1电磁场与电磁波-第一章
电磁场与电磁波教案
电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。
电动力学电磁场与电磁波课件第1章矢量分析
矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az
《电磁场与电磁波》第一章 矢量分析
ey Ay By
ez Az Bz
显然,矢量的矢积不满足交换律。 两个矢量的矢积仍是矢量。
矢积的几何意义 设 则
A A ex
B Bxex By ey
z
A B y B
A B ez A B sin
A
可见,矢积A×B的方向与矢量A及 矢量B构成的平面垂直,由A旋转到B成 右手螺旋关系;大小为 A B sin 。
S
E dS
0
可见,当闭合面中存在正电荷时,通量为正。当闭合面中存在负电 荷时,通量为负。在电荷不存在的无源区中,穿过任一闭合面的通 量为零。
㊀
㊉
二、散度(divergence)
通量仅能表示闭合面中源的总量,不能显示源的分布特性。为 此需要研究矢量场的散度。
如果包围点P的闭合面S所围区域V以任意方式缩小为点P 时, 矢量A通过 该闭合面的通量与该闭合面包围的体积之比的极限称为矢量场A在该点的散度, 以divA表示,即
结合律: ( A B) C A ( B C )
标量乘矢量:
A Ax ex Ay e y Az ez
§1-3 矢量的标积和矢积
一、矢量的标积
A Axex Ay e y Az ez
矢量A与矢量B的标积定义为:
B Bxex By ey Bz ez
则: A A ea ex A cos ey A cos ez A cos 标积的几何意义
y B
设 其中
A A ex
B Bxex By ey
Bx B cos By B cos( ) B sin 2
A
x
所以
A B A B cos
精品课件-电磁场与电磁波-第1章
第1章 矢量分析基础
1.1 矢量分析 1.2 场论 1.3 标量场的方向导数和梯度 1.4 矢量场的通量及散度 1.5 矢量场的环量和旋度 1.6 亥姆霍兹定理 1.7 圆柱坐标系和球坐标系
第1章 矢量分析基础 1.1 矢量分析 矢量分析讨论矢性函数的求导、积分等内容,它是矢量代 数的继续,也是场论的基础。在物理学和工程实际中,许多物 理量本身就是矢量,如电场强度、磁场强度、流体的流动速度、 物质的质量扩散速度及引力等。采用矢量分析研究这些量是很 方便的。有些物理量本身是标量,但是描述它们的空间变化特 性用矢量较为方便。如物体的引力势,描述它的空间变化就需 要用引力。再比如,空间的电位分布,描述其变化采用电场强 度较为方便。
记为
,u 即
l M0
u lim u(M ) u(M0 )
l M0 M M0
M0M
(1-7)
第1章 矢量分析基础 图1-6 梯度和方向导数
第1章 矢量分析基础
2. 方向导数的计算公式
设有向线段l的单位矢量为l°=l/l,这个单位矢量的方
向余弦为(cosα, cosβ, cosγ),则标量场在某点的方向导
第1章 矢量分析基础
例1-1 若两个点电荷产生的电位 u(x, y, z) kq kAq r r1
为 r x2 y2 z2 r1 ,其(x a)2 y2 z2
中
,
,A、q和k是常数。求
电位等于零的等位面方程。
解 令u=0,则有1/r=A/r1,即Ar=r1, 左右同时平方, 得
(xA2(x2a+y2+)z22)=(yx2+a)z22+y2+z2A2a 2
若问题的本身就是两个变量的函数,这种情形叫做平面标 量场。此时,标量场一般可以写为u(x,y)。标量场具有相同 数值的点,就组成标量场的等值线,等值线方程为
矢量分析【电磁场与波+电子科技大学】
面元矢量与此矢量相合时,极限值为最大值,也就是
该矢量的模。这个矢量称为 的旋度(curl),记为
或
,故有
其中 是 在面元矢量 (用 表示其方向)上的投影。
第47页
电磁场与电磁波 第一章__矢量分析
旋度:若在矢量场 中的一点M 处存在矢量 , 的方向
是 在该点环流面密度最大的方向,它的模就是这个最大
的环流面密度。矢量 称为矢量场 在点M 的旋度,记
为
或
。
说明:
① 在流体力学中,旋度表示了旋转的强弱即大小;在电磁场中,
不存在旋转强弱的意义;
② 旋度与环流中C 的形状、取向无关,只与场在M 点的量 本身有关;
③ 旋度场: 与矢量场 中的点一一对应得到的新的矢量场
第48页
电磁场与电磁波 第一章__矢量分析
第23页
电磁场与电磁波 第一章__矢量分析 1.3.2/3 方向导数和梯度 方向导数意义:表示场沿某方向的空间变化率
梯度的意义:描述标量场在某点的最大变化率及其 变化最大的方向
第24页
电磁场与电磁波 第一章__矢量分析
定义算符:
←哈密顿算符
数量场u 的梯度是矢量(是空间坐标点的函数) 梯度的大小为该点标量函数u 的最大变化率,即最大方向导数 梯度的方向为该点最大方向导数的方向 梯度场:数量场u 中每点都有一个梯度而形成的矢量场
第25页
电磁场与电磁波 第一章__矢量分析 直角坐标梯度: 圆柱坐标梯度: 球 坐 标 梯度:
第26页
电磁场与电磁波 第一章__矢量分析
梯度运算公式:
k为常数
第27页
电磁场与电磁波 第一章__矢量分析
{例} 考虑一个二维标量场 求此标量场的等值面,求u 的梯度 任取一闭合的积分回路,证明
电磁场与电磁波_课后答案(冯恩信_著)
