运动控制 PPT
合集下载
运动技能学习与控制PPT(完整版)
24S:当一个球队在场上控制一个活球时,该队必须在24s内完成一次投篮,投篮时必须篮球要接着兰筐,否则24s违例。
圆双柱手体 和任原双则臂何定可部义以为在分一躯名干与站前界在伸地展线面,上其或的肘界队部员的线占双据臂外一弯的个曲假不地想超的过面圆双接柱脚体的着内位的置时空,,间因。此两前臂和双手是举起的。 1 根据既裁判为员的队判员断,出一名界队,员不当是在球规接则的着精神界和外意图队的范员围或内合任法地试图去直接抢球,发生的接触犯规是违反体育道德的犯规。 他1 根的据双何裁脚判间其员的的他距判离人断因,按,一照名线他队的上员高不度或是变在界化规。线则的外精神地和面意图或的范任围何内合物法地试图去直接抢球,发生的接触犯规是违反体育道德的犯规。 8队S员:骑8体s跨违中,例线—蓝运—球在板时后停柱场球控或后球。,背8s面内没,有进球入出前场界。 前,最后接 8S:8着s违球例—的—在队后员场控是球,使8s球内没出有进界入的前场队。 员。
时间违例
5S违例
5S
双手和双臂可以在躯干前伸展,其肘部的双臂弯曲不超过双脚的位置,因此两前臂和双手是举起的。 圆柱体原则定义为一名站在地面上的队员占据一个假想的圆柱体内的空间。
5S ·在如国果际一篮名:联队N(员BF不IAB努A背)力规去身则抢中球5,并S5发违秒生违例接例触是:,指这当:是一一起名违反进体攻育道球德的犯规。
普通违例
球回场后违例
球回场后违例:(1)判断球回场的三个必
备条件。 必须是控球队才能出现。 必须是控球队使球进从前场进入后场。 必须是控球队的队员在后场首先接着球。 (2)球回后场违例的几种情况: 前场发界外球,直接将球传给或球碰篮圈或篮板
后反弹回来。 队员骑跨中线运球时停球后。两名队员骑跨中线
相符传球时一脚踩在中线上静止接后场同队队 员传来的球时。 (3)不算球回场违例的情况: 运球队员在中线附近由回场向前场做后转身运球。 控制球队在前场进攻投篮出手后,球碰篮圈或篮 板弹回后场,该队队员又获得球。
圆双柱手体 和任原双则臂何定可部义以为在分一躯名干与站前界在伸地展线面,上其或的肘界队部员的线占双据臂外一弯的个曲假不地想超的过面圆双接柱脚体的着内位的置时空,,间因。此两前臂和双手是举起的。 1 根据既裁判为员的队判员断,出一名界队,员不当是在球规接则的着精神界和外意图队的范员围或内合任法地试图去直接抢球,发生的接触犯规是违反体育道德的犯规。 他1 根的据双何裁脚判间其员的的他距判离人断因,按,一照名线他队的上员高不度或是变在界化规。线则的外精神地和面意图或的范任围何内合物法地试图去直接抢球,发生的接触犯规是违反体育道德的犯规。 8队S员:骑8体s跨违中,例线—蓝运—球在板时后停柱场球控或后球。,背8s面内没,有进球入出前场界。 前,最后接 8S:8着s违球例—的—在队后员场控是球,使8s球内没出有进界入的前场队。 员。
时间违例
5S违例
5S
双手和双臂可以在躯干前伸展,其肘部的双臂弯曲不超过双脚的位置,因此两前臂和双手是举起的。 圆柱体原则定义为一名站在地面上的队员占据一个假想的圆柱体内的空间。
5S ·在如国果际一篮名:联队N(员BF不IAB努A背)力规去身则抢中球5,并S5发违秒生违例接例触是:,指这当:是一一起名违反进体攻育道球德的犯规。
普通违例
球回场后违例
球回场后违例:(1)判断球回场的三个必
备条件。 必须是控球队才能出现。 必须是控球队使球进从前场进入后场。 必须是控球队的队员在后场首先接着球。 (2)球回后场违例的几种情况: 前场发界外球,直接将球传给或球碰篮圈或篮板
后反弹回来。 队员骑跨中线运球时停球后。两名队员骑跨中线
相符传球时一脚踩在中线上静止接后场同队队 员传来的球时。 (3)不算球回场违例的情况: 运球队员在中线附近由回场向前场做后转身运球。 控制球队在前场进攻投篮出手后,球碰篮圈或篮 板弹回后场,该队队员又获得球。
运动控制系统课件
在弱磁调速范围内,转速越高,磁通越 弱,容许输出转矩减小,而容许输出转矩 与转速的乘积则不变,即容许功率不变, 为“恒功率调速方式 。 恒功率调速方式” 恒功率调速方式
Shanghai university
两种调速方式: 两种调速方式:
U Te Φ P
ΦN
UN Te U P nN
变电压调速 两种调速方式 弱磁调速
Shanghai university
绪论
一。什么是运动控制系统?
