2020年江苏省盐城市亭湖区中考数学一模试卷

合集下载

江苏省盐城市2020年九年级中考数学一模试卷(4稿)

江苏省盐城市2020年九年级中考数学一模试卷(4稿)

D. a a3 a4
15.一组数据为 5,6,7,7,10,10,某同学在抄题的时候,误将其中的一个 10
抄成了 16,那么该同学所抄的数据和原数据相比,不变的统计量是( ▲ )
A.极差
B.平均数
C.中位数
D.众数
16.如图,一个长方体从正面、上面看到的图形如图所示,则这个长方体的体积等
于( ▲ )
C
D
(第 10 题)
9.将容量为 100 的样本分成 3 个组,第一组的频数是 35,第二组的频率是 0.28,
那么第三组的频率是 ▲ .
10.如图,在⊙O 的内接四边形 ABCD 中,∠C=2∠A,则 cosA = ▲ .
11.若二次函数 y x2 (m 1)x 的图像经过点(3,0),则关于 x 的一元二次方
连接 AE、AF.
A
D
(1)求证:AE=AF;
(2)连接 EF,试证明: EF AC .
F
B
C
E
22.(本小题满分 6 分)
(第 21 题)
某小区为促进生活垃圾的分类处理,将生活垃圾分为 a(厨余)、b(可回收)、
c(其他)三类,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”
箱、“其他垃圾”箱分别记为 A、B、C.小亮将分类好的两袋垃圾(可回收、
(1)m = ▲ ;k = ▲ ;
(2)求出点 P 的坐标;
(3)将△ABP 向下平移 2t 个单位,再向左平移 t 个单位(t 0 ),得到 ABP ,
边 BP 的对应边 BP 与反比例函数 y 6 的图像交于点 E.当点 E 为 BP x
数学试卷 第 5 页 (共 6 页)
y
的中点时,求出实数 t 的值.

盐城市数学中考一模试卷

盐城市数学中考一模试卷

盐城市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九下·无锡月考) 下列计算正确的是()A . a2+a3=a5B . a2·a3=a6C . (a2)3=a6D . (ab)2=ab22. (2分)(2017·潮南模拟) 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A .B .C .D .3. (2分)(2019·名山模拟) 下列事件中,是随机事件的是()A . 任意画一个三角形,其内角和是360°B . 任意抛一枚图钉,钉尖着地C . 通常加热到100℃时,水沸腾D . 太阳从东方升起4. (2分)(2019·名山模拟) 若a<b,则下列结论不一定成立的是()A . a-1<b-1B . 2a<2bC . - >-D . a2<b25. (2分)(2018·湘西模拟) 对于反比例函数,下列说法正确的是()A . 图象经过点(2,﹣1)B . 图象位于第二、四象限C . 图象是中心对称图形D . 当x<0时,y随x的增大而增大6. (2分)(2018·温州) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A .B .C .D .7. (2分)(2019·名山模拟) 已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米若设甲车的速度为x千米时,依题意列方程正确的是A .B .C .D .8. (2分)(2019·名山模拟) 关于x的一元二次方程有实数根,则实数a满足()A . a<B . a≥C . a≤ 且a≠3D . a≥ 且a≠39. (2分) (2019·名山模拟) 二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣<x<2时,y<0;(3)a﹣b+c=0;(4)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧则.其中正确结论的个数是()A . 1B . 2C . 3D . 410. (2分)(2019·名山模拟) 如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE =y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2019·宁江模拟) 计算: =________。

2020九年级中考数学试题 解析版

2020九年级中考数学试题  解析版

2020年江苏省盐城市亭湖区中考数学一模试卷一.选择题(共8小题)1.下列运算正确的是()A.4a2﹣2a2=2B.(a2)3=a5C.a3•a6=a9D.(3a)2=6a2 2.如图,在下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣4C.7×10﹣3D.7×10﹣54.一组数据2,4,x,6,8的众数为8,则这组数据的中位数为()A.2B.4C.6D.85.如图是由4个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则该几何体的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变6.已知a﹣3b=3,则8﹣a+3b的值是()A.2B.3C.4D.57.若函数y=x2﹣2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0B.b>1C.0<b<1D.b<18.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x >0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=二.填空题(共8小题)9.若代数式有意义,则实数x的取值范围是.10.分解因式:3a2﹣6a+3=.11.如图,l1∥l2,△ABC的顶点B、C在直线l2上,已知∠A=40°,∠1=60°,则∠2的度数为°.12.已知一个圆锥形零件的母线长为5cm,底面半径为3cm,则这个零件的侧面积为.(用π表示)13.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.14.已知a、b是方程x2+2x﹣5=0的两个实数根,则a2+ab+2a的值为.15.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为cm2.16.如图,在平面直角坐标系中,点A(12,0),点B(0,4),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.三.解答题(共11小题)17.计算:|﹣2|+(sin36°﹣)0﹣+tan45°.18.先化简,再求值:(﹣)÷,其中a=+1.19.解不等式组并写出它的所有非负整数解.20.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.21.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.22.2019年3月12日是第41个植树节,某单位积极开展植树活动,决定购买甲、乙两种树苗,用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元?(2)若准备用3800元购买甲、乙两种树苗共100棵,则至少要购买乙种树苗多少棵?23.“安全教育”是学校必须开展的一项重要工作.某校为了了解家长和学生参与“暑期安全知识学习”的情况,进行了网上测试,并在本校学生中随机抽取部分学生进行调查.若把参与测试的情况分为4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.根据调查情况,绘制了以下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并计算扇形统计图中C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3000名学生中“家长和学生都未参与”的人数.24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.25.如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC延长线于点F、G.(1)过点A作直线MN,使得MN∥BG,判断直线MN与⊙O的位置关系,并说理.(2)若AC=3,AB=4,求BG的长.(3)连接CE,探索线段BD、CD与CE之间的数量关系,并说明理由.26.综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一)填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二)填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若=,则=(用含m,n的代数式表示).27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2x+c与x轴交于点A (1,0),点B(﹣3,0),与y轴交于点C,连接BC,点P在第二象限的抛物线上,连接PC、PO,线段PO交线段BC于点E.。

江苏省盐城市亭湖区中考数学一模试题

江苏省盐城市亭湖区中考数学一模试题

江苏省盐城市亭湖区中考数学一模试题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有6小题,每小题3分,共18分)1.下列图形中,是中心对称图形的是(▲ )A. B. C. D.2.取下列各数中的哪个数时,二次根式有意义(▲ )A. B. C. D.3.随着网络购物的兴起,截止到年月盐城市物流产业增加值达到亿元,若把数亿用科学记数法表示是(▲ )A. B. C. D.4.苹果的单价为元千克,香蕉的单价为元千克,买千克苹果和千克香蕉共需(▲ )A. 元B. 元C. 元D. 元5.在某个常规赛季中,科比罚球投篮的命中率大约是,下列说法错误的是(▲ )A. 科比罚球投篮次,一定全部命中B. 科比罚球投篮次,不一定全部命中C. 科比罚球投篮次,命中的可能性较大D. 科比罚球投篮次,不命中的可能性较小6.设方程的两实根分别为、,且,则、满足(▲ )A. B. C. D.二、填空题(本大题共10小题,每小题3分,共30分)7.▲ .8.计算▲ .9.若和是同类项,则+ 的值是▲ .10.下图是甲、乙两人次射击成绩(环数)的条形统计图,则这两人次射击命中环数的方差▲ .(填“”、“”或“”)(第10题图)11.分式方程的解▲ .12.化简的结果是▲ .13.已知反比例函数的图象经过点和,则的值是▲ .14.抛物线与轴只有一个公共点,则的值是▲ .15.如图,在中,.如果将该三角形绕点按顺时针方向旋转到的位置,点恰好落在边的中点处.那么旋转的角度等于▲ .16.如图,点P是O的直径AB的延长线上一点,过点P作直线交O于C、D两点.若AB=6,BP=2,则tan tan∠⋅∠=▲ .PAC PAD(第15题图)(第16题图)三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:18.(6分)甲、乙两人都握有分别标记为、、的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则胜、胜、胜;若两人出的牌相同,则为平局.(1)用列表法列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.19.(8分)如图,,,求证:.20.(8分)已知关于的方程.(1)若该方程的一个根为,求的值;(2)求证:不论取任何实数,该方程总有两个不相等的实数根.21.(8分)九(1)班课题学习小组,为了了解大树生长状况,去年在学校门前点处测得一棵大树顶点的仰角为,树高.今年他们仍在原点处测得树顶点的仰角为,问这棵树在这一年里生长了多少米?(结果保留两位小数,参考数据:,,,)22.(10分)某公司共名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是▲ 元,众数是▲ 元.(2)根据上表,可以算得该公司员工月收入的平均数为元.你认为用平均数、中位数、众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.23.(10分)由若干个边长为1的小正方形组成的网格,小正方形的顶点叫做格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.(1)上图中的格点多边形,其内部都只有一个格点,它们的面积(S)与各边上格点的个数和(x)的对应关系如下表,请写出S与x之间的关系式.答:S= ▲ .多边形的序号①②③④…(2....2.个.格点.可得此类多边形的面积(S)与它各边上格点的个数和(x)之间的关系式是:S= ▲ .24.(10分)河上有一座桥孔为抛物线形的拱桥(如图),水面宽时,水面离桥孔顶部,因降暴雨水面上升.(1)建立适当的坐标系,并求暴雨后水面的宽;(结果保留根号)(2)一艘装满物资的小船,露出水面的部分高为,宽(横断面如图所示),暴雨后这艘船能从这座拱桥下通过吗?25.(10分)如图,是内一点,与相交于、两点,且与、分别相切于点、,.连接、.(1)求证:.(2)已知,.求四边形是矩形时的半径.26.(12分)为民中学租用两辆速度相同的小汽车送1名带队老师和6名学生到城区中学参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场16.5 km的地方出现故障,此时离截止进考场的时刻还有50分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是55 km/h,人步行的速度是5 km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请设计一种你认为较优的运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.27.(14分)已知O是坐标原点,以P(1,1)为圆心的⊙P与x轴、y轴分别相切于点M和点N.点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连结PF,过点P作PE⊥PF 交y轴于点E.设点F运动的时间是t秒(t>0).(1)求点E的坐标(用t表示);(2)在点F运动过程中,当PF=2OE时,求t的值.(3)当t>1时,作点F关于点M的对称点F′.点Q是线段MF′的中点,连结QE.在点F运动过程中,是否存在某一时刻,使得△QOE与△PMF相似,若存在,求出t的值;若不存在,请说明理由.xx届九年级毕业班第一次调研测试数学试卷答案一、选择题(本大题共有6小题,每小题3分,共18分)1.B 2.D 3.B 4.C 5.A 6.D 二、填空题(本大题共10小题,每小题3分,共30分)7.38.9.410.11.112.13.-6 14.15.16.14三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)解:――――6分18.(6分)解:(1)列表如下,所有等可能的情况有种.――――4分(2)出现平局的情况有种,出现平局的概率为.――――2分19.(8分)证明:,,,――――2分在和中,,――――4分.――――2分20.(8分)解:(1),,解得:. ――――4分(2),――――2分,,不论取何实数,该方程都有两个不相等的实数根. ――――2分21.(8分)解:根据题意得:,,,在中,,――――4分在中,,.答:这棵树在这一年里生长了.――――4分22.(10分)解:(1);――――6分(2)本题答案不唯一,下列解法供参考.例如:用中位数反映该公司全体员工月收入水平较为合适.在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是元,这说明除去月收入为元的员工,一半员工收入高于元,另一半员工收入低于元.因此,利用中位数可以更好地反映这组数据的集中趋势.――――4分23.(10分)解:(1)S=1x.――――4分2(2)画格点多边形略.――――3分S=11x ――――3分224.(10分)解:(1)如图,以抛物线的顶点为原点,以桥面为轴,建立平面直角坐标系.易知抛物线过点,设抛物线的函数表达式为:.把代入,可求,――3分则抛物线对应的函数表达式为.当水面上涨米后,水面所在的位置为直线,令得,,,即水面宽为米.――――3分(2)当船在桥拱的正中心航行时,船的边缘距抛物线对称轴水平距离为米.在抛物线的函数关系中,令得,,因为船上货物最高点距拱顶为(米)且,所以这艘船能从这座拱桥下通过.――――4分(其它方法参照给分)25.(10分)解:(1)与、分别相切于点、,..,,...――――4分(2)如图,连接,交于点,延长交于点,连接、.设的半径为.四边形是矩形,是的直径.又 ,.. 由可求得. 四边形 是矩形时 的半径为 . ――――6分26.(12分)解:(1)16.530.955⨯=(小时)54=(分钟),5450>, ∴不能在限定时间内到达考场. ――――4分(2)方案1:从故障处出发,先将4人用车送到考场 ,其他人同时步行前往考场,汽车到考场后返回到与另外3人的相遇处再载他们到考场.设从故障处出发到将4人用车送到考场后再返回与其余3人相遇时所需时间为t 小时.55516.52t t +=⨯,解得0.55t =小时. 汽车由相遇点再去考场所需时间是16.550.550.2555-⨯=小时. 所以用这一方案送人到考场共需0.550.256048+⨯=()分钟,少于50分钟.所以这7个人能在截止进考场的时刻前赶到. ――――6分(最优)方案2:从故障处7人同时出发,3人步行,另将4人用车送到离出发点kmx 的A 处,然后这4个人步行前往考场,车回去接应后面的3人,使他们跟前面4人同时到达考场.汽车从故障处到A 处需(h)55x ,由A 处步行前往考场需16.5(h)5x -, 设从故障处出发到汽车返回与其余3人相遇时所需时间为t (h ),则有5552t t x +=,解得130t x =,所以相遇点与考场的距离为116.5516.5(km)306x x -⨯=-. 他们同时到达,则有116.516.563055555x x x x --+=+,解得997x =. 代入上式,可得他们从故障处赶到考场所需时间为5170小时,约为43.7(分钟). 43.950<.∴他们能在截止进考场的时刻前到达考场. ――――8分(方案2是最优方案,如果设某段时间为未知数,求得的结果应该一致,为5170小时) 27.(14分)解:(1)连结PM ,PN .∴△PMF ≌△PNE ,∴NE =MF .∴E (0,1-t ) ――――4分(2)由直角△PMF 可得21PF t =+,|1|OE t =-,由PF =2OE 得21t +2|1|t =-,解得47t +=或47-. ――――4分 (3)存在: t =1+174,t =2,t =2+2. ∵F (1+t ,0),F 和F ′关于点M 对称,∴F ′(1-t ,0).∴Q (1-12t ,0), ①当1<t <2时,如图,有OQ =1-12t , 由(1)得∴NE =MF =t ,OE =t -1.当△OEQ ∽△MPF 时,∴OE MP =OQ MF ,∴t -11=1-12t t, 解得,t =1+174或t =1-174(舍去), ――――2分 当△OEQ ∽△MFP 时,OE MF =OQ MP , ∴t -1t =1-12t 1,解得,t =2或t =-2(舍去). ――――2分 ②当t >2时,如图,有OQ =12t -1. 由(1)得NE =MF =t ,OE =t -1.当△OEQ ∽△MPF ,OE MP =OQ MF .∴t -11=12t -1t,无解. 当△OEQ ∽△MFP 时,OE MF =OQ MP ,∴t -1t =12t -11, 解得t =2+2或t =2-2<2舍去. ――――2分所以当t =1+174,t =2,t =2+2时,使得△QOE 与△PMF 相似.。