第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=求:(a) A ; (b); (c); (d); (e)(f)解:(a) ; (b) 14132222222=++=++=z y x A A A A )ˆ2ˆˆ(61ˆz y x BB b -+==( c) ; (d) 7=⋅B A z y xC B ˆ4ˆ7ˆ---=⨯(e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯(f)19)(-=⋅⨯C B A1.2;求:(a) A ; (b) ; (c) ; (d) ; (e) BA+解:(a) ;(b) ;(c) 25π+=A )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ43-=⋅πB A (d)z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ(e)z B A ˆˆ)3(ˆ-++=+ϕπρ1.3; 求:(a) A ; (b); (c); (d); (e)解:(a) ; (b) ; (c) ;254π+=A )ˆˆ(11ˆ2θππ-+=rb22π-=⋅B A(d) ; (e) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ϕπˆ2ˆ3-=+rB A 1.4 ;当时,求。
解:当时,=0, 由此得 5-=α1.5将直角坐标系中的矢量场分别用圆柱和圆球坐标系中的坐标分量表示。
解:(1)圆柱坐标系由(1.2-7)式,;ϕϕϕρsin ˆcos ˆˆ1-==xF ϕϕϕρcos ˆsin ˆˆ2+==y F(2)圆球坐标系由(1.2-14)式, ϕϕϕθθϕθsin ˆcos cos ˆcos sin ˆˆ1-+==r xFϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆ2++==r yF1.6将圆柱坐标系中的矢量场用直角坐标系中的坐标分量表示。
解:由(1.2-9)式,)ˆˆ(2ˆsin 2ˆcos 2ˆ2221y y xx yx y x F ++=+==ϕϕρ)ˆˆ(3ˆcos 3ˆsin 3ˆ3222y x xy yx y x F +-+=+-==ϕϕϕ1.7将圆球坐标系中的矢量场用直角坐标系中的坐标分量表示。
电磁场与电磁波矢量分析亥姆霍兹定理
电磁场与电磁波
第一章 矢量分析
§1 .2 通量与散度, 散度定理
一、通量
面元:
ˆ ds ds n
ˆ 是面元的法线方向单位矢量 其中: n ˆ 的取向问题: n
对开曲面上的面元, 设这个开曲面是由封闭曲线l所围成的, 则当选定绕行l的方向后, 沿绕行方向按右手螺旋的姆指方 ˆ 的方向 向就是n ˆ 取为封闭面的外法线方向。 对封闭曲面上的面元, n
ˆ (gradient)为 grad n n
grad lˆ l
在直角坐标系中梯度的计算公式
ˆ grad x
ˆ ˆ y z x y z
电磁场与电磁波
第一章 矢量分析
例1 .6
在点电荷q的静电场中, P(x, y, z)点的电位为
注意:x ˆx ˆ
ˆ y ˆz ˆ z ˆ0 y ˆ y ˆz ˆz ˆ, z ˆy ˆ ˆ, y ˆx ˆ x x
直角坐标系中的计算公式:
ˆ x yA ˆ y zA ˆ x yB ˆ y zB ˆ z ) ( xB ˆ z) A B ( xA ˆ ( Ay Bz Az By ) y ˆ ( Az Bx Ax Bz ) z ˆ( Ax By Ay Bx ) x
散度计算公式: divA A
Ax Ay Az ˆ y ˆ z ˆAx y ˆAy z ˆ ˆAz ) A (x x y z x y z x
电磁场与电磁波
第一章 矢量分析
三、散度定理
n2
q ˆds e D ds r r 3 s 4r s q q 2 ds 4 r q 2 s 2 4r 4r
电磁场与电磁波课后答案第1章
第一章习题解答给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。
解(1)(2)(3)-11(4)由,得(5)在上的分量(6)(7)由于所以(8)三角形的三个顶点为、和。
(1)判断是否为一直角三角形;(2)求三角形的面积。
解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。
(2)三角形的面积求点到点的距离矢量及的方向。
解,,则且与、、轴的夹角分别为给定两矢量和,求它们之间的夹角和在上的分量。
解与之间的夹角为在上的分量为给定两矢量和,求在上的分量。
解所以在上的分量为证明:如果和,则;解由,则有,即由于,于是得到故如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设为一已知矢量,而,和已知,试求。
解由,有故得在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解(1)在直角坐标系中、、故该点的直角坐标为。
(2)在球坐标系中、、故该点的球坐标为用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。
解(1)在直角坐标中点处,,故(2)在直角坐标中点处,,所以故与构成的夹角为球坐标中两个点和定出两个位置矢量和。
