基本运算电路设计实验报告
多级运算电路实验报告(3篇)
第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。
2. 掌握多级运算电路的设计方法。
3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。
4. 培养实验操作能力和数据分析能力。
二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。
本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。
3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。
4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。
三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。
2. 示波器:用于观察实验过程中信号的变化。
3. 数字万用表:用于测量电路的电压、电流等参数。
4. 电阻、电容、二极管、运放等电子元器件。
5. 电路板、导线、焊接工具等。
四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。
2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。
3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。
4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。
5. 分析实验数据,验证实验结果是否符合理论计算。
五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。
分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。
实验结果与理论计算基本一致。
基本逻辑门电路实验报告
基本逻辑门电路实验报告实验报告:基本逻辑门电路摘要:本实验旨在加深学生对于基本逻辑门电路的理解,并且实际操作电路完成基本的逻辑运算。
在实验中,我们探究了与门、或门、非门和异或门的工作原理,以及如何利用这些门实现一些简单的逻辑运算。
通过该实验,我们更深入的了解了基本逻辑门电路及其在计算机中的应用。
前言:数字逻辑电路是现代电子科技中的最基本、最基础的部分之一,是微电子工程所需要掌握的重要课程。
它是现代信息技术的核心,无论是计算机系统、通讯系统还是控制系统都离不开数字逻辑电路。
因此,对于数字逻辑电路的学习是我们深入学习计算机的必要前提。
材料及设备:1. 实验箱2. 电源3. 集成电路 7400(与门)、7402(或门)、7404(非门)、7486(异或门)4. 七段码数码管实验步骤:1. 确定各种门的输入输出端口2. 用实际物料组装好多个电路(与门、或门、非门、异或门)并完成接线3. 测试电路供电情况,并查看是否有异常现象4. 对于每一个电路,接入输入端口并测试输出的波形5. 利用实际电路完成几个简单的逻辑运算,并通过七段码数码管显示结果实验结果及分析:通过实验,我们了解到与门是实现逻辑与运算的一种基本电路,或门是实现逻辑或运算的一种基本电路,非门是实现逻辑非运算的一种基本电路,而异或门则可以实现异或功能。
同时,我们还探究了异或门的特殊性质,即异或门可以用于加法器电路的设计。
此外,我们发现,几种电路的运算皆相当简单,但其效果却十分明显。
结论:通过本实验,我们更加深入地了解了基本逻辑门电路及其在计算机中的应用,掌握了数字逻辑电路的基本操作方法。
以后,我们将继续加深对数字逻辑电路的理解与应用,并将其应用到更深入、更广泛的领域之中。
实验课4-电路基础实验报告
图 6 改变 Ri 的阻值,记录对应的 I1(实验 5-2)
图 7 改变 R 的阻值,记录对应的 U2(实验 5-2) 4. 数据记录与处理
实验 5-1:测试电压控制电压源和电压控制电流源特性
给定值
U1(V) 0
vcvs 测量值 U2(V) 0
表 5-1
0.5Biblioteka 11.0068 2.0106
6
1.5 3.0124
表 5-6
