专题 电磁感应中的电路问题
专题三 电磁感应中的电路及图像问题
专题三电磁感应中的电路及图像问题一、电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等。
这种电源将其他形式的能转化为电能。
2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。
3.解决电磁感应中的电路问题三步曲:(1)确定电源。
利用E=n ΔΦΔt或E=BL v求感应电动势的大小,利用右手定则或楞次定律判断电流方向。
(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图。
(3)利用电路规律求解。
主要应用欧姆定律及串、并联电路的基本性质等列方程求解。
[复习过关]1.如图1甲所示,面积为0.1 m2的10匝线圈EFG处在某磁场中,t=0时,磁场方向垂直于线圈平面向里,磁感应强度B随时间变化的规律如图乙所示。
已知线圈与右侧电路接触良好,电路中的电阻R=4 Ω,电容C=10 μF,线圈EFG的电阻为1 Ω,其余部分电阻不计。
则当开关S闭合,电路稳定后,在t=0.1 s至t=0.2 s这段时间内()图1A.电容器所带的电荷量为8×10-5 CB.通过R的电流是2.5 A,方向从b到aC.通过R的电流是2 A,方向从b到aD.R消耗的电功率是0.16 W解析线圈EFG相当于电路的电源,电动势E=n ΔBΔt·S=10×20.2×0.1 V=10 V。
由楞次定律得,电动势E 的方向是顺时针方向,故流过R 的电流是a →b ,I =E R +r=104+1A =2 A ,P R =I 2R =22×4 W =16 W ;电容器U C =U R ,所带电荷量Q =C ·U C =10×10-6×2×4 C =8×10-5 C ,选项A 正确。
答案 A2.三根电阻丝如图2连接,虚线框内存在均匀变化的匀强磁场,三根电阻丝的电阻大小之比R 1∶R 2∶R 3=1∶2∶3,其余电阻不计。
专题16 电磁感应中的电路问题(解析版)
专题16 电磁感应中的电路问题(解析版)电磁感应中的电路问题(解析版)电磁感应是电磁学中的重要概念,也是我们日常生活中常常遇到的现象。
在电磁感应中,涉及到很多与电路相关的问题。
本文将围绕电磁感应中的电路问题展开讨论,解析其中的关键概念和原理。
一、电磁感应简介电磁感应是指由于磁场的变化而在导体中产生感应电动势的现象。
根据法拉第电磁感应定律,当磁场的磁通量发生变化时,穿过电路的感应电动势将产生导致电流的运动。
二、电路中的电磁感应问题在电路中,由于电磁感应的存在,会出现一系列问题需要解决。
其中包括以下两个重要方面:1. 阻抗和电感在电路中,电感是指导体中感应电流的产生和变化所产生的自感现象。
与电感相关的一个重要概念是阻抗,它是交流电路中的电阻和电感的综合表达。
当电磁感应作用下,电路的阻抗会发生变化,从而影响电流的流动。
2. 感应电动势和电路中的能量转化电磁感应中产生的感应电动势可以引发电路中的能量转化。
当磁场发生变化时,电磁感应会引发感应电动势,从而使电流在电路中产生。
这种能量转化可以用于各种电器设备的工作。
三、解析实例:电动车发电机原理为了更好地理解电磁感应中的电路问题,我们以电动车发电机为例进行解析。
在电动车发电机中,磁场的变化产生感应电动势,从而驱动发电机工作。
首先,通过燃料燃烧,发动机带动发电机转子旋转。
转子上的永磁体与固定的线圈之间产生磁场的变化,导致感应电动势产生。
感应电动势通过电路中的导线,形成感应电流,进而为电动车提供所需的电能。
电动车发电机中的电路问题值得我们深入研究。
在这个电路中,电流的大小和方向需要合理设置,以保证发电机正常工作。
同时,电路中的电阻、电感和阻抗等参数的选择也对电磁感应的效果产生重要影响。
四、应用领域及进一步研究的方向电磁感应中的电路问题在许多领域都有重要的应用,值得我们进一步研究和探索。
例如,在能源领域,电磁感应可以用于发电机、变压器等设备中,实现能源的转化和传输。
专题16 电磁感应中的电路问题(解析版)
专题十六 电磁感应中的电路问题基本知识点解决电磁感应电路问题的基本步骤:1.用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向:感应电流方向是电源内部电流的方向,从而确定电源正、负极,明确内阻r .2.根据“等效电源”和电路中其他各元件的连接方式画出等效电路图.3.根据E =Blv 或E =n ΔΦΔt结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题分析一、电磁感应中的简单电路问题例1 如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T 。
导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。
导轨和导体棒的电阻均可忽略不计。
在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s 。
(1)求感应电动势E 和感应电流I ;(2)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U 。
(对应训练)如图所示,MN、PQ为平行光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50 cm,导体棒AB在两轨道间的电阻为r=1 Ω,且可以在MN、PQ上滑动,定值电阻R1=3 Ω,R2=6 Ω,整个装置放在磁感应强度为B=1.0 T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=5 m/s的速度做匀速运动。
求:(1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向;(2)导体棒AB两端的电压U AB。
二、电磁感应中的复杂电路问题例2如图所示,ab、cd为足够长、水平放置的光滑固定导轨,导体棒MN的长度为L=2 m,电阻r=1 Ω,有垂直abcd平面向下的匀强磁场,磁感强度B=1.5 T,定值电阻R1=4 Ω,R2=20 Ω,当导体棒MN以v=4 m/s的速度向左做匀速直线运动时,电流表的示数为0.45 A,灯泡L正常发光。
专题二:电磁感应中的电路问题
电阻R2上消耗的功率为: P2=I2R2=(0.2)2×25 W=1 W 穿过螺线管的原磁场磁通量向左增加,螺线管中感应电 流的磁场方向向右,感应电流从b流向a,b端的电势高,a端 的电势低.由Uc=0,有: Uc-Ua=IR1=0.2×3.5 V=0.7 V 故Ua=-0.7 V Ub-Uc=IR2=0.2×25 V=5 V 故Ub=5 V.
答案 3 8 W 3 4 W
专题:电磁感应中的电路问题
(3)拉ab棒的水平向右的外力F为多大?
解析 3 由平衡知识得:F=BIl=4 N.
3 答案 4 N
专题:电磁感应中的电路问题
例2:如图所示,由均匀导线 制成的半径为R的圆环,以速 度 v匀速进入一磁感应强度大 小为B的有界匀 强磁场,边界 如图中虚线所示.当圆环运 动 到图示位置(∠aOb=90°)时 ,a、b两点的电势差为
专题:电磁感应中的电路问题
例5:如图甲所示,有一匝数n=1500、横截面积S=20 cm2、 电阻r=1.5 Ω的螺线管,与螺线管串联的外电阻R1=3.5 Ω, R2=25 Ω.穿过螺线管的匀强磁场的磁感应强度方向向左, 大小随时间按图乙所示的规律变化.试计算电阻R2消耗的电功 率和a、b两点的电势(设c点的电势为零).
点评 对于电磁感应问题,由法拉第电磁感应定律求出
感应电动势后,就可以将电磁感应问题等效为电路问题,再
运用电路的有关知识求解.