证明和间夹角的余弦为解由得到一球面的半径为,球心在原点上,计算:的值。
解在由、和围成的圆柱形区域,对矢量验证散度定理。
解在圆柱坐标系中所以又故有求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。
解(1)(2)对中心在原点的一个单位立方体的积分为(3)对此立方体表面的积分故有计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。
解又在球坐标系中,,所以求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。
再求对此回路所包围的曲面积分,验证斯托克斯定理。
电磁场与电磁波电子教案
电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电荷和电场介绍电荷的性质和分类解释电场的概念和电场线电场强度的定义和计算电场的叠加原理1.2 磁场和磁力介绍磁铁和磁性的概念解释磁场的概念和磁感线磁感应强度的定义和计算磁场的叠加原理1.3 电磁感应介绍法拉第电磁感应定律解释感应电动势和感应电流的产生电磁感应的实验现象和应用第二章:电磁波的基本性质2.1 电磁波的产生和传播介绍麦克斯韦方程组和电磁波的理论基础解释电磁波的产生和传播过程电磁波的波动方程和波长、频率、速度的关系2.2 电磁波的能量和动量介绍电磁波的能量密度和能量传递解释电磁波的动量和动量传递电磁波的辐射压和辐射阻力的概念2.3 电磁波的偏振和反射、折射介绍电磁波的偏振现象和偏振光的性质解释电磁波在介质中的反射和折射现象反射定律和折射定律的原理及应用第三章:电磁波的传播和辐射3.1 电磁波在自由空间中的传播介绍自由空间中电磁波的传播特性解释电磁波的辐射和天线原理电磁波的辐射强度和辐射功率的概念3.2 电磁波在介质中的传播介绍电磁波在介质中的传播规律解释介质的折射率和介电常数的概念电磁波在介质中的衰减和色散现象3.3 电磁波的辐射和天线原理介绍天线的分类和基本原理解释天线的辐射特性和发展电磁波的辐射模式和天线的设计方法第四章:电磁波的应用4.1 电磁波在通信技术中的应用介绍电磁波在无线通信中的应用解释无线电波的传播和传播损耗电磁波在移动通信和卫星通信中的应用4.2 电磁波在雷达技术中的应用介绍雷达技术的基本原理和组成解释雷达方程和雷达的探测距离电磁波在雷达系统和雷达导航中的应用4.3 电磁波在医疗技术中的应用介绍电磁波在医学影像诊断中的应用解释磁共振成像(MRI)的原理和应用电磁波在放射治疗和电磁热疗中的应用第五章:电磁波的防护和辐射安全5.1 电磁波的辐射和防护原理介绍电磁波的辐射对人体健康的影响解释电磁波的防护原理和防护措施电磁屏蔽和电磁兼容的概念5.2 电磁波的辐射标准和法规介绍国际和国内电磁波辐射的标准和法规解释电磁波辐射的限制和测量方法电磁波辐射管理的政策和监管措施5.3 电磁波的辐射安全和防护措施介绍电磁波辐射的安全距离和防护措施解释电磁波辐射的个人防护和公共场所的防护措施电磁波辐射的环保意识和公众宣传的重要性第六章:电磁波在电力系统中的应用6.1 电磁波在电力传输中的应用介绍高压输电线路中的电磁干扰问题解释输电线路的屏蔽和接地措施电磁波在特高压输电技术中的应用6.2 电磁波在电力系统监测与控制中的应用介绍电力系统中的电磁场监测和测量技术解释电磁波在电力系统状态监测和故障诊断中的应用电磁波在智能电网和分布式发电系统中的应用6.3 电磁波在电力设备中的影响及防护分析电磁波对电力设备的干扰和影响解释电磁兼容性设计在电力设备中的应用电磁波防护措施在电力设备中的实施方法第七章:电磁波在交通领域的应用7.1 电磁波在铁路交通中的应用介绍铁路信号系统和电磁波在信号传输中的应用解释铁路通信和列车无线通信系统中电磁波的应用电磁波在铁路自动控制系统中的应用7.2 电磁波在汽车交通中的应用介绍汽车电子设备和电磁波的应用解释车载通信系统和电磁波在车辆导航中的应用电磁波在智能交通系统中的应用7.3 电磁波在航空和航天领域的应用介绍电磁波在航空通信和导航中的应用解释电磁波在卫星通信和航天器通信中的应用电磁波在航空航天器中的其他应用,如雷达和遥感技术第八章:电磁波在工科领域的应用8.1 电磁波在电子工程中的应用介绍电磁波在无线电发射和接收中的应用解释电磁波在微波器件和天线技术中的应用电磁波在射频识别(RFID)技术中的应用8.2 电磁波在光电子学中的应用介绍电磁波在光纤通信中的应用解释电磁波在激光器和光电器件中的应用电磁波在光电探测和成像技术中的应用8.3 电磁波在生物医学领域的应用介绍电磁波在医学诊断和治疗中的应用解释电磁波在磁共振成像(MRI)和微波热疗中的应用电磁波在其他生物医学技术中的应用,如电疗和电磁屏蔽第九章:电磁波的环境影响和政策法规9.1 电磁波的环境影响分析电磁波对环境和生物的影响,如电磁辐射污染解释电磁波的环境监测和评估方法电磁波环境保护措施和可持续发展策略9.2 电磁波的政策法规介绍国际和国内关于电磁波辐射的政策法规解释电磁波辐射的标准和限制条件电磁波辐射管理的政策和监管措施9.3 电磁波的公众宣传和教育分析电磁波辐射的公众认知和误解解释电磁波辐射的安全性和健康影响电磁波辐射的公众宣传和教育方法第十章:电磁波的未来发展趋势10.1 新型电磁波技术和材料的研究介绍新型电磁波发射和接收技术的研究解释新型电磁波传输材料和超材料的研究进展电磁波技术在未来的应用前景10.2 电磁波在新型能源领域的应用介绍电磁波在太阳能和风能等新型能源领域的应用解释电磁波在智能电网和能源互联网中的应用电磁波在未来能源系统中的作用和挑战10.3 电磁波与物联网和大数据的结合分析电磁波在物联网通信中的应用解释电磁波在大数据传输和处理中的作用电磁波在未来物联网和大数据技术中的挑战和发展趋势重点和难点解析一、电磁场的基本概念:理解电荷、电场、磁场和磁力的基本性质,以及电磁感应的原理。
