初二希望杯培训题

合集下载

历届希望杯初二试题及答案

历届希望杯初二试题及答案

历届希望杯初二试题及答案一、选择题(每题5分,共20分)1. 下列哪个数不是质数?- A. 2- B. 3- C. 4- D. 5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8答案:A3. 一个数的平方根是4,这个数是多少?- A. 16- B. 8- C. 4- D. 2答案:A4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?- A. 25π- B. 50π- C. 100π- D. 200π答案:B二、填空题(每题3分,共15分)1. 一个数的立方根是2,这个数是______。

答案:82. 如果一个数的绝对值是5,那么这个数可能是______或______。

答案:5,-53. 一个数的倒数是1/4,这个数是______。

答案:44. 一个圆的直径是10厘米,那么它的半径是______厘米。

答案:55. 一个直角三角形的两个锐角的度数之和是______度。

答案:90三、解答题(每题10分,共30分)1. 一个长方形的长是宽的两倍,如果长是10厘米,求这个长方形的面积。

答案:首先,我们知道长方形的宽是长的一半,即5厘米。

长方形的面积是长乘以宽,所以面积是10厘米乘以5厘米,等于50平方厘米。

2. 一个数列的前三项是2,4,8。

如果这个数列是一个等比数列,求第四项。

答案:等比数列的每一项都是前一项的固定倍数。

这里,每一项都是前一项的2倍。

所以,第四项是8乘以2,等于16。

3. 一个水池的容积是100立方米,如果每小时流入水池的水是5立方米,求需要多少小时才能填满水池。

答案:要填满100立方米的水池,每小时流入5立方米,需要的时间是100除以5,等于20小时。

结束语希望杯数学竞赛不仅考查学生的数学知识,更注重考查学生的逻辑思维和解决问题的能力。

通过这样的竞赛,学生能够更好地理解数学知识,提高自己的数学素养。

初二希望杯试题及答案

初二希望杯试题及答案

初二希望杯试题及答案一、选择题(每题2分,共20分)1. 地球的自转周期是多久?A. 24小时B. 48小时C. 72小时D. 96小时答案:A2. 下列哪种元素的化学符号是“Fe”?A. 铜B. 铁C. 锌D. 铅答案:B3. 以下哪个国家位于亚洲?A. 巴西B. 阿根廷C. 印度D. 澳大利亚答案:C4. 光年是哪种单位?A. 长度B. 质量C. 时间D. 温度答案:A5. 牛顿第一定律描述的是哪种现象?A. 物体的惯性B. 物体的加速度C. 物体的重力D. 物体的浮力答案:A6. 以下哪种植物属于被子植物?A. 蕨类B. 苔藓C. 藻类D. 裸子植物答案:A7. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺答案:C8. 以下哪种动物属于哺乳动物?A. 鸟B. 鱼C. 蜥蜴D. 鸭嘴兽答案:D9. 世界上最深的海沟是?A. 马里亚纳海沟B. 亚丁湾C. 红海D. 地中海答案:A10. 以下哪种疾病是由病毒引起的?A. 疟疾B. 破伤风C. 流感D. 肺炎答案:C二、填空题(每题2分,共20分)1. 地球的赤道周长大约是________千米。

答案:400752. 细胞的基本结构包括细胞膜、细胞质和________。

答案:细胞核3. 人体正常体温大约是________摄氏度。

答案:374. 光的三原色是红、绿、________。

答案:蓝5. 世界上最大的淡水湖是________。

答案:苏必利尔湖6. 植物通过________进行光合作用。

答案:叶绿体7. 人体最长的骨头是________。

答案:股骨8. 世界上最大的沙漠是________。

答案:撒哈拉沙漠9. 世界上最深的湖泊是________。

答案:贝加尔湖10. 世界上最大的珊瑚礁是________。

答案:大堡礁三、简答题(每题10分,共40分)1. 请简述光合作用的过程。

答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为有机物(如葡萄糖)和氧气的过程。

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二希望杯数学竞赛是一项面向中学生的数学竞赛活动,旨在激发学生学习数学的兴趣,培养学生的数学思维能力。

以下是一份初二希望杯试题及答案的样例,供参考。

一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 2/3答案:B2. 如果一个等腰三角形的底边长为6,腰长为5,那么它的周长是多少?A. 16B. 17C. 18D. 19答案:C3. 一个数的平方根是它本身,这个数是?A. 0C. -1D. 以上都是答案:A4. 一个数的相反数是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 0D. 非负数答案:D6. 一个数的倒数是它本身,这个数是?A. 1B. -1C. 0D. 以上都不是答案:A和B7. 一个数的立方是它本身,这个数是?B. 1C. -1D. 以上都是答案:D8. 一个数的平方是它本身,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A和B9. 一个数的绝对值是它的相反数,这个数是?A. 正数B. 负数C. 0D. 非负数答案:B和C10. 一个数的平方根是它的相反数,这个数是?A. 0B. 1C. -1D. 以上都不是答案:A和C二、填空题(每题3分,共30分)1. 一个数的平方是25,这个数是______。

答案:±52. 一个数的立方是-8,这个数是______。

答案:-23. 一个数的绝对值是5,这个数是______。

答案:±54. 一个数的倒数是1/3,这个数是______。

答案:35. 一个数的相反数是-3,这个数是______。

答案:36. 一个数的平方根是3,这个数是______。

答案:97. 一个数的立方根是2,这个数是______。

答案:88. 一个数的平方是-4,这个数是______。

2023希望杯八年级数学思维训练题(含答案)

2023希望杯八年级数学思维训练题(含答案)