2020年江苏省盐城市中考数学一模试卷解析版

2020年江苏省盐城市中考数学一模试卷解析版

中考数学一模试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是( )A. aB. bC. cD. d2.下列四张扑克牌的牌面,不是中心对称图形的是( )A. B. C. D.3.今年以来,人们对全国多地大范围持续的雾霾天气记忆犹新,“细颗粒物PM2.5”遂成为显示度最高的热词之一.PM2.5是指大气中直径小于或等于0.0000025米(即2.5微米)的颗粒物,也称为可入肺颗粒物.把0.0000025用科学记数法表示为( )A. 0.25×10-5B. 2.5×10-5C. 2.5×10-6D. 25×10-74.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是( )A. ①③②B. ②①③C. ③①②D. ①②③5.圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是( )A. 相离B. 相切C. 相交D. 相交或相切6.下列运算正确的是( )A. 3x-2x=xB. 3x+2x=5x2C. 3x•2x=6xD. 3x÷2x=7.若关于x的二次三项式x2+kx+b因式分解为(x-1)(x-3),则k+b的值为( )A. -1B. 1C. -7D. 78.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以8m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是( )A. 立交桥总长为168 mB. 从F口出比从G口出多行驶48mC. 甲车在立交桥上共行驶11 sD. 甲车从F口出,乙车从G口出二、填空题(本大题共8小题,共24.0分)9.二次根式有意义,则x的取值范围是______.10.9的平方根是______.11.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是______.12.分解因式:9x2-y2=______.13.小华5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差______.(填“变大”、“变小”或“不变”)14.在半径为2cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧的长为______cm.15.如图,△ABC中,D,E两点分别在AB、BC上,若BD:BA=BE:BC=1:3,则△DBE的面积:△ADC的面积=______.16.如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为______.三、解答题(本大题共11小题,共102.0分)17.计算(-3)0+-2sin30°-|-2|.18.先化简,再求值:÷(-),其中x是满足不等式组的最大整数.19.节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩于参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩予中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是______.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.20.关于x的一次函数y1=-2x+m和反比例函数y2=的图象都经过点A(-2,1).求:(1)一次函数和反比例函数的解析式;(2)若一次函数和反比例函数图象的另一个交点B的坐标为(,-4),请结合图象直接写出y1>y2的x取值范围.21.2020贺岁片《囧妈》提档大年三十网络首播、“乐调查”平台为了全面了解观众对《囧妈》的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有______人;(2)扇形统计图中,扇形C的圆心角度数是______;(3)请补全条形统计图;(4)“乐调查”平台调查了春节期间观看《囧妈》的观众约5000人,请估计观众对该电影的满意(A、B、C类视为满意)的人数.22.如图,矩形ABCD中,对角线AC,BD交于点O,以AD,OD为邻边作平行四边形ADOE,连接BE.(1)求证:四边形AOBE是菱形;(2)若∠EAO+∠DCO=180°,DC=3,求四边形ADOE的面积.23.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.24.“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:销售单价x(元/千克)12162024日销售量y(千克)220180140m (注:日销售利润=日销售量×(销售单价-成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围);(2)根据以上信息,填空:①m=______千克;②当销售价格x=______元时,日销售利润W最大,最大值是______元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.25.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起,高铁大大缩短了时空距离,改变了人们的出行方式,如图A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道由A地到O地,再由O地到B地可大大缩短路程、∠OAC=45°,∠OBC=60°,∠ACB=90°,AC=540公里,BC=400公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4,≈2.4)26.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.27.如图,二次函数y=-x2+2(m-2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)如图1,若动点P在第一象限内的抛物线上,动点N在对称轴1上,当PA⊥NA ,且PA=NA时,求此时点P的坐标;(3)如图2,若点Q是二次函数图象上对称轴右侧一点,设点Q到直线BC的距离为d,到抛物线的对称轴的距离为d1,当|d-d1|=2时,请求出点Q的坐标.答案和解析1.【答案】C【解析】解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的数是c;故选:C.根据数轴上某个数与原点的距离的大小确定结论.本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2.【答案】D【解析】解:根据中心对称图形的概念,知A、B、C都是中心对称图形;D、旋转180°后,中间的花色发生了变化,不是中心对称图形.故选:D.根据中心对称图形的概念和扑克牌的花色特点求解.考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.【答案】C【解析】解:0.0000025=2.5×10-6.故选:C.根据科学记数法和负整数指数的意义求解.本题考查了科学记数法-表示较小的数:用a×10n(1≤a<10,n为负整数)表示较小的数.4.【答案】A【解析】解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:A.根据简单几何体的三视图,可得答案.本题考查了简单几何体的三视图,利用三视图的定义是解题关键.5.【答案】B【解析】解:∵⊙O的直径为8cm,∴r=4cm,∵d=4cm,∴d=r,∴直线l与⊙O的位置关系是相切.故选:B.由⊙O的直径为8cm,得出圆的半径是4cm,圆心O到直线l的距离为4cm,即d=4cm ,得出d=r,即可得出直线l与⊙O的位置关系是相切.本题考查了直线与圆的位置关系;若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.6.【答案】A【解析】解:A、结果是x,故本选项符合题意;B、结果是5x,故本选项不符合题意;C、结果是6x2,故本选项不符合题意;D、结果是,故本选项不符合题意;故选:A.先根据合并同类项法则,单项式乘以单项式和单项式除以单项式进行计算,再判断即可.本题考查了合并同类项法则,单项式乘以单项式和单项式除以单项式,能正确求出每个式子的值是解此题的关键.7.【答案】A【解析】解:由题意得:x2+kx+b=(x-1)(x-3)=x2-4x+3,∴k=-4,b=3,则k+b=-4+3=-1.故选:A.利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k与b的值,即可求出所求.此题考查了因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.8.【答案】D【解析】解:由图象可知,两车通过,,弧时每段所用时间均为3s,通过直行道AB,CG,EF时,每段用时为4s.因此,甲车所用时间为4+3+4=11s,故C正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为6s,则多走48m,故B正确;根据两车运行时间,可知甲先驶出,应从G口驶出,故D错误;根据题意立交桥总长为(3×3+4×3)×8=168m,故A正确;故选:D.根据题意、结合图象问题可得.本题考查了动点问题的函数图象,解答时要注意数形结合.9.【答案】x≥3【解析】解:根据题意,得x-3≥0,解得,x≥3;故答案为:x≥3.二次根式的被开方数x-3≥0.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.【答案】±3【解析】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.直接利用平方根的定义计算即可.此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.11.【答案】(2,-1)【解析】解:点(2,1)关于x轴对称的点的坐标是(2,-1),故答案为:(2,-1).平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.12.【答案】(3x+y)(3x-y)【解析】解:原式=(3x+y)(3x-y),故答案为:(3x+y)(3x-y).利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2-b2=(a+b)(a-b).13.【答案】变小【解析】解:∵前5次小华的方差是3.2,平均数是8,小华再射击1次,命中8环,∴小华这六次射击成绩的方差是×[3.2×5+(8-8)2]=,∵<3.2,∴小华这六次射击成绩的方差会变小;故答案为:变小.根据方差公式求出小华6次的方差,再进行比较即可.本题考查方差的定义与意义牢记方差的计算公式是解答本题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.【答案】【解析】解:连接OA,OB,过点O作OD⊥AB于点D,∵OA=OB=2cm,AB=2cm,∴∴△OAB是等边三角形,∴∠AOB=60°,∴劣弧的长==π,故答案为:.连接OA,OB,过点O作OD⊥AB于点D,根据已知条件得到△OAB是等边三角形,求得∠AOB=60°,根据弧长公式即可得到结论.本题主要考查圆周角定理、垂径定理,关键在于根据题意正确的画出图形,运用圆周角定理和垂径定理认真的进行分析.15.【答案】1:6【解析】解:∵BD:BA=BE:BC=1:3,又∵∠DBE=∠ABC,∴△BED∽△BCA,∴,分别过点B,D作AC的垂线BM,DN,则DN∥BM,∴△ADN∽△ABM,∴,∵S△ADC=AC•DN,S△BCA=AC•BM,∴,∴,故答案为:1:6.先证△BED与△BCA相似,求出△BED与△BCA的相似比,进一步求出其面积比,然后分别过点B,D作AC的垂线BM,DN,求出DN与BM的比值,推出△DCA与△BCA 的面积比,结合△BED与△BCA的面积比即可求出最终结果.本题考查了相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质及同底不等高的三角形面积比等于其高之比这一结论.16.【答案】-【解析】解:BC交OA于H,如图,由作法得CB垂直平分OA,∴BO=BA=1,AH=OH,∠OBH=90°,∴B(-1,0),在Rt△OCB中,∵C(0,3),∴OC=3,∴CB==,∵×OH×BC=×OB×OC,∴OH==,∴OA=2OH=,设A(m,n),则(m+1)2+n2=12,m2+n2=()2,解得m=-,n=,∴A(-,),把A(-,)代入y=得k=-×=-.故答案为-.BC交OA于H,如图,利用基本作图得到CB垂直平分OA,则BO=BA=1,AH=OH,在Rt△OCB中先利用勾股定理计算出CB,再利用面积法计算出OH=,则OA=,设A(m,n),根据•两点间的距离公式得到(m+1)2+n2=12,m2+n2=()2,解关于m、n的方程组得到A(-,),然后利用反比例函数图象上点的坐标特征求k的值.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也得考查了待定系数法求函数解析式.17.【答案】解:原式=1+3-2×-2=4-1-2=1.【解析】原式利用零指数幂法则,算术平方根定义,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【答案】解:÷(-)===,由不等式组,得x<,∵x是满足不等式组的最大整数,∴x=0,当x=0时,原式==0.【解析】根据分式的减法和除法可以化简题目中的式子,然后根据x是满足不等式组的最大整数,可以求得x的值,然后代入化简后的式子即可解答本题.本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.19.【答案】(1)(2)画树状图如下:∵共有9种等情况数,恰好是同一家庭成员的有3种情况数,∴被选中的恰好是同一家庭成员的概率是=.【解析】解:(1)∵有三位孩子,分别是a,b,c,∴家长A恰好选中孩子的概率是;故答案为:.(2)见答案(1)根据概率公式直接得出答案即可;(2)先画出树状图,得出所有等情况数和恰好是同一家庭成员的情况数,然后根据概率公式即可得出答案.主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比,根据题意画出树状图是解题的关键.20.【答案】解:(1)把A(-2,1)代入y1=-2x+m得4+m=1,解得m=-3,∴一次函数解析式为y1=-2x-3;把A(2,-1)代入y2=得n+1=2×(-1)=-2,∴反比例函数的解析式为y2=-;(2)如图,当x<-2或0<x<时,y1>y2.【解析】(1)把两函数的交点A的坐标分别代入y1=-2x+m和y2=中求出m、n即可得到两函数解析式;(2)先大致画出两函数图象,利用函数图象,写出直线在反比例函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也得考查了待定系数法求函数解析式.21.【答案】100 54°【解析】解:(1)本次接受调查的观众:25÷25%=100(人),故答案为:100;(2)扇形C的圆心角度数是:360°×=54°故答案为:54°;(3)A类别的人数:100-25-15-10=50(人),如图所示;(4)5000×=4500(人),答:估计观众对该电影的满意(A、B、C类视为满意)的人数为4500人.(1)利用B的人数除以B所占百分比可得答案;(2)用360°乘以C所占比例可得扇形C的圆心角度数;(3)用总人数减去B、C、D三类人数可得A类人数,再补图即可;(4)利用样本估计总体的方法计算即可.本题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.【答案】解:(1)∵四边形ABCD是矩形,∴DO=BO.∵四边形ADOE是平行四边形,∴AE∥DO,AE=DO,AD∥OE.∴AE∥BO,AE=BO.∴四边形AOBE是平行四边形.∵AD⊥AB,AD∥OE,∴AB⊥OE.∴四边形AOBE是菱形;(2)设AB与EO交点为M.∵AB∥CD,∴∠DCO=∠BAO.∵四边形AOBE是菱形,∴∠EAO=2∠BAO.∵∠EAO+∠DCO=180°,∴∠BAO=120°,∠EAM=60°.又AM=AB=,∴EM=.∴EO=3,∴△AEO面积为×3×=,∴四边形ADOE面积=.【解析】(1)先证明四边形AOBE是平行四边形,再证明AB⊥OE即可;(2)根据∠EAO+∠DCO=180°,以及矩形性质可求得∠EAO=120°,求出△AEO面积,利用四边形ADOE的面积等于△AEO面积的2倍即可求解.本题主要考查平行四边形的性质、菱形的判定和性质,矩形的性质.解题时,注意这三种图形间的区别与联系.23.【答案】(1)证明:连接OD,CD,∵BC为⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AC=BC,AB=10,∴AD=BD=5,∵O为BC中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∵OD过O,∴直线DF是⊙O的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADF=∠ODC,∵BD=5,BC=13,∴CD=12,∴cos∠ADF=cos∠BCD==.【解析】(1)连接OD和CD,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.本题考查了切线的判定,等腰三角形的性质,解直角三角形,圆周角定理,勾股定理等知识点,能综合运用知识点进行推理是解此题的关键.24.【答案】100 21 1690【解析】解:(1)设y关于x的函数解析式为y=kx+b,将(12,220),(16,180)代入得:,解得:.∴y=-10x+340;(2)①∵当x=24时,y=-10×24+340=100,∴m=100.故答案为:100;②由题意得:W=(-10x+340)(x-8)=-10x2+420x-2720=-10(x-21)2+1690,∵-10<0,∴当x=21时,W有最大值为1690元.故答案为:21,1690;(3)由题意得:W=-10x2+420x-2720-100≥1500,∴x2-42x+432≤0,当x2-42x+432=0时,解得:x1=18,x2=24,∵函数y=x2-42x+432的二次项系数为正,图象开口向上,∴18≤x≤24,∴该产品销售单价的范围为18≤x≤24.(1)设y关于x的函数解析式为y=kx+b,由待定系数法求解即可;(2)①将x=24代入一次函数解析式,计算即可得出m的值;②根据日销售利润=日销售量×(销售单价-成本单价)写出函数关系式,并将其配方,写成顶点式,按照二次函数的性质可得答案;(3)根据题意,W=-10x2+420x-2720-100≥1500,变形得出关于x的二次不等式,然后解一元二次方程,再根据二次函数的性质可得答案.本题考查了待定系数法求一次函数的解析式及二次函数在销售问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.25.【答案】解:过点O作OD⊥AC于点D,OE⊥BC于点E,设BE=x公里,则OD=CE=400-x(公里),∴CD=OE=BE•tan∠OBE=x•tan60°=x,AD=,∵AD+CD=AC=540,∴x+400-x=540,∴x=70+70,∴BE=70+70,OE=70+210,AD=OD=330-70,∴AO=,OB=,∴AO+OB=330-70+140+140=672,AC+CB=540+400=940,940-672=268,答:隧道打通后与打通前相比,从A地到B地的路程将约缩短268公里.【解析】过点O作OD⊥AC于点D,OE⊥BC于点E,设BE=x公里,通过解直角三角形,用x表示CD和AD,由AC的长度列出x的方程,求得x,进而由勾股定理求得OA 与OB,便可计算出结果.本题是解直角三角形的应用,主要考查了解直角三角形,勾股定理,方程思想,关键是构造直角三角形.26.【答案】(1)证明:如图1中,由旋转可得GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中,,∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF.(2)解:结论:EF=DF-BE,理由:如图2中,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF(SAS),∴EF=GF,且DG=BE,∴EF=DF-DG=DF-BE.(3)解:如图3中,在DC上取一点G,使得DG=BE,∵∠BAD=∠BCD=90°,∴∠ABC+∠D=180°,∠ABE+∠ABC=180°,∴∠ABE=∠D,∵AB=AD,BE=DG,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∴∠EAB+∠BAF=∠DAG+∠BAF=45°,∵∠BAD=90°,∴∠FAG=∠FAE=45°,∵AE=AG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,设BE=x,则EC=EB+BC=x+7,EF=FG=18-x,在Rt△ECF中,∵EF2=EC2+CF2,∴52+(7+x)2=(18-x)2,∴x=5,∴BE=5.【解析】(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF-BE.(3)如图3中,在DC上取一点G,使得DG=BE,证明△ABE≌△ADG(SAS),推出AE=AG,∠BAE=∠DAG,证明△AFE≌△AFG(SAS),推出EF=FG,设BE=x,则CG=13-x ,EF=FG=18-x,在Rt△ECF中,根据EF2=EC2+CF2,构建方程求出x即可解决问题.本题属于四边形综合题,主要考查正方形的性质及全等三角形的判定和性质等知识,解题的关键是学会利用旋转法构造全等三角形,属于中考常考题型.27.【答案】解:(1)将点A的坐标代入函数表达式得:0=-32+2(m-2)×3+3,解得:m=3,故抛物线的表达式为:y=-x2+2x+3,故点D的坐标为:(1,4);(2)过点A作y轴的平行线交过点N与x轴的平行线于点M,交过点P与x轴的平行线于点H,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NP,∴△NMA≌△AHP(AAS),∴AN=MN=3-1=2,即y P=2=-x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,-t2+2t+3),则点M(t,3t+3),则d=DH=MQ sinM=[(3t+3)-(-t2+2t+3)],d1=t-1,∵|d-d1|=2,即[(3t+3)-(-t2+2t+3)]-(t-1)=±2,解得:t=或-1(舍去-1),故点Q的坐标为:(,2-7).【解析】(1)将点A的坐标代入函数表达式,即可求解;(2)证明△NMA≌△AHP(AAS),则AN=MN=3-1=2,即y P=2=-x2+2x+3,即可求解;(3)则d=DH=MQ sinM=[(3t+3)-(-t2+2t+3)],d1=t-1,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形、三角形全等等,综合性强,难度适中.。