运动控制系统(Motion Control System)也可称作电力 拖动控制系统(Control Systems of Electric Drive) 运动控制系统--通过对电动机电压、电流、频率等 输入电量的控制,来改变工作机械的转矩、速度、位 移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。工业生产和科学 技术的发展对运动控制系统提出了日益复杂的要求, 同时也为研制和生产各类新型的控制装置提供了可能。
直流电机 速度控制 位置控制 直流调速系统* 直流调速系统 直流伺服系统 交流电机
(异步电机*、同步电机) 异步电机 、同步电机)
交流调速系统* 交流调速系统 交流伺服系统
直流调速系统--第一篇,运动控制( 直流调速系统--第一篇,运动控制(一) --第一篇 交流调速系统--第二篇,运动控制( 交流调速系统--第二篇,运动控制(二) --第二篇
Shanghai university
电力拖动自动控制系统
第1Biblioteka 篇直流拖动控制系统
Shanghai university
直流调速方法
根据直流电动机转速方程
U − IR n= KeΦ
式中 n — U— I — R— Φ— Ke— (1-1)
MTC101-运动控制系统基础PPT课件
Servo Drive
Motor Brake
Mechanical Brake Option
Vertical Applicatio
n
Gravity
Mass
.
11
伺服驱动Servo Drive
Motor with Feedback
Motor Power
Position Feedback
Servo Drives 伺服驱动 接受运动控制器的指令信号,控制 电机所提供的速度和扭矩(电流),要完成这些,驱动器需 要将主进线电能转换成电机所需要的电压和电流,以完成营 工控制要求。
Position Feedback
•存储和执行运动程序 •控制运动 •存贮配置参数
Servo Drive
Command Signal Position Feedback
.
Motion Controller
Motion Software
14
课程内容
2. 运动控制产品
.
15
单体伺服驱动解决方案
Index 运动解决方案
1) Single CPU (Logix) for PLC / Safety and Motion applications including Kinematics
2) Single programming package (RSLogix5000) (for PLC/Motion applications and also for all Logix controllers, Tag based addressing, Alias addressing and program data scoping, Auto creation of structures (easier to install / program / maintain)
【PPT】什么是运动控制系统.
从电能的转换及传递(传输)角度来看,把电力拖动称为电 力传动,把电力拖动控制系统称为电力传动控制系统。由于 这类系统的基本任务是通过控制和调节电动机的旋转速度或 转角来实现工作机械对速度或位移的要求,因此把电力拖动 控制系统又称为运动控制系统。 电力拖动控制系统按被控制量的不同分为两大类: 以电动机的转速为被控制量的系统叫做调速系统; 以工作机械的角位移或直线位移为被控制量的系统叫做位 置伺服系统,又叫做位置随动系统。 电力拖动控制系统还有其他多种类型,如张力控制系统, 多电动机同步控制系统等。虽然电力拖动控制系统种类很多, 但是,各种电力拖动控制系统都是通过控制电动机转速来工 作的,因此,调速系统是最基本的电力拖动控制系统。
0.3 运动控制系统的发展过程及应用
纵观运动控制的发展历程,交、直流两大电气传动并 存于各个工业领域,虽然各个时期科学技术的发展使它 们所处的地位、所起的作用不同,但它们始终是随着工 业技术的发展,特别是电力电子和微电子技术的发展, 在相互竞争、相互促进中,不断完善并发生着变化。由 于历史上最早出现的是直流电机,所以19世纪80年代以 前,直流电气传动是惟一的电气传动方式。直到19世纪 末,出现了交流电,且解决了三相制交流电的输送和分 配问题,并制成了经济适用的鼠笼异步电机,这就使交 流电气传动在工业中逐步地得到广泛的应用。由于大量 使用异步电机,严重影响到电网的功率因数,同步电机 的诞生和使用大大缓解了功率因数问题。在20世纪的大 部分时间里,基本形成直流调速、交流不调速的格局。
运动控制系统的共同特点(续)
(7)可以控制单台电机运行,也可多台协调控制运行, 只是控制方法略有不同而已。 (8)只要合理地选择控制方案,几乎可以适用于任何 传动场合。 由于上述特点,运动控制系统被广泛地用于相关行 业的各个实际需求中。据统计,我国电动机的装机容 量约为4亿多千瓦,其用电量占当年全国发电量的 60%一70%,如何合理、有效、经济地利用好这一 部分电能,提高劳动生产率,运动控制系统的设计者 们对此有着不可推卸的责任。