2023希望数学——8年级培训80题1.计算111 ________.2.的值是________.3..4.( )A.B.12C.21E.25. 化简,得( ).A. B.C.D.6. 若x 2 – 13x + 1 = 0,则44x x ________.4322(2)2(2)n n n 8121n 12n 87477. 设,则代数式的值为( ).A. –6B.24C.D.8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________.9. 已知x + y + z = 13,xy + yz + zx =102, xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________.10. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.11. 若2(23)|23|0x y x y z ,则y z x =________.12. 如果221,4x y x y ,则33x y _________.1a 2212a a 1012t112b a13. 实数x ,y 满足,,x y ,则的值为________.14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________.15. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________.16. 已知12m x x ,222n y y 则m – n 的最小值为_______.17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.18. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________.24x24y x yy x19. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 20. 方程34xx x x有________个实数根.21. 满足 2211x x x 的整数x 有________个.22. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________.23. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.24. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .25. 不定方程的整数解(x ,y )共有________组.26.2 ,得x =________.27. 不等式1248163264x x x x x xx的解集是_________.28.满足不等式32 的最大质数x =_________.29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________.30. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________.2222x y xy x y31.△ABC的三边长a、b、c均为实数且满足b+c=8,bc=a2 –12a+52,则△ABC的周长等于_________.32.关于x的四次方程x4 – 18x3 + kx2 + 200x – 1984 = 0的四个根中有两个根乘积为–32,则k的值是________.33.直角坐标系中有两个点A(– 1,– 1),B(2,3),若M为x轴上一点,且使MB – M A最大,则M的横坐标是________.34.如图,在平面直角坐标系中,一次函数443y x的图象分别交x轴、y轴于点A、B,把直线AB绕点O逆时针旋转90°,交y轴于点A',交直线AB 于点C,则△A'BC的面积为_________.35. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________.36. 已知,并且,那么直线一定通过第( )象限. A.一、二B.二、三C.三、四D.一、四37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________.38. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________.39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.0 abc p bac a c b c b a p px y40. 由方程111x y 确定的曲线所围成图形的面积是________.41. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ,矩形ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________.43.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.45.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.46.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.48.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),的最小值为________.D(– 1,3)及一个动点P,则PA PB PC PD49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.51.在△ABC中,若AC ,BC ,AB 则△ABC的面积为_______.52.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.53.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)56. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________.57. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.58. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.59. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.60. 已知正方形ABCD 的边长为1,P 1,P 2,P 3,P 4是正方形内部的4个点,使得△ABP 1,△BCP 2,△CDP 3和△DAP 4都是正三角形,则四边形P 1P 2P 3P 4的面积等于________.61. 在等腰梯形ABCD 中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A 和∠D 的平分线交于P 点,∠B 和∠C 的平分线交于Q .则PQ 的长为________.62.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.63.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)64.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.65.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.66.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.67.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)68.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.69.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.70.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.71.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.72.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.73.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)74.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.75.观察如下一列数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6)76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________.78. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________.79. a ,b ,c ,d ,e ,f ,g ,h ,i 是1~9中的不同数字,则a b c d e fg h i的最小值是________.80. 一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.2023希望数学——8年级培训80题答案1.计算111 ________.答案:– 22.的值是________.答案:23..答案:2022 4.( )A.B.12C.21E.2 答案:D5. 化简,得( ).A. B.C.D.答案:C6. 若x 2 – 13x + 1 = 0,则44x x ________.答案:278874322(2)2(2)n n n 8121n 12 n 87477. 设,则代数式的值为( ).A. –6B.24C.D.答案:A8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________. 答案:9. 已知x + y+ z = 13,xy + yz + zx =102,xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________. 答案:3365210. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.答案:111. 若2(23)|23|0x y x y z ,则y z x =________.答案:2512. 如果221,4x y x y ,则33x y _________.答案:11213. 实数x ,y 满足,,x y ,则的值为________. 答案:11a 2212a a 1012t112b a1224x 24y x yy x14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________. 答案:315. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________. 答案:– 516. 已知12m x x ,222n y y 则m – n 的最小值为_______.答案:4 17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.答案:5618. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________. 答案:119. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 答案:2017 20. 方程34xx x x有________个实数根. 答案:121. 满足 2211x x x 的整数x 有________个.答案:322. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________. 答案:– 1523. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.答案:124. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .答案:8228x x y y 或25. 不定方程的整数解(x ,y )共有________组.答案:626.2 ,得x =________.答案:±36 27. 不等式1248163264x x x x x x x的解集是_________. 答案:x <6428.满足不等式32 的最大质数x =_________.答案:3972222x y xy x y29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________. 答案:130. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________. 答案:– 631. △ABC 的三边长a 、b 、c 均为实数且满足b +c =8,bc =a 2 –12a +52,则△ABC的周长等于_________. 答案:1432. 关于x 的四次方程x 4 – 18x 3 + kx 2 + 200x – 1984 = 0的四个根中有两个根乘积为 –32,则k 的值是________. 答案:8633. 直角坐标系中有两个点A (– 1,– 1),B (2,3),若M 为x 轴上一点,且使MB – M A 最大,则M 的横坐标是________. 答案:– 2.534. 如图,在平面直角坐标系中,一次函数443y x 的图象分别交x 轴、y 轴于点A 、B ,把直线AB 绕点O 逆时针旋转90°,交y 轴于点A ',交直线AB 于点C ,则△A'BC 的面积为_________.答案:62535. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________. 答案:1∶436. 已知,并且,那么直线一定通过第( )象限. A.一、二 B.二、三 C.三、四 D.一、四答案:B37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________. 答案:31038. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________. 答案:60 abc p bac a c b c b a p px y39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.答案:240. 由方程111x y 确定的曲线所围成图形的面积是________.答案:241. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.答案: 120,22P P,42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________. 答案:56143.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)答案:D44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.答案:2645.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.答案:1646.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.答案:47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.答案:548.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),D(– 1,的最小值为________.3)及一个动点P,则PA PB PC PD答案:49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).答案:11, 50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.答案:251.在△ABC中,若AC ,BC ,AB ,则△ABC的面积为_______.答案:5.552.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.答案:1853.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)答案:π55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)答案:456. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________. 答案:557. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.答案:10858. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.答案:5659. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.答案:960.已知正方形ABCD的边长为1,P1,P2,P3,P4是正方形内部的4个点,使得△ABP1,△BCP2,△CDP3和△DAP4都是正三角形,则四边形P1P2P3P4的面积等于________.答案:261.在等腰梯形ABCD中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A和∠D的平分线交于P点,∠B和∠C的平分线交于Q.则PQ的长为________.答案:24262.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.答案:4863.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)答案:364.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.答案:1765.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.答案:6166.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.答案:867.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)答案:550,80368.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.答案:969.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.答案:6 2570.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.答案:100 24371.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.答案:1 272.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.答案:180,182,19273.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)答案:12, 374.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.答案:A75. 观察如下一列数对:(1,1),(1,2), (2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…… 则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6) 答案:C76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .答案:77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________.答案:178. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________. 答案:9679.a,b,c,d,e,f,g,h,i是1~9中的不同数字,则a b c d e fg h i的最小值是________.答案:1 28880.一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.答案:13,26。

