氯离子对不锈钢腐蚀的机理

合集下载

氯离子腐蚀机理

氯离子腐蚀机理

1、Cl-对金属腐蚀的影响表示在两个方面:一是降低材质概况钝化膜构成的可能或加速钝化膜的破坏,从而促进局部腐蚀;另一方面使得H2S、CO2在水溶液中的溶解度降低,从而缓解材质的腐蚀.之杨若古兰创作Cl-具有离子半径小、穿透能力强,而且能够被金属概况较强吸附的特点.Cl-浓度越高,水溶液的导电性就越强,电解质的电阻就越低,Cl-就越容易到达金属概况,加快局部腐蚀的进程;酸性环境中Cl-的存在会在金属概况构成氯化物盐层,并替代具有呵护功能的FeCO3膜,从而导致高的点蚀率.腐蚀过程中,Clˉ不但在点蚀坑内富积,而且还会在未发生点蚀坑的区域处富积,这可能是点蚀坑构成的前期过程.它反映出基体铁与腐蚀产品膜的界面处的双电层结构容易优先吸附Clˉ,使得界面处Clˉ浓度升高.在部分区域,Clˉ会积聚成核,导致该区域阳极溶解加速.如许金属基体会被向下深挖腐蚀,构成点蚀坑阳极金属的溶解,会加速Clˉ透过腐蚀产品膜扩散到点蚀坑内,使点蚀坑内的Clˉ浓度进一步添加,这一过程是属于Clˉ的催化机制,当Clˉ浓度超出必定的临界值以后,阳极金属将不断处在活化形态而不会钝化.是以,在Clˉ的催化感化下,点蚀坑会不竭扩大、加深.尽管溶液中的Na+含量较高,但是对腐蚀产品膜能谱分析却未发现Na元素的存在,说明腐蚀产品膜对阳离子向金属方向的扩散具有必定的拟建造用;而阴离子则比较容易的穿过腐蚀产品膜到达基体与膜的界面.这说明腐蚀产品膜具有离子选择性,导致界面处阴离子浓度升高.2、氯离子对奥氏体不锈钢的腐蚀次要使点蚀.机理:氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合构成可溶性氯化物,结果在露出来的机体金属上腐蚀了一个小坑.这些小坑被成为点蚀核.这些氯化物容易水解,使小坑能溶液PH值降低,使溶液成酸性,溶解了一部分氧化膜,形成多余的金属离子,为了平很腐蚀坑内的电中性,内部的Cl-离子不竭向空内迁移,使空内金属又进一步水解.如此轮回,奥氏体不锈钢不竭的腐蚀,愈来愈快,而且向孔的深度方向发展,直至构成穿孔.3、Cl-对缝隙腐蚀具有催化感化.腐蚀开始时,铁在阳极失去电子.随着反应的不竭进行,铁不竭的失去电子,缝隙内Fe2+大量的聚积,缝隙外的氧不容易进入,迁移性强的Cl-即进入缝隙内与Fe2+构成高浓度、高导电的FeCl2,FeCl2水解发生H+,使缝隙内的pH值降低到3~4,从而加剧腐蚀.。

氯离子腐蚀不锈钢的原理

氯离子腐蚀不锈钢的原理

氯离子腐蚀不锈钢的原理氯离子腐蚀不锈钢的原理是指在含氯环境中,氯离子与不锈钢表面发生作用,导致不锈钢产生腐蚀现象。

不锈钢在大气环境中具有较好的耐腐蚀性能,主要是因为不锈钢表面形成了一层致密的氧化铬膜,称为钝化膜。

然而,在氯离子的存在下,钝化膜容易被破坏,导致不锈钢发生腐蚀。

1.氯离子的吸附和浸润:氯离子具有较强的亲水性,容易吸附在不锈钢表面并浸润到钝化膜下。

氯离子吸附在表面会导致表面电位升高,从而破坏了钝化膜的稳定性。

2.氯离子的电化学反应:在氯离子存在的条件下,钝化膜中的铬离子会与氯离子发生反应,生成可溶性的铬氯络合物,从而破坏了钝化膜的连续性。

这个过程被称为局部腐蚀,即氯离子会形成一个微小的腐蚀细胞,在细胞中,不锈钢表面处于阳极,而钝化膜破坏的部分则处于阴极,形成阳极和阴极之间的电流。

3.氯离子的传输:氯离子可以通过水分子或气态状态传输到不锈钢表面,特别是在高温高湿的环境中,氯离子的迁移速度会增加,导致氯离子浓度在钝化膜下积累,进一步加剧了腐蚀。