专题:电磁感应中的电路问题
(1)导体棒上产生的感应电动势E. 解析 ab棒匀速切割磁感线,产生的电动势为: E=Blv=3 V
答案 3 V
专题:电磁感应中的电路问题
(2)R1与R2消耗的电功率分别为多少?
解析 R1R2 电ห้องสมุดไป่ตู้的总电阻为:R=r+ =4 Ω R1+R2
专题63 电磁感应中的电路和图像问题-2025版高三物理一轮复习多维度导学与分层专练
2025届高三物理一轮复习多维度导学与分层专练专题63电磁感应中的电路和图像问题导练目标导练内容目标1电磁感应中的电路问题目标2电磁感应中的图像问题【知识导学与典例导练】一、电磁感应中的电路问题1.电磁感应中电路知识的关系图2.“三步走”分析电路为主的电磁感应问题【例1】如图所示,水平放置的平行光滑导轨左端连接开关K 和电源,右端接有理想电压表。
匀强磁场垂直于导轨所在的平面。
ab 、cd 两根导体棒单位长度电阻相同、单位长度质量也相同,ab 垂直于导轨,cd 与导轨成60°角。
两棒的端点恰在导轨上,且与导轨接触良好,除导体棒外,其余电阻不计。
下列说法正确的是()A .闭合开关K 瞬间,两棒所受安培力大小相等B .闭合开关K 瞬间,两棒加速度大小相等C .断开开关K ,让两棒以相同的速度水平向右切割磁感线,电压表无示数D .断开开关K ,固定ab ,让cd 棒以速度v 沿导轨向右运动时电压表示数为1U ;固定cd ,让ab 棒以速度v 沿导轨向右运动时电压表示数为2U ,则12U U =【答案】A【详解】A .设ab 导体棒的长度为L ,则cd导体棒为cd sin 603L L ==︒ab 、cd 两根导体棒单位长度电阻相同,所以ab 、cd两根导体棒的电阻之比为ab cd :2R R =闭合开关K 瞬间,通过ab 、cd两根导体棒的电流之比为ab cd :2I I =F BIL =可知ab 、cd 两根导体棒所受安培力为ab cd :1:1F F =B .ab 、cd 两根导体棒单位长度质量相同,所以ab 、cd两根导体棒的质量之比为ab cd :2m m 根据牛顿第二定律可知,闭合开关K 瞬间,ab 、cd 两根导体棒的加速度之比为ab cd :2a a =故B 错误;C .断开开关K ,让两棒以相同的速度水平向右切割磁感线,ab 、cd 两根导体棒的有效长度相等,设两棒运动的速度v ,则电压表示数为U BLv =故C 错误;D .断开开关K ,固定ab ,让cd 棒以速度v 沿导轨向右运动时,则有1E BLv =电压表示数为ab 11ab cd R U E R R ==+cd ,让ab 棒以速度v 沿导轨向右运动时,则有2E BLv =电压表示数为cd 22ab cd R U E R R ==+D 错误;故选A 。
专题九-电磁感应中的电路和图象问题
③
p2hd=f+F 安
④
F 安=BId
⑤
根据欧姆定律,有 I=RU+0 r
⑥
两导体板间液体的电阻
r=ρLdh
⑦
由②③④⑤⑥⑦式得
Δp=p2-p1=LLhdRv+0Bd2ρ
⑧
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
专题九 电磁感应中的电路和图象问题
(3)电阻 R 获得的功率为 P=I2R
⑨
P=LLdRv+0Bhρ2R
流、路端电压以及闭合电路中能量的转化.
2.对电磁感应电路的理解 (1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做
功转化为电能.
(2)“电源”两端的电压为路端电压,而不是感应电动势.
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
专题九 电磁感应中的电路和图象问题
【例 1】(2014·福建·22)如图 5 所示,某一新型发电装置的发电管是横截面
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
专题九 电磁感应中的电路和图象问题
【例 2】(2013·山东理综·18)将一段导线绕成
图 7 甲所示的闭合回路,并固定在水平面
(纸面)内.回路的 ab 边置于垂直纸面向里
的匀强磁场Ⅰ中.回路的圆环区域内有垂
图7
直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度 B 随时
考点一 电磁感应中的电路问题
1.电磁感应中的电路问题分类.
(1)以部分电路欧姆定律为中心,包括六个基本物理量(电压、电流、
电阻、电功、电功率、电热),三条定律(部分电路欧姆定律、电阻定
律和焦耳定律),以及若干基本规律(串、并联电路特点等). (2)以闭合电路欧姆定律为中心,讨论电动势概念,闭合电路中的电
高考二轮复习资料专题五1电磁感应中的电路问题
高考二轮复习资料专题五5.1 电磁感应中的电路问题例1 匀强磁场磁感应强度 B =0.2T ,磁场宽度 L =3m , 一正方形金属框边长 ab =r =1m , 每边电阻R =0.2Ω,金属框以v =10m/s 的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直,如图5-1,求:⑴画出金属框穿过磁场区的过程中,金属框内感应电流I 随时间t 的变化图线.(要求写出作图的依据) ⑵画出两端电压U 随时间t 的变化图线.(要求写出作图的依据)例2 如图5-2,两个电阻的阻值分别为R 和2R ,其余电阻不计,电容器电容量为C ,匀强磁场的磁感应强度为B ,方向垂直纸面向里,金属棒ab 、cd 的长度均为l ,当棒ab 以速度v 向左切割磁感线运动,棒cd 以速度2v 向右切割磁感线运动时,电容器的电量为多大?哪一个极板带正电?例3 把总电阻为2R 和R 的两条粗细均匀的电阻丝焊接成走直径分别是2d 和d 的两个同心圆环,水平固定在绝缘桌面上,在大小两环之间的区域穿过一个竖直向下,磁感应强度为B 的匀强磁场,一长度为2d 、电阻等于R 的粗细均匀的金属棒MN 放在圆环上,与两圆环始终保持良好接触,如图5-3,当金属棒以恒定的速度v 向右运动并经过环心O 时,试求:⑴金属棒MN 产生的总的感应电动势; ⑵金属棒MN 上的电流大小和方向; ⑶棒与小环接触点F 、E 间的电压; ⑷大小圆环的消耗功率之比.L图5-1图5-2图5-3图5-1-35.1 电磁感应中的电路问题1.如图5-1-1,粗细均匀的电阻丝绕制的矩形导线框abcd 处于匀强磁场中,另一种材料的导体棒MN 可与导线框保持良好的接触并做无摩擦滑动,当导体棒MN 在外力作用下从导线框左端开始做切割磁感线的匀速运动一直滑到右端的过程中,导线框上消耗的电功率的变化情况可能为 ( )A .逐渐增大B .先增大后减小C .先减小后增大D .增大、减小、再增大、再减小2.一环形线圈放在匀强磁场中,设在第1s 内磁场方向垂直于线圈平面向内,如图5-1-2甲所示,若磁感应强度B 随时间t 的变化关系如图5-1-2乙所示,那么在第2s内,线圈中感应电流的大小和方向是( )A .大小恒定,逆时针方向B .大小恒定,顺时针方向C .大小逐渐增加,顺时针方向D .