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案一、选择题(每题2分,共20分)1. 已知x+y=5,x-y=1,求2x+3y的值。

A. 12B. 11C. 10D. 92. 一个数的平方等于该数本身,这个数可能是:A. 1B. -1C. 1或-1D. 03. 如果一个三角形的两边长分别是5和12,第三边长x满足三角形的三边关系,那么x的取值范围是:A. 7 < x < 17B. 2 < x < 14C. 5 < x < 13D. 12 < x < 154. 一个圆的半径为3,求圆的面积。

A. 28.26B. 9C. 18D. 365. 若a^2 + b^2 = 13,且a + b = 5,求ab的值。

A. 6B. 2C. 12D. 无法确定6. 一个等差数列的前三项分别为2,5,8,求第10项的值。

A. 27B. 29C. 21D. 227. 一个长方体的长、宽、高分别是2,3,4,求其体积。

A. 24B. 12C. 36D. 488. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 09. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。

12. 一个数的立方等于-27,这个数是________。

13. 一个数的平方根是4,这个数是________。

14. 一个数的倒数是2,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

16. 若a、b互为倒数,则ab=________。

17. 一个数的平方是25,这个数是________。

18. 一个数的绝对值是3,这个数可能是________。

数学初二希望杯试题及答案

数学初二希望杯试题及答案

数学初二希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333…D. √22. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,这个三角形是什么类型的三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形3. 一个数的平方根是4,这个数是多少?A. 16B. 8C. -16D. 44. 以下哪个表达式的结果不是正数?A. -1 + 2B. √4C. -√4D. (-2)^25. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π6. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 97. 如果一个角的余角是30°,那么这个角是多少度?A. 60°B. 45°C. 30°D. 15°8. 一个正方体的棱长是3,那么它的体积是多少?A. 27B. 9C. 3D. 19. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 010. 以下哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √(2x+1)二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。

12. 如果一个数的相反数是-5,那么这个数是______。

13. 一个数的绝对值是10,这个数可能是______或______。

14. 如果一个角的补角是120°,那么这个角是______。

15. 一个数的平方是25,这个数是______或______。

16. 一个直角三角形的两条直角边分别是3和4,斜边的长度是______。

17. 一个数的平方根是±3,这个数是______。

18. 一个数的倒数是1/4,这个数是______。

19. 一个圆的直径是10,那么它的半径是______。

初二组希望杯试题及答案

初二组希望杯试题及答案

初二组希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长是直径的π倍B. 圆的周长是半径的2π倍C. 圆的周长是直径的2倍D. 圆的周长是半径的π倍答案:B2. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 以下哪个方程的解是x=2?A. x+2=4B. x-2=0C. 2x=4D. x^2=4答案:C4. 一个三角形的两边长分别为3和4,第三边长x满足的条件是?A. 1<x<7B. 1<x<7且x≠3.5C. 7<x<11D. 以上都不对答案:B5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A7. 一个数的相反数是-3,这个数是?A. 3C. 0D. 以上都不对答案:A8. 以下哪个选项是正确的?A. 2x+3=7的解是x=2B. 3x-5=10的解是x=5C. 4x+6=18的解是x=3D. 以上都不对答案:C9. 一个等腰三角形的底边长为5,两腰长为6,那么这个三角形的周长是?A. 17B. 18D. 20答案:A10. 以下哪个选项是正确的?A. 一个数的立方根是它本身B. 一个数的平方根是它本身C. 一个数的立方根和平方根是同一个数D. 以上都不对答案:A二、填空题(每题4分,共40分)11. 一个圆的半径是3,那么它的面积是________。