除了以上几个方面,氯离子腐蚀不锈钢还受到以下因素的影响:1.氯离子浓度:氯离子浓度越高,腐蚀速度越快。

当氯离子浓度低于一定的临界值时,腐蚀基本不发生。

但一旦超过临界值,腐蚀速率会显著增加。

2.温度和湿度:高温高湿的环境会加速氯离子的传输和吸附,进而加速不锈钢的腐蚀。

3.氧气含量:氧气对于钝化膜的稳定性至关重要,充足的氧气可以帮助钝化膜修复和再生。

因此,氯离子腐蚀不锈钢更为显著的情况通常发生在氧气缺乏的环境中,如密封系统。

总的来说,氯离子通过吸附、浸润、电化学反应等行为,破坏不锈钢表面的钝化膜,进而导致不锈钢发生腐蚀。

要防止氯离子腐蚀不锈钢,可以通过以下途径进行控制:1.减少氯离子的接触:避免在含氯环境中使用不锈钢材料,或者使用防腐涂料、防护层等措施将不锈钢与氯离子隔离。

2.增加氧气供应:通过增加通气量、增加氧气浓度等方式,提高不锈钢表面氧气的含量,增强钝化膜的稳定性。

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢的原理是由于氯离子具有强氧化性和侵蚀性。

在碱性或酸性环境中,氯离子能与不锈钢表面形成氯化物。

当氯离子存在于不锈钢表面时,会与金属表面的铁原子结合形成氯化铁,并释放出电子。

这个过程叫做氧化还原反应。

氯化铁会沉积到不锈钢表面,形成一层氯化铁膜,称为氯化物膜。

这层氯化物膜是不稳定的,容易形成微小的孔洞和裂纹。

这些孔洞和裂纹会导致环境中的水分和氧气进入不锈钢材料中,造成钢材表面的局部腐蚀和丧失抗腐蚀性能的能力。

氯化物膜的形成和破坏是一个动态平衡过程。

而当氯离子的浓度较高时,氯化物膜的形成速度会比破坏速度快,导致腐蚀发生。

此外,氯离子还可作为催化剂加速不锈钢表面的电化学反应,进一步促使腐蚀的发生。

这些电化学反应包括阳极溶解和阴极氧化反应,它们都会加速不锈钢表面的金属离子释放和金属腐蚀。

综上所述,氯离子腐蚀不锈钢的主要原理是氯化物膜的形成和破坏,以及氯离子在不锈钢表面的电化学反应。

这会导致不锈钢表面的腐蚀和丧失抗腐蚀性能的能力。

氯离子腐蚀机理及防护

氯离子腐蚀机理及防护

氯离子对不锈钢腐蚀的机理在化工生产中, 腐蚀在压力容器使用过程中普遍发生, 是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差, 不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr和Ni使不锈钢在氧化性介质中生成一层十分致密的氧化膜使不锈钢钝化, 降低了不锈钢在氧化性介质中的腐蚀速度, 使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论, 但大致可分为2 种观点。

成相膜理论的观点认为, 由于氯离子半径小, 穿透能力强, 故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物, 使氧化膜的结构发生变化, 金属产生腐蚀。

吸附理论则认为, 氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力, 它们优先被金属吸附,并从金属表面把氧排掉。

因为氧决定着金属的钝化状态, 氯离子和氧争夺金属表面上的吸附点, 甚至可以取代吸附中的钝化离子与金属形成氯化物, 氯化物与金属表面的吸附并不稳定, 形成了可溶性物质, 这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果表明, 氯离子对金属表面的活化作用只出现在一定的范围内, 存在着1 个特定的电位值, 在此电位下, 不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大, 金属的钝态越稳定。