江苏2020届中考数学一模试题(含答案解析)

江苏2020届中考数学一模试题(含答案解析)

江苏2020届中考数学一模试题一、单选题1.截至今年一季度末,江苏省企业养老保险参保人数达850万,则参保人数用科学记数法表示为 A .8.50×106 B .8.50×105 C .0.850×106 D .8.50×1072.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A .83,74x y x y =+⎧⎨=-⎩ B .83,74x y x y =-⎧⎨=+⎩ C .84,73x y x y =+⎧⎨=-⎩ D .84,73x y x y =-⎧⎨=+⎩3.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分AB ,垂足为点E ,交AC 于D 点,连接BD ,若AD =4,则DC 的值为( )A .1B .1.5C .2D .34.已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )A .B .C .D .5.如图,某同学用圆规BOA 画一个半径为4cm 的圆,测得此时90O ∠=︒,为了画一个半径更大的同心圆,固定A 端不动,将B 端向左移至B '处,此时测得120O '∠=︒,则BB '的长为( )A .4B 2-C .D .26.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2的图象上,则a 的值为( )A .23-B .3-C .2-D .12- 7.如图,已知A 为反比例函数k y x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( )A .2B .-2C .4D .-48.将等边三角形ABC 放置在如图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C 按顺时针方向旋转90°,则旋转后点A 的对应点A’的坐标为( )A .(1+,1)B .(﹣1,1-)C .(﹣1,-1)D .(2,)9.如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD =D .AG 平分CAD ∠ 10.若整数a 既使关于x 的分式方程13x x --﹣2(3)a x x --=1的解为非负数,又使不等式组3024385x a x x+⎧+>⎪⎨⎪-+>⎩有解,且至多有5个整数解,则满足条件的a 的和为( ) A .﹣5 B .﹣3 C .3 D .211.若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .1412.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为( )A .(0,1)B .(1,0)C .(0,1)或(0,-1)D .(1,0)或(-1,0)二、填空题13.若3x =+3y =,则222x xy y ++=___. 14.李叔叔骑车从家到工厂,通常要40分钟,如果他骑车速度比原来每小时增加2千米,那么可节约10分钟,李叔叔的家离工厂有_______千米.15.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.16.如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.17.如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.三、解答题18.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场5月份售出这种品牌的电风扇共多少台?(2)补全条形统计图.(3)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?19.如图,已知E ,F 分别是▱ABCD 的边BC 、AD 上的点,且BE=DF求证:四边形AECF 是平行四边形.20.某特产店销售核桃,进价为每千克40元,按每千克60元出售,平均每天可售100千克,后经市场调查发现,单价每降低2元,则平均每天销售可增加20千克,若该专卖店销售该核桃要想平均每天获利2240元,且在平均每天获利不变的情况下,为尽可能让利于顾客,求每千克核桃应降价多少元?21.设用符号〈a ,b 〉表示a ,b 两数中较小的数,用符号[a ,b]表示a ,b 两数中较大的数,试求下列各式的值.(1)〈-5,-0.5〉+[-4,2]; (2)〈1,-3〉+[-5,〈-2,-7〉].22.已知:2(1)3a b a x y -+=是关于y x 、二元一次方程,点A 在坐标平面内的坐标为a b (,) 点B (3,2)将线段AB 平移至A’B’的位置,点B 的对应点'B (-1,3).求点A’的坐标23.先化简,再求值:,其中.24.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AD 平分∠BAC ,BD=CD(1)求证:BE=CF ;(2)已知AC=10,DE=4,BE=2,求△AEC 的面积25.如图,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x 、y 轴交于,A B 两点,正比例函数的图像2l 与1l 交于点(),3C m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S ∆∆-的值;(3)在坐标轴上找一点P ,使以OC 为腰的OCP ∆为等腰三角形,请直接写出点P 的坐标. 26.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线2x =,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),联结PC .当PCB ACB ∠=∠时,求点P 的坐标; (3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD DQ ⊥时,求抛物线平移的距离.参考答案1.A解:850万=8500000=8.5×106,故选A .2.A根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.3.C由线段垂直平分线的性质定理可知4BD AD ==,30ABD A ︒∠=∠=,易知30CBD ︒∠=,根据直角三角形中30︒角所对的直角边是斜边的一半可得122DC BD ==. 解:在Rt △ABC 中,∠A =30° 60ABC ︒∴∠=DE 垂直平分AB ,点D 在AB 上4BD AD ∴==,30ABD A ︒∠=∠=30CBD ABC ABD ︒∴∠=∠-∠=122DC BD ∴== 故选:C本题考查了线段垂直平分线的性质定理,同时涉及到了直角三角形30︒角这一性质,灵活利用这两个性质求线段长是解题的关键.4.C根据绝对值的性质可得a ≤0, b ≥0,由a b >可得a 到原点的距离大于b 到原点的距离,进而可得答案. 解:,a a b b =-=,∴a ≤0, b ≥0∴B, D 错误;a b >∴a到原点的距离大于b到原点的距离.C是正确的, A是错误的,故选C本题主要考查数轴上的点与绝对值.5.A△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D 中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.解:在等腰直角△OAB中,AB=4,则OA=cm,AO'=,∠AO'D=12×120°=60°,过O'作O'D⊥AB于点D.则AD=AO'•sin60°=22×3=6.则AB'=2AD=26,故BB'=AB'-AB=26-4.故选:A.本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.6.B连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得12BD OB=,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.如图,连接OB,∵四边形OABC 是边长为1的正方形,∴451BOC OB ∠===, 过点B 作BD ⊥x 轴于D ,∵OC 与x 轴正半轴的夹角为15,∴451530BOD ∠=-=,∴122BD OB ==OD ==∴点B 的坐标为⎝⎭,∵点B 在抛物线y =ax 2(a <0)的图象上,∴2a =⎝⎭解得a =3-故选B.考查正方形的性质,勾股定理,二次函数图象上点的坐标特征等,求出点B 的坐标是解题的关键. 7.D设A 点坐标为(m ,n),则有AB=-m ,OB=n ,继而根据三角形的面积公式以及反比例函数图象上点的坐标特征即可求得答案. 设A 点坐标为(m ,n),则有AB=-m ,OB=n ,。