答案:9π12. 一个数的平方是16,那么这个数是________。

答案:±413. 一个三角形的两边长分别为4和5,第三边长x满足的条件是________。

答案:1<x<914. 一个数的绝对值是4,这个数可能是________。

答案:4或-415. 一个等腰三角形的底边长为6,两腰长为8,那么这个三角形的周长是________。

初二希望杯数学竞赛培训题

初二希望杯数学竞赛培训题

初二希望杯数学竞赛培训题班级__________学号__________姓名______________得分______________一、选择题(以下每题的四个结论中,仅有一个是正确的) 1.一个多项式经分解后为(2-a 3)(a 3+2),那么该多项式是 ( )(A )a 6-4(B )a 9-4(C )4-a 9(D )4-a 62.下列多项式:①a 2+4ab +4b 2;②9m 2+4n 2-12mn ;③4p 2+q 2-4p +2q ;④25a 4+16b 4+40a 2b 2;⑤9s 2-12s +6.其中是完全平方式的是( ) (A )①,④,⑤ (B )①,②,⑤ (C )①,②,④ (D )①,③,④ 3.当分式1111-+x 无意义时,x 的取值情况是( )(A )x =1 (B )x =±1 (C )x =±1或x =0 (D )x =±1且x =04.下列根式中与32a -相同的是 ( )(A )a a 2-(B )a a 2--(C )32a -(D )aa 22-- 5.a 是实数,且满足05362=--aa ,则a 的值是( )(A )6(B )±6 (C )≠5的数 (D )-66.如果a -是整数,则( )(A )a 是正整数 (B )a 是非负整数 (C )a 是完全平方数 (D )-a是完全平方数 7.11+-n n 与1++n n 的关系是 ( )(A )相等 (B )互为相反数 (C )互为倒数 (D )互为负倒数8.方程x 2+3y 2=16的整数解的组数是( )(A )5(B )6(C )7(D )7组以上9.若a <b <0,则()()22b b a --÷= ( )(A )bab --(B )bab - (C )-b (b -a ) (D )bb a -10.某同学从家到学校的路程为s ,速度为v 1,从学校回家的速度为v 2,那么他来回的平均速度是 ( )(A )221v v + (B )212v v s + (C )2121v v v v + (D )21212v v v v +11.各边长均为整数且各边长均不相等的三角形周长小于13,则这样的三角形共有( )(A )1个(B )2个(C )3个(D )4个12.三角形的三个外角平分线所在的直线围成的三角形是( )(A )锐角三角形(B )钝角三角形 (C )直角三角形 (D )直角或钝角三角形13.在△ABC 和△A ´B ´C ´中,∠A +∠B =∠C ,∠B ´+∠C ´=∠A ´,且b -a =b ´-c ´,b+a =b ´+c ´则这两个三角形 ( )(A )不一定全等(B )不全等(C )根据“SAS ”全等 (D )根据“ASA ”全等14.下列说法中,正确的是( )(A )每个命题都有逆命题 (B )每个定理都有逆定理 (C )真命题的逆命题是真命题 (D )假命题的逆命题是假命题 15.等腰△ABC 的顶角A =100°,两腰AB 、AC 的垂直平分线相交于点P ,则 ( )(A )P 点在△ABC 内 (B )P 点在BC 边上(C )P 点在△ABC 外 (D )P 点位置与BC 边的长度有关16.下列命题中,真命题是( )(A )两个全等三角形是关于某条直线成轴对称的两个图形 (B )两个全等的等腰三角形是关于某条直线成轴对称的两个图形 (C )两个全等的等边三角形是关于某条直线成轴对称的两个图形 (D )关于某条直线成轴对称的两个三角形一定是全等三角形 17.如图,在等腰直角△ABC 中,∠BAC =90°,又AD ∥BC ,在AD 上取一点E ,使∠EBC =30°,则BE 和BC 的大小关系是 ( ) (A )BE >BC(B )BE <BC(C )BE =BC (D )不确定的 18.四边形中,有两条边相等,另两条边也相等,则这个四边形( )(A )一定是菱形(B )一定是轴对称图形(C )一定是平行四边形(D )可能是平行四边形,也可能是轴对称图形19.如图,D 为等腰△ABC 的腰AB 上的一点,E 为另一腰AC延长线上的一点,且BD =CE ,则 ( )(A )DE =BC (B )DE >BC(C )DE <BC(D )DE 与BC 大小关系决定于角A 的大小20.设△ABC 的三边为c b a ,,,且满足c b a cb a 5.1225.3222+=++ ,则△ABC 是 ( )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )形状不确定的三角形21.分解因式:=+--412422a b a ____________________.22.如果(x -a )(x +2)-1能够分解成两个二项式(x +3)和(x +b )的乘积,那么a =______,b =_______.AC BDEAC BD E23.分解因式:xy (m 2-n 2)-mm (x 2-y 2)=_________________. 24.分解因式:=+-233x x ___________________. 25.a ,b 均为实数,且满足()0425322=--++aa b a ,那么b =_________.26.x ,y 均为实数,且4111222++-+-=x x x y ,则x +y 的值是__________.27.x 是实数,则25101222+--++x x x x 的最大值是____________.28.已知m ,n 互为倒数,且m +n +1998=0,那么(m 2+1999m +1)(n 2+1999n +1)的值为____.29.已知两数的和为12,此两数的立方和为108,那么这两个数的平方和是___________. 30.若61=+yx ,25122=+y x ,那么=∶y x ____________ 31.若3939=+,=+zy yx ,则xz 9+的值等于______________.32.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=32,abc =8,那么cb a 111++的值等于___________.33.若a 2+3b 2-4a -12b +16=0,则a +b 的值是________. 34.已知N++++=4141412,则N 的值是___________.35.若实数x ,y ,z 适合方程组⎩⎨⎧0720634=-+=--z y x z y x ,那么1999y -1997x +1993z =_______.36.方程组⎩⎨⎧34231232=--=-+z y x z y x 中的x ,y 满足条件x +y =6,那么z 的值等于___________.37.a 为实数,那么aa a a 119991999-+-+-的值等于_________. 38.已知12-=x ,那么xx x--342的值为__________ 39.化简623232-++,结果是_______________.40.方程x x x -=+-41682的正整数解是_____________. 41.化简:(6-2)(3+2)32-=_____________.42.已知:A =53+,B =53-,若存在正整数N ,使N <A 3+B 3<N +1,则N =____. 43.116201-的整数部分是__________.44.求值:100999910014334132231221++++++++ =___________.45.若y ≠z ,且满足()()23322=-+=-+zy x z y x z y ,则x +y +z 的值等于__________. 46.已知(x +2y -1)是二元二次式3x 2+axy +by 2+x +9y -4的一个因式,则a =_______,b =______.47.大小不超过(3+2)6的最大整数为_____________.48.若x <0,y >0,a -b >0,M =ax +by ,N =bx +ay ,则M 与N 的大小关系是M ______N .(填“>”或“<”)49.5的整数部分是a ,小数部分为b ,则ba 1-的大小是____________.50.已知a ,b ,c 都是正实数,()()c b a c b a y c b a x +++++=,++=22222,则x 与y 的大小关系是x ______y .(填“>”或“<”)51.如图,a ,b ,c ,d 为数轴上对应点的数,则|a +b -c |+|d -a |-|c -d |+|a -d |=_______. 52.如图,AB 、CD 、MN 三条直线相交,交点分别为E 、F 、G ,则∠EFB 的同位角是________. 53.两个对顶角的和是它的一个邻补角的4倍,则这个邻补角的度数是_________. 54.△ABC 的周长是15,若a +c =2b ,c -a =4则a 2+b 2+c 2=____________. 55.如图,则∠A +∠B +∠C +∠D +∠E +∠F =_____________.56.△ABC 中,AD 是BC 边上的中线,若AB =9,AC =5,则AD 的取值范围是__________.(第52题图) (第55题图) (第57题图) (第58题图)57.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于D ,DE ⊥AB 于E ,若AC =4厘米,则△BDE 的周长是___________.58.如图,△ABC 和△ADE 均为等边三角形,C 、D 、E 在一条直线上,∠ABE =20°,则∠CAD 的大小是____________.59.如图,△ABC 中,D 在AC 上,AD =AB ,∠ABC =∠C +30°,则∠CBD =_______. 60.如果一个三角形的两条中线又是它的两条高线,那么这个三角形的形状是___________.c 0 a bd C EFA B D G M N C EF A B D O A D E C B A D CB E第十一届希望杯数学竞赛初二第一试一.选择题1.与的关系是()。