因此, 可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

2 应力腐蚀失效及防护措施2. 1 应力腐蚀失效机理在压力容器的腐蚀失效中, 应力腐蚀失效所占的比例高达45 %左右。

因此, 研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。

所谓应力腐蚀, 就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。

应力腐蚀一般都是在特定条件下产生:①只有在拉应力的作用下。

氯离子的腐蚀机理与防护

氯离子的腐蚀机理与防护

共享知识分享快乐氯离子对不锈钢的腐蚀机理及防护氯离子对不锈钢腐蚀的机理在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr和Ni是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr和Ni使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2种观点:成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。

因为氧决定着金属的钝化状态氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1个特定的电位值,在此电位下,不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。

因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

一、应力腐蚀失效及防护措施1 应力腐蚀失效机理页眉内容共享知识分享快乐在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。

因此, 研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。

所谓应力腐蚀, 就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。

应力腐蚀一般都是在特定条件下产生:①只有在拉应力的作用下。

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理不锈钢作为一种耐腐蚀性能较好的金属材料,被广泛应用于化工、海洋工程、食品加工等领域。

然而,有时候不锈钢也会受到腐蚀的影响,其中氯离子腐蚀是其中较为常见的一种。

那么,氯离子是如何腐蚀不锈钢的呢?接下来我们将深入探讨氯离子腐蚀不锈钢的原理。

首先,我们需要了解不锈钢的腐蚀机理。

不锈钢之所以具有较好的耐腐蚀性能,是因为其表面形成了一层致密的氧化膜,这一氧化膜可以有效地阻隔外界介质对不锈钢的侵蚀。

然而,当氯离子存在时,情况就有所不同了。

氯离子可以破坏不锈钢表面的氧化膜,使得金属表面暴露在介质中,从而引发腐蚀反应。

其次,氯离子腐蚀不锈钢的原理主要是由于氯离子对不锈钢表面的影响。

当氯离子浓度较高时,它们会与不锈钢表面的铬元素发生化学反应,形成一种不溶于水的氯化铬沉淀物。

这些沉淀物会破坏不锈钢表面的致密氧化膜,导致表面的微小裂缝和孔洞,从而加速了腐蚀的进行。

此外,氯离子还可以与不锈钢中的铬元素形成氯化铬络合物,使得不锈钢表面的铬元素减少,从而降低了不锈钢的抗腐蚀性能。

特别是在高温、高压、高氯离子浓度的环境下,氯离子腐蚀对不锈钢的影响更加显著。

为了防止氯离子腐蚀对不锈钢材料的影响,我们可以采取一些措施。

首先是控制介质中氯离子的浓度,尽量减少氯离子对不锈钢的侵蚀。

其次是采用合金化的不锈钢材料,增加材料中抗腐蚀元素的含量,提高不锈钢的抗腐蚀性能。

另外,对于特定环境下的使用,可以考虑采用涂层保护或者电化学保护等方法,有效减少氯离子腐蚀对不锈钢的影响。

总之,氯离子腐蚀不锈钢的原理主要是通过破坏不锈钢表面的氧化膜,加速了金属表面的腐蚀反应。

了解氯离子腐蚀的原理,可以帮助我们更好地选择和使用不锈钢材料,延长其使用寿命,保证工程设备的安全运行。

希望本文对大家有所帮助,谢谢阅读!。

氯离子腐蚀机理

氯离子腐蚀机理

氯离子腐蚀机理集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)1、Cl-对金属腐蚀的影响表现在两个方面:一是降低材质表面钝化膜形成的可能或加速钝化膜的破坏,从而促进局部腐蚀;另一方面使得H2S、C O2在水溶液中的溶解度降低,从而缓解材质的腐蚀。

Cl-具有离子半径小、穿透能力强,并且能够被金属表面较强吸附的特点。

Cl-浓度越高,水溶液的导电性就越强,电解质的电阻就越低,Cl-就越容易到达金属表面,加快局部腐蚀的进程;酸性环境中Cl-的存在会在金属表面形成氯化物盐层,并替代具有保护性能的FeCO3膜,从而导致高的点蚀率。

腐蚀过程中,Clˉ不仅在点蚀坑内富积,而且还会在未产生点蚀坑的区域处富积,这可能是点蚀坑形成的前期过程。

它反映出基体铁与腐蚀产物膜的界面处的双电层结构容易优先吸附Clˉ,使得界面处Clˉ浓度升高。

在部分区域,Clˉ会积聚成核,导致该区域阳极溶解加速。

这样金属基体会被向下深挖腐蚀,形成点蚀坑阳极金属的溶解,会加速Clˉ透过腐蚀产物膜扩散到点蚀坑内,使点蚀坑内的Clˉ浓度进一步增加,这一过程是属于Clˉ的催化机制,当Clˉ浓度超过一定的临界值之后,阳极金属将一直处在活化状态而不会钝化。