精品模拟2020年江苏省盐城市中考数学模拟试卷一解析版

精品模拟2020年江苏省盐城市中考数学模拟试卷一解析版

2020年江苏省盐城市中考数学模拟试卷一一.选择题(共6小题,满分18分,每小题3分)1.下列四个等式中,正确的是()A.()2=﹣2B.(﹣)2=﹣2C.=﹣2D.[]2=42.利用数轴求不等式组的解集表示正确的是()A.B.C.D.3.“367人中有2人同月同日生”这一事件是()A.随机事件B.必然事件C.不可能事件D.确定事件4.如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体5.下列计算正确的是()A.3x﹣x=3B.a3÷a4=C.(x﹣1)2=x2﹣2x﹣1D.(﹣2a2)3=﹣6a66.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2B.3C.4D.5二.填空题(共10小题,满分30分,每小题3分)7.分解因式:9abc﹣3ac2=.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.10.如果一组数据1,3,5,a,8的方差是0.7,则另一组数据11,13,15,a+10,18的方差是.11.已知反比例函数y=(k为常数,k≠0),函数y与自变量x的部分对应值如下表:则当﹣4<y<﹣1时,x的取值范围是.12.如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是.13.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面积等于cm2.14.如图,在矩形ABCD纸片中,AD=4,CD=3.限定点E在边AB上,点F在边BC上,将△BEF 沿EF翻折后叠合在一起,则点B距点A的最小距离是.15.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是.16.直线y=x+b与x轴交于A点,与y轴交于B点,若坐标原点O到直线AB的距离为,则b 的值为.三.解答题(共11小题,满分102分)17.(8分)(1)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1(2)解方程:﹣=018.(8分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.19.(8分)解不等式组:并写出它的所有整数解.20.(8分)某学校为了控制冬季传染病的传播,对各教室进行消毒.为了得到时间t(单位:m)与教室里空气中药物含量y(单位:mL/m3)之间的关系,测得以下数据:(1)根据上表,请在以时间t为横坐标,空气中药物含量y为纵坐标建立的直角坐标系内描出上述各点,并用平滑曲线把这些点一次连接;(2)请根据直角坐标系内各点的变化趋势,确定y与t的函数模型以及函数表达式.(3)根据药物性质可知,当教室空气中含量小于3mL/m3大于mL/m3时,消毒效果最好.最好的消毒效果时间能持续多久?21.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)22.(8分)消费者在许昌市某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有4张纸牌,它们的背面都是小猪佩奇头像,正面为2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,小芳获奖的概率.(2)如果小杨、小月都有翻两张牌的机会.小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过树状图或列表法分析说明理由.23.(10分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24.(10分)如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O 与AC相切于点D,交BC于点E,点F为BE的中点.(1)求证:四边形ODCF为矩形;(2)求弦BE的长.25.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?26.(12分)在△ABC中,以AB、AC为边向三角形外分别作等边△ABF、等边△ACD,以BC为边在同侧作等边△BCE,求证:四边形ADEF是平行四边形.27.(12分)已知抛物线l1:y=x2+c,当其函数值y=1时,只有一个自变量x的值与其对应(1)求c的值;(2)将抛物线l1经过平移得到抛物线l2:y=(x﹣p)2﹣1.①若抛物线l2与x轴交于A,B两点(A在B的左侧),与y轴交于点C,记△ABC的外心为P,当﹣1≤p≤时,求点P的纵坐标的取值范围;②当0≤x≤2时,对于抛物线l1上任意点E,抛物线l2上总存在点F,使得点E、F纵坐标相等,求p的取值范围参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.【分析】A、根据平方根性质即可判定;B、根据平方根定义即可判定;C、根据平方根性质可判定;D、根据平方根性质和乘方运算法则可判定.【解答】解:A、没有意义,故本选项错误;B、(﹣)2=2,故本选项错误;C、,故本选项错误;D、=22=4,故本选项正确;故选:D.【点评】本题主要考查二次根式的意义及实数的运算,准确运用平方根的意义和性质是关键.2.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≤1,∴不等式组的解集为﹣3<x≤1,表示在数轴上,如图所示:,故选:D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.【分析】根据一年365天,判断已知事件即可.【解答】解:“367人中有2人同月同日生”这一事件是必然事件,故选:B.【点评】此题考查了随机事件,用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.4.【分析】根据三视图得出几何体为三棱柱即可.【解答】解:由主视图和俯视图可得几何体为三棱柱,故选:A.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2x,故A错误;(C)原式=x2﹣2x+1,故C错误;(D)原式=﹣8a6,故D错误;故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6.【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【解答】解:∵这组数据有唯一的众数4,∴x=4,将数据从小到大排列为:1,2,3,3,4,4,4,则中位数为:3.故选:B.【点评】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.二.填空题(共10小题,满分30分,每小题3分)7.【分析】原式提取公因式即可得到结果.【解答】解:原式=3ac(3b﹣c).故答案为:3ac(3b﹣c).【点评】此题考查了因式分解﹣提公因式法,熟练掌握因式分解的方法是解本题的关键.8.【分析】分式的值为0的条件为分子等于0且分母不等于0;分式有意义的条件是分母不等于零.【解答】解:若分式的值为0,则x﹣1=0,且x+1≠0,解得x=1;若分式有意义,则x+5≠0,解得x≠﹣5,故答案为:﹣1;x≠﹣5.【点评】本题主要考查了分式有意义的条件:分母不等于零.解题时注意:分式的值为0的条件为:分子等于0且分母不等于0.9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】根据题目中的数据和方差的定义,可以求得所求数据的方差.【解答】解:设一组数据1,3,5,a,8的平均数是,另一组数据11,13,15,a+10,18的平均数是+10,∵=0.7,∴==0.7,故答案为:0.7.【点评】本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.11.【分析】由反比例函数图象上点的坐标特征得到k=xy=8,所以将y=﹣4和y=﹣1代入函数解析式,即可得到相应的x的值,即x的极值,从而得到x的取值范围.【解答】解:从表格中的数据知,k=xy=8,则该反比例函数解析式为:y=.把y=﹣4代入得到:x=﹣2,把y=﹣1代入得到:x=﹣8,故x的取值范围为:﹣8<x<﹣2.故答案是:﹣8<x<﹣2.【点评】考查了反比例函数图象上点的坐标特征和反比例函数的性质.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【分析】求出图中∠4,利用三角形的外角的性质即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=110°,∵∠4=∠3+∠2,∠3=50°,∴∠2=110°﹣50°=60°.故答案为60°.【点评】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【分析】根据圆锥的侧面积公式即扇形面积公式计算.【解答】解:圆锥的侧面积=×2π×4×6=24π,故答案为:24π.=•2πr•l=πrl.【点评】本题考查的是圆锥的计算,圆锥的侧面积:S侧14.【分析】根据翻折变换的性质,翻折前后图形图形大小不发生变化,以及当点B距点A的最小距离时,即AB′⊥EB′,A,B′,C在一条直线上,利用勾股定理,即可求出答案.【解答】解:∵矩形ABCD纸片中,AD=4,CD=3,限定点E在边AB上,点F在边BC上,将△BEF沿EF翻折后叠合在一起,∴当点B距点A的最小距离时,∠B′EB要最大,则∠ECB′最小,而点F在边BC上,此时F 点与点C重合,即B′在AC上时,∵BC=B′C=4,∠EB′C=90°,∴AC===5,∴AB′=AC﹣B′C=5﹣4=1,故答案为:1.【点评】此题主要考查了翻折变换,找出当点B 距点A 的最小距离时,B ′点的位置是解决问题的关键.15.【分析】分别求出DC =BC =CE =2,BD =BF =2,求出∠DCE =90°,∠DBF ,分别求出△BCD 、△BEF 、扇形DBF 、扇形DCE 的面积,即可得出答案.【解答】解:过F 作FM ⊥BE 于M ,则∠FME =∠FMB =90°,∵四边形ABCD 是正方形,AB =2,∴∠DCB =90°,DC =BC =AB =2,∠DCB =45°,由勾股定理得:BD =2,∵将线段CD 绕点C 顺时针旋转90°得到线段CE ,线段BD 绕点B 顺时针旋转90°得到线段BF ,∴∠DCE =90°,BF =BD =2,∠FBE =90°﹣45°=45°,∴BM =FM =2,ME =2,∴阴影部分的面积S =S △BCD +S △BFE +S 扇形DCE ﹣S 扇形DBF=++﹣ =6﹣π,故答案为:6﹣π.【点评】本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.16.【分析】根据题意可得,函数与x 、y 轴的交点分别为(﹣b ,0),(0,b ),判断出△ABC 为等腰直角三角形,再作出O 到直线AB 的距离,解答即可.【解答】解:如图,函数与x 、y 轴的交点分别为(﹣b ,0),(0,b ),∴∠BAO =∠ABO =45°,∴=cos45°,∴AO•cos45°=2,∴AO==4,即b=±4.故答案为±4.【点评】本题考查了一次函数的性质与等腰直角三角形的性质,熟悉直角三角形的性质是解题的关键.三.解答题(共11小题,满分102分)17.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及立方根定义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1+3﹣3=3;(2)去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.【解答】解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,当x=2018,y=2019时,原式=(2018﹣2019)2=(﹣1)2=1.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.【分析】分别求出各不等式的解集,再求出其公共解集,从而得到其整数解.【解答】解:解不等式2x+5≤3(x+2),得:x≥﹣1,解不等式<2,得:x<3.5,则不等式组的解集为﹣1≤x<3.5,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.【分析】(1)根据表格描点;(2)设y与t的函数解析式为:y=,用待定系数法可求解析式;(3)根据反比例函数的性质可求解.【解答】解:(1)如图所示:(2)设y与t的函数解析式为:y=,且过点(1,24)∴k=1×24=24∴y与t的函数解析式为:y=(3)当y=3时,t=8,当y=时,t=48∴最好的消毒效果持续时间=48﹣8=40(小时)答:最好的消毒效果时间持续40小时.【点评】本题考查了反比例函数的应用,熟练运用反比例函数的性质是本题的关键.21.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.22.【分析】(1)根据概率公式直接求解即可;(2)首先根据题意分别画出树状图,然后由树状图即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【解答】解:(1)有4张纸牌,它们的背面都是小猪佩奇头像,正面为2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,则小芳获奖的概率=;(2)设两张笑脸牌分别为笑1,笑2,两张哭脸牌分别为哭1,哭2,画树状图如下: 小月:∵共有12种等可能的结果,翻开的两张纸牌中出现笑脸的有10种情况,∴小月获奖的概率是:=;小杨:∵共有16种等可能的结果,翻开的两张纸牌中出现笑脸的有12种情况,∴小杨获奖的概率是:=;∵>,∴P (小杨获奖)<P (小月获奖),∴小月获奖的机会更大些.【点评】此题考查了列表法或树状图法求概率.注意小杨属于不放回实验,小月属于放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)利用A类别人数及其百分比可得总人数;(2)总人数减去A、B、D类别人数,求得C的人数即可补全图形;(3)360°×C类别人数所占比例可得;(4)总人数乘以样本中A、B人数占总人数的比例即可.【解答】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点评】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.24.【分析】(1)连接OD,证明四边形OFCD是矩形,(2)从而得到BF的长,然后利用垂径定理求得BE的长即可.【解答】证明:(1)连接OD,作OF⊥BE于点F.∴BF=BE,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,(2)∵OD=OB=FC=2,BC=3,∴BF=BC﹣FC=BC﹣OD=3﹣2=1,∴BE=2BF=2.【点评】本题考查了切线的性质、勾股定理及垂径定理的知识,解题的关键是能够利用切线的性质构造矩形形,难度不大.25.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度﹣甲登山全程中y关于x 的函数关系式=70,得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.26.【分析】根据等边三角形的性质及平行四边形的判定(两组对边分别相等的四边形是平行边形)来证明四边形ADEF是平行四边形.【解答】证明:四边形ADEF是平行四边形,∵等边三角形BCE和等边三角形ABF,∴BE=BC,BF=BA.又∵∠FBE=60°﹣∠ABE,∠ABC=60°﹣∠ABE,∴∠FBE=∠ABC,在△BFE和△BCA中,∴△BFE≌△BCA(SAS),∴DE=AC∵在等边三角形ACD中,AC=AD,∴FE=AD,同理FA=ED.∴四边形ADEF是平行四边形.【点评】本题主要考查平行四边形的判定和性质,全等三角形的判定和性质,等边三角形的性质,掌握平行四边形的判定和性质是解题的关键27.【分析】(1)只有一个x与其对应的函数值即顶点的值,进而求出c.(2)①用p表示A、B、C的坐标,由于外心是三角形三边垂直平分线的交点,故点P在抛物线l2的对称轴上,用p表示BC中点D,即直线PD垂直平分BC.求出直线BC解析式的k1,利用两直线垂直时,k1•k2=﹣1,求出直线PD解析式的k2并求出解析式,把x=p代入即用p表示出P的纵坐标.再由﹣1≤p≤计算点P纵坐标的范围.②先求出0≤x≤2时,对于抛物线l1对应的函数值范围1≤y≤2.根据题意,即l1的每一个函数值,都能在抛物线l2上有对应的函数值,故抛物线l2的函数值范围应比抛物线l1的大,即最小值小于等于1,最大值大于等于2.对抛物线l2的对称轴进行分类讨论,不同情况下在0≤x≤2时的最大值最小值取值不相同,每种情况里根据“最小值小于等于1,最大值大于等于2”列出不等式(组),即求出p的范围.【解答】解:(1)∵当l1函数值y=1时,只有一个自变量x的值与其对应,∴抛物线的顶点纵坐标为1,∴c=1.(2)①当y=(x﹣p)2﹣1=0时,解得:x1=p+2,x2=p﹣2∴A(p﹣2,0),B(p+2,0)当x=0时,y=(0﹣p)2﹣1=∴C(0,)∴BC中点为D(,)设直线BC解析式为:y=k1x+b1解得:∵点P为△ABC的外心∴点P在抛物线l2对称轴上,直线PD垂直平分BC设直线PD解析式为:y=k2x+b2∴k1k2=﹣1,即k2=﹣1÷∴把D代入得:解得:∴直线PD解析式为:当x=p时,=2+∴P(p,)∵﹣1≤p≤∴∴点P的纵坐标y P的取值范围是②对于抛物线l1:y=x2+1,当0≤x≤2时,1≤y≤2∵抛物线l2上总存在点F,使得F纵坐标与l1上任意点E的纵坐标相等∴抛物线l2在0≤x≤2时,y的取值范围比l1的大,即最小值值y≤1,最大值≥2i)若p≤0,则抛物线l2在0≤x≤2时,y随x的增大而增大∴x=0时,最小值y=≤1;x=2时,最大值y=(2﹣p)2﹣1≥2∴解得:ii)若0<p≤1,则x=p时y最小,x=2时y最大∴(2﹣p)2﹣1≥2解得:或,不成立iii)若1<p<2,则x=p时y最小,x=0时y最大∴≥2解得:或,不成立iiii)若p>2,则抛物线l2在0≤x≤2时,y随x的增大而减小∴x=0时y最大,x=2时y最小∴解得:综上所述,p的取值范围为:和【点评】本题考查了二次函数的图象与性质,三角形外心定义,待定系数法求函数解析式,在自变量的取值范围内求最值.其中(2)①对三角形外心定义的理解是解题关键;②对题目理解并大量计算是解题难点.。