电磁场与电磁波1-4(静电场的无旋性发散性)
} ↔ ↔
↔
∫ D⋅ d S = ∫∇ ⋅ D dV
S
q = ∫ ρdV
⇒
z 写成微分的形式为
↔
∇⋅D= ρ
一、静电场发散性
{ 静电场发散性:
z 根据微分形式
↔
∇⋅D= ρ
↔
↔
= ∇ ⋅ ε E = ε∇ ⋅ E
↔
展开 ∇ ⋅ D
e e e e e e =
↔
x
∂ ∂x
+
↔
y
∂ ∂y
+
↔
z
∂ ∂z
第一章 静电场
{ 第一节 矢量分析 { 第二节 库仑、高斯定律 { 第三节 电位、电位梯度 { 第四节 静电场的无旋性、发散性(基本方
程) { 第五节 静电场的能量和力 { 第六节 边界条件
一、静电场发散性
{ 静电场发散性:积分形式、微分形式
z 根据第二节高斯定律,有积分形式
↔↔
∫ D⋅ d S = q
↔
↔
E = −∇ϕ ⇒∇ × E = −∇ × (∇ϕ) = 0
二、静电场无旋性
{ 静电场无旋性:
↔
z 根据微分形式 ∇ × E = 0
↔
E 展开 ∇ × =
e e e e e e =
↔
x
∂ ∂x
+
↔
y
∂ ∂y
+
↔
z
∂ ∂z
×
↔
x Ex +
↔
y Ey +
↔
z
Ez
e e e =
↔
x
∂Ez ∂y
⋅
↔
x Dx +
电磁场与电磁波基础(第1章)
●法国物理学家 查利· 奥古斯丁· 库仑
(Charles Augustin de Coulomb 1736~1806) 电学是物理学的一个重要分枝,在它的发展过程中,很多 物理学巨匠都曾作出过杰出的贡献。法国物理学家查利· 奥古斯 丁· 库仑就是其中影响力非常巨大的一员。 1785年,库仑用自己发明的扭秤建立了静电学中著名的库 仑定律。同年,他在给法国科学院的《电力定律》的论文中详 细地介绍了他的实验装置,测试经过和实验结果。
我们周围的物理世界中存在着各种各样的场,例 如自由落体现象,说明存在一个重力场;指南针在地 球磁场中的偏转,说明存在一个磁场;人们对冷暖的 感觉说明空间分布着一个温度场等等。 场是一种特殊的物质,它是具有能量的,场中的 每一点的某一种物理特性,都可以用一个确定的物理 量来描述。 当对这些物理量的描述与空间坐标或方向性有关 时,通常需要使用矢量来描述它们,这些矢量在空间 的分布就构成了所谓的矢量场。分析矢量场在空间的 分布和变化情况,需要应用矢量的分析方法和场论的 基本概念。
电磁场与电磁波基础 (第2版)
Fundamentals of Electromagnetic Fields and Waves
电子工业出版社
2013-7-17 电磁场与电磁波基础 1
前
言
电磁场与电磁波理论是近代自然科学中,理论相对最完整 、应用最广泛的支柱学科之一。电磁场与电磁波技术已遍及人 类的科学技术、政治、经济、军事、文化以及日常生活的各个 领域。 人类对电磁现象的认识源远流长,但其知识与应用开始形 成系统化和理论化则始于18世纪,伽伐尼、伏打、高斯、富兰 克林、卡文迪什、库仑等著名科学家对电磁现象所作的卓有成 效的研究启动了电磁世界这一巨轮的运转。 19世纪是电磁研究蓬勃开展的时代,法拉第、欧姆、傅立 叶、基尔霍夫、奥斯特、安培、毕奥、萨伐尔、麦克斯韦、斯 托克斯、汤姆森、赫兹、楞次、雅可比、西门,单单从这些名 字和科学家的阵容,你就可以感受到这一时期的电磁科学取得 了多么辉煌的成就。
电磁场及电磁波谢处方第一章
ey
cos
ez
cos
)
eA ex cos ey cos ez cos
电磁场与电磁波
第1章 矢量分析
5
2. 矢量的代数运算
(1)矢量的加减法
两矢量的加减在几何上是以这两矢量为邻 B
边的平行四边形的对角线,如图所示。
A B
A
在直角坐标系中两矢量的加法和减法:
= x2 y2 ,
arctan( y / x)
zz
或者
x cos
y sin
zz
电磁场与电磁波
第1章 矢量分析
d. 柱坐标的关系
r e
r e
r ez
er erz er
rr r
ez e e
e.柱坐标的导数关系
r e
r ex
cos
在电磁场与波理论中,三种常用的正交曲线坐标系为:直角坐 标系、圆柱坐标系和球面坐标系。
电磁场与电磁波
第1章 矢量分析
10
1、直角坐标系
坐标变量 x, y, z
坐标单位矢量 ex , ey , ez
位置矢量
r ex x ey y ez z
线元矢量
dl exdx eydy ezdz
面元矢量
dSx
exdlydlz
exdydz
dSy dSz
eydlxdlz
ezdlxdly
eydxdz
ezdxdy
z
z z0 (ez平面)
P
ey
ex
电磁波与电磁场——第一章
• 令
为矢量G的三个坐标分量,即
• 矢量l的单位矢量 • 标量场 在 P 点沿 l 方向上的方向导数 定义为
• 矢量G称为标量场Φ的梯度
• • • •
标量场Φ的梯度是一个矢量场 由 可知,当 的方向与梯度方向 一致时,方向导数 取最大值。 标量场在某点梯度的大小等于该点的最大 方向导数,梯度的方向为该点具有最大方 向导数的方向。