因此,在Clˉ的催化作用下,点蚀坑会不断扩大、加深。

尽管溶液中的Na+含量较高,但是对腐蚀产物膜能谱分析却未发现Na元素的存在,说明腐蚀产物膜对阳离子向金属方向的扩散具有一定的拟制作用;而阴离子则比较容易的穿过腐蚀产物膜到达基体与膜的界面。

这说明腐蚀产物膜具有离子选择性,导致界面处阴离子浓度升高。

2、氯离子对奥氏体不锈钢的腐蚀主要使点蚀。

机理:氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合形成可溶性氯化物,结果在露出来的机体金属上腐蚀了一个小坑。

这些小坑被成为点蚀核。

这些氯化物容易水解,使小坑能溶液PH值下降,使溶液成酸性,溶解了一部分氧化膜,造成多余的金属离子,为了平很腐蚀坑内的电中性,外部的Cl-离子不断向空内迁移,使空内金属又进一步水解。

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998氯离子对不锈钢腐蚀的机理在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。

成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。

因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。

因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

3. 2 防止孔蚀的措施(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。

耐孔蚀不锈钢基本上可分为3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。

设计时应优先选用耐孔蚀材料。

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀

氯离子对不锈钢有多种腐蚀1 对钝化膜的破坏目前有几种理论,比较权威:1>成相膜理论:Cl-半径小,穿透能力强,容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性的化合物,使氧化膜的结构发生变化。

2>吸附理论:Cl-有很强的可被金属吸附的能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧离子争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速2 孔蚀(点蚀)孔蚀失效机理在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀) 。

点蚀一般在静止的介质中容易发生。

具有自钝化特性的金属在含有氯离子的介质中,经常发生孔蚀。

蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。

含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm~30μm 小蚀坑,这些小蚀坑便是孔蚀核。

在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。

在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。

氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。

蚀孔内的金属表面处于活化状态,电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。

孔内主要发生阳极溶解:Fe →Fe2 + + 2e ,Cr →Cr3 + + 3e ,Ni →Ni2 + + 2e 。

介质呈中性或弱碱性时,孔外的主要反应为:O2 + H2O + 2e →2OH- 。

氯离子对不锈钢的腐蚀

氯离子对不锈钢的腐蚀

氯离子对不锈钢有多种腐蚀1对钝化膜破坏目前有儿种理论,比较权威:1>成相膜理论:C1-半径小,穿透能力强,容易穿透氧化膜内极小孔隙,到达金属表面,并及金属相互作用形成了可溶性化合物,使氧化膜结构发生变化。

2〉吸附理论:C1-有很强可被金属吸附能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧离子争夺金属表面上吸附点,甚至可以取代吸附中钝化离子及金属形成氯化物,氯化物及金属表面吸附并不稳定,形成了可溶性物质,这样导致了腐蚀加速2孔蚀(点蚀)孔蚀失效机理在压力容器表面局部地区,出现向深处腐蚀小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。

点蚀一般在静止介质中容易发生。

具有自钝化特性金属在含有氯离子介质中,经常发生孔蚀。

蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖动力,即向深处自动加速。

含有氯离子水溶液中,不锈钢表面氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20 U m〜30 U m小蚀坑,这些小蚀坑便是孔蚀核。

在外加阳极极化条件下,只要介质中含有一定量氯离子,便可能使蚀核发展成蚀孔。

在自然条件下腐蚀,含氯离子介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。

氧化剂能促进阳极极化过程,使金属腐蚀电位上升至孔蚀临界电位以上。

蚀孔内金属表面处于活化状态,电位较负,蚀孔外金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态------- 钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。

孔内主要发生阳极溶解:Fe fFe2 + + 2e ,Cr -*Cr3 + + 3e , Ni fNi2 + + 2e o 介质呈中性或弱碱性时,孔外主要反应为:02 + H20 + 2e -20H-。