大小逐渐减小,逆时针方向3.如图5-1-3,水平光滑U 形框架中串入一个电容器,横跨在框架上的金属棒ab 在外力作用下,以速度v 向右运动一段距离后突然停止,金属棒停止后不再受图中以外的物体作用,导轨足够长,由以后金属棒的运动情况是 ( ) A .向右做初速度为零的匀加速运动B .先向右做初速度为零的匀加速运动,后作减速运动C .在某一位置附近振动D .向右先做加速度逐渐减小的加速运动,后做匀速运动4.如图5-1-4,PQRS 为一正方形导线框,它以恒定速度向右进入以为边界 MN 的匀强磁场,磁场方向垂直于线框平面,MN 线与线框的边成45°角,E 、F 分别为PS 和PQ 的中点,则线圈中感应电流最大值出现在 ( ) A .P 点经过边界MN 时 B .E 点经过边界MN 时 C .F 点经过边界MN 时 D .Q 点经过边界MN 时5.如图5-1-5,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面,当棒下滑到稳定状态时,小灯泡获得的功率为P ,除灯泡外,其他电阻不计,要使稳定状态灯泡的功率变为2P,下列措施正确( )的是A .一个电阻为原来一半的灯泡B .把磁感应强度增为原来的2倍C .换一根质量为原来的2倍的金属棒D .把导轨间的距离增大为原来的21倍6.如图5-1-6,粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其线框的一边a 、b两点间的电势差大的是A C DM N a b c d图5-1-1B甲图5-1-2a bN图5-1-4图5-1-5图5-1-77.用单位长度电阻为R 0的电阻丝制成半径分别为2r 和r 的两只圆环,在它们的切点处剪断,形成很小一个间隙,再将大小圆环分别焊接起来形成如图5-1-10所示回路,现使两圆环处在同一平面内,垂直此平面加一个磁感应强度按B=kt 均匀增强、方向如图的匀强磁场,求图中间隙M 、N 点之间的电势差.8.如图5-1-8,在磁感应强度为B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m 的平行金属导轨MN 与PQ ,导轨的电阻忽略不计,在两根导轨的端点N 、Q 之间连接着一阻值R=0.3Ω的电阻,导轨上跨放着一根长l =0.2m ,每米长电阻r =2Ω的金属棒,与导轨正交放置,交点为c 、d ,当金属棒以速度v =4m/s 向左作匀速运动时,试求:⑴电阻中的电流大小和方向;⑵金属棒两端的电势差.9.如图5-1-9,匀强磁场中固定的金属棒框架ABC ,导线棒DE 在框架ABC 上沿图示方向匀速平移,框架和导体材料横截面积均相同,接触电阻不计,试证明电路中的电流恒定.10.如图5-1-10,长为l ,电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是l ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0. 5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面,现以向右恒定的外力F 使金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.⑴此满偏电表是什么表?说明理由. ⑵拉动金属棒的外力F 多大⑶若此时撤去外力 F ,金属棒的运动将逐渐慢下来,最终停止在导轨上,求从撤去外力到金属棒停止运动的过程中通过电阻的电量.11.如图5-1-11,MN 、PQ 为相距l 的光滑平行导轨,导轨平面与水平面夹角为θ,导轨处于磁感应强度为B 、方向垂直于导轨平面向上的匀强磁场中,在两导轨的M 、P 两端间接有一电阻为R 的定值电阻,质量为m 的导体棒由静止开始下滑,经一段时间到达位置cd 处,这一过程通过截面的电量为q ,回路中产生的内能为E ,设除R 外,回路其余电阻不计,求ab 通过位置cd 时回路的电功率.QR图5-1-6图5-1-8图5-1-9图5-1-10P Q图5-1-1112.如图5-1-12为某一电路装置的俯视图,mn 、xy 为水平放置的很长的平行金属板,两板间距为L ,板间有匀强磁场,磁感应强度为B ,裸导线ab 电阻为R 0,电阻R 1=R 2=R ,电容器电容C 很大,由于棒匀速滑行,一不计重力的带正电粒子以初速度v 0水平射入两板间可做匀速直线运动.问:⑴棒向哪边运动,速度为多大?⑵棒如果突然停止运动,则在突然停止运动时作用在棒上的安培力多大?5.2电磁感应中的力学问题例1 如图5-4固定在水平桌面上的金属框cdef 处在竖直向下的匀强磁场中,金属棒ab 搁在框架上可无摩擦地滑动,此时构成一个边长为L 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B⑴若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向;⑵在上述情况中,始终保持静止,当t =t 1s 末时需加的垂直于棒的水平拉力为多大? ⑶若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B 与t 的关系式)?例2 如图5-5电容为C 的电容器与竖直放置的金属导轨EFGH纸面向里,磁感应强度为B 的匀强磁场中,金属棒ab 且金属棒ab 的质量为m 、电阻为R ,金属导轨的宽度为L ,现解除约束让金属棒ab 开始沿导轨下滑,不计金属棒与金属导轨间的摩擦,求金属棒下落的加速度.例3 图5-6在倾角为θ的光滑斜面上,存在着两个磁感应强度相等的匀强磁场,d c ef图5-4图5-6图5-1-12方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,一个质量为m 、边长也为l 的正方形框(设电阻为r ),以速度V 进入磁场时,恰好做匀速直线运动,若当边到达gg '与ff '中间位置时线框又恰好做匀速运动,则⑴当边刚越过时,线框加速度的值为多少?⑵求线框从开始进入磁场到到达与中点过程中产生的热量是多少?5.2电磁感应中的力学问题1.如图5-2-1水平放置的光滑平行轨道左端与一电容器C 相连,导体棒ab 的 电阻为R ,整个装置处于竖直向上的匀强磁场中,开始时导体棒ab 向右做匀速运动;若由于外力作用使棒的速度突然变为零,则下列结论的有( )A .此后ab 棒将先加速后减速B .ab 棒的速度将逐渐增大到某一数值C .电容C 带电量将逐渐减小到零D .此后磁场力将对ab 棒做正功 2.如图5-2-2将铝板制成“U ”形框后水平放置,一质量为m 的带电小球用绝缘细线悬挂在框的上方,让整体在垂直于水平方向的匀强磁场中向左以速度v 匀速运动,悬线的拉力为T ,则A .悬线竖直,T=mgB .悬线竖直,T <mg( ) C .选择v 的大小,可以使T=0 D. 因条件不足,T 与的关系无法确定 3.如图5-2-3两个粗细不同的铜导线,各绕制一单匝矩形线框,线框面积相等,让线框平面与磁感线方向垂直,从磁场外同一高度开始同时下落,则( )A .两线框同时落地B .粗线框先着地C .