1-2 矢量的代数运算
• • • • 矢量A=B:矢量A、B的大小及方向均相同时 矢量加法:平行四边形法则 矢量减法:三角形法则 在直角坐标系中两矢量的加法和减法:
• 矢量的加法运算,结合律和交换率 • 结合律:(A+B)+C=A+(B+C) • 交换律:A+B=B+A
1-3 矢量的标积和矢积
• 标积(点积或内积),以点号“•”表示
直角坐标系下散度表达式的推导
• 不失一般性,令包围P点的微体积V 为一 直平行六面体,如图所示。则
由此可知,穿出前、后两侧面
的净通量值为
• 同理,分析穿出另两组侧面的净通量,并 合成之,即得由点P 穿出该六面体的净通量 为
• 根据定义,则得到直角坐标系中的散 度 表式为
• 散度运算规则
例: 已知点电荷q所产生的电场强度
• 标量场的等值线(面)
• 等值面的特点: • 常数C 取一系列不同的值,就得到一系列 不同的等值面,形成等值面族; • 标量场的等值面充满场所在的整个空间; • 标量场的等值面互不相交。
• 方向导数:标量场在某点的方向导数表示标 量场自该点沿某一方向上的变化率
• 例如标量场 在 P 点沿 l 方向上的方向导 数 定义为
——拉普拉斯算符
电磁场与电磁波第1章矢量分析
例:已知一矢量场F=axxy-ayzx, 试求:
(1) 该矢量场的旋度;
(2) 该矢量沿半径为3的四分 之一圆盘的线积分, 如图所 示, 验证斯托克斯定理。
y B
r= 3
O
Ax
四分之一圆盘
第 7、8 学时 1.4 标量的方向导数和梯度
1.4.1标量的方向导数和梯度
一个标量场u可以用一个标量函数来表示。在直角坐标 系中, 可将u表示为
lim l A dl
SP S
称固定矢量R为矢量A的 旋度,记作
rotA=R
上式为旋度矢量在n方 向的投影,如图所示, 即
A dl
lim l
SP S
rotn A
ro tA
n
旋涡面
P l
旋度及其投影
矢量场的旋度仍为矢量。在直角坐标系中,旋度的表达式为
rotA
ax
Az y
Ay z
a
y
Ax z
Az x
z
l
式 中 , 当 Δl→0 时 δ→0 。 将 上 式 两 边 同 除 以 Δl 并 取 极限得到方向导数的计算公式:
u u cos u cos u cos
l x
y
z
ห้องสมุดไป่ตู้
其中,cosα, cosβ, cosγ为l方向的方向余弦。
1.4.4 标量场的梯度
1. 梯度的定义
方向导数为我们解决了函数u(P)在给定点处沿某个方向的 变化率问题。然而从场中的给定点P出发,标量场u在不 同方向上的变化率一般说来是不同的,那么,可以设想,
▽ ·(▽ ×A)≡0
即如果有一个矢量场B的散度等于零,则该矢量B就可 以用另一个矢量A的旋度来表示,即当 ▽ ·B=0 则有
电磁场电磁波-第一章 矢量分析(1.4-5)
环流面密度矢量→旋涡源密度矢量 旋涡源密度矢量。 物理意义 ◇ 环流面密度矢量 旋涡源密度矢量。
电磁场与电磁波
第1章 矢量分析
•
直角坐标系中 rot x F、rot y F 、rot z F 的表达式 的示意图如图所示。 推导 rot x F 的示意图如图所示
电磁场与电磁波
第1章 矢量分析
1.5.2. 矢量场的旋度(∇× F) 矢量场的旋度( 矢量场的环流给出了矢量场与积分回路所围曲面内旋涡源 宏观联系。为了给出空间任意点矢量场与旋涡源的关系, 宏观联系。为了给出空间任意点矢量场与旋涡源的关系,引入 矢量场的旋度。 矢量场的旋度。 (1)环流面密度 ) 过点M 作一微小曲面∆ 它的边界曲线记为C, 过点 作一微小曲面∆S ,它的边界曲线记为 ,曲面的法 与曲线的绕向成右手螺旋法则。 线方向 n与曲线的绕向成右手螺旋法则。当∆S→0 时,极限 →
闭合曲面的通量从宏观上建立了矢量场通过闭合曲面的通 闭合曲面的通量从宏观上建立了矢量场通过闭合曲面的通 宏观上 量与曲面内产生矢量场的源的关系。 量与曲面内产生矢量场的源的关系。
电磁场与电磁波
第1章 矢量分析
1.4.3. 矢量场的散度 散度: 向某点无限收缩时, 散度:当闭合面 S 向某点无限收缩时,矢量 F 通过该闭合面S 的 通量与该闭合面包围的体积之比的极限称为矢量场 F 在该 点的散度, 表示, 点的散度,以 div F 表示,即
环流的概念 矢量场对于闭合曲线C 的环流定义为该矢量对闭合 矢量场对于闭合曲线 环流定义为该矢量对闭合 曲线C 的线积分, 曲线 的线积分,即
Γ = ∫C F(x, y, z) ⋅ dl
如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无 如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无 旋场,又称为保守场。 旋场,又称为保守场。 保守场 如果矢量场对于任何闭合曲线的环流不为零, 如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为 有旋矢量场,能够激发有旋矢量场的源称为旋涡源。电流是 有旋矢量场,能够激发有旋矢量场的源称为旋涡源。 旋涡源 磁场的旋涡源。 磁场的旋涡源。
电磁波与电磁场第1章 矢量分析