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr 和N i 是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。

成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。

因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。

因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

3. 2 防止孔蚀的措施(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。

耐孔蚀不锈钢基本上可分为 3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。

设计时应优先选用耐孔蚀材料。

(2)降低氯离子在介质中的含量,操作时严防跑、冒、滴、漏等现象的发生。

(3)在工艺条件许可的情况下,可加入缓蚀剂。

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢是因为氯离子在不锈钢表面形成腐蚀产物,这种腐蚀作用是由氯离子所引起的。

不锈钢是一种耐腐蚀性较强的金属,但其不能完全抵御氯离子的腐蚀作用。

当不锈钢接触氯离子时,氯离子会与表面上的金属离子发生反应,形成一层氯化铁膜,从而阻止氯离子的进一步侵蚀,因此形成了氯离子腐蚀不锈钢的原理。

首先,氯离子和不锈钢表面离子发生反应,导致不锈钢表面形成氯化物膜。

这些氯化物膜通常具有良好的附着性和腐蚀阻抗能力,可以有效地防止氯离子的侵入和腐蚀作用。

其次,在不锈钢表面形成的氯化物膜,可以通过离子交换方式来增强不锈钢的耐腐蚀性。

当氯离子在表面上不断积累和扩散时,它们对不锈钢的腐蚀作用很小,甚至可以被完全阻止。

最后,不锈钢表面的氯化物膜也能减少氧化物的产生,阻止空气中氧化剂对不锈钢的腐蚀。

当氧化剂被阻抗时,氯离子便可以有效地阻止表面腐蚀,从而保证不锈钢的耐腐蚀性。

综上所述,氯离子腐蚀不锈钢的原理在于氯离子在不锈钢表面形成的氯化物膜可以增强不锈钢的耐腐蚀性,减少氧化剂的产生,阻止空气中的氧化剂对不锈钢的腐蚀,从而保证不锈钢具有良好的耐腐蚀性。

因此,在氯离子环境中使用不锈钢时,应注意正确使用,以保证不锈钢的耐腐蚀性。

氯离子对不锈钢腐蚀原理知识讲解

氯离子对不锈钢腐蚀原理知识讲解

氯离子对不锈钢腐蚀原理氯离子对不锈钢有多种腐蚀1.对钝化膜的破坏目前有几种理论,比较权威:①成相膜理论:Cl-半径小,穿透能力强,容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性的化合物,使氧化膜的结构发生变化。

②吸附理论:Cl-有很强的可被金属吸附的能力,优先被金属吸附,并从金属表面把氧排掉,氯离子和氧子争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