细线框先着地D .线框下落过程中损失的机械能相同 4.如图5-2-4,CDEF 是固定的、水平放置的、足够长的“U ”型金属导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上架一个金属棒,在极短时间内给棒一个向右的速度,棒将开始运动,最后又静止在导轨上,则棒在运动过程中,就导轨光滑和粗糙两种情况比较 ( )A . 培力对做的功相等 B.电流通过整个回路所做的功相等 C.整个回路产生的总热量相等 D.棒的动量改变量相等5.用同种材料粗细均匀的电阻丝做成ab 、cd 、ef 三根导线,ef 较长,分别放在电阻可忽略的光图5-2-1图5-2-2B图5-2-3图5-2-4a b d c ef图5-2-5滑的平行导轨上,如图5-2-5,磁场是均匀的,用外力使导线水平向右作匀速运动(每次只有一根导线在导轨上),而且每次外力做功功率相同,则下列说法正确的是 ( ) A.ab 运动得最快 B.ef 运动得最快 C.导线产生的感应电动势相等 D.每秒产生的热量相等6.如图5-2-6甲,闭合线圈从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,在边刚进入磁场到边刚进入磁场的这段时间内,线圈运动的速度图象可能是图5-2-6乙中的哪些图( )7.如图5-2-7,在光滑的水平面上有一半径为r =10cm ,电阻R=1Ω,质量m =1kg 的金属圆环,以速度v =10m/s 向一有界磁场滑去,匀强磁场垂直纸面向里,B =0.5T ,从环刚进入磁场算起,到刚好有一半进入磁场时,圆环释放了3.2J 的热量,求:⑴此时圆环中电流的瞬时功率; ⑵此时圆环运动的加速度.8.如图5-2-8,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1=1m ,bc 边的边l 2=0.6m ,线框的质量m =1kg ,电阻R =0.1Ω,线框通过细线与重物相连,重物质量M =2kg ,斜面上ef 线(ef ∥gh )的右端方有垂直斜面向上的匀强磁场,B=0.5T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 线的距离s =11.4m ,(取g =10m/s 2),试求:⑴线框进入磁场时匀的速度v 是多少?⑵ab 边由静止开始运动到gh 线所用的时间t 是多少?9.如图5-2-9,两根光滑的平行金属导轨处于同一平面内,相距l =0.3m ,导轨的左端M 、N 用0.2Ω的电阻R 连接,导轨电阻不计,导轨上停放着一金属杆,杆的电阻r 为0.1Ω,质量为0.1kg ,整个装置处于竖直向下的匀强磁场中,磁感应强度B 为0.5T ,现对金属杆施加适当的水平拉力使它由静止开始运动,问:⑴杆应如何运动才能使R 上的电压每1s 均匀地增加0.05V ,且M 点的电势高于N 点? ⑵上述情况下,若导轨足够长,从杆开始运动起第2s 末拉力的瞬时功率多大?bcA B CDcd 图5-2-6甲乙图5-2-7图5-2-8图5-2-910.如图5-2-10,质量为m 、边长为L 的正方形线框,在有界匀强磁场上方h 高处由静止自由下落,线框的总电阻为R ,磁感应强度为B 的匀强磁场宽度为2L ,线框下落过程中,ab 边始终与磁场边界平行且处于水平方向,已知ab 边刚穿出磁场时线框恰好做匀速运动,求:⑴cd 边刚进入磁场时线框的速度; ⑵线框穿过磁场过程中,产生的焦耳热.11.如图5-2-11, 电动机用轻绳牵引一根原来静止的长l =1m ,质量m =0.1kg 的导体棒AB ,导体棒的电阻R =1Ω,导体棒与竖直“∏”型金属框架有良好的接触,框架处在图示方向的磁感应强度为B =1T 的匀强磁场中,且足够长,已知在电动机牵引导体棒时,电路中的电流表和电压表的读数分别稳定在I=1A 和U =10V ,电动机自身内阻r =1Ω,不计框架电阻及一切摩擦,取g =10m/s 2,求:导体棒到达的稳定速度?12.如图5-2-12,光滑弧形轨道和一足够长的光滑水平轨道相连,水平轨道上方有一足够长的金属杆,杆上挂有一光滑螺线管,在弧形轨道上高为H 的地方无初速释放一磁铁(可视为质点),下滑至水平轨道时恰好沿螺线管的轴心运动,设的质量分别为M 、m ,求:⑴螺线管获得的最大速度⑵全过程中整个电路所消耗的电能5.3 交变电流与电磁波例1 如图5-7,正方形线框abcd 边长l =0.2m ,每边电阻均为1Ω,在磁感应强度B =3T 的匀强磁场中绕垂直于磁场的轴cd 顺时针匀速转动,转速为2400r/min ,t =0时,线框平面与磁场垂直,电阻R 的阻值也是1Ω,交流电流表与交流电压表为理想电表,求:⑴电压表和电流表的示数⑵线框转动一周时间里电流所做的功L图5-2-10图5-2-12图5-7B图5-2-11例2 内阻为1Ω的发电机供给一学校照明用电,如图5-8,升压变压器匝数之比为1∶4,降压变压器匝数之比为4∶1,输电线总电阻R =4Ω,全样共有32个班,每班有“220V ,40W ”的灯泡6盏,若保证全部电灯正常发光,则:⑴发电机的输出功率多大? ⑵发电机电动势多大? ⑶输电效率多少?⑷若使用灯数减半并正常发光,发电机的输功率是否减半?例3 如图5-9甲,A 、B 表示真空中水平放置的相距为d 的平行金属板,板长为L ,两板加电压后板间电场可视为匀强电场,如图5-9乙,表示一周期性的交变电压波形,在t =0时,将图5-9乙的交变电压加在两板间,此时恰有一质量为m 、电量为q 的粒子在板间中央沿水平方向以速度v 0射入电场,若此粒子在离开电场时恰恰相反能以平行于A 、B 两板的速度飞出,求:⑴两板上所加的交变电压的频率应满足的条件 ⑵该交变电压的值U 0的取值范围(忽略粒子的重力)5.3 交变电流与电磁波1.如图5-3-1,在内壁光滑、水平放置的玻璃圆环内有一直径略小于环口径的带正电的小球,正以速率沿逆时针方向匀速转动,若在此空间突然加上方向坚直向上,磁感应强度为随时间成正比例增加的变化磁场,设运动过程中小球的带电量不变,那么( )A .小球对玻璃环的压力不断增大B .小球受到的磁场力不断增大C .小球先沿逆时针方向做减速运动,过一段时间性后沿顺时针方向做加速运动D .磁场力对小球一直不做功图5-8U -U A Bv 0甲 乙图5-9图5-3-12.如图5-3-2甲,A 、B 为两个相同的环形线圈,共轴并靠近放置,线圈中通有如图乙的电流,则( )A .t 1到t 2时间内A 、B 两线圈相互吸引 B .在t 2到t 3时间内A 、B 两线圈相互排斥C .t 1时刻两线圈间的作用力为零D .t 2时刻两线圈间的吸引力最大3.家用电子调光灯的调光原理旧用电子线路将输入的正弦交流电压的波形截去一部分来实现的,由截去部分的多少来调节电压,从而实现灯光的可调,比过去用变压器调压方便且体积小,某电子调光灯经调整后电压波形如图5-3-3所示,则灯泡两端的电压为 ( )A .22U m B .42U m C .21U m D .41U m4.