直角坐标系•三变量x y z •坐标表示•线元•面元•体积元dle dz e dy e dx e l d l z y x =++= ds e ds e ds e s d z z y y x x ++=zz yy xx e dxdyds e dxdz ds e dydz ds ⊥=⊥=⊥=d V d xd yd z=Az z y y x x e A e A e A e A A=++=∞dzz e d d ds e dz d ds e dz d ds ⊥=⊥=⊥=ϕρρρϕρϕρ另图见下页-5813∞dzzz e d d ds e dz d ds e dzd ds ⊥=⊥=⊥=ϕρρρϕρϕϕρρ142r ds r sin θd θd ds rsin θdrd ds rdrd θθϕϕϕ===d θϕϕ另图见下页系2r rθds r sin θd θd e ds rsin θdrd e ds rdrd θe θϕϕϕϕ=⊥=⊥=⊥-5817x y z2≤≤−∞<<∞z ϕπ2π0πθ≤≤≤≤ϕ一个专用它的大小就能完整的描示Az z e A e A=单位矢量(unit vector):A A e A=212z )A cos A cos y ==γβzz B A-5830gradient在这无穷多个方向中哪个方向的变化率三维高度场的梯度例2电位场的梯度三维高度场的梯度电位场的梯度高度场的梯度电位场的梯度与过该点的等位线垂直;数值等于该点的最大方向导数;ndSΦ= 0(无源)Φ< 0 (有负源)divergence内的通量源决定,而通量是一个积分量,仅能说明较大范围内的源分布情况,而不能说明每一点的性质。
引入散度概念。
A= ρ>0 (正源A= 0(无源)•A= −ρ<0 (负源-5850HFUT -FZG该环量表示绕线旋转趋势的大小。
水流沿平行于水管轴线方向流动Γ=0,无涡旋运动流体做涡旋运动Γ≠0,有产生涡旋的源环量矢量F 沿空间有向闭合曲线L 的线积分LF d lΓ=⋅∫环量circulation例:流速场环量密度(涡量)取不同的路径,其环量密度不同。
谢处方《电磁场与电磁波》(第4版)课后习题-第1章 矢量分析【圣才出品】
(4)由 cos AB
AB AΒ
11 14 17
11 238
,得 AB
arccos
11 135.5o 238
v (5)在 B 上的分量 AB
A cos AB
AB B
11 17
(6)由矢量的叉积公式知
ex ey ez A C 1 2 3 ex 4 ey13 ez10
5 0 2
(7)由矢量的叉积公式知
ex ey ez B C 0 4 1 ex 8 ey 5 ez 20
5 0 2
A B C ex ey 2 ez 3 ex8 ey 5 ez 20 42 ,
ur ur ur ur ur ur ur ur ur 又因为 A (B C) C ( A B) ( A B) C
1.14 无旋场与无散场的区别是什么?
答:无旋场 F 的旋度处处为 0,即
它是由散度源所产生的,它总可以表示
为某一标量场的梯度,即▽×(▽u)=0。
无散场 F 的散度处处为 0,即▽·F ≡0,它是由旋涡源所产生的,它总可以表示为某一矢
量场的旋涡,即▽·(▽A)=0。
(二)习题 1.1 给定三个矢量 A、B 和 C 如下:
www.100xuexຫໍສະໝຸດ
解:(1) eA
A A
ex e台y 2 ez 3 12 22 32
ex
1 14
ey
2 14
ez
3 14
vv (2) A-B=
evx
evy 6 evz 4 ,
vv A-B
12 62 42
53
(3) A B ex ey 2 ez 3 ey 4 ez 11
圣才电子书
十万种考研考证电子书、题库视频学习平
电磁场和电磁波基础
第一章 电磁场和电磁波基础1 电磁学基本物理量 2 电磁场定律 3 边界条件 4 本构关系 5 波动方程 6 场和方程的复数形式 7 波数和波阻抗 8 均匀平面波 9 平面波的反射和折射 10 坡印亭定理1 电磁学基本物理量在电磁场基本方程中,所涉及到的基本物理量有:E :称为电场强度(伏/米)H :称为磁场强度(安/米)D :称为电通密度(库/米 2) B :称为磁通密度(韦/米 2)电位移矢量 磁感应强度⎯真空→ ε 0 E ⎯ ⎯ ⎯真空→ μ 0 H ⎯ ⎯J :电流密度(安/米 2)ρ :电荷密度(库/米 )3⎧ ⎪基本物理量:E , B ⎨ ⎪导出物理量:D, H ⎩瞬时值或时域表示 一般情况下,各场量和源量既是空间坐标的函数,又是时 间的函数,即2 电磁学场定律电磁学场定律描述场和源的关系,包括积分形式场定 律和微分形式场定律。
微分场定律形式把某点的场与就在该点的源及该点 的其它场量联系起来,适用于场、源量都是连续函数并有 S 连续的导数的良态域。
•⎧ E = E ( r , t ) = E ( x, y , z , t ) ⎪ ⎪ D = D ( r , t ) = D ( x, y , z , t ) ⎪ B = B ( r , t ) = B ( x, y , z , t ) ⎪ ⎨ ⎪ H = H ( r , t ) = H ( x, y , z , t ) ⎪ ρ = ρ (r , t ) = ρ ( x, y, z , t ) ⎪ ⎪ J = J (r , t ) = J ( x, y, z , t ) ⎩对应不同时刻,这些场量和源量的方向和数值会发生变 化,对应着一般时变场,称为场量的时域表示,或者瞬时 值。