给定值 测量值
计算值
Ri(kΩ) I1(mA) I2(mA)
α
3 0.4876 1.0092 2.0697
2.5 0.5808 1.2093 2.0821
2 0.7197 1.5120 2.1009
1.5 0.9414 2.0087 2.1337
1 1.3671 3.0076 2.2000
5 9.0300 6.0200 1.5109 1.0073
表 5-3
给定值 测量值
计算值
R(i kΩ) 1 I1(mA) 1.3647 U2(V) -1.4940 rm(Ω) -1.0947
2 0.7153 -0.7475 -1.0450
3 0.4866 -0.5001 -1.0277
表 5-4
给定值 测量值
2 4.0144
2.5 5.0170
计算值 μ / vccs 测量值 Is(mA) 0
计算值 gm(s) /
2.0136 0.5035 1.0070
2.0106 1.0068 1.0068
表 5-2
2.0083 1.5097 1.0065
2.0072 2.0130 1.0065
2.0068 2.5162 1.0065
基本运算电路实验报告
基本运算电路实验报告一、实验目的:1.电子仪器仪表的熟练使用;学会合理选用示波器的直流、交流耦合方式观察不同波形的方法。
2.集成运算放大器的基本应用电路原理;3.集成运算放大器基本参数含义与应用要点。
4.简单电子电路的设计、安装、调试与参数测量。
二、实验原理:1.反相比例运算(图1)V0=-R f V1/R1其中输入电阻R≈R1根据增益,确定R f和R1的比值,得出一般取R f几十千欧到几百千欧图23.三、实验仪器集成运算放大器LM324 1片电位器1KΩ1只电阻100kΩ2只;10kΩ3只;Ω1只;9kΩ1只μF 1只四、实验内容(1)设计并安装反相比例运算电路,要求输入阻抗R i=10 kΩ, 闭环电压增益|A vf|=10(2)在该放大器输入端加入f=1kHZ的正弦电压,峰峰值自定,测量放大器的输出电压值;改变v I峰峰值大小,再测v O,研究v I和v O的反相比例关系,填入自拟表格中。
在反相比例电路的基础上,在R fμF的电容,构成积分运算电路。
输入端加入f=500HZ、幅值为1V的正方波,用双踪示波器同时观察、记录v I和v O的波形,标出幅值和周期。
图3所示电路可分别实现加法和减法运算。
当开关置于A点时为加法运算;开关置于B 点时为减法运算。
将开关置于A点,接入f=1kHZ的正弦波,调节电位器R P,测量v i1和v i2的大小,然后再测v O的大小。
改变R P,改变v i2的值,分别记录相应的v i1、v i2和v O的数值,填入自拟表格中(此时R’=R f//R1//R2)。
研究加法运算关系。
将实验原理图3中电路的开关置于B点,R’=R f,输入信号同上,分别测量v i1、v i2和v O数值。
调节R P,改变v i2的大小,再测v O,填入自拟表格中。
研究减法运算关系。
五、实验数据处理及分析:序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 131 02 480 145 0.3%3 480 168 0.6%序号 V i1/mv V i2/mv测量值Vo/v 理论值V/v 百分误差1 480 168 0.6%2 480 177 0.7%3 480 189 2.7% 3.反相比例积分电路结果分析:在反相比例加减法实验中所得结果在误差允许范围内与理论值相同,可以认为结果正确,反相比例积分电路图形基本正确。
电路设计初步实验报告
电路设计初步实验报告一、引言电路设计是电子工程学科中的重要内容之一。
通过电路设计实验,学生可以通过实际动手操作,了解电路元器件的基本特性,掌握电路原理和设计思路。
本实验主要目的是让学生初步了解电路设计的基本环节,并通过实验验证电路设计的正确性。
二、实验目的1. 掌握电路设计的基本流程和步骤;2. 熟悉常用电路元器件的基本参数和特性;3. 初步了解电路设计中的常见问题和解决方案。
三、实验内容本次实验设计一个简单的电路,实现一个LED灯的亮灭控制。
具体电路设计如下:1. 使用一个电阻限流,接在LED阳极和正电源之间;2. 使用一个开关,控制电路的通断,即控制LED灯的亮灭。
