1.2函数及其表示知识点及练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示

(一)知识梳理

1.映射的概念

设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).

2.函数的概念

(1)函数的定义:

设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A

(2)函数的定义域、值域

在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成

值域。 (3)函数的三要素: 定义域 、 值域 和 对应法则

3.函数的三种表示法:图象法、列表法、解析法

(1).图象法:就是用函数图象表示两个变量之间的关系;

(2).列表法:就是列出表格来表示两个变量的函数关系;

(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数

在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析

考点1:判断两函数是否为同一个函数

如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式

方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;

(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;

(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f

1.2函数及其表示练习题(2)

一、选择题

1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=

x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;

⑶x x f =)(,2)(x x g =

⑷()f x =

()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .

A. ⑴、⑵

B. ⑵、⑶

C. ⑷

D. ⑶、⑸

2. 函数()y f x =的图象与直线1x =的公共点数目是( )

A. 1

B. 0

C. 0或1

D. 1或2

3. 已知集合{}{}

421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )

A. 2,3

B. 3,4

C. 3,5

D. 2,5

4. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩

,若()3f x =,则x 的值是( )

A. 1

B. 1或32

C. 1,32

或 D.

5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )

A. 沿x 轴向右平移1个单位

B. 沿x 轴向右平移

12

个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)

10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13

二、填空题

1. 设函数.)().0(1),0(121)(a a f x x

x x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数4

22--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,

则这个二次函数的表达式是 .

4.

函数0

y =_____________________.

5. 函数1)(2-+=x x x f 的最小值是_________________.

三、解答题

1.

求函数()f x =

.

2. 求函数12++=

x x y 的值域.

3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又

2212y x x =+,求()y f m =的解析式及此函数的定义域.

4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.

参考答案(2)

一、选择题 1. C 2. C 3. D 4. D

∴2()3,12,f x x x x ===-<<而∴ x =

5. D 平移前的“1

122()2

x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122

x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.

二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=

-><-时,这是矛盾的; 当10,(),1a f a a a a

<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠

3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-

4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨

->⎪⎩ 5. 54- 22155()1()244

f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-

2. 解: ∵221

331(),244

x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-

224(1)2(1)

4102m m m m =--+=-+

∴2()4102,(03)f m m m m m =-+≤≥或.

4. 解:对称轴1x =,[]

1,3是()f x 的递增区间, max ()(3)5,335f x f a b ==-+=即

min ()(1)2,32,f x f a b ==--+=即∴3231,.1

44a b a b a b -=⎧==⎨--=-⎩得

相关文档
最新文档