P⎧ ⎪场:E , B ⎨ ⎪源:ρ,J ⎩2.1 自由空间场定律 2.2 物质中场定律V2.1 自由空间场定律∇× E = −B∂B (1a) ∂t∂ε 0 E (1b) ∂tVS自由空间指真空或同真空基本上具有同样特性的任 何其它媒质 (如空气) 自由空间场定律描述纯粹的源 ρ 、 。
电磁场与电磁波1-3(电位电位梯度)
∞ { 设点电荷Q从点电荷q所激发的电场中P点移到零电位参考点
无穷远处时电场力所做的功为W,据定义点电荷q所激发的 电场中P点电位为:
∫ ∫ ϕ = W = 1
∞↔ ↔
F⋅d l =
∞↔ ↔
E⋅ d l
Q QP
P
一、电位
{ 点电荷q所激发的电场中P点电位为:(r 为场点P与点电荷q的距离):
Ey
− ∂ϕ
∂z
=
−
∂ϕ
∂y
e e e e e e 所以
↔
E=
↔
x Ex +
↔
y Ey +
↔
z Ez
=
−(
↔
x
∂ϕ
∂x
+
↔
y
∂ϕ
∂y
+
↔ ∂ϕ
z
) ∂z
=
↔
−(ex
∂ ∂x
+
↔
ey
∂ ∂y
+
↔
ez
∂ )ϕ
∂z
=
−∇ϕ
∫ ∫ ϕ = W = 1
∞↔ ↔
F⋅d l =
∞↔ ↔
E⋅ d l
Q QP
P
∫ ∫ ϕ =
∞↔ ↔
E⋅ d l =
q
P
4πε 0
∞ dl = q
r l 2 4πε0r
二、电位差
{ 电场中任意两点a、b电位之差,称为这两
点之间的电位差(或称为电压) ↔ E
∫ ∫ ϕab =
b↔ ↔
E⋅d l =
a
b a
Er
⋅
dl
cosθ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交通大学应用超导研究所研制
7
B2 隐形轰炸机
反 射 定 律 的 应 用
i r i r
8
立 体 电 影
---电 磁 波 极 化 特 性 的 应 用
9
全
球
定
位
系
统
Global Positioning System(GPS) 信 息 载 体 的 应 用
GPS运行的空间由24颗卫星分布在6个轨道平面中
矢量的加法:每个分量对应相加 如:A=1i+3j+4k B=6i+7j+8k 则:A+B=7i+10j+12k
18
在直角坐标系中:A=exAx +eyAy +ezAz 则A的模:|A|=(Ax2+ Ay2+ Az2)1/2 A的单位矢量a为: a= A / |A|
(思考:单位矢量的另一种表示?)
1.1.4.2 矢量减法 可视为加法的特例,即: A A – B= A + (-B) 通常-B称为B的逆矢量。 A-B
散度的直角坐标表示:
由极限表示式可知散度与体积的取法无关,是由 闭合面收缩得到的。分别计算三对表面穿出的通量.
z S1
S6
S3 Δz Δx
S2
Az
o
x
A
S4
Δy S5
y
Ax
Ay
y1
y1+Δy
43
直角坐标系中散度可表示为:
因此散度可用哈密顿算符 (读作 “del”或 “纳 布拉”),用 表示为:
n的取向有两种:一种是开表面,满足右螺旋法则; 另一种是闭合面(鸡蛋壳外表面 ),取闭合面的外法 线方向。
39
通量:
矢量 A 沿某一有向曲面 S 的面积分称为矢量 A 通过该有向曲面 S 的通量,即:
40
曲面通量
如不为零: >0 表示有净流出--源 <0 表示有净流入--沟(负源) =0 表示“源”和“沟”的总和 为零或既无“源”也无“沟”
20
1.1.4.4 两矢量的矢量积
亦称叉积,结果仍为一个矢量,用矢量C表示, C的大小为A和B组成的平行四边形的面积,方向 垂直与矢量A和B构成的平面且A、B和C三者符 合右手螺旋法则。 C=AxB=|A||B| sinθec
C
θ为 A和B 的夹角,0≤θ≤π 可得非零矢量A和B平行的条件: A x B=0
上式乘以dL后,得力线 的微分方程式为:
29
1.2 矢量场的不变性
描绘物理状态空间分布的标量函数(r)和 矢量函数F(r),对于确定的时间是唯一的, 其大小和方向与所选择的坐标系无关。
30
θ
直角坐标(x, y , z)
圆柱坐标(r, θ , z)
球坐标(r, , )
矢量函数在上述三种坐标系内应有的关系为:
16
还有一种场,如电场 强度E,不仅要知道其 大小,还要知道其方向, 这样的场就为矢量场。 对于矢量场F(r),则 用一些有向曲线来表示, 称为力线或流线,力线 上的任意点的切线必与 该点的矢量方向一致。
dl
F(r)
Fig 1.1.4
17
1.1.4 矢量运算
1.1.4.1 矢量加法 矢量加法是矢量的几何和,两个矢量的几何和 服从平行四边形法则。 C=A+B B C A
26
1.1.6 空间直线及其方程
一、直线的对称式方程或点法式方程 两向量A和B方向相同或相反称为A和B平行,表示为 A=KB。一个非零向量与一直线平行,此向量叫这条直 线的方向向量。设方向向量为s={m、n、p},直线上 两点M0(x0、 y0、 z0)、M(x、y、z),则有:
(对应坐标成比例) 二、直线的参数方程 由上可导出直线的参数方程:
4
历史的回顾
公元前600年希腊人发现了摩擦后的琥珀能够吸引微小物体;
公元前300年我国发现了磁石吸铁的现象;后来,人们发现了地
球磁场的存在。1820年丹麦人奥斯特(1777-1851)发现了电 流产生的磁场。同年法国科学家安培(1775-1836)计算了两 个电流之间的作用力。1831年英国科学家法拉第(1791-1867) 发现电磁感应现象,创建了电磁感应定律,说明时变磁场可以
F(r,φ)
例1.2.2 求一个二维标量场u(x,y)=y2 -x 的等值面.
