数学建模实验一
数学建模实验报告
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告
数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。
所以选择采用计算机模拟的方法,求得近似结果。
(2)通过增加试验次数,使近似解越来越接近真实情况。
3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。
例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模实验题目解答
数学建模实验题目解答题目一:慢跑者与狗一个慢跑者在平面上沿椭圆以恒定的常速v=1跑步,设椭圆方程为: x=10+20cost , y=20+5sint. 突然有一只狗攻击他. 这只狗从原点出发,以恒定速率w 跑向慢跑者.狗的运动方向始终指向慢跑者.分别求出w=20,w=5时狗的运动轨迹,并分析狗是攻击到慢跑者。
一,建立模型。
设时刻t 慢跑者的坐标为(X (t ),Y (t)),狗的坐标为(x(t ),y(t)), 又X=10+20cost , Y=20+15sint 。
由于狗的运动方向始终指向慢跑者,故此时狗与人的坐标连线就是此时狗的轨迹曲线弧处的切线,即dy/dx=(Y-y )/(X —x), y ’=(dy/dt )/(dx/dt ) 又运动时间相同:,解得可得参数方程为:二,求解模型w=20时,建立m —文件xy1.m 如下: function dy=xy1 (t ,y) dy=zeros (2,1);dy (1)=20*(10+20*cos(t )—y (1))/sqrt((10+20*cos(t)-y (1))^2+(20+15*sin (t )-y(2))^2);⎪⎪ ⎩ ⎪⎪ ⎨ ⎧ = = - + - + + - + =- + - + + - + = 0) 0 ( ,0 ) 0 ( )sin 15 20 ( )sin 15 20 ( ) cos 20 10 ( )cos 20 10 ( )sin 15 20 ( ) cos 20 10 ( 22 2 2 y x y t y t x t wdtdy x t y t x t w dtdxdy(2)=20*(20+15*sin(t)—y(2))/sqrt((10+20*cos(t)—y(1))^2+(20+15*sin(t)-y(2))^2);取t0=0,tf=6.0,建立主程序fangcheng1。
m如下:t0=0;tf=6.0;[t,y]=ode45('eq3’,[t0 tf],[0 0]);T=0:0.1:2*pi;X=10+20*cos(T);Y=20+15*sin(T);plot(X,Y,’-')hold onplot(y(:,1),y(:,2),'*’)轨迹线如下图:发现狗没有攻击到慢跑者,于是,从4。
数学建模实验报告
《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模实验答案
14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';
撰写建模小论文
实验一撰写数学建模小论文一、 实验目的1. 熟悉数学建模的基本方法与步骤;2. 能对一些生活问题进行分析与数学建模;3. 掌握数学建模论文的写作规范与要求。
二、 实验任务1. 对“椅子放平稳问题”,当椅子为长方形时,试建立其数学模型并解决问题。
阐述并写出解决过程。
2. 整理“管道包扎问题”的解决过程,继续“思考与练习”题,即:(1)当w 趋于零时,包扎方式会如何变化?(2)当w 等于截面周长c 时,包扎方式会如何变化?(3).当管道是正方形或其他形状时,对布带宽度有什么影响?(4)如果允许布带有重叠,结论有什么变化?然后按数学建模论文的要求撰写完整的论文。
三、 实验过程与结果(对重要的实验结果截取全屏图,另存为JPG/PNG 格式)一、问题分析该模型看似与数学与数学无关,但我们可以用数学语言给予表述,并用数学工具来证实,经过分析,我们可以用一元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离,进而把模型假设和椅脚同时着地的结论用简单、精确的数学语言表达出来,构成了这个实际问题的数学模型。
二、模型假设(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的.三、模型建立(显示模型函数的构造过程)1111A B C D 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
数学建模 -实验报告1
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)
数学建模优秀实验报告
一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
淮阴工学院数学建模实验报告1
淮阴工学学院
数理学院 数学建模与实验课程 实验报告
实验名称 一、Matlab 程序设计与绘图 实验地点 26#114 日期 2012-09-12
姓名 张磊磊 仇素涛 班级 计科1101 学号 1104101130 1104101129 成绩 [1] 熟悉MATLAB 绘图命令;
[2] 掌握MATLAB 图形处理命令。
[3] 掌握MATLAB 语言的几种循环、条件和开关选择结构。
通过该实验的学习,使学生能灵活应用MATLAB 软件解决一些简单问题。
【实验要求】
[1]独立完成各个实验任务;
[2]实验的过程保存成 .m 文件,以备检查;
[3]完成实验报告。
【实验内容】
一、绘图
1、作出分段函数33cos ,0,(),03,9,3x x x h x e x x e x ≤⎧⎪=<≤⎨⎪+-≥⎩
的图形.