江苏省盐城2020年中考数学试题(原卷版)(1)-【经典教育教学资料】

江苏省盐城2020年中考数学试题(原卷版)(1)-【经典教育教学资料】
A. B. C. ﻩD.
8.如图,点A,B,C在正方形网格的格点上,则sin∠ห้องสมุดไป่ตู้AC=()
A. ﻩB. ﻩC. D.
9.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共顶点,则实数a的取值范围是()
A. ﻩB. ﻩC. D.
10.关于二次函数 的三个结论:①对任意实数m,都有 与 对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则 或 ;③若抛物线与x轴交于不同两点A,B,且AB≤6,则 或 .其中正确的结论是()
20.已知 , 是一元二次方程 的两个实数根.
(1)求k的取值范围;
(2)是否存在实数k,使得等式 成立?如果存在,请求出k 值,如果不存在,请说明理由.
21.如图,反比例函数 的函数与y=2x的图象相交于点C,过直线上一点A(a,8)作AAB⊥y轴交于点B,交反比函数图象于点D,且AB=4BD.
(1)求反比例函数的解析式;
(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)
24.如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.2020的相反数是()
A.2020B.﹣2020C. ﻩD.
2.下列图形中,属于中心对称图形的是:()
A. B.
C. D.
3.下列运算正确的是:()

江苏省盐城市2020年(春秋版)中考数学一模考试试卷B卷

江苏省盐城市2020年(春秋版)中考数学一模考试试卷B卷

江苏省盐城市2020年(春秋版)中考数学一模考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(共10题,每题4分,满分40分.) (共10题;共36分)1. (4分) (2019七下·吴江期末) 2-1等于()A . 2B .C . -2D . -2. (4分)(2018·秀洲模拟) 我国最长的河流长江全长约为6300千米,数6300用科学记数法表示为()A . 0.63×104B . 6.3×103C . 63×102D . 6.3×1063. (4分) (2020九上·沈河期末) 如图是某兴趣社制作的模型,则它的俯视图是()A .B .C .D .4. (4分)下列事件中是必然事件的是()A . 平移后的图形与原来图形对应线段相等。

B . 在一个等式两边同时除以同一个数,结果仍是等式。

C . 一个不透明的袋子中有6个红球1个黑球,每次摸出1个球然后放回搅匀,摸7次时一定会摸出一个黑球。

D . 任意一个五边形外角和等于540°5. (2分) (2018九上·柯桥月考) 如图,在等边△ABC的AC,BC边上各任取一点P,Q,且AP=CQ,AQ,BP 相交于点O.下列三个结论:①若PC=2AP,则BO=6OP;②若BC=8,BP=7,则PC=5;③AP2=OP·AQ.其中正确的是()A . ①②B . ①③C . ②③D . ①②③6. (2分)已知为等腰直角三角形的一个锐角,则cos等于A .B .C .D .7. (4分)(2017·盂县模拟) 下列计算中,正确的是()A . a0=1B . a﹣1=﹣aC . a3•a2=a5D . 2a2+3a3=5a58. (4分)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD于M,OM:OD=3:5.则AB的长是()A . 8B . 12C . 16D . 89. (4分) (2016九上·江北期末) 下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A . 4B . 3C . 2D . 110. (4分)如图,是某几何体的三视图及相关数据,则判断正确的是()A . a>cB . b>cC . 4a2+b2=c2D . a2+b2=c2二、填空题(共6题,每题4分,满分24分) (共6题;共24分)11. (4分)(2019·诸暨模拟) 如图,五边形ABCDE是正五边形.若l1∥l2 ,则∠1-∠2=________°.12. (4分)甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得:平均数=,方差S2甲>S2乙,则成绩较稳定的是________ .(填甲或乙)14. (4分)某班20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组是________15. (4分)如图,折叠矩形纸片ABCD,使点B落在边AD上,折叠EF的两端分别在AB、BC上(含端点),且AB=8cm,BC=10cm,则折痕EF的最大值是________.16. (4分) (2019九上·普陀期中) 如图,已知△ 中,,,点、分别在边、上,,,那么的长是________.三、解答题(共9题,满分86分.请将解答过程写在答题卡的相应位置 (共9题;共86分)17. (8分) (2017九上·襄城期末) 先化简,再求值: ,其中x=3.18. (8分)如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。

2020年江苏省盐城市中考数学全真模拟试卷附解析

2020年江苏省盐城市中考数学全真模拟试卷附解析

2020年江苏省盐城市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,△ABC 中,D 是AB 上一点,已知 AD=4,BD=5.AC 是AD 与 AB 的比例中项,则AC=( )A .25B .6C .20D .362. 如图,△ABC 为等腰直角三角形,∠A=90°,AB=AC=2,⊙A 与BC 相切,则图中阴影部分的面积为( )A .12π-B .13π-C .15π-D .14π-3.如图,点 C 在⊙O 上,已知∠C=45°, 则∠AOB 为( )A .45°B .22.5°C .90°D .67.5°4.成中心对称的图形的对称中心是 ( )A .一条线段的中点B .连结图形上任意两点的线段中点C .连结两对称点的线段的中点D .以上答案都不对5.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长应(罐壁的厚度和小圆孔的大小忽格不计)范围是( )A .1213a ≤≤B .1215a ≤≤C .512a ≤≤D .513a ≤≤6.下列运算中,正确的是( )A .2222(53)106ac b c b c ac +=+B .232()(1)()()a b a b a b b a --+=---C .()(1)()()b c a x y x b c a y a b c a b c +-++=+-----+-D .2(2)(11b 2)(2)(3)5(2)a b a a b a b b a --=-+--7.将如图所示的图形按照顺时针方向旋转90°后所得的图形是( )8.227,π,9,0.100 10001 ,15,38中,有理数有( ) A . 1个 B .2个 C .3个 D .4个9.下列语句中正确表达图中特点的个数为( )①直线l 经过C 、D 两点,不经过A 点;②点C 、点D 在直线l 上,点A 在直线l 外;③l 是C 、D 两点确定的直线,A 点不在直线上;④l 是一条直线,C 、D 是直线上的任意两点,A 是直线外的任意一点.A .4个B .3个C .2个D .1个 10.多项式6(2)3(2)x x x -+-的公因式是3(2)x -,则另一个因式是( ) A .2x +B .2x -C .2x -+D .2x -- 11.如果237m n -=,那么823m n -+等于( )A .15B .1C .7D .8 二、填空题12.如图,火焰 AC 通过纸板 EF 上的一个小孔0照射到屏幕上形成倒立的实像,像的长 度 BD= 2 cm ,QA = 60 cm ,OB = 20 cm ,则火焰 AC 的长为 cm .13.抽取某校学生一个容量为l50的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生l500人,则可以估计出该校身高位于160 cm至165 cm之间的学生大约有.人.14.数据x,0,x,4,6,1中,中位数恰好是2,则整数x可能的值是.15.一个几何体的主视图、左视图和俯视图都是正方形,那么这个几何体是;如果都是圆,那么这个几何体是.16.如图,△ABC是不等边三角形,DE=BC,以D ,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出_______个.17.在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有元.三、解答题18.图l是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边的长是3cm,每个内角都是120º,该六棱校的高为3cm.现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为cm.(说明:以上裁剪均不计接缝处损耗.)19.如图,由 5个大小完全相同的小正方形摆成如图①③的形状,现移动其中的一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形(用阴影表示).(1)使得图形成为轴对称图形,而不是中心对称图形;(2)使得图形成为中心对称图形,而不是轴对称图形;(3)使得图形既是轴对称图形,又是中心对称图形.20.如图,在Rt△ABC中, ∠C=90°,∠A=30°(1)以直角边AC所在的直线为对称轴,将Rt△ABC作轴对称变换,请在原图上作出变换所得的像.(2)Rt△ABC和它的像组成了什么图形?最准确的判断是().(3)利用上面的图形,你能找出直角边BC与斜边AB的数量关系吗?并请说明理由.21.如图,AD,BE是△ABC的高,F是DE中点,G是AB的中点.求证:GF⊥DE.B组22.仔细观察下面的六幅图案,研究它们分别是用哪两种正多边形镶嵌的,并指出同一顶点处有几个正多边形.23.如图,建皓的家在学校的北偏东45°方向,距离学校3 km的地方,请在如图中标出建皓的家点P的位置.24.规定一种新的运算:1∆=⨯-++.请比较大小:a b a b a b∆=⋅-++,如3434341-∆与4(3)(3)4∆-.25.如图,一根旗杆在离地面9 m处的B点断裂,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前有多高?26.如图,在屋顶上要加一根横梁 DE,已知∠ABC=31°,当∠ADE 等于多度时,就能使 DE ∥BC?并说明理由.27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.在“五一”黄金周期间,小明、小亮等同学随家人一同到江郎山游玩. 下面是购买门票时,小明与他爸爸的对话:爸爸:大人门票35元,学生门票半价优惠,我们共有 12人,共需350元.小明:爸爸,等一下,让我算一算. 换一种方式买票是否可以更省钱.问题:(1)小明他们一共去了几个成人?几个学生?(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.29.如图所示,在△ABC 中,∠A=∠ACB ,CD 是∠ACB 的平分线,CE ⊥AB 于E .(1)试说明∠CDB=3∠DCB ;(2)若∠DCE=48°,求∠ACB 的度数.30.合并同类项.(1) 54x f x f -+-(2)374pq pq pq qp +-+(3)22302154z z a b b c a b b c +--(4)78512xy yx xy xy -+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.C5.A6.D7.C8.D9.A10.B11.B二、填空题12.613.30014.1,2,3,415.正方体,球16.417.900三、解答题18.(1)能.理由:由题设可知,图4中长方形的宽为63+6<16.5,长方形的长为12+33 <17.5.故长为17.5 cm、宽为16.5 cm的长方形铁皮,能按图4的裁剪方法制成这样的无盖底盒.(2)63+15.19.略20.(1)略;(2)等边三角形;(3)AB=2BC ,利用轴对称变换,可知△ABB′是等边三角形.21.连结EG,DG.证EG=DG22.图①:l个正方形,2个正八边形图②和图③:3个正三角形,2个正方形图④:4个正三角形,l个正六边形图⑤:2个正三角形,2个正六边形图⑥:l个正三角形,2个正十二边形23.略24.(-3)△4>4△(-3)25.24 m26.31°;同位角相等,两直线平行27.AB∥CD(同位角相等,两直线平行)28.(1)成人8人,学生4人 (2)买团体票需252元,即买团体票省钱29.(1)略;(2)28°30.(1) 65x f- (2) 7pq (3) 22- (4)-8xy152a b b c。

江苏省盐城2020年中考数学试题(解析版)

江苏省盐城2020年中考数学试题(解析版)

A. 0.4106
B. 4 109
C. 40104
D. 4 105
【答案】D 【解析】 【分析】 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时, 小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于等于 1 时,n 是正数;当原 数的绝对值小于 1 时,n 是负数.
∴△BOC 是直角三角形
∴ BO2 OC2 BC2
∴BC=5
∵H 为 BC 中点
∴ OH 1 BC 5
2
2
5
故最后答案为 .
2
【点睛】本题考查了菱形的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半,其中知道菱形的
性质,对角线互相垂直且平分是解题的关键.
二、填空题(每题 3 分,满分 24 分,将答案填在答题纸上) 9.如图,直线 a, b 被直线 c 所截, a / /b, 1 60 .那么 2 _______________________ o .
【解析】 【分析】 根据平均数的定义,将这组数据分别相加,再除以这组数据的个数,即可得到这组数据的平均数.
【详解】解:由题意可知,将 400000 用科学记数法表示为: 400000 4 105 ,
故选:D. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整 数,表示时关键要正确确定 a 的值以及 n 的值.
7.把1 9 这 9 个数填入 3 3 方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构 成了一个“九宫格”.它源于我国古代的“洛書”(图 ① ),是世界上最早的“幻方”.图 ② 是仅可以看到部分 数值的“九宫格”,则其中 x 的值为:( )

2020届盐城市XX中学中考数学一模试卷(有答案)

2020届盐城市XX中学中考数学一模试卷(有答案)