解:由于z不影响u,故在任意 z=const的面上场的分布是 相同的。 取u为某一常量时 u = y2 -x 是一组抛物差等于1 个单位,则得到一组抛物柱 面。
因此具有矢量形式,故又称矢性微分算符.
在直角坐标下:
在圆柱坐标下:
在球坐标下:
例题 1.2.3 矢量场A(r)=r,或者r(x,y,z),计 算A(r)穿过球心在原点、半径为a的球面的通 量;并求出r(r)。
解:首先要分清位置矢量场和位置矢量(又称矢径) 是不同的概念。位置矢量r= exAx +eyAy +ezAz,是确 定空间某一点的位置,而位置矢量场r(r)表空间任 一点处矢量场的大小和方向与该点的位置r成比例。
27
1.1.7 函数展开成幂级数
一、泰勒级数 如果f(x)在点x0的某领域内具有各阶导数f `(x),f ``(x),…, f(n)(x),…,则其泰勒展开为:
当x=x0+Δx则f(x)泰勒展开为:
当Δx很小时, f(x)泰勒展开为:
28
力线的微分方程式
对于矢量场F(r),当用 一些有向曲线即力线或流 线来表示时,力线上的任 意点的切线必与该点的矢 量方向一致。即:
B -B
1.1.4.3 两矢量的标量积
两矢量的标量积也称为点积(本书称为标积)。定 义一个矢量在另一矢量上的投影与另一矢量模的乘 积,结果为标量。 B A.B=|A||B| COSθ θ A 当θ=π/2时,标量积为零,因此两矢量正交的条 件时: A.B=0 在直角坐标系中: A.B= (exAx +eyAy +ezAz). (exBx +eyBy +ezBz) =AxBx+ Ay By +AzBz
p
14
1.1.3 场
若考虑某一空间区域中,某物理系统 的状态可以用空间地点和时间的函数Φ 表示,于是物理状态在每一时刻t在每一 点的数值可以写成Φ(r,t),物理量数值 的无穷集合表示一种“场”。 若物理状态与时间无关,则Φ(r)表示 Φ(r,t) 静态场,反之为时变场。
O
15
若描述空间物理状态分布时,数学上只 用一个代数就能表示,该场就为标量场。 对于标量场Φ(r),用“等值面图”来表 示,如气象图、等高图。 Φ(r)=常数值
产生时变电场。
5
重大突破
1873年英国科学家麦克
斯韦(1831-1879)提出了 位移电流的假设,认为时变 电场可以产生时变磁场,并 以严格数学方程描述了电磁 场与波应该遵循的统一规律, 这就是著名的麦克斯韦方程。
6
世界首辆载人高温超导磁悬浮试验车
磁 场 力 的 应 用
Stable! Stable!
10
接收天线 发射天线
馈 线
馈 线
下行波 接收机
导行波
发射机
当今的无线通信、广播、雷达、遥控遥测、微波 遥感、无线因特网、无线局域网、卫星定位以及光纤 通信等信息技术都是利用电磁波作为媒介传输信息的。
学习的目的、方法及其要求
掌握宏观电磁场问题的基本求解方法 了解宏观电磁场的主要应用领域及其 原理 训练分析问题、解决问题、归纳问题 的科学方法 课前预习,上课认真听讲(课堂笔 记),及时复习,独立完成作业.
2
前
言
电场和磁场 静止电荷产生的场表现 为对于带电体有力的作用, 这种场称为电场。不随时 间变化的电场称为静电场。 运动电荷或电流产生的 场表现为对于磁铁和载流 导体有力的作用,这种物 质称为磁场。不随时间变 化的磁场称为恒定磁场。
3
电磁波
如果电荷及电流均随时间改变,它们产生的电场及磁场 也是随时变化的,时变的电场与时变的磁场可以相互转化, 两者不可分割,它们构成统一的时变电磁场。时变电场与时 变磁场之间的相互转化作用,在空间形成了电磁波。
13
第一章 矢量分析
1.1 标量场和矢量场
1.1.1 标量 一个仅用大小就能完整描述的物理量称为标量。 如电荷、电位、能量等。 1.1.2 矢量 一个不仅有大小而且有方向的物理量称为矢量。 如力、速度、电场强度等。 矢量一般写成A,而A表示A的大小(或A的模)。 一个大小为1的矢量称为单位矢量,如果用单位矢 量a表示矢量A的方向,则A=Aa。 A 矢量一般用带有箭头的直线段表示。
散度定理(高斯定理)
某一矢量散度的体积分等于该矢量 穿过该体积的封闭表面的总通量.
48
复 习
1. 面元矢量dS 一个面元是一个矢量,其方向是取与面元相 垂直的单位矢量n,则面元矢量定义为:
教 学 目 的
通过对本课程的学习,使学生进一步认 识电磁场与电磁波的物理本质和基本规律及
其分析方法,培养学生分析和解决电磁问题
的能力,为学习相关的专业课程或更深一步
研究电磁问题打下一定的基础。本课程是电
子信息类专业本科学生重要的专业基础课程 之一。
本课程的先修课程和后续课程
先修课程 《高等数学》、《大学物理》和一部分电路课程。 后续课程 电磁场与电磁波是电子信息工程、电子信息科学 与技术、通信等专业后续课程,如: 《通信原 理》 、《无线通信原理与应用》、《现代通信技 术》、《微波工程基础》和《微波技术》以及研究 生有关的课程如:《高等电磁理论》、《电磁场数 值方法》、《电磁场高频方法》和《电磁波传播理 论》的重要基础。
ec θ A