2.孔蚀(点蚀)孔蚀失效机理在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。

点蚀一般在静止的介质中容易发生。

具有自钝化特性的金属在含有氯离子的介质中, 经常发生孔蚀。

蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。

含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μm ~30μm小蚀坑,这些小蚀坑便是孔蚀核。

在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。

在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。

氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。

蚀孔内的金属表面处于活化状态电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。

孔内主要发生阳极溶解: Fe →Fe2+ + 2e , Cr →Cr3 + + 3e , Ni →Ni2 + + 2e。

介质呈中性或弱碱性时,孔外的主要反应为: O2 + H2O + 2e →2OH-。

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理

氯离子腐蚀不锈钢原理
氯离子腐蚀不锈钢是由于氯离子具有强氧化性和强电化学活性。

不锈钢中的铬元素形成一层致密的铬氧化物膜(铬酸盐)作为钝化层,防止钢材被进一步氧化。

然而,氯离子可以使钢材表面的钝化层破坏,导致不锈钢变得容易腐蚀。

氯离子可以通过以下方式破坏钝化层:
1. 氯离子与钢材表面的钢离子结合形成氯化物,使钢离子离开钝化层,导致钝化层破坏。

2. 氯离子与钢离子结合形成溶解性氯化物,溶解度远高于钝化层中的铬氧化物,导致氯化物进一步侵蚀钝化层。

3. 氯离子与钢材中的钛、铌等金属元素反应,形成溶解性氯化物,使钢材表面失去保护。

一旦钝化层被破坏,不锈钢表面容易形成局部腐蚀,如点蚀、晶间腐蚀等。

氯离子也可以与水形成氯离子离子对,使腐蚀反应得以继续进行。

因此,在含有氯离子的环境中,不锈钢容易受到腐蚀破坏。

为了防止氯离子腐蚀不锈钢,可以采取以下措施:
1. 避免不锈钢与含有氯离子的介质接触,如避免海水、含氯洗涤剂等的使用。

2. 选择高耐蚀性的不锈钢材料,添加更多的合金元素来提高不锈钢的耐蚀性能。

3. 进行防腐处理,如电镀、涂层等,增加钢材表面的保护层。

4. 定期清洁和维护不锈钢,避免积累氯化物和其他腐蚀物质。

综上所述,氯离子腐蚀不锈钢的原理是由于氯离子破坏钢材表
面的钝化层,导致不锈钢容易受到腐蚀破坏。

为了防止氯离子腐蚀,可以采取适当的措施来保护不锈钢材料。

氯离子对奥氏体不锈钢的腐蚀机理

氯离子对奥氏体不锈钢的腐蚀机理

氯离子对奥氏体不锈钢的腐蚀机理?氯离子对奥氏体不锈钢的腐蚀主要使点蚀。

机理:氯离子容易吸附在钝化膜上,把氧原子挤掉,然后和钝化膜中的阳离子结合形成可溶性路氯化物,结果在露出来的机体金属上腐蚀了一个小坑。

这些小坑被成为点蚀核。

这些氯化物容易水解,使小坑能溶液PH值下降,使溶液成酸性,溶解了一部分氧化膜,造成多余的金属离子,为了平很腐蚀坑内的电中性,外部的Cl-离子不断向空内迁移,使空内金属又进一步水解。

如此循环,奥氏体不锈钢不断的腐蚀,越来越快,并且向孔的深度方向发展,直至形成穿孔。

由于Cl离子是水中经常含有的物质,又是引起若干合金局部腐蚀的所谓“特性离子”(破钝剂),它进入缝隙或蚀孔内还会与H+生成盐酸,使腐蚀加速进行。

氯离子被认为是304不锈钢发生局部腐蚀的主要原因之一,由于氯离子半径小,穿透钝化膜的能力强,其电负性又很大,氯离子的存在加速了304不锈钢的腐蚀。

另外,应力的存在也加速了氯离子对304不锈钢的腐蚀,降低了304不锈钢抗氯离子应力腐蚀的临界浓度。

在氯离子存在的情况下,多发生的是孔蚀也叫点蚀,属于电化学腐蚀。

点腐蚀多发生在上表面生成钝化膜的金属材料上或表面有阴极性镀层的金属上,当这些膜上某点发生破坏,破坏区下的金属基体与膜未破坏区形成活化—钝化腐蚀电池,钝化表面为阴极,而且面积比活化区大很多,腐蚀就向深处发展而形成小孔。

点腐蚀发生于有特殊离子的介质中,例如不锈钢对含有卤素离子的溶液特别敏感,其作用顺序为Cl—>Br>1—。

这些阴离子在合金表面不均匀吸附导致膜的不均匀破坏。

氯离子具有很强的穿透本领,容易穿透金属氧化层进入金属内部,破坏金属的钝态。

同时,氯离子具有很小的水合能,容易被吸附在金属表面,取代保护金属的氧化层中的氧,使金属受到破坏。

点腐蚀发生在某一临界电位以上,该电位称为点蚀电位(或击破电位),用Eb表示。

如把极化曲线回扫,又达到钝态电流所对应的电位Erb,称为再钝化电位(或叫保护电位)。

双相不锈钢 氯离子

双相不锈钢 氯离子

氯离子对双相不锈钢的腐蚀
氯离子对双相不锈钢的腐蚀主要体现在以下几个方面:
首先,氯离子在不锈钢的氧化膜的穿透力强,能穿透不锈钢的氧化膜达到金属表面,和金属发生一系列的化学反应,产生一些可溶性的物质,这些物质可以改变不锈钢的氧化膜的结构,使其失去阻止金属氧化的性能,从而加速不锈钢的腐蚀。

