初中数学探究性问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BE
AG 第6讲探究型问题学校:学生姓名:
教学目标:
1、掌握探究型问题的特点及类型,熟练运用探究型问题的解题方法和步骤解决有关问题;
2、通过对各种类型的探究型问题的探索,培养学生创新意识与创新能力;
3、通过富有情趣的问题,激发学生进一步探索知识的激情,感受到数学来源于生活。典型例题:
1、如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4).将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为()
A.(10,3)
B.(-3,10)
C.(10,-3)
D.(3,-10)
2、△APB 中,AB=2,∠APB=90°,在AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形PCDE 面积的最大值是(
).A.1 B.23 C.25 D.3
2
23、如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F .
(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:
的值为________;(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;
(3)拓展与运用:
正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG =6,GH =22,则BC =________
.
4、问题提出:
(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;
问题解决:
(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
5、如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C的度数;
(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.
6、在平面直角坐标系中,直线22
1-=x y 与x 轴交于点B ,与y 轴交于点C ,二次函数c bx x y ++=22
1的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.
(1)求二次函数的表达式;
(2)如图1,连接DC ,DB ,设△BCD 的面积为S ,求S 的最大值;
(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.
课堂练习:
1、如图,抛物线43
1312--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q ,过点P 作PE ∥AC 交x 轴于点E ,交BC 于点F .
(1)求A ,B ,C 三点的坐标;
(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q 的坐标;若不存在,请说明理由;
(3)请用含m 的代数式表示线段QF 的长,并求出m 为