2024希望杯冬令营八年级试题含答案

2024希望杯冬令营八年级试题含答案

2024 IHC D-8 中文卷1. 计算:√7 − √7 − √4 − √44 − 16√7除以√4 − √44 − 16√7的商是 。

2. 4 名男同学和 2 名女同学打算寒假去公园游玩,他们商定要拍下 6 名同学站成一排且两名女同学不相邻的所有排序的照片各一张。

那么他们一共要拍张照片。

3. 如图,图中直角三角形两条直角边的长分别为 2 和 4,左边正方形的面积在数值上和直角三角形的周长相等,则右边梯形的面积为。

4. 小明的生日月份数乘以 21,生日日期数乘以 5,相加后得 83,小明生日的月份数与日期数之积是。

5. 五名大学生要去越秀公园、流花湖公园、中心湖公园做义工,每个公园至少去一人,有种分派方法。

6. += 1 的实数解为。

7. 12 个连续的正整数,其和可以表示为 7 个连续正整数的和,也可以表示为 5个连续正整数的和。

那么,这 12 个连续的正整数中最大数的最小值是。

428. 平面内有 80 条直线,其中有 10 条互相平行,这 80 条直线最多可以将平面分为部分。

9. 若二次函数f (x ) = x 2 + ax + b 满足f (a + b ) = f (−1 − a 2),f (1) > 1,则b − a 2的最小值是。

410. 从 1,2,…,2024 这 2024 个正整数中,最多可以取出个数,使得所取出的数中任意四个数之和都能被44 整除。

11. 如图,已知△ABC 的三边长分别为 a ,b ,c 。

∠C =90°,则的值是。

12. 在幸福中学校园乒乓球比赛中,小林和小王战成了 5 : 5 平,已知在比赛过程中小林从没落后,则比分上升的方式有种。

13. 如图,EF 垂直长方形 ABCD 的对角线 BD ,垂足是 B 。

EH 、FG 分别过 A 、C 平行且平行于 BD ,GH 过顶点 D 且平行于 EF 。

已知 AB =60,BC =80, BD =100。

希望杯初二上试题及答案

希望杯初二上试题及答案

希望杯初二上试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是中国四大名著之一?A. 《红楼梦》B. 《西游记》C. 《水浒传》D. 《聊斋志异》2. 地球自转一周的时间是多久?A. 12小时B. 24小时C. 48小时D. 72小时3. 人体最大的器官是什么?A. 心脏B. 肝脏C. 皮肤D. 肺4. 以下哪个选项是正确的化学方程式?A. H2 + O2 → H2OB. 2H2 + O2 → 2H2OC. H2 + O2 → 2H2OD. 2H2 + O2 → H2O5. 光年是长度单位,表示光在一年内传播的距离,那么光年的数值是多少?A. 9.46万亿公里B. 9.46亿公里C. 9.46万公里D. 9.46公里二、填空题(每题2分,共10分)1. 圆周率π的近似值是_______。

2. 牛顿第一定律也被称为_______。

3. 世界上最高的山峰是_______。

4. 人体内含量最多的元素是_______。

5. 光合作用的主要产物是_______。

三、解答题(每题10分,共20分)1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求该直角三角形的斜边长。

2. 一个物体从静止开始做匀加速直线运动,经过5秒后的速度为10m/s,求物体的加速度。

四、简答题(每题15分,共30分)1. 请简述牛顿三大运动定律的内容。

2. 描述光合作用的过程及其对生态系统的重要性。

五、实验题(每题20分,共20分)1. 根据实验数据,绘制出小车在斜面上下滑时的速度-时间图,并分析小车的运动情况。

答案:一、选择题1. D2. B3. C4. B5. A二、填空题1. 3.141592. 惯性定律3. 珠穆朗玛峰4. 氧5. 氧气和葡萄糖三、解答题1. 根据勾股定理,斜边长为√(3²+4²) = √(9+16) = √25 = 5cm。

2. 物体的加速度为10m/s² ÷ 5s = 2m/s²。

“希望杯”数学邀请赛培训题(初二年级)附答案

“希望杯”数学邀请赛培训题(初二年级)附答案

“希望杯”数学邀请赛培训题初中二年级选择题(以下每个题的四个选择支中,仅有一个是正确的)1,已知,0〉-a b 且0≥a ,那么||222b a b ab a +-+- ( ) (A )化简为0 (B )化简为-b 2(C )化简为-a 2 (D )不能再化简2.已知a 是任意实数,有4个不等式:①a a 〉2;②a a 〉2;③22〉+a a ;④a a 〉+12,那么不等式关系一定成立的有( )个。