运动控制系统第3章-转速闭环控制的直流调速系统ppt
s)
闭环时,Dcl
nN s ncl (1
s)
得到 Dcl (1 K )Dop
(2-50)
闭环系统静特性和开环系统机械特性的关系
开环系统 Id n 例如:在图2-24中工作点从A A′
闭环系统 Id n Un Un Uc
n Ud0 例如:在图2-24中工作点从A B 比例控制直流调速系统能够减少稳态速降的实质在于它的自动 调节作用,在于它能随着负载的变化而相应地改变电枢电压, 以补偿电枢回路电阻压降的变化。
图2-26 积分调节器的输入和输出动态过程
图2-26 积分调节器的 输入和输出动态过程
只要ΔUn>0,积分调 节器的输出Uc便一直 增长;只有达到 ΔUn=0时, Uc才停止 上升;只有到ΔUn变 负, Uc才会下降。
当ΔUn=0时, Uc并 不是零,而是某一个 固定值Ucf
突加负载时,由于Idl的 增加,转速n下降,导 致ΔUn变正,
由式(2-48)可得
K
nop
1
275
1 103.6
ncl
2.63
则得
Kp
K
K s / Ce
103.6 30 0.015 / 0.2
46
即只要放大器的放大系数等于或大于46。
3.1.3 闭环直流调速系统反馈控制规律
(1)比例控制的反馈控制系统是被调量有 静差的控制系统 比例控制反馈控制系统的开环放大系数值 越大,系统的稳态性能越好。 但只要比例放大系数Kp=常数,开环放大 系数K≠∞,反馈控制就只能减小稳态误差, 而不能消除它, 这样的控制系统叫做有静差控制系统。
电力拖动自动控制系统 —运动控制系统
第3章
转速闭环控制的 直流调速系统
《运动控制》课件
运动控制的基本原理
1 控制系统的要素
解释构成运动控制系统的重要要素,如传感器和执行器。
2 反馈控制原理
介绍反馈控制原理的基本概念和运作方式。
运动控制的技术方法
位置控制技术
详解位置控制技术,包括编码 器和位置伺服系统。
速度控制技术
深入研究速度控制技术,包括 PID控制和电机驱动。
力控制技术
探讨力控制技术在工业自动化 和机器人领域中的应用。
《运动控制》PPT课件
欢迎来到《运动控制》PPT课件!本课程将带您深入了解运动控制的重要性和 应用领域,并探索其基本原理、技术方法和发展趋势。
课件பைடு நூலகம்绍
本节将介绍课件的目的和重要性,以及主要内容的概述。
运动控制概述
定义
了解运动控制的定义,涵盖其在不同领域的应用。
应用领域
探索运动控制在工业、机器人和自动化等领域的 广泛应用。
2 发展前景展望
展望运动控制的未来发展,包括智能化和高效能的前景。
运动控制的发展趋势
1
高精度
2
介绍高精度运动控制技术的发展,如高
精度传感器和控制算法。
3
智能化
展望运动控制的智能化趋势,如人工智 能和机器学习的应用。
高效能
探讨提高运动控制系统效能的方法,如 优化控制策略和能源管理。
总结
1 运动控制的重要性
总结运动控制的重要性,强调其在现代工业和机器人技术中的关键作用。
运动技能学习与控制PPT课件
11
12
二、误差测量
1、一维动作目标的误差
x1
x5
x3
x2
x4
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
13
14
各种误差的计算方法
Constant Error (CE): CE=Σ(xi-T)/n
Variable Error (VE):
运动(movement):构成动作或运动技能的肢 体或肢体联合的行为特征。
3
2、高水平技能的特征
成功的可能性最大,准确性高 体能和心理能力的消耗最少 时间最短
4
3、运动技能的三种成份
姿势成份为动作提供支持平台。 身体的移动成份是身体和肢体移动到动作
位置。 操作成份产生动作。
能力是指个体所具有的遗传的、相对持久的、 稳定的特质,存在于各种运动和认知技能之 中。
技能是对特定任务的精通。
70
能力的种类
可能有30多种,例如
多肢体协调 空间定向 手指灵活性 手与手臂稳定性 视敏度
反应时 移动速度 操作灵活性 机械资质 运动感觉
71
参照
比较器
肌肉感觉 运动感觉 环境感觉
44
长时间的、连续的任务 短时的、非连续的任务 动作技能的反射控制模型
45
M1应答: 30-50ms
M2应答: 50-80ms
反应激发: 80-
反应时12应0答ms:
120180ms
46
刺激鉴别 应答选择 应答编程
运动程序
M2
脊髓
M1
肌肉
动作
误差 参照
12
二、误差测量
1、一维动作目标的误差
x1
x5
x3
x2
x4
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
13
14
各种误差的计算方法
Constant Error (CE): CE=Σ(xi-T)/n
Variable Error (VE):
运动(movement):构成动作或运动技能的肢 体或肢体联合的行为特征。
3
2、高水平技能的特征