四、实验步骤1. 准备工作准备以下器件和元器件:- LED灯:1个- 电阻:1个- 开关:1个- 面包板:1个- 连接线:若干条2. 搭建电路1. 将LED灯、电阻和开关依次插入面包板上,并用连接线连接它们。
确保连接的稳固可靠。
3. 连接电源1. 将正极和负极连接到电路的相应端口。
4. 调试电路1. 打开电源,检查LED灯是否亮起。
2. 使用开关控制LED灯的亮灭。
五、实验结果在实验过程中,我们成功搭建了一个LED灯的亮灭控制电路,并通过开关控制了LED灯的亮灭状态。
电路工作正常,符合设计要求。
六、实验分析通过本次实验,我们初步了解了电路设计的基本环节和步骤。
在实验过程中,我们遇到了一些问题,例如电路连接线松动导致电路中断,通过调整连接线确保了电路的正常通断。
我们也学到了一些解决问题的方法和技巧。
七、实验总结本次实验让我们初步了解了电路设计的基本过程。
通过实际动手操作,我们对电路元器件的连接和使用有了更深入的了解,并能够独立完成简单电路的搭建和调试。
在今后的学习中,我们将继续学习电路设计的更深入内容,提高自己的技能水平。
八、参考文献[1] 电子电路设计教程,XXX出版社,2020年[2] 电子电路设计实验指导书,XXX大学出版社,2020年。
基本运算电路
基本运算电路一、实验目的1.熟悉由运算放大器组成的基本运算电路。
2.掌握运算电路的调试和实验方法。
3.了解运算放大器的主要技术参数。
4.了解运算电路的设计知识。
二、原理与说明1.运算放大器的主要技术参数双输入、单输出运算放大器的符号如图 所示(两个直流电源端U +、U -有时省去不画),各端子相对于地的电压及端子电流如图中所示。
在实际中,运算放大器有上千种型号,描述其性能的技术参数如下:u u u ou o图 运算放大器的符号 图 运算放大器的输入失调电压(1)输入失调电压U io实际运放由于制造工艺问题,两个输入通路不可能完全匹配,当输入电压U i为零时,输出电压U o 并不为零。
这相当于在两输入通路完全匹配运放的输入端串有一电压源U io ,如图所示。
显然,当U i =U io 时,输出电压U o =0。
U io 称为运放的输入失调电压。
对超低失调运放,U io 可低于20μV 。
输入失调电压的一种测试电路如图所示,R '=R 1//R f ,可求得o 1f 1io U R R R U +=按上式用电压表测得输出电压U o 后,可计算出输入失调电压U io 。
(2)输入失调电流I io运放输出电压为零时,两个输入端静态电流的差值定义为输入失调电流。
pn io o =-=U I I I(3)输入偏置电流I ib运放输出电压为零时,两个输入端静态电流的平均值定义为输入偏置电流。
0n p ib o )(21=+=U I I I 对双极型运放,ib I 可达纳安量级;对MOS 运放,ib I 可达皮安量级。
R o图 测试失调电压的电路(4)开环电压增益A 0运放的电压传递函数与频率有关,在一定频率范围内近似为()0np o/j 1j ωωω+=-=A U U U A式中:A 0为直流增益;ω0=2π f 0为3dB 角频率,f 0通常在10Hz 以下。
在无外部反馈条件下,给运放施加一小信号,使运放工作在线性区,且信号频率很低,低于运放的3dB 带宽,输出信号电压与输入差分信号电压的比值称为开环电压增益。
基本组合电路设计实验报告
基本组合电路设计实验报告嘿,朋友们!今天我们来聊聊一个有趣的话题,那就是基本组合电路设计。
哎呀,听起来可能有点复杂,不过放心,我会用轻松的语气带你们走进这个神奇的世界。
组合电路,简单来说,就是那些电路里没有存储器件的电路。
它们只依赖输入信号来产生输出,明白吗?就像你家冰箱,关上门它就不再工作,打开门它立刻开始忙碌。
说到这个实验,我们首先要了解一些基本概念。
比如,逻辑门,它们就像电路的“小卫兵”,负责处理输入信号。
常见的有与门、或门、非门等等。
想象一下,你在做一道菜,与门就好比把两个食材混合,只有都准备好了,才能做出美味。
而或门呢,就像你给自己选择,随便哪个食材都能上场,那菜肴照样能端出来。
实验开始时,大家都兴致勃勃。
每个人面前摆着一大堆电路元件,有电阻、二极管、逻辑门,还有那些五颜六色的导线。
哎呀,看起来就像一场小型的科技派对!组装电路的时候,大家都像小孩子一样,迫不及待想要把这些零件拼在一起。
小心翼翼地把逻辑门接上去,心里默默祈祷:希望这次不会短路啊,真是“望天收米”!我们设计的电路是一个简单的加法器,真是个脑洞大开的玩意儿。