2、. 画出曲面
z =
,在xy 平面投影是单位圆,并且去掉该曲面的1/4部分。
二、编程
1. 随机产生一个1到100的45⨯矩阵,编程求出其最大值及其所处的位置.
5、求三角形的面积。
程序要求:
(1) 通过屏幕输入三角形的三条边.
(2) 如果构成三角形, 计算其面积,如果构不成三角形,则在屏幕上显示“不能构成一个三角形,请重新输入三角形的三条边”。
此时,要求重新输入三角形的三条边。
(3) 如果连续3次输入的三角形的三条边都够不成三角形,则在屏幕上显示“你的输入
不合法,程序终止”, 此时终止程序。
数学建模人口模型
实验一 人口模型与混沌实验目的1.了解Logistic 模型的基本概念。
2.了解的1(1)n n n x rx x +=-分叉和混沌现象。
3.学习、掌握MATLAB 软件有关命令。
实验步骤及结果1. 根据离散Logistic 模型)t (x )x )t (x (r )t (x x )t (x )t (x m -+=+=+11∆t=0,1,2,…,预测出2005-2011年我国的人口总数,其中r =0.029,=m x1950838861。
实验结果如下图所示:r =0.029,=m x 19508388612. 讨论简化的logistic 迭代方程))t (x )(t (rx )t (x -=+11,对于不同的r 和x0观察数列的收敛情况,分别给出t-x 坐标系下图形。
当x(1)=0.4,r 分别为0.7,1.5,3.2时实验结果如下图所示:3、绘制Feigenbaum 图过程:为了观察r 对迭代格式))t (x )(t (rx )t (x -=+11的影响,将区间(0,4]以步长r ∆离散化。
对每个离散的r 值进行迭代,忽略前50个迭代值,把点5152100(,),(,),,(,)r x r x r x 显示在坐标平面上。
实验结果如下:实验代码:1.x=[2005:1:2011];y(1)=126743;r=0.029;k=1950838861;for i=1:11y(i+1)=y(i)+r*(1-y(i)/k)*y(i); endplot(x,y(6:12),'+');hold on2.x=[1:19];y(1)=0.4;r=3.2;for i=1:18y(i+1)=r*(1-y(i))*y(i);plot(x(i),y(i),'+');hold onendxlabel('t');ylabel('x');title('r=3.2,x(1)=0.4')3.for r=[0.005:0.005:4]x(1)=0.6;t=linspace(r,r,100);for j=1:99x(j+1)=r*x(j)*(1-x(j));endhold onplot(t,x,'r+','markersize',0.5); endxlabel('t');ylabel('x');title('r(0,4),x(0.6)')。
数学建模课堂三个实验报告
数学建模实验报告班级:_____计算机科学与技术1班___学号:______11403070137___________姓名:_____ _鄢良康 ___________教师:_______黄正刚 __________计算机科学与工程学院实验一线性规划模型一、实验学时:2H二、实验类型:计算三、实验目的1、掌握建立线性规划数学模型的方法;2、用LINDO求解线性规划问题并进行灵敏度分析;3、对计算结果进行分析。
四、实验所需仪器与设备微机和LINDO软件。
五、实验内容,方法和步骤1、建立数学模型;2、用LINDO软件计算;3、输出计算结果;4、结果分析。
实验一问题内容:某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见表,要求(1)确定获得最大的产品生产计划;(2)产品A的利润在什么范围内变动时,上述计划不变;(3)如果原材料数量不增加,劳动力不足时可从市场购买,为1.8元/h。
问:该厂要不要招收劳动力扩大生产,以购多少为宜?建立数学模型:如截图所示用LINDO软件计算;输出结果:(1)确定获利最大的产品生产计划从数据中可以得出:追求的最大利润为2700元。
其中生产X1数量的50,X2数量的0,X3数量的30。
(2)产品A的利润在什么范围内变动时,上述最优计划不变?30+18=4830-6=24故波动范围在24-48之间。
(4)如果原材料的数量不增,劳动力不足时可从市场购买,伟1.8/h。
问:该厂要不要招收劳动力扩大生产,以购买多少为宜?答:选择购买150个单位。
根据影子价格分析,对于劳动力的购买,每增加1小时,总利润增长为2元大于购买力1.8元,所以选择购买,最大为150个劳动力。