成功的可能性最大,准确性高 体能和心理能力的消耗最少 时间最短
4
3、运动技能的三种成份
姿势成份为动作提供支持平台。 身体的移动成份是身体和肢体移动到动作
位置。 操作成份产生动作。
能力是指个体所具有的遗传的、相对持久的、 稳定的特质,存在于各种运动和认知技能之 中。
技能是对特定任务的精通。
70
能力的种类
可能有30多种,例如
多肢体协调 空间定向 手指灵活性 手与手臂稳定性 视敏度
反应时 移动速度 操作灵活性 机械资质 运动感觉
71
参照
比较器
肌肉感觉 运动感觉 环境感觉
44
长时间的、连续的任务 短时的、非连续的任务 动作技能的反射控制模型
45
M1应答: 30-50ms
M2应答: 50-80ms
反应激发: 80-
反应时12应0答ms:
120180ms
46
刺激鉴别 应答选择 应答编程
运动程序
M2
脊髓
M1
肌肉
动作
误差 参照
运动控制和学习ppt课件
运动控制卡广泛应用于各种自 动化设备和生产线,如包装机 械、印刷机械等。
运动控制器
运动控制器是一种集成了运动控 制算法和硬件接口的控制器,用
于实现多轴协调运动控制。
运动控制器通常采用高速计算机 或DSP等技术实现,具有强大的
计算和控制能力。
运动控制器广泛应用于数控机床、 机器人、自动化生产线等领域, 是实现高效、高精度加工的关键
伺服控制系统通常由伺服电机、伺服驱动器和控制器三部分组成,具有快速响应、 高精度和高稳定性的特点。
伺服控制技术的应用范围广泛,包括数控机床、机器人、自动化生产线等领域。
步进控制技术
步进控制技术是一种通过控制步进电 机的步进角度来实现精确位置控制的 技术。
步进控制技术的应用范围也较广,如 打印机、扫描仪、自动化设备等。
位置、稳定性等。
学习控制的方法
监督学习
通过输入输出数据,学习 一个从输入到输出的映射 关系,实现对被控对象的 控制。
无监督学习
通过学习数据的内在规律 和结构,对被控对象进行 控制。
强化学习
通过与环境交互,学习如 何最优地选择行为以最大 化累积奖励,实现对被控 对象的控制。
学习控制的实现
数据采集
采集被控对象的输入输出数据 ,为学习提供数据支持。
设备之一。
03 学习控制理论
学习控制的概念
学习控制
指通过一定的控制策略, 使被控对象达到所期望 的性能指标,实现最优
控制。
控制策略
指在控制过程中所采用 的方法和手段,包括开 环控制、闭环控制、最
优控制等。
被控对象
指被控制的系统或设备, 可以是机械系统、电气
系统、化工系统等。
性能指标
运动控制相关理论ppt课件
最新版整理ppt
10
理论提供了:
• 解释行为的理论框架:理论允许治疗师看到超过 某个患者的行为之外的东西,将应用拓宽到更多 的病例中
• 指导临床操作:理论为治疗师提供了一个可能的 操作指导。
• 新的观点:理论是动作的,不断改变的,以反映 与理论相关的更多的认识。
• 检查和治疗有效地假设:理论因其抽象性,并不 是可直接进行测试的,确切地说。理论产生可进 行验证的假说。通过验证假说所得到的信息用来 证实该理论有效与否。
47损伤水平策略水平改变步态适应性腘绳肌牵伸踩夹子滑轮踝牵伸下肢前伸后踢腿屈膝半蹲星形伸展平衡仰卧抬腿踏步练习走斜坡上下台阶后上下台阶行走的整体模式练习48第1趾骨第25趾骨第1跖骨第2跖骨第3跖骨第4跖骨第5跖骨足弓足跟内侧和足跟外侧足刚开始着地时相跖骨刚开始着地时相趾骨刚开始着地时相足跟离开地面时相趾离地时相
最新版整理ppt
3
最新版整理ppt
4
个体内限制动作的因素
• 在个体中动作是通过许多大脑结构和程序 的合作而出现的。
• 动作是由相互作用、相互影响的多个程序 产生的,包括那些与其相关的知觉,认知 和行为。
最新版整理ppt
5
最新版整理ppt
6
任务对动作的限制
• 任务对动作的神经组织加上了限制。
• 在日常生活中,我们执行大量各种需要运动的功 能活动。所执行任务的本质在部分程度上决定了 所需要的动作类型。
• 中枢神经系统功能的康复要求患者针对感觉/知觉, 运动和认识损伤形成适合功能任务需要的运动模 式。因此,帮助患者学习/重新学习执行功能任务, 并要考虑到潜在的功能缺损的治疗策略,是最大 限度使患者恢复功能独立的基础。
最新版整理ppt
7
运动控制系统PPT参考课件
9
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
运动控制器PPT资料(正式版)
Q170MCPU特点(1)
QDMotion特点(2)
通过多CPU间的高速总线,在一个 工作周期内,可以进行多达 14K字的数据传送
©COPYRIGHT
三菱电机自动化(中国)
QDMotion特点(2)
©COPYRIGHT
三菱电机自动化(中国)
Q170MCPU特点(1)
集成性高:三合一的运动控制器
结构紧凑的Q170MCPU将电源模块,顺控PLC CPU和MOTION CPU集成于一体.开 发程序时,PLC CPU型号选择Q03UDCPU,MOTION CPU型号选择Q170MCPU.并内置 了增量型同步编码器接口和手动脉冲发生器接口,特别适合包装设备中的同 步要求.