(A )1 (B )2 (C )3 (D )43.已知关于x 的方程4)2(3)32(2-++=++m x x m m 有唯一解,那么m 的值的情况是( )。

(A )2-=m (B )0=m (C )2-≠m 或0≠m (D )2-≠m 且0≠m4.已知关于x 的方程22)1(a ax x a -=+的解是负数,那么a 的值的情况是( )(A )1-≠a (B )1〈a (C )1〈a 且0≠a (D )1〉a5.已知寻于任意有理数b a ,,关于y x ,的二元一次方程b a y b a x b a +=+--)()(都有一组公共解,则公共解为( ) (A )⎩⎨⎧==00y x (B )⎩⎨⎧-==10y x (C )⎩⎨⎧=-=01y x (D )⎩⎨⎧==11y x6.设,2002200120012002,2001200020002001==N M 则N M 与的关系是( )(A )N M = (B )N M 〉 (C )N M 〈 (D )1=MN7.若b a ,为有理数且满足,322〈b a 那么22)()3(b a b a ++与3的大小关系是( )(A )3)()3(22〈++b a b a (B )3)()3(22〉++b a b a(C )3)()3(22=++b a b a (D )无法确定的8.已知a 为正数,且[],1)(=+++b b b a a a 则b a +的值是( ) (A )43 (B )2 (C )1 (D )219.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中( )(A )最多有4个是0 (B )最多有2个是0(C )最多有3个是0 (D )最多有1个是010.把自然数n 的各位数字之和记为),(n S如++===+===42)(,247;1183)(,38n S n n S n 7=13,若对于某些自然数满足 ,2007)(=-n S n 则n 的最大值是( )(A )2025 (B )2023 (C )2021 (D )201911.已知四个方程①0232=++x ;②0234=-x ;③03514=-+-x x ;④24=+-x x ,其中有实数解的方程的个数是( )个。

“希望杯”全国数学八年级邀请赛培训80题含详解

“希望杯”全国数学八年级邀请赛培训80题含详解

1 (A) , b a
7.
(B)
1 , a b
(C) b,

1 a
(D) b,

1 a

已知 a 是实数, 关于 x、 y 的二元一次方程组
2 x 3 y 5a 的解不可能出现的情况是 ( x 2 y 1 2a
1 a

1 b
1
2010 2009 2011
,b
2011 2010 2012
,c
1 2011
,则(
) 9. 如图 2 是反比例函数 y (B)-2 (D) c a b (A)2
(A) a b c
(B) c b a ) (B)
(C) b a c
2. 下列各数中,最大的是( (A) 3 7
(D)以 a 为底的等腰三角形
一组对边相等,一组对角相等的四边形是平行四边形; 一组对边平行,一组对角相等的四边形是平行四边形;
22.If the figure 6 is composed of 24 equilateral triangles, then how many non-congruent distinct right triangles with v ertices on the intersecting points are possible in this figure?( (A)3 (B)4 (C)5 (D)6 ) )
(A) x、y都是正数 (C) x是正数、y是负数
(B) x、y都是负数 (D) x是负数、y是正数
8. If a and b are non-zero real numbers and 1 99a 1 99b 1 ,then the value for is ( (A)1 ) (B)100 (C)-1 (D)-1 )

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于3B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:B2. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是多少厘米?A. 30B. 40C. 50D. 60答案:B3. 一个数加上它的相反数等于多少?A. 0B. 1C. 2D. -1答案:A4. 下列哪个选项是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x - 3 = 0D. x^3 - 4x^2 + 4x = 0答案:B5. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 3D. 以上都是答案:D6. 下列哪个选项是正确的不等式?A. 2x > 3B. 2x < 3C. 2x = 3D. 2x ≤ 3答案:A7. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π答案:C8. 下列哪个选项是正确的分数?A. 3/2B. 2/3C. 1/2D. 4/5答案:D9. 一个等腰三角形的两个底角都是45度,那么它的顶角是多少度?A. 90B. 45C. 135D. 180答案:A10. 下列哪个选项是正确的函数关系?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = x/2D. y = x^3 - 2x^2 + 3x答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是2,那么这个数是______。

答案:83. 一个数的倒数是1/2,那么这个数是______。

答案:24. 一个数的绝对值是6,那么这个数可以是______。

答案:6或-65. 一个等腰三角形的顶角是120度,那么它的底角是______。

答案:30度三、解答题(每题10分,共50分)1. 解方程:3x - 5 = 10答案:x = 52. 计算:(2x^2 - 3x + 1) - (x^2 + 2x - 3)答案:x^2 - 5x + 43. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

初二组希望杯试题及答案

初二组希望杯试题及答案

初二组希望杯试题及答案一、选择题(每题3分,共30分)1. 下列哪项不是希望杯的宗旨?A. 促进学生全面发展B. 激发学生学习兴趣C. 增加学生课业负担D. 提高学生综合素质答案:C2. 希望杯的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 希望杯的参赛对象是哪些年级的学生?A. 初中一年级B. 初中二年级C. 初中三年级D. 初中一、二、三年级答案:D4. 希望杯的试题难度一般设定为?A. 基础题B. 提高题C. 竞赛题D. 以上都是答案:D5. 希望杯的奖项设置包括哪些?A. 一等奖B. 二等奖C. 三等奖D. 以上都是答案:D6. 希望杯的参赛费用是多少?A. 50元B. 100元C. 150元D. 免费答案:D7. 希望杯的试题类型包括哪些?A. 选择题B. 填空题C. 简答题D. 以上都是答案:D8. 希望杯的试题内容主要涉及哪些学科?A. 数学B. 语文C. 英语D. 以上都是答案:D9. 希望杯的试题数量一般是多少?A. 10题B. 20题C. 30题D. 40题答案:C10. 希望杯的试题评分标准是怎样的?A. 每题固定分值B. 根据难度调整分值C. 根据答题情况调整分值D. 以上都是答案:A二、填空题(每题4分,共20分)1. 希望杯的全称是______。

