8;a=4,b=7;a=5,b=6;a=6,b=5;a=7,b=4;a=8,b=3;a=9,b=2,则满足上述条件的所有两位数为29,38,47,56,65,74,83,92.26.【解答】解:(1)∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴BF=AE=3.(2)证明:如图2中,过点A作AD⊥AB交BH的延长线于点D.∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°,∴∠ABD=∠BCF,在△ABD与△BCF中,,∴Rt△BAD≌Rt△CBF(AAS),∴AD=BF,BD=CF.∵F为AB的中点,∴AF=BF,∴AD=AF,在△ADH与△AFH中,,∴△AHD≌△AHF(SAS),∴DH=FH.∵BD=BH+DH=BH+FH,∴BH+FH=CF;(3)如图3中,过A作AM⊥AB,交BH延长线于M,由(2)证得△MAB≌△FBC,∴AM=BF=AK,∠AMB=∠CFB,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵∠MAB=90°,∴∠MAH=45°,∴∠MAH=∠CAB,在△MAH与△KAH中,,∴△MAH≌△KAH(SAS),∴∠AMB=∠AKH,∴∠AKH=∠CFB,∵∠AKH=∠PKF,∠CFB=∠PFK,∴∠PKF=∠PFK,∵FC⊥BH,G是PC中点,∴CH=PH,∴∠AHK=2∠P,在△PFK中,∠PKF==90°﹣∠P,则90°﹣∠P+45°+2∠P=180°,解得∠P=30°,在CH上取一点R,使RH=BH,连接BR,∴∠RHB==60°,∴△RHB是等边三角形,∴BH=BR=RH,∵∠CAB=∠ACB=45°,∠AHB=180°﹣60°=120°,∠BRC=180°﹣60°=120°,∴∠ABH=∠RBC,在△ABH与△CBR中,,∴△ABH≌△CBR(ASA),∴AH=CR,∵cos30°=,∴CH==CG=PG,∴RH+RC=BH+AH=PG=,∴BH+AH=。

相关文档
最新文档