SSCNETIII
……
©COPYRIGHT
三菱电机自动化(中国)
运动控制器的特点(3)
根据不同的使用场合,可变更控制器的操作系统(OS)
1.适用于搬运及组装,如搬运机,注塑机,涂装机等场合的操作系统—SV13 2.适用于自动机械,如同步控制,食品包装等场合的操作系统—SV22 3.适用于机床行业的操作系统—SV43 4.适用于机械手的操作系统—SV54
运动控制器
运动控制器的特点(1)
QPLC CPU和MOTION CPU组成的多CPU系统
顺序控制由 QPLC CPU 负责
复杂的伺服控制由
Q MOTION CPU 模块进行处理
©COPYRIGHT
三菱电机自动化(中国)
运动控制器的特点(2)
可与伺服放大器进行高速的串行通讯 通过SSCNETIII光纤网络进行高速通讯,通讯速率可达到50Mbps,并且具有良好的 抗干扰性
标签编辑 可以对使用了标签的运动SFC 进行编辑 提高动作SFC程序的可读性
运动技能的学习与控制ppt课件
经验和技能水平
经验和技能水平对控制效果有重要影响,经验丰富、技能水平高的 个体能够更准确、稳定地控制动作。
04 运动技能学习的实践应用
训练计划与实施
制定明确的训练计划
01
根据学习目标和个体差异,制定具体的训练计划,包括训练内
容、时间安排和训练强度等。
实施有效的训练方法
02
采用多种训练方法,如重复练习、变换练习、模拟比赛等,以
提高学习效果。
注重个体差异
03
根据个体差异,如年龄、性别、体能状况等,调整训练计划和
实施方
02
03
评估标准明确
制定明确的评估标准,以 便对学习者的学习效果进 行客观、准确的评估。
及时反馈
在学习过程中,及时给予 学习者反馈,指出其优点 和不足,并给出改进建议。
记录与跟踪
记录学习者的学习过程和 进步情况,以便对学习效 果进行长期跟踪和评估。
技能迁移与应用
促进技能迁移
通过多样化的训练和实践 活动,促进学习者在不同 情境下灵活运用所学技能。
提高应用能力
强调技能在实际生活和工 作中的应用,以提高学习 者的实际操作能力和问题 解决能力。
培养创新能力
鼓励学习者在应用所学技 能的过程中发挥创造力, 探索新的应用方式和技巧。
未来研究的方向与趋势
运动技能学习的神经机制
深入研究运动技能学习的神经生理机制,探索大脑与运动行为的 关联。
运动技能学习的跨领域研究
加强心理学、生物学、计算机科学等学科在运动技能学习研究中的 应用,促进跨学科的合作与交流。
运动技能控制的智能化技术
利用人工智能、机器学习等技术手段,开发智能化的运动技能控制 系统,提高运动技能控制的精度和效率。
经验和技能水平对控制效果有重要影响,经验丰富、技能水平高的 个体能够更准确、稳定地控制动作。
04 运动技能学习的实践应用
训练计划与实施
制定明确的训练计划
01
根据学习目标和个体差异,制定具体的训练计划,包括训练内
容、时间安排和训练强度等。
实施有效的训练方法
02
采用多种训练方法,如重复练习、变换练习、模拟比赛等,以
提高学习效果。
注重个体差异
03
根据个体差异,如年龄、性别、体能状况等,调整训练计划和
实施方
02
03
评估标准明确
制定明确的评估标准,以 便对学习者的学习效果进 行客观、准确的评估。
及时反馈
在学习过程中,及时给予 学习者反馈,指出其优点 和不足,并给出改进建议。
记录与跟踪
记录学习者的学习过程和 进步情况,以便对学习效 果进行长期跟踪和评估。
技能迁移与应用
促进技能迁移
通过多样化的训练和实践 活动,促进学习者在不同 情境下灵活运用所学技能。
提高应用能力
强调技能在实际生活和工 作中的应用,以提高学习 者的实际操作能力和问题 解决能力。
培养创新能力
鼓励学习者在应用所学技 能的过程中发挥创造力, 探索新的应用方式和技巧。
未来研究的方向与趋势
运动技能学习的神经机制
深入研究运动技能学习的神经生理机制,探索大脑与运动行为的 关联。
运动技能学习的跨领域研究
加强心理学、生物学、计算机科学等学科在运动技能学习研究中的 应用,促进跨学科的合作与交流。
运动技能控制的智能化技术
利用人工智能、机器学习等技术手段,开发智能化的运动技能控制 系统,提高运动技能控制的精度和效率。
运动控制与运动再学习 ppt课件