矩形线圈绕垂直于匀强磁场并位于线圈平面内的固定轴转动,线圈中的感应电动势e 随时间t的变化规律如图5-3-4所示,下列说法正确的是( )A .t 1时刻通过线圈的磁通量为零B .t2时刻通过线圈的磁通量绝对值最大C .t 3时刻通过线圈的磁通量变化率的绝对值最大D.每当e 的方向变化时,通过线圈的磁通量绝对值都为最大5.如图5-3-5,理想变压器的副线圈上通过输电线接有两个相同的灯泡L 1和L 2,输电线的等效电阻为R ,开始时,开关S 断开,当S 接通时,以下说法正确的是 ( )A .副线圈两端M 、N 的输出电压减小B .副线圈输电线等效电阻R 上的电压增大C .通过灯泡L 1的电流减小D .原线圈中的电流增大6.如图5-3-6,在绕制变压器时,某人误将两个线圈绕在图示变压器铁芯的左右两个臂上,当通交变电流时,每个线圈产生的磁通量都只有一半通过另一个线圈,另一半通过中间的臂,已知线圈1、2的匝数之比为N 1∶N 2=2∶1,在不接负载的情( )A .当线圈1输入电压22V0时,线圈2的输出电压110VB .当线圈1输入电压220V 时,线圈2的输出电压55VC .当线圈2输入电压110V 时,线圈1的输出电压220VD .当线圈2输入电压110V 时,线圈1的输出电压110V7.下列关于电磁波的说法正确的是 ( )A .电磁波是由电磁场由发生区域向远处的传播B .电磁波在任何介质中的传播速度均为3.00×108m/sC .电磁波由真空进入介质传播时,波长将变短D .电磁波不能产生干涉、衍射现象8.如图5-3-7,理想变压器有两个副线圈,匝数分别为n 1和n 2,所接负载4R 1=R 2,当只闭合图5-3-2U 图5-3-4图5-3-5图5-3-6图5-3-7S 1时,电流表示数为1A ,当S 1和S 2都闭合时,电流表示数为2A ,则n 1∶n 2 ( ) A .1∶1 B .1∶2 C .1∶3 D .1∶49.如果你通过同步卫星转发的无线电话与对方通话,则在你讲完话后,至少要等多长时间才能听到对方的回话?(已知地球的质量M =6.0×1024kg ,地球的半径R =6.4×106m ,万有引力恒量G =6.67×10-11N ·m 2/kg 2)10.如图5-3-8,一个半径为r 的半圆形线圈,以直径ab 为轴匀速转动,转速为n ,的左侧有垂直纸面向里的匀强磁场(与垂直),磁感应强度为B ,M 和N 是两个集流环,负载电阻为R ,线圈、电流表和连接导线电阻不计,求:⑴从图示位置起转过1/4转时间内负载电阻R 上产生的热量 ⑵从图示位置起转过1/4转时间内通过负载电阻R 上产生的电量 ⑶电流表的示数11.某发电厂通过两条输电线向远处的用电设备供电,当发电厂输出的功率为P 0时,额定电压为U 的用电设备消耗的功率为P 1,若发电厂用一台升压变压器T 1先把电压升高,仍通过原来的输电线供电,到达用电设备所在地,再通过一台降压变压器T 2把电压降到用电设备的额定电压供用电设备使用,如图5-3-9,这样改变后,当发电厂输出的功率仍为P 1,用电设备可获得的功率增加至P 2,试求所用升压变压器的原线圈与副线圈的匝数比N 1/N 2以及降压变压器T 2N 3/N 4各为多少?12.如图5-3-10,在真空中速度为v =6.4×107m/s 电子束连续地射入两平行 极板之间,极板长度为l=8.0×10-2m ,间距为d =5.0×10-3m ,两极板不带电时,电子束将沿两极板间的中线通过,在两极板上加一切50H Z 的交变电压u =U 0sin ωt ,如果所加电压的最大值U 0超过某一值U C 时,将开始出现以下现象:电子束有时通过两极板;有时间断,不能通过.求:⑴U C 的大小.⑵U 0为何值时才能使通过的时间(△t )通跟间断的时间(△t )断之比为2∶1参考答案T 2 图5-3-8图5-3-9v图5-3-105.1 例题1、、37CBlv 右极板3、Bdv ,R 76 N →F 、R 7 F →E , 7Bdv, 9∶2; 习题 1、BCD 2、A 3、D 4、AB 5、CD 6、B 7、2k πr 2 8、0.4A N →Q ,0.32v 9、略 10、电压表,1.6N ,0.25C 11、2B l gqsin θ-mREl B 222 12、右、Rv R R 00)(+,200222R R R Rv L B +;5.2 例题1、r kL 2 b →a ,(B+kt 1)rkL 3,vtL BL + 2、222L B C m mg + 3、3gsin θ,23215sin 23mv mgL +θ; 习题 1、BD 2、A 3、A 4、CD 5、BD 6、ACD 7、0.36W ,0.6m/s 2 方向向左 8、6m/s ,2.5s 9、向右以0.33m/s 2的加速度匀加速运动,0.056W 10、gL L B R g m 244222-,mg (h+3L )-442232L B R g m 11、4.5m/s 12、mM gHm +2,mM MmgH +5.3 例题 1、3.05V 、3.05A ,3.3J 2、5424W ,322V ,97%,不是减半 3、f=Lnv 0(n=1、2、3……),U 0≤222qL mv nd (n=1、2、3……); 习题 1、CD 2、ABC 3、C 4、D 5、BCD 6、BD 7、B 8、AC 9、0.48s 10、Rnr B 8424π,RBr 22π,RnBr 222π 11、1020P P P P --,201012P P P P P P -- 12、91V ,105V ;-1s。
电磁感应现象中的电路问题
电路问题在电磁感应现象中有感应电动势产生,假设电路是闭合的,电路中就产生感应电流,这类电路问题与直流电路有着相同的规律,闭合电路欧姆定律、串并联电路规律都可应用。
在电磁感应现象中,产生感应电动势的那局部导体相当于电源,这个“电源”不象电池那么直观,比拟隐蔽,如果不加注意,就会出现一些不必要的错误。
所以在电磁感应现象中,正确分析相当于电源的那局部导体,画出等效的直流电路,是解决问题的关键。
例.把总电阻为2R的均匀电阻丝焊接成•半径为a的圆环,水平固定在竖直向下的磁感强度为B的匀强磁场中,如图1所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的电接触.当金属棒以恒定速度V向右移动经过环心O(1)棒上电流的大小和方向,及棒两端的电压UMN•(2)在圆环和金属棒上消耗的总热功率.解析:棒右移时,切割磁感线,产生感应电动势.此时由金属棒作圆环供电,其等效电路如图2所示,接着就可按稳恒电路方法求解.(1)金属棒经过环心时,棒中产生的感应电动势为E=B2cιv=2Bav此时,圆环的两局部构成并联连接,并联局部的电阻为R并二g∙由右手定那么可判断出金属棒上的电流方向由N→M。