其次,氯离子具有超强的金属吸附能力,能优先被金属吸附,将金属表面的氧元素给排除掉,这个过程中会破坏不锈钢的钝化状态,加速不锈钢腐蚀。

另外,特定的电位条件下,氯离子会使不锈钢的钝化表面出现活化现象。

只有存在一个特定的电位值,给予其相应的电位条件,才能够使不锈钢的钝化表面出现活化现象。

而这个特定的电位指的是不锈钢氧化膜的击穿电位,与不锈钢的耐腐蚀性有着直接的联系。

总的来说,氯离子对双相不锈钢的腐蚀影响很大,因此在一些需要避免氯离子腐蚀的环境中,应尽可能采取防护措施,比如使用更耐腐蚀的不锈钢材料或涂层等。

氯离子腐蚀不锈钢的原理

氯离子腐蚀不锈钢的原理

氯离子腐蚀不锈钢的原理
氯离子具有离子半径小、穿透能力强,并且能够被金属表面较强吸附的特点。

氯离子浓度越高,水溶液的导电性就越强,电解质的电阻就越低,氯离子就越容易到达金属表面,加快局部腐蚀的进程;酸性环境中氯离子的存在会在金属表面形成氯化物盐层,并替代具有保护性能的FeCO3膜,从而导致高的点蚀率。

腐蚀过程中,氯离子
不仅在点蚀坑内富积,而
且还会在未产生点蚀坑的
区域处富积,这可能是点
蚀坑形成的前期过程。


反映出基体铁与腐蚀产物
膜的界面处的双电层结构
容易优先吸附氯离子,使
得界面处氯离子浓度升
高。

在部分区域,氯离子会积聚成核,导致该区域阳极溶解加速。

这样金属基体会被向下深挖腐蚀,形成点蚀坑阳极金属的溶解,会加速氯离子透过腐蚀产物膜扩散到点蚀坑内,使点蚀坑内的氯离子浓度进一步增加,这一过程是属于氯离子的催化机制,当氯离子浓度超过一定的临界值之后,阳极金属将一直处在活化状态而不会钝化。

因此,在氯离子的催化作用下,点蚀坑会不断扩大、加深。

尽管溶液中的Na含量较高,但是对腐蚀产物膜能谱分析却未发现Na元素的存在,说明腐蚀产物膜对阳离子向金属方向的扩散具有一定的拟制作用;而阴离子则比较容易的穿过腐蚀产物膜到达基体与膜的界面。

这说明腐蚀产物膜具有离子选择性,导致界面处阴离子浓度升高。

如此循环,不锈钢不断的腐蚀,越来越快,并且向孔的深度方向发展,直至形成穿孔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氯离子对不锈钢腐蚀的机理
在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。