•调节运动功能的重要作用, 它与随意运动的稳定性、 肌紧张的控制、运动程序 和本体感觉传入冲动信息 的处理有关; • 为一切运动提供必要 的“配合活动”
ppt课件
40
大脑皮质在运动控制中的调节
•大脑的反射与调控-平衡反射(见前表)
•大脑对下位中枢的调节
抑制区:皮层运动区、纹状体、小脑前叶蚓部
易化区:前庭核、小脑前叶两侧部
高水平(随意 运动控制) 大脑
脊髓 指令 效应器 运动控制器 输出
小脑 中等水平 基底节 脑干
低水平(反射 肌肉骨骼系统
运动控制)
控制结果的行 为表现
ppt课件
运动
32
神经-运动等级调控
高级中枢实现对反射的逐级控制
脊髓水平
(more、屈肌退缩反射)
延髓水平 (粗大运动) 中脑、桥脑水平
(姿势、调整反射)
调节脊髓前角运动神经元和中间神经元的兴 奋性,易化或抑制由其它途径引起的活动, 特别是在快速随意控制肌肉的精细、协调运 动中起基本作用。 组成:它是由皮质运动区锥细胞发出的神经, 经内囊处汇聚成束下行,止于脑干神经核运 动神经元(皮质脑干束)和脊髓运动神经元 及中间神经元(皮质脊髓束),在锥体束下 行过程中一部分交叉至对侧。
ppt课件
16
反射模型
核心思想: 反射是运动的基本单位; 人体运动是各种反射的总和或整合的结果;
人体复杂运动:简单反射(腱反射)+复杂反射(Moro 反 射等)
运动反应的中枢控制依赖外周感觉输入(反射弧完整); 感觉输入能够控制运动的输出—神经促进技术理论基础 (破坏平衡诱发平衡运动反应)。
ppt课件
ppt课件
27
(3)优势现象
在中枢神经系统内,当某一中枢受 到较强刺激,其兴奋水平不断提高, 这个提高兴奋水平的中枢,称兴奋优 势灶,它能综合其他中枢扩散而来的 兴奋,提高其自身的兴奋水平,对其 临近中枢却发生抑制作用。
ppt课件
40
大脑皮质在运动控制中的调节
•大脑的反射与调控-平衡反射(见前表)
•大脑对下位中枢的调节
抑制区:皮层运动区、纹状体、小脑前叶蚓部
易化区:前庭核、小脑前叶两侧部
高水平(随意 运动控制) 大脑
脊髓 指令 效应器 运动控制器 输出
小脑 中等水平 基底节 脑干
低水平(反射 肌肉骨骼系统
运动控制)
控制结果的行 为表现
ppt课件
运动
32
神经-运动等级调控
高级中枢实现对反射的逐级控制
脊髓水平
(more、屈肌退缩反射)
延髓水平 (粗大运动) 中脑、桥脑水平
(姿势、调整反射)
调节脊髓前角运动神经元和中间神经元的兴 奋性,易化或抑制由其它途径引起的活动, 特别是在快速随意控制肌肉的精细、协调运 动中起基本作用。 组成:它是由皮质运动区锥细胞发出的神经, 经内囊处汇聚成束下行,止于脑干神经核运 动神经元(皮质脑干束)和脊髓运动神经元 及中间神经元(皮质脊髓束),在锥体束下 行过程中一部分交叉至对侧。
ppt课件
16
反射模型
核心思想: 反射是运动的基本单位; 人体运动是各种反射的总和或整合的结果;
人体复杂运动:简单反射(腱反射)+复杂反射(Moro 反 射等)
运动反应的中枢控制依赖外周感觉输入(反射弧完整); 感觉输入能够控制运动的输出—神经促进技术理论基础 (破坏平衡诱发平衡运动反应)。
ppt课件
ppt课件
27
(3)优势现象
在中枢神经系统内,当某一中枢受 到较强刺激,其兴奋水平不断提高, 这个提高兴奋水平的中枢,称兴奋优 势灶,它能综合其他中枢扩散而来的 兴奋,提高其自身的兴奋水平,对其 临近中枢却发生抑制作用。
运动控制ppt课件
缺点
模糊规则的制定和隶属度函数的选取需要一定的 经验和技巧,且计算量较大。
神经网络算法在运动控制中的优化
神经网络算法原理
通过模拟人脑神经元的结构和功能,构建多层神经网络模 型,利用样本数据对模型进行训练和优化。
在运动控制中的优化
神经网络算法可以用于运动控制系统的建模、辨识和优化 。例如,在电机参数辨识、运动轨迹规划等领域,神经网 络算法能够提高系统的精度和效率。
深入理解运动控制系统的基本原理
通过实验,学生应能够加深对运动控制系统基本原理的理解,包括控制器设计、系统稳 定性分析等方面。
培养实验操作能力和数据分析能力
学生应具备独立进行实验操作和数据分析的能力,能够根据实验数据得出合理的结论。
实验步骤和数据记录
搭建运动控制系统仿真模型