实验二非线性规划模型一、实验学时:1H二、实验类型:计算三、实验目的掌握LINGO求解非线性规划的方法。
四、实验所需仪器与设备微机、LINGO软件。
五、实验内容,方法和步骤1、把非线性规划模型输入LINGO软件计算;2、输出计算结果。
大学生数学建模:作业-线性规划的实验
实验课题:(一)线性规划问题1.用lingo求解下列线性规划问题:2. 某班男同学30人、女同学20人,植树。
工作效率(个/人、天)如下表。
如何安排,植树最多?3.某牧场饲养一批动物,平均每头动物至少需要 700g 蛋白质、30g 矿物质和100g 维生素。
现有A、B、C、D、E五种饲料可供选用,每千克饲料的营养成分(单位:g)与价格(单位:元/kg)如下表所示:试求能满足动物生长营养需求又最经济的选用饲料方案。
4.在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
5.有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如下表所示:前舱中舱后舱最大允许载重量(t)2000 3000 1000容积(m3)4000 5400 1000现有三种货物待运,已知有关数据如下表所示:商品数量(件)每件体积(m3/件)每件重量(t/件)运价(元/件)A 600 10 8 1000B 1000 5 6 700C 800 7 5 600又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
线性代数数学建模案例1
案例1 交通网络流量分析问题
城市道路网中每条道路、每个交叉 路口的车流量调查,是分析、评价及改 善城市交通状况的基础。根据实际车流 量信息可以设计流量控制方案,必要时 设置单行线,以免大量车辆长时间拥堵。
下图为某城市的局部单行示意图
【模型假设】假设不考虑价格变动等其他因素.
【模型建立】设煤矿, 电厂, 铁路分别产出x元, y元, z元刚好满足需求. 则有下表
产出(1元)
产出
煤
电
运
煤0
0.6 0.5
x
分配 0.6y + 0.5z
订单 60000
消 电 0.3 0.1 0.1
y
耗
0.3x + 0.1y + 0.1z 100000
几条道路的流量统计? (3) 当x4 = 350时, 确定x1, x2, x3的值. (4) 若x4 = 200, 则单行线应该如何改动才合
理? 。
【模型假设】: (1) 每条道路都是单行线 (2) 每个交叉路口进入和离开的车辆数目相等.
【模型建立】 根据图3和上述假设, 在①, ②, ③, ④ 四个路口进出车辆数目分别满足:
【模型分析】
(1) 由(A, b)的行最简形可见, 上述方程组中的最
后一个方程是多余的. 这意味着最后一个方程中的
数据“300”x可1 以x4不1用00统计.
(2)由
x2
x4
600
可得
x3 x4 300
x2 x1 500
x3
x1
200
数学建模实验报告1
数学建模实验报告1桂林电⼦科技⼤学2017-2018学年第1学期数学建模⼀、实验⽬的1. 熟悉MATLAB 软件的⽤户环境;2. 了解MATLAB 软件的⼀般命令;3. 掌握MATLAB 向量、数组、矩阵操作与运算函数;4. 掌握MATLAB 软件的基本绘图命令;5. 掌握MATLAB 语⾔的⼏种循环、条件和开关选择结构及其编程规范。
⼆、实验内容1. MATLAB 软件的矩阵输⼊和操作2. ⽤MA TLAB 语⾔编写命令M ⽂件和函数M ⽂件3. 直接使⽤MATLAB 软件进⾏作图练习;三、实验任务1. 有⼀个4×5的矩阵,编程求出其元素最⼤值及其所在的位置。
Jm.m ⽂件代码: clear;a=input('请输⼊⼀个4*5矩阵'); max=a(1,1); maxi=0; maxj=0; for i=1:4 for j=1:5if a(i,j)>max max=a(i,j); maxi=i; maxj=j;end end endfprintf('最⼤值为:%d 位置:o%d %d \n',max,maxi,maxj); 实验结果:2. 有⼀函数f(x,y)=x 2+sin xy+2y,写⼀程序,输⼊⾃变量的值,输出函数值。
Jm_5.m ⽂件代码: function f=Jm_5(x,y) f=x.^2+sin(x*y)+2*y;实验结果:3.⽤surf,mesh绘制曲⾯z=2x2+y2。