棒两端的电压,就是路端电压,UMN=/R井=/^=|瓦(2)根据能的转化和守恒,圆环和金属棒上消耗的总功率等于电路中感应电流的电功率,即设左侧回路中电流为/,由欧姆定律/=6=处电阻R上的电流方向为f-e,那么: 时,求:由全电路欧姆定律得流过金属棒的电流I-2E^BavP=IE= SB2a2v2 3R例2.如图3所示,两个电阻的阻值分别为R和2R,其不计,电容器的电容量为3匀强磁场的磁感应强度为B,直纸面向里,金属棒ab、cd的长度均为/,当棒ab以速度切割磁感应线运动,当棒Cd以速度2u向右切割磁感应线运电容C的电量为多大?哪一个极板带正电?解析:金属棒ab、Cd切割磁感线运动时,分别产电动势山、E2,画出等效电路如图4所示:a2RCXXX×1X >£_2v×由法拉第电磁感应定律:E1=Blv f E2=ZBlv余电阻方向垂酎向左动时,生感应E∣-u电容器C充电后相当于断路,右侧回路中没有电流,那U RUH=-IR= BlvT为电源,向XX XV.X应电流不变,B 项错;当正方形线框下边离开磁场,上边未进入磁场的过程比正方形线框上边进入磁场过程中,磁通量减少的稍慢,故这两个过程中感应电动势不相等,感应电流也不相等,D 项错,故正确选项为C.二、图像变换问题例3矩形导线框a6cd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B 随时间变化的规律如下图.假设规定顺时针方向为感应电流I 的正方向,图7中正确的选项是解析:O-IS 内6垂直纸面向里均匀增大,那么由楞次定律及法拉笫电磁感应定律可得线图中产生恒定的感应电流,方向 2-j⅛~1.S l 为逆时针方向,排除A 、 —C 选项;2s-3s 内,B垂直纸面向外均匀增大,同理可得线圈中产生的感应电流方向为顺时针方向,排除B 选项,D 正确.处理有关图像变换的问题,首先要识图,即读懂图像表示的物理规律或物理过程,然后再根据所求图像与图像的联系,进行图像间的变换.三、图像分析问题例4如下图,一对平行光滑轨道放置在水平面上,两轨道间距1=0.20m,电阻后1.OQ ;有一导体杆管止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=O.5T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力尸沿轨道方向拉杆,使之做匀加速运动,测得 力尸与时间t 的关系如下图.求杆的质量0和加速度&解析:导体杆在轨道上做初速度为零的加速直线运动,用P 表示瞬时速度,t 表示时间,那么杆切割磁感线产生的感应电动势为:E=Blv=Blat 9E闭合回路中的感应电流为:/=-,R由安培力公式和牛顿笫二定律得:F-llB=ma 9,县r B2I 2得:F=ma H ----------- at.R在图像上取两点:(0,1)(28,4)代入解方程组得:a-∖0m∕S 2,tn=0.∖kg,电容器C 的电压UC=UCE=UCd-Uef=誓电容C 的电量为Q=CUC=告"电容器右极板电势高,所以右板带正电。
电磁感应中的电路问题专题练习(含答案)
电磁感应中的电路问题专题练习1.用均匀导线做成的正方形线圈边长为I,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以普的变化率增强时,则下列说法正确的是()A.线圈中感应电流方向为adbcaB.线圈中产生的电动势E宅• fC.线圈中a点电势高于b点电势D.线圈中a,b两点间的电势差为芸£2.如图所示,用粗细相同的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a,I b,则l a :A.1B.1 : 2C.1D.不能确定3.在图中,EF,GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体棒,有匀强磁场垂直于导轨平面.若用l i和|2分别表示图中该处导线中的电流,则当AB棒(D )X *X *D.加速滑动时,I4. 如图所示,导体棒在金属框架上向右做匀加速运动,在此过程中V X£亠A. 电容器上电荷量越来越多B. 电容器上电荷量越来越少C. 电容器上电荷量保持不变D. 电阻R 上电流越来越大度进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M,N 两点间的电压分别为 gUsU c 和U.下列判断正确的是()A. U a VUvUvUB.U a VUvUvUC. U a =U=U=UD.U b <U a <L l <L lA.匀速滑动时,I 1 = 0,1 2 = 0B.匀速滑动时,I i M0,I 2M0C.加速滑动时,I 1 = 0,1 2 = 0x MX 枫* X鼠K 具 K K5.用相同导线绕制的边长为 L 或2L 的四个闭合导体线框,以相同的速h N6.(多选)如图所示,MN,PQ是间距为L的平行光滑金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M,P间接有一阻值为R的电阻.一根与导轨接触良好、有效阻值为孚的金属导线ab 垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,不计导轨电阻,则()X X X4 KP X x nAA.通电电阻R的电流方向为—R-MB.a,b两点间的电压为BLvC.a端电势比b端高D.外力F做的功等于电路中产生的焦耳热7.(多选)如图所示,电阻为r的均匀金属圆环放在图示的匀强磁场中磁感应强度为B,圆环直径为L,电阻为才长也为L的金属棒ab在圆环上从右向左以V0匀速滑动并保持与环良好接触.当ab运动到与环直径重合瞬间,棒两端电势差大小及电势高低为()A.电势差为警B.电势差为警C.a点电势比b点高D.b点电势比a点高8.(多选)半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为忠圆环水平固定放置,整个内部区域分布着竖直向下始,杆的位置由0确定,如图所示.则( )"冰:*DA. 0 =0时,杆产生的电动势为 2BavB. 0 =■时,杆产生的电动势为遐BavC. 0 =0时,杆受的安培力大小为磊盂D. 0违时,杆受的安培力大小为盈詁9. 以下各种不同的情况中R=0.1 Q ,运动导线长 动的速度都为v=10 m/s.除电阻R 外,其余各部分电阻均不计.匀强磁 场的磁感应强度B=0.3 T.试计算各情况中通过每个电阻 R 的电流大小和方向.画m10. 面积S=0.2 m 2,n=100匝的圆形线圈,处在如图所示的磁场内,磁感应强度随时间t 变化的规律是B=0.02t(T),R=3 Q ,C=30卩F,线圈电RttXX—Ir —V y■―叫厂H7(甲}7A的匀强磁场,磁感应强度为B,杆在圆环上以速度 v 平行于直径CD 向 右做匀速直线运动,杆始终有两点与圆环良好接触 ,从圆环中心0开1=0.05 m,做匀速运阻r=1 Q ,求:磁场垂直,长为L 、电阻为扌的金属杆0A 一端在圆心,另一端在环上, 并可沿圆环转动.阻值为詐勺电阻一端与金属杆的0端相连,另一端与 环上C 点相连,若杆以角速度3逆时针转动,那么,阻值宇的电阻上的电—流在什么范围内变化?C12.(2016南昌调研)如图所示,匝数n=100匝、面积S=0.2 m 2、电阻 r=0.5 Q 的圆形线圈MN 处于垂直纸面向里的匀强磁场内,磁感应强度随时间按B=0.6+0.02t(T)的规律变化.