普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。

Cr 和N i 是不锈钢获得耐腐蚀性能最主要的合金元素。

Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。

氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。

虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2 种观点。

成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。

吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。

因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。

电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。

这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。

因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。

3. 2 防止孔蚀的措施
(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。

耐孔蚀不锈钢基本上可分为 3 类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。

设计时应优先选用耐孔蚀材料。

(2)降低氯离子在介质中的含量,操作时严防跑、冒、滴、漏等现象的发生。

(3)在工艺条件许可的情况下,可加入缓蚀剂。

对缓蚀剂的要求是,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。

例如,在10 %的FeCl3 溶液中加入3 %的NaNO2 ,可长期防止1Cr18Ni9Ti 钢的孔蚀。

(4)采用外加阴极电流保护,抑制孔蚀。

氯离子对不锈钢制压力容器的腐蚀,对压力容器的安全性有很大的影响。

即使是合理的设计、精确的制造避免或减少了容器本身的缺陷,但是,在长期使用中,由于各种错综复杂因素的联合作用,容器也会受到一定的腐蚀。

虽然目前对防止氯离子对不锈钢腐蚀的方法还不十分完善,但掌握一些最基本的防护措施,对保证生产的正常进行,还是十分必要的。

除此之外,还应严格按照操作规程操作,加强设备管理,做好容器的定期检验,以保证容器在合理的寿命期限内安全运行。

(1).氯离子对不锈钢设备耐蚀性的影响工作介质中氯离子的含量和工作温度对不锈钢应力腐蚀的影响很大。

例如天津某厂水加热器腐蚀严重,采用了全不锈钢材质后,使用几个月就出现了漏液现象。

经过认真分析,发现热水中含有氯离子和氧。

不锈钢在一定温度下不能耐氯离子腐蚀,特别是介质中有氧存在的条件下,氧的存在能加速腐蚀。

在实际生产中还发现,氯离子在一定浓度和温度时,不锈钢的耐蚀性还不如碳钢;但在氯离子合量很少或含量高、温度不高的条件下,还是远比碳钢好。

在这一点上,温度对耐蚀性的影响比氯离子浓度的影响更大。

所以在选材时,除考虑氯离子的浓度外,特别要注意温度的影响。

提高奥氏体合金中镍的含量,是防止氯离子引起的应力开裂的一种有效方法。

含镍42%以上的合金完全能耐氯离子引起的腐蚀开裂,如825合金、G合金、625合金。

而含镍8%~12%的合金是最容易发生应力开裂的
201的含Ni3.5-5.5,202的含Ni4.0-6.0,301的含Ni6.0-8.0,302的含Ni8.0-10.0,302HQ/XM7的含Ni8.5-10.5,303的含Ni8.0-10.0,303Cu,304,304H,304HC,304HCM,的含Ni8.0-10.0,
304L的含Ni9.0-1.3,304M的含Ni8.9-10.0,304N1的含Ni7.0-10.5,305的含Ni10.5-13.0,305J1的含Ni11.0-13.5,309S 的含Ni12.0-15.0,310S的含Ni19.0-22.0,314的含Ni19.0-22.0,316的含Ni10.0-14.0,316Cu的含Ni10.0-14.0,316L的含Ni12.0-15.0,321的含Ni9.0-13.0,410,416,420,410L,430,430F,这些不含Ni,631(J1)的含Ni6.5-8.5
SAF 2507
Sandvik SAF 2507 is high-alloy super dupiex stinless steel for service under extremely corrosive conditions.
It is developed mainly for chloride containing environments like seawater and therefore, it contains high amounts of chromium(Cr), molybdenum(Mo)and nitrogen(N).
SAF 2205
Sandvik SAF 2205 is a medium-alloy duplex stainless steel with high corrosion resistance.
This steel is the most widely used of the three. Continual development work for many years has lead to increased nitrogen(N)and molybdenum(Mo)contents, thus further improving the weldability and corrosion resestance.
SAF 2304
Sandvik SAF 2304 is a low-alloy duplex stainless steel. It contains no molybdunum and has lower nickel content than the other two. It is developed as a hihg-strength and low-cost alternative to the standard austenitic grades 304L and 316L.
CHEMICAL COMPOSITION (WEIGHT-%)
Grade Cr Ni Mo N C Max Si Max Mn Max P Max S Max
SAF 250725740.30.0300.8 1.20.0350.015
SAF 2205225 3.20.180.030 1.0 2.00.0300.015
SAF 230423 4.5-0.10.030 1.0 2.00.0350.015
TYPE OF STEEL
SANDVIK UNS EN*W-Nr DIN AFNOR SS
SAF 2507S32750 1.4410-X2CrNiMoN25 7 4-2328
SAF 2205S31803/S32205 1.4462 1.4462X2CrNiMON22 5 3 Z2CND 22-05-032377
SAF 2304S32304 1.4362 1.4362X2CrNiM23 4Z2CN 23-04AZ2327
★Valid for sheet / plate, strip, semi-finished products, bars, rodsand sections for general purposes (not for pressure purposes) PRODUCT STANDARDS
Grade seamless and welded
tube and pipe
Flanges Fittings
plate, sheet and
strip
Bar forgins
SAF 2507ASTM A789 /A790
ASTM
A182
ASTM A182
ASTM A240 / EN
10088-2
ASTM A479 / EN
10088-3
ASTM
A182
SAF 2205ASTM A 789 / A790
/NF A49-217
ASTM
A182
ASTM A182
/A815
ASTM A240 / EN
10088-2
ASTM A276 / A479/
EN10088-3
ASTM
A182
SAF
2304
ASTM A789 / A790--EN10088-2EN 10088-3-
Minimun values for walll thicknesses <20 mm
SANDVIK Grade
Proof
strength
R
MPa
min
Tensile
strength
Rm
MPa
Elongation
A
%
min
Hardness
Vickers
average
SAF 2507550800~100025290 SAF 2205450680~88025260 SAF 2304400600~82025230。

相关文档
最新文档