Jm5.m代码:x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=2*X.^2+Y.^2;subplot(1,2,1);surf(X,Y,Z);title('surf(x,y)');subplot(1,2,2);mesh(X,Y,Z);title('mesh(x,y)');实验结果:4.在同⼀平⾯的两个窗⼝中分别画出⼼形线和马鞍⾯。
数学建模实验项目
数学建模实验项⽬数学建模实验指导书数学建模实验项⽬⼀养⽼基⾦问题⼀、实验⽬的与意义:1、练习初等问题的建模过程;2、练习Matlab基本编程命令;⼆、实验要求:3、较能熟练应⽤Matlab基本命令和函数;4、注重问题分析与模型建⽴,了解建模⼩论⽂的写作过程;5、提⾼Matlab的编程应⽤技能。
三、实验学时数:2学时四、实验类别:综合性五、实验内容与步骤:(1.必做,2、3选⼀)1.某⼤学青年教师从31岁开始建⽴⾃⼰的养⽼基⾦,他把已有的积蓄10000元也⼀次性地存⼊,已知⽉利率为0.001(以复利计),每⽉存⼊700元,试问当他60岁退休时,他的退休基⾦有多少?⼜若,他退休后每⽉要从银⾏提取1000元,试问多少年后他的基⾦将⽤完?2.贷款助学问题。
3贷款购房问题。
⾃⼰调查设计具体情况数学建模实验项⽬⼆梯⼦问题⼀、实验⽬的与意义:1、进⼀步熟悉数学建模步骤;2、练习Matlab优化⼯具箱函数;3、进⼀步熟悉最优化模型的求解过程。
⼆、实验要求:1、较能熟练应⽤Matlab⼯具箱去求解常规的最优化模型;2、注重问题分析与模型建⽴,熟悉建模⼩论⽂的写作过程;3、提⾼Matlab的编程应⽤技能。
三、实验学时数:2学时四、实验类别:综合性五、实验内容与步骤:⼀幢楼房的后⾯是⼀个很⼤的花园。
在花园中紧靠着楼房建有⼀个温室,温室⾼10英尺,延伸进花园7英尺。
清洁⼯要打扫温室上⽅的楼房的窗户。
他只有借助于梯⼦,⼀头放在花园中,⼀头靠在楼房的墙上,攀援上去进⾏⼯作。
他只有⼀架20⽶长的梯⼦,你认为他能否成功?能满⾜要求的梯⼦的最⼩长度是多少?步骤:1.先进⾏问题分析,明确问题;2.建⽴模型,并运⽤Matlab函数求解;3.对结果进⾏分析说明;4.设计程序画出图形,对问题进⾏直观的分析和了解(主要⽤画线函数plot,line)5.写⼀篇建模⼩论⽂。
数学建模实验项⽬三确定肥猪的最佳销售时机⼀、实验⽬的与意义:1、认识微分法的建模过程;2、认识微分⽅程的数值解法。
Matlab数学建模实验报告
数学实验报告实验序号:实验一日期:实验序号:实验二日期:实验序号: 实验三 日期:班级 姓名 学号实验 名称架设电缆的总费用问题背景描述:一条河宽1km ,两岸各有一个城镇A 与B ,A 与B 的直线距离为4km ,今需铺设一条电缆连接A 于B ,已知地下电缆的铺设费用是2万元/km ,水下电缆的修建费用是4万元/km 。
实验目的:通过建立适当的模型,算出如何铺设电缆可以使总花费最少。
数学模型:如图中所示,A-C-D-B 为铺设的电缆路线,我们就讨论a=30度,AE (A 到河岸的距离)=0.5km ,则图中:DG=4-AC cos b -1/tan c ; BG=0.5km AC=AE/sin bCD=EF/sin c=1/sin c BD=BG D 22G则有总的花费为:W=2*(AC+BD )+4*CD ;我们所要做的就是求最优解。
实验所用软件及版本:Matlab 7.10.0实验序号: 实验四 日期:班级 姓名 学号实验 名称慢跑者与狗问题背景描述:一个慢跑者在平面上沿曲线25y x 22=+以恒定的速度v 从(5,0)起逆时钟方向跑步,一直狗从原点一恒定的速度w ,跑向慢跑者,在运动的过程中狗的运动方向始终指向慢跑者。
实验目的:用matlab 编程讨论不同的v 和w 是的追逐过程。
数学模型:人的坐标为(manx,many ),狗的坐标为(dogx,dogy ),则时间t 时刻的人的坐标可以表示为manx=R*cos(v*t/R); many=R*sin(v*t/R);sin θ=| (many-dogy)/sqrt((manx-dogx)^2+(many-dogy)^2)|;cos θ=| (manx-dogx)/sqrt((manx-dogx)^2+(many-dogy)^2)|;则可知在t+dt 时刻狗的坐标可以表示为:dogx=dogx(+/-)w* cos θ*dt; dogy=dogy(+/-)w* sin θ*dt; (如果manx-dogx>0则为正号,反之则为负号)实验所用软件及版本:Matlab 7.10.0实验序号:实验五日期:班级姓名学号两圆的相对滚动实验名称问题背景描述:有一个小圆在大圆内沿着大圆的圆周无滑动的滚动。
数学建模实验报告经典实例