在MATLAB/Simulink环境中,根据实验要求搭建运动控制系统的 仿真模型,包括控制器、执行器、传感器等部分。
利用物联网和大数据技术,实现远程 监控和智能维护,提高维护效率和质 量。
寿命预测与健康管理
基于历史数据和实时监测信息,预测 系统剩余寿命和健康状况,制定维护 计划。
多轴协同和同步控制技术
多轴协同控制
针对多轴运动系统,设计 协同控制策略,实现各轴 之间的协调运动,提高系 统整体性能。
同步控制技术
通过精确的时序控制和同 步机制,实现多轴运动系 统的同步运行,保证系统 稳定性和精度。
设置仿真参数和运行仿真
根据实验需求设置合适的仿真参数,如仿真时间、步长等,并运行 仿真,记录仿真过程中的关键数据。
分析仿真结果
对仿真结果进行分析,包括系统响应曲线、误差曲线等,以评估系 统的性能。
实验结果分析和讨论
系统性能评估
模糊规则的制定和隶属度函数的选取需要一定的 经验和技巧,且计算量较大。
神经网络算法在运动控制中的优化
神经网络算法原理
通过模拟人脑神经元的结构和功能,构建多层神经网络模 型,利用样本数据对模型进行训练和优化。
在运动控制中的优化
神经网络算法可以用于运动控制系统的建模、辨识和优化 。例如,在电机参数辨识、运动轨迹规划等领域,神经网 络算法能够提高系统的精度和效率。
深入理解运动控制系统的基本原理
通过实验,学生应能够加深对运动控制系统基本原理的理解,包括控制器设计、系统稳 定性分析等方面。
培养实验操作能力和数据分析能力
学生应具备独立进行实验操作和数据分析的能力,能够根据实验数据得出合理的结论。
实验步骤和数据记录
搭建运动控制系统仿真模型
在MATLAB/Simulink环境中,根据实验要求搭建运动控制系统的 仿真模型,包括控制器、执行器、传感器等部分。
利用物联网和大数据技术,实现远程 监控和智能维护,提高维护效率和质 量。
寿命预测与健康管理
基于历史数据和实时监测信息,预测 系统剩余寿命和健康状况,制定维护 计划。
多轴协同和同步控制技术
多轴协同控制
针对多轴运动系统,设计 协同控制策略,实现各轴 之间的协调运动,提高系 统整体性能。
同步控制技术
通过精确的时序控制和同 步机制,实现多轴运动系 统的同步运行,保证系统 稳定性和精度。
设置仿真参数和运行仿真
根据实验需求设置合适的仿真参数,如仿真时间、步长等,并运行 仿真,记录仿真过程中的关键数据。
分析仿真结果
对仿真结果进行分析,包括系统响应曲线、误差曲线等,以评估系 统的性能。
实验结果分析和讨论
系统性能评估
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对最大加速度的需要。
馈环建在最里面,延迟时
•ACR的输出电压限幅值Ucm,表示对最小角的限制,也表示对电力 电子变换器输出电压的限制。
间最长的那个物理量的反 馈环建在最外面。
ASR:在启动期间或输入给定信号幅值过大时产生饱和,在其他期间不应产生饱和。ASR的饱和隔 绝了外环对内环的干扰,使系统在起动期间表现为仅有一个电流环的特点,达到在起动期间恒流起 动的目的。
ASR的输出:
U
* i
I d
ACR的输出:Uc
Ud0 Ks
Cen Id R Ks
CeU
* n
/
IdL
R
Ks
例题
双闭环调速系统中已知数据为:电动机:UN=220v,IN=20A,nN=1000r/min,电枢回路总 电阻R=1Ω。设Unm*=Uim*=Ucm=10V,电枢回路最大电流Idm=40A,Ks=40,ASR与ACR均 采用PI调节器。试求: (1)电流反馈系数β和转速反馈系数α。 (2)当电动机在最高转速发生堵转时的Ud,Ui*,Ui和Uc值。
• 解决办法:
• 将电流、转速调节器分开,分别用两个调节器; • 转速环为外环,转速环的输出作为电流环的给定。
转速、电流双闭环直流调速系统和调节器的工程设计方法
转速、电流双闭环控制的直流调速系统是应用最广性 能很好的直流调速系统。本章着重阐明其控制规律、 性能特点和设计方法,是各种交、直流电力拖动自动 控制系统的重要基础。
运动控制
知识回顾
开环调 速系统
Id Idm
Idcr O
机械特性软 闭环调速 堵转电流过大 加电流截
系统(P)
止负反馈
系 统 有 静 差
转速无静 差系统(PI)
启动波形 不够理想
?