江苏省盐城XX中学中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1. 16的平方根是()A.8 B.4 C.±4 D.±22.计算(﹣2a3)2的结果是()A.﹣8a5B.4a6C.8a5D.﹣4a63.在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球 D.圆锥4.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.在某校初三年级古诗词比赛中,初三(1)班60名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 23 22 4则该班学生成绩的中位数和众数分别是()A.80,80 B.70,80 C.80,90 D.90,806.在平面直角坐标系中,已知点A(﹣1,2),则点A关于x轴的对称点B的坐标是()A.(﹣1,﹣2) B.(1,2) C.(2,﹣1)7.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于()A.20° B.30° C.32° D.25°8.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC 绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.二、填空题(共10小题,每小题3分,满分30分)9.使式子有意义的x的取值范围是.10.已知=(a≠0),则代数式的值为.11.分解因式:x2﹣2x+1= .12.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为.13.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.14.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为.15.如图,△ABC的中位线DE=10cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是16cm,则△ABC的面积为cm2.16.如图,四边形ABCD内接于⊙O,∠A=100°,⊙O的半径=2,则劣弧的长= .17.反比例函数y=和正比例函数y=mx的部分图象如图所示,由此可以得到关于x的方程=mx的解为.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为.三、解答题(共10小题,满分96分)19.计算:|﹣4|﹣20160﹣cos30°(2)解方程: +3=.20.解不等式组,并把不等式组的解集在数轴上表示出来.21.国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优秀的人数做了以下分析:(1)写出本次随机抽取的七年级人数m= ;(2)补全条形统计图;(3)在分析样本时,发现七年级学生的体质健康状况中不合格人数有10人,若要制作样本中七年级学生体质健康状况等级人数的扇形统计图,求“不合格”人数对应扇形统计图的圆心角度数;(4)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.22.从1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求其中有男生参加比赛的概率.(用树状图或列表法求解)23.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.24.如图,一艘潜艇在海面下500米深处的A点,测得正前方俯角为31.0°方向上的海底有黑匣子发出的信号,潜艇在同一深度保持直线航行500米,在B点处测得海底黑匣子位于正前方俯角为36.9°的方向上,求海底黑匣子C所在点距离海面的深度.(精确到1米)(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75,sin31.0°≈0.51,cos31.0°≈0.87,tan31.0°≈0.60)25.小明为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小明一次性购买这种服装x(x为正整数)件,支付y元.(1)当x=12时,小明购买的这种服装的单价为元;(2)写出y关于x的函数表达式,并给出自变量x的取值范围;(3)小明一次性购买这种服装付了1050元,请问他购买了多少件这种服装?26.如图1,C地位于A,B两地之间,甲步行直接从C地前往B地;乙骑自行车由C地先回A地,再从A 地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图2中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.27.在Rt△ABC中,∠ACB=90°,D是AB的中点,DE⊥BC于E,连接CD.(1)如图1,如果∠A=30°,那么DE与CE之间的数量关系是 DE=BC.(2)如图2,在(1)的条件下,P是线段CB上一点,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A=45°,P是射线CB上一动点(不与B、C重合),连接DP,将线段DP绕点D逆时针旋转90°,得到线段DF,连接BF,请直接写出DE、BF、BP三者之间的数量关系(不需证明).28.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、C(1,0),与y 轴交于点B.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为点F,交直线AB于点E,作PD⊥AB于点D.点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在(2)的条件下,连接PA,以PA为边作矩形APMN使得=4,当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(4)如图2,若点Q(0,t)为y轴上任意一点,⊙I为△ABO的内切圆,若⊙I上存在两个点M,N,使∠MQN=60°,请直接写出t的取值范围.江苏省盐城XX中学中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.16的平方根是()A.8 B.4 C.±4 D.±2【考点】平方根.【分析】看看哪些数的平方等于16,就是16的平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选C.【点评】本题考查平方根的概念,要熟记这些概念,本题属于基本运算,要求必须掌握.2.计算(﹣2a3)2的结果是()A.﹣8a5B.4a6C.8a5D.﹣4a6【考点】幂的乘方与积的乘方.【分析】分别利用积的乘方运算法则计算得出答案.【解答】解:(﹣2a3)2=4a6.故选:B.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球D.圆锥【考点】简单几何体的三视图.【分析】根据几何体的三种视图,对各图形的主视图与左视图分析后进行选择即可.【解答】解:A、正方体的主视图与左视图是全等的正方形;B、长方体的主视图的长方形的长与宽分别是长方体的长与高,左视图的长方形的长与宽分别是长方体的宽与高,两图形不一定相同;C、球的主视图与左视图是半径相等的圆;D、圆锥的主视图与左视图是全等的等腰三角形.故选B.【点评】本题考查简单几何体的三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.在某校初三年级古诗词比赛中,初三(1)班60名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 23 22 4则该班学生成绩的中位数和众数分别是()A.80,80 B.70,80 C.80,90 D.90,80【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,即可得出答案.【解答】解:由统计表知:这组数据的个数是60,中间的第30和第31个数都是80,则中位数是80,80出现的次数最多,则众数是80.故选:A.【点评】此题考查了众数和中位数,掌握众数和中位数的概念是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).6.在平面直角坐标系中,已知点A(﹣1,2),则点A关于x轴的对称点B的坐标是()A.(﹣1,﹣2) B.(1,2) C.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵A(﹣1,2),∴点A关于x轴的对称点的坐标是:(﹣1,﹣2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.7.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于()A.20° B.30° C.32° D.25°【考点】平行线的性质.【分析】先由平行线的性质得出∠ACB=∠1=70°,根据等角对等边得出∠BAC=∠ACB=70°,由垂直的定义得到∠ADC=90°,那么∠2=90°﹣∠DAC=20°.【解答】解:∵m∥n,∴∠ACB=∠1=70°,∵AB=BC,∴∠BAC=∠ACB=70°,∵CD⊥AB于D,∴∠ADC=90°,∴∠2=90°﹣∠DAC=90°﹣70°=20°.故选A.【点评】本题考查了平行线的性质,等腰三角形的判定,垂直的定义,三角形内角和定理,求出∠BAC=70°是解题的关键.8.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC 绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.【考点】动点问题的函数图象.【分析】根据图象计算0秒、2秒、6秒的时候,矩形在第二象限内的面积为S,即可分析出矩形OABC的初始位置.【解答】解:由图象可以看出在0秒时,S=0,在2秒时,S=,在6秒时,S=;由题意知,矩形OABC 绕原点0以每秒15°的速度逆时针旋转,6秒逆时针旋转90°,S=,不难发现B和D都符合,但在2秒时,S=,即矩形OABC绕原点0逆时针旋转30°时,S=,则只有D符合条件.故选:D.【点评】本题主要考查了函数的图象以及旋转问题,正确分析0秒、2秒、6秒时图形的位置和图形在第二象限的面积是解决问题的关键.二、填空题(共10小题,每小题3分,满分30分)9.使式子有意义的x的取值范围是x≥﹣6 .【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件,进而得出x的取值范围.【解答】解:使式子有意义,则x+6≥0,解得:x≥﹣6,则x的取值范围是:x≥﹣6.故答案为:x≥﹣6.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.10.已知=(a≠0),则代数式的值为 5 .【考点】分式的值.【分析】令==k,则a=3k,b=2k,再代入代数式进行计算即可.【解答】解:令==k,则a=3k,b=2k,故原式===5.故答案为:5.【点评】本题考查的是分式的值,分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.11.分解因式:x2﹣2x+1= (x﹣1)2.【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为9.65×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将96500000用科学记数法表示应为9.65×107,故答案为:9.65×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.13.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是m<1 .【考点】根的判别式.【专题】推理填空题.【分析】关于x的方程x2﹣2x+m=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于m的不等式,从而求得m的范围.【解答】解:∵a=1,b=﹣2,c=m,∴△=b2﹣4ac=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.故答案为m<1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为.【考点】几何概率.【分析】利用击中黑色区域的概率等于黑色区域面积与正方形总面积之比,进而求出答案.【解答】解:∵整个正方形被分成了9个小正方形,黑色正方形有5个,∴落在黑色区域即获得笔记本的概率为,故答案为:.【点评】此题考查了几何概率计算公式以及其简单应用,注意面积之比=几何概率.15.如图,△ABC的中位线DE=10cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是16cm,则△ABC的面积为160 cm2.【考点】翻折变换(折叠问题);三角形中位线定理.【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=20cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×20×16=160cm2,故答案为:160.【点评】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.16.如图,四边形ABCD内接于⊙O,∠A=100°,⊙O的半径=2,则劣弧的长= .【考点】弧长的计算;圆内接四边形的性质.【分析】连接OB、OD,首先根据圆周角定理求出∠BOD的度数,然后根据弧长公式求解.【解答】解:连接OB、OD,∵∠A=100°,∴∠C=80°,∴∠BOD=160°,则劣弧==.故答案为:.【点评】本题考查了弧长的计算,解答本题的关键是根据圆周角定理求出∠BOD的度数,注意掌握弧长公式.17.反比例函数y=和正比例函数y=mx的部分图象如图所示,由此可以得到关于x的方程=mx的解为x=1或x=﹣1 .【考点】反比例函数与一次函数的交点问题;分式方程的解.【分析】由函数与方程的关系可得到方程的解即为函数图象交点的横坐标,可求得答案.【解答】解:∵点C(1,2)为两函数图象的一个交点,∴两函数图象的另一交点坐标为(﹣1,﹣2),∴关于x的方程=mx的解为x=1或x=﹣1,故答案为:x=1或x=﹣1.【点评】本题主要考查函数与方程的关系,掌握两函数的交点横坐标即为两函数解析式组成的方程的解是解题的关键.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为2﹣2 .【考点】点与圆的位置关系;坐标与图形性质;垂径定理;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2.【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP 上时CD最短.三、解答题(共10小题,满分96分)19.(1)计算:|﹣4|﹣20160﹣cos30°(2)解方程: +3=.【考点】解分式方程;实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;分式方程及应用.【分析】(1)原式利用绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣1﹣×=3﹣=2;(2)去分母得:1+3x﹣6=x﹣1,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组,并把不等式组的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:,由②得:x≤1,∴不等式组的解集为:,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,解一元一次不等式,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优秀的人数做了以下分析:(1)写出本次随机抽取的七年级人数m= 200 ;(2)补全条形统计图;(3)在分析样本时,发现七年级学生的体质健康状况中不合格人数有10人,若要制作样本中七年级学生体质健康状况等级人数的扇形统计图,求“不合格”人数对应扇形统计图的圆心角度数;(4)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据七年级优秀人数除以优秀人数所占的百分比,可得答案;(2)根据八年级优秀人数除以优秀人数所占的百分比,可得八年级的人数,根据有理数的减法,可得九年级人数,根据九年级人数乘以九年级的优秀率,可得九年级优秀的人数,可得答案;(3)根据七年级不合格人数除以七年级的人数乘以360°,可得答案;(4)根据优秀率诚意总人数,可得答案.【解答】解:(1)本次随机抽取的七年级人数m=38÷19%=200,故答案为:200.(2)八年级人数26÷26%=100人,九年级人数500﹣200﹣100=200人,九年级人数优秀的人数200×28%=56人,统计图正确;(3)“不合格”人数占七年级总人数的百分比==5%.“不合格”人数对应扇形统计图的圆心角度数=360°×5%=18°.答:“不合格”人数对应扇形统计图的圆心角度数为18°.(4)×10000=2400人.答:估计该地区10000名初中学生体质健康状况优秀人数是2400人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率;折线统计图表示的是事物的变化情况,如增长率.22.从1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求其中有男生参加比赛的概率.(用树状图或列表法求解)【考点】列表法与树状图法;概率公式.【分析】(1)由1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与有男生参加比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛,∴抽取1名,恰好是男生的概率为:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,其中有男生参加比赛的有6种情况,∴有男生参加比赛的概率==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(2015•溧水县二模)如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN ∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.【考点】菱形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.【解答】解:(1)∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形.【点评】此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.24.如图,一艘潜艇在海面下500米深处的A点,测得正前方俯角为31.0°方向上的海底有黑匣子发出的信号,潜艇在同一深度保持直线航行500米,在B点处测得海底黑匣子位于正前方俯角为36.9°的方向上,求海底黑匣子C所在点距离海面的深度.(精确到1米)(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75,sin31.0°≈0.51,cos31.0°≈0.87,tan31.0°≈0.60)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先作CD⊥AB于D,依题意,AB=500米,∠DAC=31.0°,∠CBD=36.9°,设CD=x,分别解Rt△ACD和Rt△BCD,表示出AD、BD,再根据AD﹣BD=AB列出方程,解方程求出x即可.【解答】解:作CD⊥AB于D,依题意,AB=500米,∠DAC=31.0°,∠CBD=36.9°,设CD=x,在Rt△ACD中,tan31.0°=,∴AD=x.在Rt△BCD中,tan36.9°=,∴BD=x.∵AD﹣BD=AB,∴x﹣x=500,解得x=1500,x+500=2000.答:海底黑匣子C所在点距离海面的深度为2000米.【点评】此题主要考查了俯角的定义及其解直角三角形的应用,解题时首先正确理解俯角的定义,然后利用三角函数和已知条件构造方程解决问题.25.小明为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小明一次性购买这种服装x(x为正整数)件,支付y元.(1)当x=12时,小明购买的这种服装的单价为76 元;(2)写出y关于x的函数表达式,并给出自变量x的取值范围;(3)小明一次性购买这种服装付了1050元,请问他购买了多少件这种服装?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据每增加1件,购买的所有服装的单价降低2元,由此即可解决.(2)分①0≤x≤10,②10<x≤25,③x>25,分别求出y与x的关系即可.(3)根据(2)中结论列出方程即可解决,注意自变量的取值范围.【解答】解:(1)由题意x=12时,单价为76元,故答案为76.(2)①当0≤x≤10时,y=80x,②∵单价不得低于50元,∴降价了30元,购买了25件,∴10<x≤25时,y=[80﹣2(x﹣10)]x=﹣2x2+100x,③当x>25时,y=50x,综上所述y=.(3)①﹣2x2+100x=1050,解得x=15或35,∵10<x≤25,∴x=15.②50x=1050,解得x=21,21<25不合题意舍弃,答:小明购买了15件这种服装.【点评】本题考查二次函数的应用、一元二次方程的应用、分段函数等知识,解题的关键是理解题意,正确求出分段函数的解析式,学会构建函数解决实际问题,属于中考常考题型.26.如图1,C地位于A,B两地之间,甲步行直接从C地前往B地;乙骑自行车由C地先回A地,再从A 地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80 m/min,乙的速度为200 m/min;(2)在图2中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960 m.【考点】一次函数的应用.【分析】(1)根据函数图象中点(30,2400),利用“速度=路程÷时间”可算出甲的速度,再根据甲乙速度间的关系可得出乙的速度;(2)根据乙的速度,以及A、C两地及B、C两地间的距离,利用“时间=路程÷速度”可找出函数图象经过点(0,0)、(3,600)、(6,0)、(18,2400),按照顺序连接两点即可得出结论;(3)设甲乙两人相遇的时间为xmin,结合(2)y2与x的函数图象可知,乙相当于比甲晚出发6分钟,依照“路程=速度×时间”可列出关于x的一元一次方程,解方程即可得出结论;(4)结合函数图象可知:最值只有可能出现在两种情况下,乙刚到A地时或乙到B地时,分别求出两种情形下两人间的距离,再作比较即可得出结论.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)∵600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.。