处于磁场外的电阻R=3.5 Q ,R 2=6 Q ,电容C=30 a F,开关S 开始时未闭合,求:(1)闭合开关S 后,线圈两端M,N 两点间的电压U N 和电阻R 消耗的电功率;(2)闭合开关S 一段时间后又断开S,S 断开后通过R 的电荷量. 1、解析:根据楞次定律可知,选项A 错误;线圈中产生的电动势E 罟二¥ .等选项B 正确;线圈中的感应电流沿逆时针方向,所以a 点电势低 于b 点电势,选项C 错误;线圈左边的一半导线相当于电源,右边的一 半相当于外电路,a,b 两点间的电势差相当于路端电压,其大小为(1)通过R 的电流方向和 X K H4s 内通过导线横截面的电荷量;⑵电容器的电荷量.11.如图所示,半径为L 、电阻为R 的金属环与磁感应强度为 B 的匀强fLU==- •詈,选项D错误.2、解析:产生的感应电动势为E=Blv,由闭合电路欧姆定律得匸竽,又I b=2l a,由电阻定律知R=2R,故I a : I b=1 : 1.选项C正确.3、解析:导体棒水平运动时产生感应电动势,对整个电路,可把AB棒看做电源,等效电路如图所示.当棒匀速滑动时,电动势E不变,故I 1工0,1 2=0.当棒加速运动时,电动势E不断变大,电容器不断充电,故11工0,1 2工0.选项D正确.4、解析:导体棒匀加速运动,产生电动势越来越大,对电容器充电形成充电电流,电容器带电荷量均匀增大,充电电流保持不变,故选项A 正确.5、解析:每个线框进入磁场的过程中,仅有MN边做切割磁感线运动产生感应电动势,其余三条边是外电路,设长度为L的导线电阻为R,边长为L的导线切割磁感线产生感应电动势为E,由于以相同速度进入磁场,故边长为2L的导线切割磁感线产生感应电动势为2E,则U= 寻• 3R=E;Ub€ • 5R=E;U c罟-6R=E;U d罟• 4R=E,U a<U<U<U,选项B正确.6、解析:根据楞次定律或右手定则可判断出,通过电阻R的电流方向为MK R T P,选项A错误;导线ab相当于电源,电源电压E=BLv,内阻r=£所以a,b两点间的电压为路端电压,即U ab誉,选项B错误;在电源内部,电流从bTa,所以a 端电势比b 端高,选项C 正确;因为导线ab 在水平外力F 的作用下做匀速运动,所以安培力与外力F 等大反向,安培力做的功与外力F 做的功大小相等,又因为电路中产生的焦耳热 等于安培力做的功,所以电路中产生的焦耳热也等于外力 F 做的功, 选项D 正确.7、解析:当ab 与环直径重合时,匸驚,a,b 两点间电势差大小U=7,得U 營 由右手定则判断b 点电势高,选项BQ 正确.8解析:开始时刻,感应电动势E i =BLv=2Bav,故选项A 正确;0 =时,E 2=B- 2acos 夕-v=Bav,故选项 B 错误;由 L=2acos 0 ,E=BLv,□l=£R=R)[2acos 0 +( n +2 0 )a],得在 0 =0 时,F=甞諜故选项 C错误;0 =时F 羞侖,故选项D 正确.9、解析:题图(甲)中,两导线切割磁感线,产生的感应电流相互抵消,流过电阻R 的电流为0.题图(乙)中,两导线切割磁感线,均产生顺时针方向的电流,流过R 的 电流方向向右,大小为匸誓夕警y A=3 A.题图(丙)中,一导线切割磁感线,两外电阻并联,由右手定则知,流过 两电阻R 的电流方向向下,大小均为 冃x p = X 雾=X 哼严卯A=•兰 7ELIT1.5 A.题图(丁)中,一导线切割磁感线,内阻为R,两外电阻并联,由右手定则, 流过内阻R的电流方向向上,流过外电阻R的电流方向向下.流过内阻R的电流大小为I乎凸吒唸A=1 A,流过外电阻R的电流均为扌,即0.5 A.答案:见解析10、解析:(1)由法拉第电磁感应定律可得出线圈中的感应电动势,由欧姆定律可求得通过R的电流.由楞次定律可知电流的方向为逆时针通过R的电流方向为b-a,q=lt=±t=n^t=n 證=0.1 C.⑵ 由E二厝二n^=100X 0.2 X 0.02 V=0.4 V,二器A=0.1 A,U=L R=IR=0.1 X 3 V=0.3 V,-6 -6Q=C C=30X 10 X 0.3 C=9 X 10 C.答案:(1)b -a 0.1 C (2)9 X 10-6 C 11、解析:A在C点时金属圆环未接入电路中,则外电阻最小,如图所一 L LU 04沁5 I 2 示,E=BL • 二拒3 L ,c当A在C点正上方时环的电阻最大,外电阻最大,I『苣卫1 min-胡+1= .答案:竺?〜竺仝口木• 5左3住12、解析:内电路分析:圆形线圈构成内电路,由B=0.6+0.02t(T)知葺=0.02 T/S.外电路分析:S闭合后,R I,R2串联,电容器两端的电压同R两端的电压,U MN 为路端电压.(1)线圈中的感应电动势E咗二瞪S=100X 0.02 X 0.2 V=0.4 V,通过线圈的电流匸諾不春去:A=0.04 A,线圈两端M,N两点间的电压U MN=E-Ir=0.4 V-0.04 X 0.5 V=0.38 V.电阻R消耗的电功率R=I2R=0.042X 6 W=9.6X 10-3 W.(2)闭合开关后,电路稳定U=5=|R2=O.24 V,Q=C C=7.2 X 10-6 C.S断开后,电容器放电,通过R2的电荷量^ Q=7.2X 10-6 C. 答案:(1)0.38 V 9.6 X 10-3 W (2)7.2 X 10-6 C。
高中物理精品课件: 专题 电磁感应中的电路、电荷量问题
5、若n匝线框变速进入磁场?a
E aD
学生活动一:
如图,边长为L 的n匝正方形金属金属线圈abcd置 于垂直线圈平面的匀强磁场中,线圈总电阻为R, 用导线e、f连接一阻值也为R的电阻。磁场强度B 随时间的变化关系如图所示,正方向为垂直线圈 平面向外。
1、在2t1-3t1时间内,e、f哪端电势高? 2、在0-t1时间内,通过电阻R的电荷量?
应用:
如图,边长为L 的n匝正方形金属金属线圈abcd置 于垂直线圈平面的匀强磁场中,线圈总电阻为R, 用导线e、f连接一阻值也为R的电阻。磁场强度B 随时间的变化关系如图所示,正方向为垂直线圈 平面向外。
3、在0-2t1时间内,通过电阻R的电荷量? 4、在t1-3t0
Br 2
2
Br 2
E n n
t
2
3nBr 2
6
(2)通过导线横截面的电荷量是多少?
Q
It
E
t
n
t
t
n
n
Br 2
R
R
R
2R
2、线框进入磁场时通过横截面的电荷时q.
3、离开磁场时?
F CB
a E aD
思考:
❖ 一正方形线框边长为L,以速度v匀速穿过如图 匀强磁场,正方形的边长小于磁场宽度,每条 边电阻都为R。
1、当CD边刚进入磁场,整个线框进入磁场,CD边 刚离开时,试分析CD两点间的电压U。
2、线框进入磁场时通过横截面的电荷时q.
浙江高考(2022年1月): 学生活动二:
浙江高考(2022年1月):
浙江高考(2021年1月):
某登月飞船正在月表 着陆,模型简化如图: 飞船内的装置金属船 舱、金属导轨、永磁 体固定在一起,向下 运动,已知船舱电阻 为3r。静止在地上的 “∧”型线框其7条边 的边长均为L,电阻均 为r。 试画出等效电路。
电磁感应中的电路问题
量发生变化,在该回路中就要产生感应电流•可以判断感应电流的方向、大小等问题.