Id
n
Idm
n
IdL
t O
IdL t
自动化系
问题
当接到命令后,在机械强度、 炮兵身体的承受能力和电动 机过载能力等条件允许的情 况下,以最短的时间起动到 最高速
d
(或U
* n
,
I
dl
)
ASR饱和时 : U*i = U*im,
Id
U
* im
I dm
• 双环系统PI调节器的特点:
• P调节器的输出量总是正比于其输入量,而PI调节器未饱 和时,其输出量的稳态值是输入的积分,最终使PI调节器 输入为零,才停止积分。
• PI调节器的输出量在动态过程中决定于输入量的积分,到 达稳态时,输入为零,输出的稳态值与输入无关,而是由 它后面环节的需要决定的。稳态时:
转速、电流双闭环直流调速系统及其静特性; 双闭环直流调速系统的数学模型和动态性能分析; 调节器的工程设计方法; 按工程设计方法设计双闭环系统的调节器 弱磁控制的直流调速系统。
转速、电流双闭环系统的组成 ~
TA
ASR——转速调节器
U
* n
U n
+
ASR
-
- Ui
I
U
* i
ACR
Ui
V
U c UPE
Ud Id M
当调节器ASR不饱和时,ASR、ACR均不饱 和,其输入偏差电压均为零。转速不
ASR不饱和 (CA段 )
变,I d I dm 。
双闭环调速系统的静特性在负载电流小 于Idm时表现为转速无静差,转速负反馈起
U
* n
Un
n
n0
U
* i
Ui
I d
n
U
* n
n0
主要调节作用。 当调节器ASR饱和时,ASR输出达到限
+ ACR——电流调节器 电流环——内环
转速环——外环 -
Un
n
在一个控制系统中,如果
n
有多个被反馈的物理量需
TG
•ASR的输出电压Ui*是ACR的电流给定信号,其限幅值Uim为最大电 流给定值,ASR的限幅值完全取决于电动机所允许的过载能力和系统
要构造闭环,而且这些被 反馈的物理量是同一个物 理量所产生,那么延迟时 间最短的那个物理量的反
dn 越大越好 dt
dn
min
dn
, dn
, dn
dt 最大允许
dt 机械强度允许的最大值 dt 电枢电流允许的最大值 dt 人体生理允许的最大值
要想起动时间最短,必须在整个起动期间内保持
dn dn
=
constant
dt dt 最大允许
保证在整个起动 期间电枢电流Id 等于一个适当的
允许值不变,就
有恒定的电压输出,输出没有达到饱和值) 反馈系数:
U n 0
U* n
Un
n
n0
—
转速由U
*决定
n
Ui 0
U* i
Ui
Id
I
dl
—U
i*由I
决定
dl
U
* nm
nm a x
U
* im
I dm
Ud0
Id R Cen
I dl
R
Ce
U* n
Uc
Ud0 Ks
Idl
R
Ce
U
* n
Ks
控制电压U
c的大小同时取决于n和I
(数IdL(N为·m负/载A)电);流;Cm
30
Ce
为电机额定励磁下的转矩系
I d max IdL
GD2 :电力拖动系统折算到电机轴上的飞轮惯量(N·m2) .
n Id
t
过渡
稳态
转速单闭环调速系统的局限性
▪ 仅考虑了静态性能,没考虑动态性能,不适合对系统快速 性要求较高的场合。
▪ 单闭环系统,转速、电流共用一个调节器,无法保证两种 调节过程同时具有良好的动态品质。
ASR饱和 (AB段)
Id
U
* im
I dm
幅值,转速外环呈开环状态,电流不变。
当负载电流达到Idm时,对应于转速调节器的饱和输出Uim*,这时,电流调节器起主要调节作用,
系统表现为电流无静差,得到过电流的自动保护。
双环系统稳态参数计算
稳态时 :两个调节器均不饱和(输入偏差为零,偏差的积分使调节器
ACR:在任何时间内都不能产生饱和
系统原理图
+
RP1 U*n R0
-
R0
Un
Rn Cn
Ui
R0
ASR
-
+
LM
+
U*i
R0
TA
Ri Ci
L
ACR
-
+
+
LM #43;
-
n
+
RP2 TTGG -
双闭环直流调速系统电路原理图
双闭环调速系统的稳态结构框图
对于静特性来说, 有两种情况 (稳态 时)
能够实现最短时 间起动的问题
电机轴上的动力学方程:
Te
TL
GD2 375
dn dt
Id
I dL
GD 2 375Cm
dn dt
充分利用电机过载能力:I d I dm
n, Id
Te Cm Id :额定励磁下的电磁转矩,(Id为电枢电流);
nw
TL Cm IdL :包括电机空载转矩在内的负载转矩(N·m)
解:(1)电流反馈系数 β=0.25V/A,
转速反馈系数 α=0.01V.min/r。
(2)当电动机在最高转速发生堵转时,看稳态结构图。
转速为0,ASR饱和,
Ui*= Uim*=10V。 E为0,Ud0-IdR=0, 此时Id=Idm=40A,R=1Ω 所以 Ud=40V Ks=40,Uc=1V Ui= Idmβ=10V。