《数学建模》实验报告计算过程如下, 结果如下:画图程序命令如下:函数图象如下:实验题目二: 编写利用顺序Guass消去法求方程组解的M-函数文件,并计算方程组的解解: M-函数文件如下:方程组的计算结果如下:实验题目三: 编写“商人们安全过河”的Matlab程序解: 程序如下:function foot=chouxiang%%%%%%%%%%%%%%%%%%%%%% 程序开始需要知道商人数, 仆人数, 船的最大容量n=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; % 决策向量存放在矩阵“d”中, jc为插入新元素的行标初始为1for i=0:nnnfor j=0:nnnif (i+j<=nnn)&(i+j>0) % 满足条件D={(u,v)|1<=u+v<=nnn,u,v=0,1,2}d(jc,1:3)=[i,j 1]; %生成一个决策向量后立刻将他扩充为三维(再末尾加“1”)d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量jc=jc+2; % 由于一气生成两个决策向量,jc指标需要往下移动两个单位endendj=0;end再验证:程序结果说明在改变商人和仆人数目, 其他条件不变的条件下。
可能无法得到结果。
程序结果说明在改变商人和仆人数目,其他条件不变的条件下。
可能无法得到结果。
数学建模Matlab实验程序
Matlab实验作业及答案作业1:建立函数M文件2.建立下面函数的M文件,并求f(x)值.(1)f(x)=log(x1+x22),x=(1,2)(2)f(x)=sin(x2)+exp(2x3),x=2(1)function f = fun1(x1,x2)f = log(x1 +x2^2);end(2)function f = fun2( x)f = sin(x^2) + exp(2*x^3);end3.试编写同时求sin(x),cos(x),exp(x),abs(x)的M函数文件.function f = fun3(x)f = [sin(x) cos(x) exp(x) abs(x)];end4.建立符号函数的M文件:当输入的变量为负数时,返回值-1;当输入的变量为正数时,返回值1;而输入0时,返回值0.function f = fun4(x)if x>0f = 1;else if x == 0f = 0;elsef = -1;endendend5.建立函数 的M 文件。
function f = fun5(x)if x>0f = exp(x-1);elsef = x^2;endend6.通过帮助系统查询roots,poly,polyval,poly2str 的用法,用这些命令解下面的问题:已知一多项式的零点为{-1,1,2,3},写出该多项式,并且计算多项式在点x=2.5处的值。
root = [-1 1 2 3];p = poly(root);x = 2.5;a = polyval(p,x);eig(a)计算多项式y=x 3-3x+2的零点P = [1 0 -3 2];a = company(p); eig(a)7.查询sum,length 的用法,建立一个求向量的平均值的M 文件a = [1 2 3 4];b = sum(a);⎪⎩⎪⎨⎧≤>=-0,0,21x x x e f xc = length(a);d = b/c;eig(d)8.查询input,disp 的用法,建立M 文件:输入x,y 的值将其互换后输出x = input('x=');y = input('y=');disp ([x,y]);t=x;x=y;y=t;disp ([x,y]);作业题2:MATLAB 矩阵的处理1. 创建矩阵A = [1 2 -1 3 5;1 -2 9 0 -6;-3 3 -4 7 1;9 8 0 7 6];disp(A);2.取A 的1,2行与2,3列的交叉元素作子矩阵A1.A([1,2],[2,3])3.取A 的1,3行,然后按行形成矩阵A2A2 = A([1,3],:);4.逆序提取A 的1,2,3行,形成列矩阵A3.A3 = [A(3,:) A(2,:) A(1,:)]’;(“’”为转置符号)5.取A2的绝对值大于3的元素构成向量A4.A4 = find(A>3);6.求出A 的最大值a 及其所处的位置. 