2020年江苏省盐城市中考数学模拟试卷及答案解析

2020年江苏省盐城市中考数学模拟试卷及答案解析

2020年江苏省盐城市中考数学模拟试卷
一、选择题(本大题共有6小题,每小题3分,共18分)
1.抛物线y=2(x﹣2)2﹣1的顶点坐标是()
A.(0,﹣1)B.(﹣2,﹣1)C.(2,﹣1)D .(0,1)2.如表记录了甲、乙、丙、丁四名跳远运动员几次选拔赛成绩的平均数与方差S2:
甲乙丙丁
平均数(cm)563 560 563 560
方差S2(
cm2) 6.5 6.5 17.5 14.5
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁
3.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()
A.B.C.D.
4.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()
A.20°B.25°C.30°D.50°
5.若关于
x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围
是()
A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0 6.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()
A.4 B.4C.6 D.4
第1 页共27 页。

2020江苏省盐城中考数学试卷(word解析版)

2020江苏省盐城中考数学试卷(word解析版)

A . -2020B . 2020C . 1D . 盐城市二〇二〇年初中毕业与升学考试数学试题(含答案解析)2020.07.23 编辑整理注意事项:1.本次考试时间为 120 分钟,卷面总分为 150 分,考试形式为闭卷.2.本试卷共 6 页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分.4.答题前,务必将姓名、准考证号用 0.5 毫米黑色签字笔填写在试卷及答题卡上.一、选择题:本大题共 8 个小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2020 的相反数是( )1 D . -202020202. 下列图形中,属于中心对称图形的是:( )A .B .C .D .3. 下列运算正确的是:( )A . 2a - a = 2B . a 3 ⋅ a 2 = a 6C . a 3 ÷ a = a 2 (2a 2 )= 6a 54. 实数 a, b 在数轴上表示的位置如图所示,则:()A . a > 0B . a > bC . a < bD . a < bA.12B.C.3D.55.如图是由4个小正方体组合成的几何体,该几何体的俯视图是:()A.B.C.D.6.2019年7月盐城黄海湿地中遗成功,它的面积约为400000万平方米,将数据400000用科学记数法表示应为:()A.0.4⨯106B.4⨯109C.40⨯104D.4⨯1057.把1-9这9个数填入3⨯3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为:()A.1B.3C.4D.68.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,A C=6,BD=8.则线段OH的长为:()552, ,,ABC 关于直线 l 对称,且 A 'B 'C ' 有两个顶点在函数 y =(k ≠ 0) 的图像上,则 k 的值 二、填空题(每题 3 分,满分 24 分,将答案填在答题纸上)9. 如图,直线 a, b 被直线 c 所截, A / /b , ∠1 = 60 .那么 ∠2 =.10.一组数据1,4,7, -4,2 的平均数为_.11. 因式分解: x 2 - y 2 =.12. 分式方程 x - 1= 0 的解为 x =x.13.一只不进明的袋中装有 2 个白球和 3 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.14. 如图,在 O 中,点 A 在 BC 上, ∠BOC = 100︒, 则 ∠BAC =15. 如图, BC / / D E, 且 BC < DE, AD = BC = 4, AB + DE = 10 ,则.AE AC的值为16.如图,已知点 A (5,2 ), B(5 4), C (81) ,直线 l ⊥ x 轴,垂足为点 M (m 0), 其中 m < 52,若 A 'B 'C ' 与kx为:.17.计算:23-4+ -π⎪.⎧3x-219.先化简,再求值:m⎪,其中m=-2.÷ 1+三、解答题(本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.)⎛2⎫0⎝3⎭⎪≥118.解不等式组:⎨3.⎪⎩4x-5<3x+2⎛3⎫m2-9⎝m-3⎭20.如图,在ABC中,∠C=90,tan A=长?33,∠ABC的平分线BD交AC于点D.CD=3.求AB的21.如图,点O是正方形,ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如下统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析,推断?23.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂器色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数:(图中标号1,2表示两个不同位置的小方格,下同)(2)图④为2⨯2的网格图.它可表示不同信息的总个数为;21(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n⨯n的网格图来表示各人身份信息,若该校师生共492人,则n的最小值为;24.如图,O是ABC的外接圆,AB是O的直径,∠DCA=∠B.(1)求证:CD是O的切线;(2)若DE⊥AB,垂足为E,DE交AC与点;求证:DCF是等腰三角形.25.若二次函数y=ax2+bx+c的图像与x轴有两个交点M(x,0),N(x,0)(0<x<x1212),且经过点A(0,2),过点A的直线l与x轴交于点C,与该函数的图像交于点B(异于点A).满足ACN是等腰直角三角形,记AMN的面积为S,BMN的面积为S,且S=5S.122(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.26.木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,A D长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为303厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.a 27. 以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~ 4 .(1 ) 在 RtABC 中, ∠C = 90︒, AB = 2 2 ,在探究三边关系时,通过画图,度量和计算,收集到,组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.3 2 1.5 0.4 BC 0.4 0.8 1.2 1.6 2 2.4 2.8 AC + BC3.23.53.83.943.93.2(2) 根据学习函数的经验,选取上表中 BC 和 AC + BC 的数据进行分析;① 设 BC = x ,AC + BC = y ,以 ( x , y) 为坐标,在图 ① 所示的坐标系中描出对应的点;② 连线;观察思考(3) 结合表中的数据以及所面的图像,猜想.当 x =时, y 最大;(4) 进一步 C 猜想:若 RtMBC 中,∠C = 90︒ ,斜边 AB = 2a(a 为常数, > 0 ),则 BC =时,AC + BC 最大.推理证明(5)对 (4) 中的猜想进行证明.问题 1.在图 ① 中完善 (2) 的描点过程,并依次连线;问题 2.补全观察思考中的两个猜想: (3) _______ (4) _______问题 3.证明上述 (5)中的猜想:问题 4.图 ② 中折线 B - E - F - G - A 是一个感光元件的截面设计草图,其中点 A, B 间的距离是 4 厘米,AG=BE=1厘米,∠E=∠F=∠G=90,平行光线从AB区域射入,∠BNE=60,线段FM、FN为感光区城,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.13.218.解不等式组:⎨3≥1,解:⎨3≥1,①19.m÷ 1+3⎫⎪,其中m=-2.解:原式=mm2-9⎝m-3+m-3⎭=m答案解析一、选择题题号答案12345678A B C C A D A B二、填空题9.6010.211.(x+y)(x-y)12.1514.130三、解答题17.解:原式=8-2+1=7.⎧2x-1⎪⎪⎩4x-5<3x+2.⎧2x-1⎪⎪⎩4x-5<3x+2.②解不等式①,得x≥2,解不等式②,得x<7,在数轴上表示不等式①、②的解集如图:15.216.-6或-4∴不等式组的解集为2≤x<7.⎛m2-9⎝m-3⎭⎛m-33⎫÷ ⎪mm2-9÷m-3=m⋅m-3(m+3)(m-3)m=1m+3当m=-2时代入原式=1=1-2+320.解:在Rt ABC中,∠C=90,t anA=∴∠A=30,∠ABC=60,BD是∠ABC的平分线,∴∠CBD=∠ABD=30︒,又CD=3,∴BC=CD=3tan30在Rt ABC中,∠C=90︒,∠A=30︒∴AB=BC=6.sin30︒21.解:(1)如图所示,点E即为所求.33⎨ E O = EO⎪OB = OC(2) 连接 OB 、OC由 (1) 得: EB = ECO 是正方形 ABCD 中心,∴OB = OC,∴ 在 EBO 和 ECO 中,⎧ E B = EC⎪⎩∴ EBO ≅ ECO (SSS ),∴∠BEO = ∠CEO .22. (1)41,13(2) 如图所示:(3)A地区累计确诊人数可能会持续增加,B地区新增人数有减少趋势,疫情控制情况较好(答案不唯一,仅供参考).(1)解:画树状图如图所示:23.∴图③可以表示不同信息的总数个数有4个.(2)16;(3)3;(1)证明:连接OC24.OC=OA,∴∠OCA=∠A,AB为圆O的直径,∴∠BCA=90︒,∴∠A+∠B=90,又∠DCA=∠B,∴∠O CA+∠DCA=∠OCD=90,∴OC⊥CD,又点C在圆O上,∴CD是O的切线.(2)证明:∠OCA+∠DCA=90,∠OCA=∠A,∴∠A+∠DCA=90︒,DE⊥AB,∴∠A+∠EFA=90︒,∴∠DCA=∠EFA,又∠EFA=∠DFC,∴∠DCA=∠DFC,0 =-2k + b ⎩ , ⎧ ∴ DCF 是等腰三角形.25. 解: (1) 上(2)① 若 ∠ACN = 90 ,则 C 与 O 重合,直线 l 与二次函数图像交于 A 点因为直线与该函数的图像交于点 B (异于点 A )所以不合符题意,舍去② 若 ∠ANC = 90︒ ,则 C 在 x 轴下方,因为点 C 在 x 轴上,所以不合符题意,舍去③ 若 ∠CAN = 90︒则 ∠ACN = ∠ANC = 45︒, AO = CO = NO = 2∴ C (-2 0), N (2,0)设直线 l : y = kx + b将 A (0, 2), C (-2,0) 代入:⎧2 = b ⎨解得 ⎨k = 1⎩b = 2∴ 直线 l : y = x + 2 .(3) 过 B 点作 BH ⊥ x 轴,垂足为 H ,S=12221⎨4a+2b+2=0,⎪9a+3b+2=5解得⎨b=-5,⎪c=21MN⋅O A,S=MN⋅BH, 12又S=5 S2∴O A=52 BH又OA=2,∴BH=5,即B点纵坐标为5,将y=5代入y=x+2中,得x=3,∴B(3,5)将A、B、N三点坐标代入y=ax2+bx+c中,得⎧c=2⎪⎩⎧a=2⎪⎩∴抛物线解析式为y=2x2-5x+2.(1)如图,过点P作PE⊥CD,垂足为E26.解:P是边长为30cm的正方形模具的中心,∴PE=15cm,同理:A'B'与AB之间的距离为15cm,A'D'与AD之间的距离为15cm,B'C'与BC之间的距离为15cm,∴A'B'=C'D'=200-15-15=170cm,B'C'=A'D'=100-15-15=70cm,=(170+70)⨯2=480cm.∴C四边形A'B'C'D'答:图案的周长为480cm.(2)连接PE、PF、PG,过点P作PQ⊥CD,垂足为Q' ( ) 30 ⋅ π ⋅ 30 ( )P 是边长为 30cm 的等边三角形模具的中心,∴ PE = PG = PF , ∠PGF = 30︒PQ ⊥ GF ,∴ G Q = QF = 15 3cm ,∴ P Q = CQ ⋅ t an30︒ = 15cm ,PG = CQ= 30cm .cos30︒ 当三角形 EFG 向上平移至点 G 与点 D 重合时,由题意可得: E ' F G ' 绕点 D 顺时针旋转 30 ,使得 E ' G ' 与 AD 边重合∴ DP ' 绕点 D 顺时针旋转 30 至 DP ",∴lp 'p '' = 30 ⋅ π ⋅ 30 = 5π c m .180同理可得其余三个角均为弧长为 5π cm 的圆弧C = 200 - 30 3 + 100 - 30 3 ⨯ 2 + 180 ⨯ 4= 600 - 120 3 + 20π cm .答:雕刻所得图案的草图的周长为(600 - 120 3 + 20π )cm .27.问题1:图(3)2问题2:(4)2a问题3:法一:(判别式法)证明:设BC=x,AC=BC=y在Rt ABC中,∠C=90︒,AC=AB2-BC2=4a2-x2,∴y=x+4a2-x2∴y-x=4a2-x2y2-2x y+x2=4a2-x2,2x2-2x y+y2-4a2=0,关于x的元二次方程有实根,(x2-4a2)≥0,∴b2-4ac=4y2-4⨯2⋅∴y2≤8a2,y>0,a>0,∴y≤22a,当y取最大值22a时,2x2-42ax+4a2=02( 2 x - 2a ) = 0x = x = 2a 1 2∴当 BC = 2a 时, y 有最大值.法二:(基本不等式)设 BC = m , AC = n , AC + BC = y在 Rt ABC 中, ∠C = 90︒,∴ m 2 + n 2 = 4a 2(m - n )2 ≥ 0,∴ m 2 + n 2 ≥ 2mn .当 m = n 时,等式成立∴ 4a 2 ≥ 2mn ,mn ≤ 2a 2 .y = m + n = m 2 + n 2 + 2mn= 4a 2 + 2mn ,mn ≤ 2a 2 ,∴ y ≤ 2 2a,∴当 BC = AC = 2a 时, y 有最大值.问题 4:法一:延长 AM 交 EF 于点 C,过点 A 作 AH ⊥ EF 于点 H , 垂足为 H ,过点 B 作 BK ⊥ GF 交于点 K , 垂足为 K ,BK 交 AH 于点 Q ,即3由题可知:在BNE中,∠BNE=60︒,∠E=90,BE=1∴t an∠BNE=BENE即3=∴NE=1NE33AM//B N,∴∠C=60︒,又∠GFE=90,∴∠CMF=30︒,∴∠AMG=30︒,∠G=90︒,AG=1,∠AMG=30︒,∴在Rt AGM中,tan∠AMG=AGGM,1=3GM∴G M=3,∠G=∠GFH=90︒,∠AHF=90︒,∴BQ=AQ=22时,FM+FN最大为 42+2-⎪⎪cm即当EF=22+1时,感光区域长度之和FM+FN最大为 42+2-⎪cm⎭∴四边形AGFH为矩形∴AH=FG,∠GFH=∠E=90,∠BHF=90︒,∴四边形BKFE为矩形,∴BK=FE,FN+FM=EF+FG-EN-GM=BK+AH-3-33=BQ+AQ+QH+QK-433=BQ+AQ+2-433∴在Rt ABQ中,AB=4.由问题3可知,当BQ=AQ=22时,AQ+BQ最大⎛43⎫⎝3⎭⎛43⎫⎝3⎪法二:延长EB、GA相交于点H,∴ a = b = 2 2 时 FM + FN 最大为 4 2 + 2 - ⎪⎪ cm 即当 EF = 2 2 + 1 时,感光区域长度之和 FM + FN 最大为 4 2 + 2 - ⎪ cm ⎭ 同法一求得:GM = 3, NE = 33设 AH = a, BH = b四边形 GFEH 为矩形,∴GF = EH , EF = GH ,∴ MF = EH - GM = b + 1 - 3 .FN = EF - NE = a + 1 - 3 3∴ MF - FN = a - b + 2 - 4 3 3a 2 +b 2 = 16,由问题 3 可知,当 a = b = 2 2 时, a + b 最大⎛ 4 3 ⎫ ⎝3 ⎭⎛ 4 3 ⎫ ⎝ 3 ⎪。