答案:全国中学生希望杯数学竞赛2. 希望杯的试题由______命题。

答案:专业命题团队3. 希望杯的试题内容主要来源于______。

答案:现行教材和课外拓展4. 希望杯的试题评分方式是______。

答案:客观题机器阅卷,主观题人工阅卷5. 希望杯的奖项评定标准是______。

答案:根据分数和排名综合评定三、简答题(每题5分,共10分)1. 请简述参加希望杯的意义。

答案:参加希望杯可以激发学生的学习兴趣,检验学习成果,培养学生的逻辑思维和解决问题的能力,同时为学生提供一个展示自我、交流学习经验的平台。

数学希望杯初二试题及答案

数学希望杯初二试题及答案

数学希望杯初二试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -5B. 0C. 2D. -22. 如果\( a \)和\( b \)是互质数,那么\( a \times b \)的最小公倍数是:A. \( a \)B. \( b \)C. \( a + b \)D. \( a \times b \)3. 一个长方形的长是宽的两倍,如果宽是\( x \)米,那么长方形的面积是:A. \( x^2 \)B. \( 2x \)C. \( 2x^2 \)D. \( 4x^2 \)4. 一个数的平方根是它自己,这个数是:A. 0B. 1C. -1D. 25. 下列哪个是二次根式?A. \( \sqrt{16} \)B. \( \sqrt{2} \)C. \( 3\sqrt{2} \)D. \( \sqrt{-9} \)6. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 27. 一个圆的半径是\( r \),那么它的面积是:A. \( \pi r \)B. \( \pi r^2 \)C. \( 2\pi r \)D. \( \pi r^3 \)8. 一个数的绝对值是它自己,这个数是:A. 0B. 正数C. 负数D. 任意实数9. 一个等腰三角形,两边相等,如果底边是\( a \),那么它的周长是:A. \( 2a \)B. \( 3a \)C. \( 4a \)D. \( 无法确定 \)10. 如果\( x \)和\( y \)是实数,\( x = y \),那么下列哪个等式是正确的?A. \( x + 1 = y + 1 \)B. \( x^2 = y^2 \)C. \( x - y = 0 \)D. 所有选项都是正确的二、填空题(每题2分,共20分)11. 一个数的平方根是\( \sqrt{4} \),那么这个数是______。

12. 如果\( a \)和\( b \)是相反数,那么\( a + b = ______。

希望杯试题及答案初二

希望杯试题及答案初二

希望杯试题及答案初二一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 2/3答案:B2. 一个等腰三角形的两边长分别为5和10,那么这个三角形的周长是多少?A. 15B. 20C. 25D. 30答案:C3. 如果一个数的平方等于它本身,那么这个数可能是?A. 0B. 1C. -1D. 以上都是答案:D4. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是多少?A. 24B. 36C. 48D. 64答案:A7. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B8. 一个等差数列的前三项分别是1、3、5,那么它的第五项是多少?A. 7B. 9C. 11D. 13答案:C9. 如果一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 75°答案:A10. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 正三角形D. 以上都是答案:D二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。

答案:512. 一个数的绝对值是7,那么这个数可能是______或______。

答案:7或-713. 一个等腰三角形的底边长为6,高为4,那么它的面积是______。

答案:1214. 一个二次方程x^2 - 5x + 6 = 0的两个根是______和______。

答案:2和315. 一个圆的直径是10,那么它的周长是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

““希希望望杯杯””数数学学邀邀请请赛赛培培训训题题初初中中二二年年级级一、选择题(以下每个题的四个选择支中,仅有一个是正确的)1,已知,0〉-a b 且0≥a ,那么||222b a b ab a +-+- ( )(A )化简为0 (B )化简为-b 2(C )化简为-a 2 (D )不能再化简2.已知a 是任意实数,有4个不等式:①a a 〉2;②a a 〉2;③22〉+a a ;④a a 〉+12,那么不等式关系一定成立的有( )个。

(A )1 (B )2 (C )3 (D )43.已知关于x 的方程4)2(3)32(2-++=++m x x m m 有唯一解,那么m 的值的情况是( )。

(A )2-=m (B )0=m (C )2-≠m 或0≠m (D )2-≠m 且0≠m4.已知关于x 的方程22)1(a ax x a -=+的解是负数,那么a 的值的情况是( )(A )1-≠a (B )1〈a (C )1〈a 且0≠a (D )1〉a5.已知寻于任意有理数b a ,,关于y x ,的二元一次方程b a y b a x b a +=+--)()(都有一组公共解,则公共解为( )(A )⎩⎨⎧==00y x (B )⎩⎨⎧-==10y x (C )⎩⎨⎧=-=01y x (D )⎩⎨⎧==11y x6.设,2002200120012002,2001200020002001==N M 则N M 与的关系是( ) (A )N M = (B )N M 〉 (C )N M 〈 (D )1=MN7.若b a ,为有理数且满足,322〈b a 那么22)()3(b a b a ++与3的大小关系是( ) (A )3)()3(22〈++b a b a (B )3)()3(22〉++b a b a (C )3)()3(22=++b a b a (D )无法确定的8.已知a 为正数,且[],1)(=+++b b b a a a 则b a +的值是( )(A )43 (B )2 (C )1 (D )219.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中( )(A )最多有4个是0 (B )最多有2个是0(C )最多有3个是0 (D )最多有1个是010.把自然数n 的各位数字之和记为),(n S如++===+===42)(,247;1183)(,38n S n n S n 7=13,若对于某些自然数满足,2007)(=-n S n 则n 的最大值是( )(A )2025 (B )2023 (C )2021 (D )201911.已知四个方程①0232=++x ;②0234=-x ;③03514=-+-x x ;④ 24=+-x x ,其中有实数解的方程的个数是( )个。

(A )1 (B )2 (C )3 (D )412.解分式方程0111=+--+-x x x k x x 有增根,1=x 则k 的值等于( ) (A )1 (B )0 (C )-1 (D )-213.下列计算中,正确的是( )(A )32211211--=---=--+x x x x x (B )7543)(m m m =÷ (C )b a b a b a -=--+)2(2)(3 (D )32)23(6-=-÷14.计算ba ab b b a a +÷-+-1)(的结果是( ) (A )b a - (B )ab (C )22b a - (D )b a +15.如图,已知点M 是AB 的中点,点P 在AM 上,,,b BP a AP ==则MP 的长为( )(A )b a - (B )b a -21 (C )2b a - (D )2b a -16.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( )(A )9 (B )10 (C )11 (D )1217.已知一个直角∠,AOB 以O 为端点在∠,AOB 的内部画10条射线,以OB OA ,以及这些射线为边构成的锐角的个数是( )个。