12135129063347198076A -⎛⎫ ⎪-- ⎪= ⎪-- ⎪⎝⎭a = max(max(A));[row col v] = find(a);disp([row col v]);7、设用三种方法(克拉姆法则、矩阵的除法、逆矩阵)解方程组AX=bA = [10 7 8 7;7 5 6 5;8 6 10 9;7 5 9 10];b = [32;23;33;31];逆矩阵法:x = inv(A)*b;disp(x);矩阵的除法x =A\b;克拉姆法则for n=1:4B = A;B(:,n) = b;x(n) = det(B)/det(A);enddisp(x);作业题3:Matlab 语法控制结构的使用(1) 用起泡法对10个数由小到大排序.即将相邻两个数比较,将小的调到前头.a = [0 9 7 8 6 5 4 3 2 1];1078775658610975910A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭32233331b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭n = length(a);for i = 1:nfor j = 1:n-iif a(j)>a(j+1)t = a(j);a(j) = a(j+1);a(j+1) = t;endendenddisp(a)(2) 取任意数组,如[8 9 11 -9 0 2 -82 42 3 5]等的绝对值大于数3的元素构成向量(编程实现).a = [8 9 11 -9 0 2 -82 42 3 5];a = abs(a);b = find(a>3);a1 = a(b);disp(a1);(3)一球从h (比如100米)高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高?h = 100;for i = 1:10h = h/2;enddisp(h) (4)有一函数 写一程序,输入自变量的值,输出函数值.function fun34 = f(x,y)x = input('x=');y = input('y=');if x < 2f = x+1;elseif x >= 2 &&x <= 8f = 3*x;elseif x>8 && x<=20f = 4*x -5;elseif x>201,23,28(,)45,820cos()sin(),20x x x x f x y x x x x x +<⎧⎪≤≤⎪=⎨-<≤⎪⎪+>⎩f = cos(x)+sin(x);enddisp(f);end(5)从1到多少的自然数的和小于或等于1000,此时的和是多少?sum = 0;n = 1;while sum <= 1000sum = sum+n;n = n+1;enddisp(n - 1);disp(sum -n );(6) 已知 当m=100时,求y 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO软件入门与数学规划建模练习
学校:北京信息科技大学班级:信计1101 姓名:王雅卿学号:05
实验目的:1、掌握Lingo软件求解简单数学规划模型的一般编程方法;
2、掌握引入集合及其属性的方法,编程求解一些规模较大的数学规划模型。
实验内容:1、使用Lingo软件求解简单的线性规划模型、整数规划模型及非线性规划模型等;
2、建立各类实际问题的数学规划模型,并运用Lingo软件编程求解所建立的模
型,从而掌握通过建立数学规划模型解决一些实际问题的一般方法。
实验题目:
1、投资组合问题
美国某三种股票(A,B,C)12年(1943~1954)的投资收益率R i(i=1,2,3)(收益率=(本金+收益)/本金)如表5-7所示(表5-7中还列出各年度500种股票的指数供参考)。
假设你在1955年有一笔资金打算投资这三种股票,希望年收益率达到,试给出风险最小的投资方案。
表5-7 美国三种股票1943~1954的收益率
年份股票A股票B股票C
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
平均
解:设投资A,B,C三种股票的资金份额分别为。
程序:
(1)用Matlab计算协方差
R1=xlsread('',1,'B2:B13');
R2=xlsread('',1,'C2:C13');
R3=xlsread('',1,'D2:D13');
R=[R1 R2 R3];
mean(R1)
mean(R2)
mean(R3)
cov(R)
xlswrite('',cov(R),'sheet2')
(2)用Lingo求最优方案
sets:
gupiao/1..3/:x,avgR;
links(gupiao,gupiao):cov;
endsets
data:
avgR=@ole('','avg');
cov=@ole('','xie');
@ole('','jieguo')=x;