2020年江苏省盐城市中考数学全真模拟考试试卷B卷附解析

2020年江苏省盐城市中考数学全真模拟考试试卷B卷附解析

2020年江苏省盐城市中考数学全真模拟考试试卷B卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.计算:tan245°-1=.()2.△ABC 中,AB= 12,BC= 18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是()A.27 B.20 C.18 D.123.下列多边形中不能够镶嵌平面的是()A.矩形B.正三角形C.正五边形D.正方形4.两个完全相间的长方体的长,宽,高分别是5 cm,4 cm,3 cm,把它们叠放在一起组成一个新长方体,在这些新长方体中,表面积最大的是()A.188cm2B.176cm2C.164cm2 D.158 cm25.如图是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示的是该位置上立方体的个数,则这个几何体的主视图是()A.B.C.D.6.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换. 在自然界和日常生活中,大量地存在这种图形变换(如图(1)). 结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图(2))的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行7.如图,已知点 B,F,C,E在同一直线上,若 AB=DE,∠B=∠E,且BF=CE,则要使△ABC≌△DEF的理由是()A .ASAB .SASC .SSSD .AAS8.方程组251x y x y -=⎧⎨+=⎩的解是( ) A .31x y =⎧⎨=⎩ B .01x y =⎧⎨=⎩ C .21x y =⎧⎨=-⎩ D .21x y =-⎧⎨=⎩9.下列长度的三条线段,能组成三角形的是( )A .224,,B .225,,C .236,,D .245,, 10.计算器按键顺序为的相应算式是( )A .22545⨯-÷B .2(2.54)5-÷C .242.5()5-D .242.55- 11.如图,l0条20 cm 长的线条首尾粘合成一个纸圈,每个粘合部分的长度为1.5 cm ,则纸圈的周长是 ( )A .200 cmB .198.5 cmC .186.5 cmD .185 cm12.要锻造直径为200 mm ,厚为18 mm 的钢圆盘,现有直径为40 mm 的圆钢,不计损耗,则应截取的圆钢长为 ( )A .350 mmB .400 mmC .450 mmD .500 mm 13.长方形的周长是36(cm ),长是宽的2倍,设长为x (cm ),则下列方程正确的是( )A .x+2 x =36B .1362x x += C .2(x +2x )=36 D .12()362x x +=14.阅读下列命题:①圆是轴对称图形,每一条直径都是它的对称轴;②垂直于弦的直线 平分这条弦,并且平分弦所对的两条弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④垂直于弦且平分这条弦的直线是这个圆的对称轴.判断其中不正确的命题个数是( )A .1 个B .2 个C .3 个D .4 个二、填空题15. 如图,P 是⊙O 外的一点,PA 、PB 分别切⊙O 于A 、B 点,C 是劣弧上一点,若∠APB = 100°,则∠ACB = .16.将半径为3的半圆围成一个圆锥的侧面,此圆锥底面半径为 . 17.如图,A 、B 是双曲线xk y =的一个分支上的两点,且点B(a ,b)在点A 的右侧,则b 的取值范围是 . 18.如图,D 、E 为AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=500,则∠BDF= .19.某市6月2日至8日的每日最高温度如图所示,则这组数据的中位数是 , 众数是 .20.从甲、乙两块棉花新品种对比试验地中,各随机抽取8株棉苗,量得高度的数据如下(单位:cm):甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1;乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.经统计计算得2S 甲= ,2S 乙= .这说明甲块试验地的棉苗比乙块试验地的棉苗长得 .解答题21.在243y x =-中,如果6x =,那么x = . 22.如图,把五边形ABCDO 变换到五边形CDEFO ,应用了哪种图形变换?请完整地叙述这个变换:23.a 5÷(a 7÷a 4)=________.24.请列举一个生活中不确定的例子: .25.如图,已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式.根据上图所示,①一个四边形可以分成2个三角形,于是四边形的内角和为 度;②一个 五边形可以分成3个三角形,于是五边形的内角和为 度;……,③按此规律,n 边形可以分成 个三角形,于是n 边形的内角和为 度.解答题26.多项式22358ab a b M -++的结果是27a ab -,则M=________________. 226108a ab b --27.写出一个一无一次方程,使它的解为12x =-,这个方程是 .28.2007(1)-= ,20070= ,4(0.1)-= . 三、解答题29.一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其余都相同.(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的,你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,求两个球都是白球的概率;(3)搅均后从中任意摸出一个球,要使摸出红球的概率为32,应如何添加红球?30.某市某大型超市为方便顾客购物,准备在一至二楼之间安装电梯,如图所示,楼顶与地面平行.要使身高2米以下的人在笔直站立的情况下搭乘电梯时,在B 处不碰到头部.请你帮该超市设计,电梯与一楼地面的夹角α最小为多少度?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2.C3.C4.C5.A6.B7.B8.C9.D10.D11.DC13.D14.A二、填空题15.140°16.3217.0<b<218.80019.29,3020.0.105,0.055,不整齐21.5xγ+=0;322.应用了旋转变换,五边形 CDBFO是由五边形ABCDO绕点 0接顺时针方向旋转 90°得到的.23.a224.略25.360,540,(n-2),180(n-2)26.27.答案不唯一,如12x+=,210x+=-1,0,0.0001三、解答题29.(1)不同意小明的说法因为摸出白球的概率是23,摸出红球的概率是13,因此摸出白球和摸出红球不是等可能的.(2)P (两个球都是白球)=13. (3)设应添加x 个红球,由题意得3231=++x x ,解得x=3(经检验是原方程的解) ∴应添加6-3=3个红球. 30.解:如图,过点B 作BE ⊥AD 交AD 于E ,交AC 于F依题意有:BF=2,DE=BC=32,∵CD=4,∴EF=2 又ADAE CD EF =,∴3242+=AE AE ,∴32=AE 在Rt △AEF 中,33322tan ===AE EF α,∴∠α=30° 答:电梯与一楼地面的夹角α最小为30°.。

盐城市2020中考数学教学质量检测试题

盐城市2020中考数学教学质量检测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程(2)0x x +=的根是( )A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=2 2.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .3.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .4.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4πB .324π-C .2-8πD .324π- 5.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A.B.C.D.6.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.22C.32D.337.下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b28.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q9.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.()A.3,2 B.3,4 C.5,2 D.5,410.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人二、填空题(本题包括8个小题)11.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm.12.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD 折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.13.如图,△ABC ≌△ADE ,∠EAC =40°,则∠B =_______°.14.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .15.不等式1253x ->的解集是________________ 16.如果点A (-1,4)、B (m ,4)在抛物线y =a (x -1)2+h 上,那么m 的值为_____.17.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.18.如图,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,⊙P 与x 轴交于O ,A 两点,点A 的坐标为(6,0),⊙P 的半径为13,则点P 的坐标为_______.三、解答题(本题包括8个小题)19.(6分)先化简22442x x x x -+-÷(x-4x),然后从55x 的值代入求值.20.(6分)定义:任意两个数a ,b ,按规则c =b 2+ab ﹣a+7扩充得到一个新数c ,称所得的新数c 为“如意数”.若a =2,b =﹣1,直接写出a ,b 的“如意数”c ;如果a =3+m ,b =m ﹣2,试说明“如意数”c 为非负数.21.(6分)如图,四边形ABCD 是平行四边形,点E 在BC 上,点F 在AD 上,BE=DF ,求证:AE=CF .22.(8分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

2020盐城亭湖区初三数学一模试卷

2020盐城亭湖区初三数学一模试卷

(1)求抛物线的表达式;
备用图
(2)若△PCE 的面积为 S 1 ,△OCE 的面积为 S 2 当
s1 s2
2

3
时,求点 P 的坐标;
(3)已知点 C 关于抛物线对称轴的对称点为点 N,连接 BN,点 H 在 x 轴上, 当∠HCB=∠NBC 时, ①求满足条件的所有点 H 的坐标; ②当点 H 在线段 AB 上时,点 Q 是线段 BH 外一点,QH=1,连接 BQ,将线段 BQ 绕 着点 Q 顺时针旋转 90°,得到线段 QM,连接 MH,直接写出线段 MH 的取值范围.
把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,
再从剩余的 3 张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是
事件,“小悦被抽中”是
事件(填“不可
能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为

(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”
6 x
Bห้องสมุดไป่ตู้y=
4 x
C.y=
2 x
D.y=
2 x
二.填空题(本大题共有 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请将答案直接
写在答题卡对应位置横线上)
9.
若代数式
x
x
2
有意义,则实数 x 的取值范围是


10.分解因式:3a2-6a+3= ▲ .
九年级数学试卷 第 1页 共 6页
C.6
D.8
5.如图是由 4 个完全相同的小正方体搭成的几何体,如果将小正方体 A 放到小正方体 B 的正
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年江苏省盐城市亭湖区中考数学一模试卷解析版一.选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,请将正确选项的字母代号填图在答题卡对应位置)
1.(3分)下列运算正确的是()
A.4a2﹣2a2=2B.(a2)3=a5C.a3•a6=a9D.(3a)2=6a2【解答】解:A、4a2﹣2a2=2a2,故错误;
B、(a2)3=a6,故错误;
C、正确;
D、(3a)2=9a2,故错误;
故选:C.
2.(3分)如图,在下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.
C.D.
【解答】解:A、是轴对称图形,也是中心对称图形,符合题意;
B、不是轴对称图形,是中心对称图形,不合题意;
C、是轴对称图形,不是中心对称图形,不合题意;
D、不是轴对称图形,是中心对称图形,不合题意.
故选:A.
3.(3分)肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣4C.7×10﹣3D.7×10﹣5
【解答】解:0.0007=7×10﹣4.
故选:B.
4.(3分)一组数据2,4,x,6,8的众数为8,则这组数据的中位数为()A.2B.4C.6D.8
【解答】解:∵数据2,4,x,6,8的众数为8,
∴x=8,
第1 页共21 页。

相关文档
最新文档