(A )110 (B )132 (C )66 (D )6518.一张长方形的纸,ABCD 如图2将C 角折起到E 处,作∠EFB 的平分线HF ,则∠HFG 的大小是( )(A )锐角 (B )直角 (C )钝角 (D )无法确定19.如图Rt △ABC 中,∠AC D AC AB BAC 为,,900==的点,,于交E BC BD AE ⊥若ADB a BDE ∠∠,=的大小是( )(A )a (B )a -090(C )2900a - (D )2450a +20.已知一个多边形的对角线条数正好等于它的边数的2倍,则这个多边形的边数是( )(A )6 (B )7 (C )8 (D )1021.如图平形四边形ABCD 中,045,,=∠⊥⊥EAF CD AF BC AE ,且22=+AF AE ,则平行四边形ABCD 的周长是( )(A )42 (B ))22(2+ (C )2)12(+ (D )822.如图,平形四边形ABCD 中,BC M AB DE AB BC 是,,2⊥=的中点,B BEM ∠∠则=050的大小是( )(A )0100 (B )0110 (C )0120 (D )013523.如图,梯形ABCD 中,AD ∥E BC ,是AB 的中点,CE 恰好是平分,BCD ∠若,4,3==BC AD 则CD 的长是( )(A )5 (B )6 (C )7 (D )824.如图△ABC 中,D 点在AC 上,,2:1:=DC AD连E BD ,是BD 的中点,延长AE 交BC 于,F 则FC BF :的比是( )(A )41 (B )31 (C )52 (D )8325.如图△ABC 中,C ∠为钝角,CF 为AB 上的中线,BE为AC 上的高,若,BE CF =则ACF ∠的大小是( ) (A )045 (B )060 (C )030 (D )不确定二、填空题26.已知:,10001=m 那么1-m --1111的值是__。

27.已知:,1011,1001==b a 则abb a a b --+-1的值是__。

28.计算:10001)1000(1)310001()100031(322-+-+的结果是__。

29.计算:61999111999619996199951999232+⋅+⋅++⋅+的结果是___。

30.若|,|||||b a b a +〈+则bb a a ||||-的值等于__或__。

31.设1199911999,1199911999333222222111++=++=B A 则B A 与的大小关系是___。

32.分解因式23242)1()1)(1(+-++-x x x x 的结果是___。

33.设|,7|)5(|3|2x x x S -+-+-=则S 的最小值是___。

34.已知实数x 满足,1|4|||〉-x 则x 的取值范围是___。

35.若实数x 使代数式4|2|1-+-x x 有意义,则x 的取值范围是___。

36.若实数x 使分式2559222---x x x 的值为零,则x 的值等于___。

37.方程0100032|2000|=-++--y x y x 的一组解为⎩⎨⎧==by a x ,则b a +的值是_。

38.若代数式p x x x x ++++)3)(2)(1(恰好能分解为两个二次整式的乘积(其中二次项系数均为1且一次项系数相同),则p 的最大值是___。

39.已知:||,||,||,22223232y x xy a yx b y b x a p b a b y b a a x b a --+-=+=+=〉则且的值等于___。

40.已知:c b a c b a ,,,33,222,57则+=+=+=的大小关系是___。

41.要使代数式1)2()1(112123322+-⋅⎥⎦⎤⎢⎣⎡-+-+-++a a a a a a a a 的值是正整数,那么整数a 的值应是___。

42.已知多项式6823222-+--+y x y xy x 的值恒等于两个因式)2)(2(B y x A y x +-++乘积的值,那么B A +等于___。

43.已知n m ,是实数,且满足,02649422=++-+n m n m 那么分式 1444241822-+++m m n n 的值是___。

44.设)(x p 是一个关于x 的二次多项式,且,)()1(165723a x p x m x x x +-=--+-其中a m ,是与x 无关的常数,则)(x p 的表达式是___。

45.若a 为自然数,b 为整数,且满足.________,,347)3(2==-=+b a b a 则46.若二元一次方程组⎩⎨⎧=-+=+3)1(132y n mx y x 的解中,y x 与的值相等,那么n m +的值等于___。

47.若a 是510510的一个质因数,且2-a 仍为质数,那么满足上述条件的数共有__个。

48.一个质数a 小于13,且它分别加上4或10之后仍然是质数,则质数a 等于___。

49.已知实数y x ,使得代数式73542232)1()1()(2)(2+⋅-⋅-+--++-+y x y x y x y x 取得最小值,则y x +的值等于___。

50.如果最简二次根式b a b a b a b a 62414114+++++和是同类二次根式,则._______,==b a51.已知3535,3535-+=+-=b a ,则二次根式36733-+b a 的值是___。

52.设23和4是两个五进制度,则这两个数的乘积的五进制表示法是___。

53.如图,AOE 是一条直线,,COE AOC 〉∠∠则图中的纯角共有__个。

54.不相等的两角a 和β的两边分别平行,其中a 角比β角的3倍少200,则a 的大小是___。

55.如图,四边形ABCD 中,O 点在AD 上,且OB 平分 0120,=∠∠BOC BCD 若,则D A ∠+∠的大小是___。

56.两个角β,a 的补角互余,则这两个角的和β+a 的大小是___。

57.一个等腰三角形的周长是12,且三条边长都是整数,则三角形的腰长是___。

58.如图,在等腰三角形ABC 中,E D AC AB ,,=为AC 边的三等分点,则AB BE BD 3与+的大小关系是___。

59.已知c b a ,,为三角形的三条边长,满足条件,322abc b c b ac =-+若三角形的一个内角为0100,则三角形的另两个角的大小分别是___。

相关文档
最新文档