(2)分析基本方法:
1当部分导体在磁场中做切割磁感线运动时,产生感应电动势和感应电流用右手定则判
定:
判定原则:
a.感应电流方向的判定:四指所指的方向为感应电流的方向;
时刻开始线框匀速横穿两个磁场区域。以abcdef为线框中有电动势的正方
向。以下四个£-t关系示意图中正确的是()
考点分析本题考查了电磁感应电路图象问题的分析。
解题思路设磁感应强度为B,线框速度为v,当只有bc边进入PQ磁场时,根据法拉
第电磁感应定律,有iBlv,根据右手定则判断出电流电流为c b,与题中规定的正方
例2: (07。山东理综卷)用相同导线绕制的边长为L或2L的四个闭合导体线框,以
相同的速度匀速进入右侧匀强磁场,如图所示。在每个线框进入磁场的过程中, 间的电压分别为U、Ub、UC和Ud。下列判断正确的是()
A.
B。
Co
D。UbUaUdUc
考点分析 本题考查了电磁感应中闭合电路欧姆定律的应用。
解题思路 线框进入磁场后切割磁感线,a、b产生的感应电动势是c、d电动势的一半。
电磁感应中的电路问题
1.考点分析:
电磁感应中的电路问题是综合性较强的高考热点之一,该内容一般综合法拉第电磁感应定
律、楞次定律、直流电路知识、磁场知识等多个知识点,还可以结合图象进行考查,解答过 程中对考生的综合应用能力要求较高。
2.考查类型说明:
以选择题(图象类)和计算题为主,主要考查法拉第电磁感应定律及电路的分析。
向相反,电波为负;当bc边进入QF磁场区域时,de边进入PQ磁场区域,分别产生感应电
电磁感应中的电路问题详解
电磁感应中的电路问题详解知识点回顾电磁感应现象利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。
(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
磁通量磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量。
定义式:Φ=BS。
如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
楞次定律感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的综合问题 1 电磁感应中的电路问题
1、解决电磁感应中的电路问题三步曲
(1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,首先应该确定其电阻,就是内阻!再利用法拉第电磁感应定理或者导体棒平动,转动切割磁感线的公式(这三个公式你会写吗?)求解感应电动势的大小,最后再利用右手拇因食果或楞次定律判断感应电动势的方向.
(2)分析电路结构(内、外电路及外电路的串、并联关系),必须画出等效电路图.
(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解.
注:“电源”两端的电压为路端电压,而不是感应电动势.常见的路端电压的三个公式:U= = = .
例题 1.用一根横截面积为S、电阻率为ρ的硬质导线做成一个半径为r的圆环,ab为圆环的一条直径。
如图所示,在ab的左侧存在一个均匀变化的匀强磁场,磁场垂直圆环所在平面,方向如图,磁感应强度大小随时间的变化率
∆
B=
∆(k<0)。
则( )
t
k
A.圆环中产生(填“逆时针”或者“顺时针”)方向的感应电
流
B.圆环具有(填“扩张”或“收缩”)的趋势
C.圆环中感应电流的大小为
D.图中a、b两点间的电势差的大小U=
例题 2.如图所示,MN、PQ为光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50cm,导体棒AB在两轨道间的电阻为r=1Ω,且可以在MN、PQ上滑动,定值电阻R1=3Ω,R2=6Ω,整个装置放在磁感应强度为B=1.0T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=6m/s速度做匀速运动.求:
(1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向.
(2)导体棒AB两端的电压UAB.(如果AB的顺序颠倒会怎么样?)
(3)导体棒AB受到的安培力多大.
例题 3.(多选)如图所示,三角形金属导轨EOF上放一金属杆AB,在外力作用下使AB保持与OF垂直,以速度v从O点开始右移,设导轨和金属棒均为粗细相同的同种金属制成,则下列说法正确的是()
A. 电路中的感应电动势大小不变
B. 电路中的感应电动势逐渐增大
C. 电路中的感应电流大小不变
D. 电路中的感应电流逐渐减小
例题 4.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a,
磁感应强度的大小为B.一边长为a、电阻为4R的正方形均匀导
线框ABCD从图示位置沿水平向右方向以速度v匀速穿过磁场区
域,在下图中线框A、B两端电压UAB与线框移动距离x的关系图
象正确的是()A.B.C.
D . 1、粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )
2、如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R 2
的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )
A.Bav
3 B.Bav
6 C.2Bav 3 D .Bav
3、(多选)如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接
触良好;导轨所在平面存在磁感应强度大小为B =0.5
T 、方向竖直向下的匀强磁场.下列说法中正确的是
( )
A .导体棒ab 中电流的流向为由b 到a
B .cd 两端的电压为1 V
C .de 两端的电压为1 V
D .fe 两端的电压为1 V
4、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与
导轨接触良好、有效阻值为R 2
的金属导线ab 垂直导轨放置,并在水平外力F 的
作用下以速度v向右匀速运动,则(不计导轨电阻)( )
A.通过电阻R的电流方向为P→R→M
B.a、b两点间的电压为BLv
C.a端电势比b端电势高
D.外力F做的功等于电阻R上产生的焦耳热
5、如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B.电容器的电容为C,除电阻R外,导轨和导线的电阻均不计.现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时( ) A.电容器两端的电压为零
B.电阻两端的电压为BLv
C.电容器所带电荷量为CBLv
D.为保持MN匀速运动,需对其施加的拉力大小为B2L2v R
6、(多选)如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd,现将导体框分别朝两个方向以v、3v速度匀速拉出磁场,则导体框从两个方向移出磁场的两过程中 ( )
A.导体框中产生的感应电流方向相同
B.导体框中产生的焦耳热相同
C.导体框ad边两端电势差相同
D.通过导体框截面的电荷量相同
7、两根平行的长直金属导轨,其电阻不计,导线ab、cd跨在导轨上且与导轨接触良好,如图所示,ab的电阻大于cd的电阻,当cd在外力F1(大小)的作用下,匀速向右运动时,ab在外力F2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab、U cd是导线与导轨接触间的电势差)( )
A.F1>F2,U ab>U cd B.F1<F2,U ab=U cd
C.F1=F2,U ab>U cd D.F1=F2,U ab=U cd
8、把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水
平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,
一长度为2a、电阻等于R、粗细均匀的金属棒MN放在圆环上,
它与圆环始终保持良好的接触.当金属棒以恒定速度v向右移动经过环心O时,求: (1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环和金属棒上消耗的总热功率.
9、如图4(a)所示,水平放置的两根平行金属导轨,间距L=0.3 m,导轨左端连接R=0.6 Ω的电阻,区域abcd内存在垂直于导轨平面B=0.6 T的匀强磁场,磁场区域宽D=0.2 m.细金属棒A1和A2用长为2D=0.4 m的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r=0.3 Ω.导轨电阻不计.使金属棒以恒定速度v=1.0 m/s沿导轨向右穿越磁场.计算从金属棒A1进入磁场(t=0)到A2离开磁场的时间内,不同时间段通过电阻R的电流强度,并在图(b)中画出.
1、B
2、A
3、BD
4、C
5、C
6、AD
7、D
8、(1)4Bav
3R
,从N流向M
2Bav
3
(2)
8B2a2v2
3R
9、
U BL (2)
U2
R
(3)
BLUd
R
10、(1)。