enddata
min=@sum(links(i,j):x(i)*x(j)*cov(i,j));
@for(gupiao(j):@sum(gupiao(i):x(i)*avgR(i))>=;
@for(gupiao(i):x(i)>=0);
@for(gupiao(i):x(i)<=1);
@for(gupiao(j):@sum(gupiao(i):x(i))=1);
结果:
(1)协方差
(2)资金份额
即:投资A,B,C三种股票的资金份额分别为,,,
2、设土地开发有两个目的,一是用于发展农业,二是用于发展城市。
有三个部门提出了各自的要求:(1)城市建设部门要求至少开发4000亩土地用于城市建设;(2)农业部门要求至少开发5000亩土地用于发展农业;(3)土地开发部门要求至少开发10000亩土地。
已知城市用地每亩开发费用是400元,农业用地每亩开发费用是300元。
问怎样计划,才能使开发费用花费最少。
解:设开发用于城市建设的土地为亩,用于发展农业的土地为亩。
最少花费。
程序:
min=400*x1+300*x2;
x1>=4000;
x2>=5000;
x1+x2>=10000;
结果:
即:开发用于城市建设的土地为4000亩,用于发展农业的土地为6000亩,最小费用为
3400000元。
3、(混合泳接力队的选拔问题)某班准备从5名游泳队员中选择4人组成接力队,参加学校的4x100m混合泳接力比赛。
5名队员4种泳姿的百平米均成绩如表,问应该如何选拔队员组成接力队
如果最近队员的丁的蛙泳成绩有较大退步,只有1′15″2;而队员戊经过艰苦训练自由泳成绩有所进步,达到57″5,组成接力队的方案是否应该调整
队员
甲乙丙丁戊
泳姿
蝶泳1′06″8 57″2 1′18″1′10″1′07″4
仰泳1′15″6 1′06″1′07″8 1′14″2 1′11″
蛙泳1′27″1′06″4 1′24″6 1′09″6 1′23″8
自由泳58″6 53″59″4 57″2 1′02″4 解:设x(i,j)为第i种泳姿,第j个人,x(i,j)=1为第i种泳姿选第j个人,x(i,j)=0为第i种泳姿不选第j个人。
从excel表格中读数据,并将结果写到excel表格中。
(1)程序:
model:
sets:
yongzi/a1..a4/;
duiyuan/b1..b5/;
links(yongzi,duiyuan):T,x;
endsets
data:
T=@ole('','tt');
@ole('','xx')=x;
enddata
min=@sum(links:T*x);
@for(yongzi(i):@sum(duiyuan(j):x(i,j))=1);
@for(duiyuan(j):@sum(yongzi(i):x(i,j))<=1);
end
结果:
即:接力队选乙,丙,丁,甲分别参加蝶泳,仰泳,蛙泳,自由泳。
(2)将丁的蛙泳成绩改为秒,戊的自由泳成绩改为秒。
结果:
即:接力队选乙,丙,丁,戊分别参加蝶泳,仰泳,蛙泳,自由泳。
4、(生产计划安排问题)某企业用A,B两种原油混合加工成甲,乙两种成品油销售数据见表5-12,表中百分比是成品油中原油A的最低含量。
产品
甲乙现有库存量最大采购量
原油
A>=50%>=60%5001650
B8001200
成品油甲和乙的销售价与加工费之差分别为5和(单位:千元/吨),原油A,B的采购费分别是采购量x(单位:吨)的分段函数f(x),g(x)(单位:千元),该企业的现有资金限额为7200(千元),生产成品油乙的最大能力为2000吨,假设成品油能全部销售出去,试在充分利用现有资金和现有库存条件下,合理安排采购和生产计划,使企业的收益最大。
解:设成品油甲中原油A和原油B的含量分别是、,成品油乙中原油A和原油B的含量分别是、,收益最大。
程序:
max=5*(x11+x21)+*(x12+x22)-f-g;
x11+x21<=500+x1;
x12+x22<=800+x2;
x11/(x11+x21)>=;
x12/(x12+x22)>=;
x12+x22<=2000;
x1<=1650;
x2<=1200;
f+g<=7200;
f=@if(x1#le#500,4*x1,@if(x1#le#1000,500+3*x1,1500+2*x1));
g=@if(x1#le#400,*x1,@if(x1#le#800,240+*x1,880+*x1));
结果:
即:使企业收益最大,采购和生产计划为成品油甲中原油A的含量约为吨,原油B的含量约为吨;成品油乙中原油A的含量约为吨,原油B的含量约为吨。
生产收益为13700千元。