把它想象成一个算术小精灵,可以帮助你快速计算。
每当输入一个二进制数,它就会像玩魔法一样,迅速变出结果。
哇,简直太酷了!于是我们开始连接输入和输出。
每个人都争先恐后,仿佛在参加一场拼图比赛,争取把它完成得又快又漂亮。
哦,别忘了调试!这个环节就像过山车,时而刺激,时而紧张。
有时候电路工作得淋漓尽致,有时候又像失去了灵魂,怎么也打不开。
那种感觉就像你煮面条,水开了却发现没放盐,心里那个别扭!于是大家开始互相帮助,有的同学拉着图纸,讨论电路原理;有的则在旁边用工具忙活,真是一幅热火朝天的景象。
就连教室里的空气似乎都充满了“电”的味道。
最终,成功点亮了电路,所有人的欢呼声如潮水般涌来。
就像过年放烟花,那种激动人心的瞬间简直让人飘起来。
大家围着电路,像小鸟一样兴奋地讨论着实验的每个细节,分享着各自的收获。
基本运算电路
基本运算电路——实验报告一、实验目的1.掌握集成运算放大器的正确使用方法。
2.掌握用集成运算放大器构成比例、加法、减法和积分等基本运算电路的功能。
3.正确理解运算电路中各元件参数之间的关系和概念。
二、实验仪器WLSY-I型数电模电实验箱、数字交流毫伏表、基本运算电路板三、实验原理1.理想运算放大器特性基本知识集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的元器件组成负反馈电路时,可以实现比例、加法、减法、积分、微分等模拟运算电路。
理想运放,是将运放的各项技术指标理想化。
满足下列条件的运算放大器成为理想运放。
开环电压增益A Vd=∞输入阻抗r i=∞输出阻抗r0=0带宽f WW=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U0与输入电压之间满足关系式U0=A Vd(U+-U-)由于A Vd=∞,而U0为有限值,因此,U+-U-≈0。
即U+= U-,称为“虚短”。
(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。
这说明运放对其前级吸取电流较小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
本实验采用LM358或LM324集成运算放大器和外接电阻、电容等构成基本运算电路。
运算放大器具有高增益、高输入阻抗的直接耦合放大器。
它外加反馈网络后,可实现不同的电路功能。
如果反馈网络为线性电路,运算放大器可实现加、减、微分、积分运算;如果反馈网络为非线性电路,则可实现对数、乘法、除法等运算;除此之外还可组成各种波形发生器,如正弦波、三角波、脉冲波发生器等。
2.反相比例运算电路反相比例运算电路如图1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为u0=-R f/R1*u iA vf=-R f/R1图1 反相比例运算电路为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R’=R1//R f。
实验四 集成运放组成的基本运算电路
实验四 集成运放组成的基本运算电路一. 实验目的1.掌握集成运算放大器的正确使用方法。
2.了解集成运算放大器在信号放大和模拟运算方面的应用。
二. 实验设备实验箱 1个实验电路板 1个数字万用表 1个三. 简述运算放大器是具有两个输入端和一个输出端的高增益、高输入阻抗的多级直接耦合电压放大器。
只要在集成运放的外部配以适当的电阻和电容等器件就可构成比例、加减、积分、微分等模拟运算电路。
在这些应用电路中,引入了深度负反馈,集成运放工作在线性放大区,属于运算放大器的线性应用范畴,因此分析时可将集成运放视为理想运放,运用虚断和虚短的原则。
虚断:即认为流入运放两个净输入端的电流近似为零。
虚短:即认为运放两个净输入端的电位近似相等(u +≈ u -)。
从而可方便地得出输入与输出之间的运算表达式。
使用集成运算放大器时,首先应根据运放的型号查阅参数表,了解其性能、指标等,然后根据管脚图连接外部接线(包括电源、调零电路、消振电路、外接反馈电阻等等)。
四. 设计实验要求1. 设计由双列直插通用集成运放μA741构成的基本运算电路,要求实现:反相比例运算,反相加法运算,同相比例运算,电压跟随器,差动运算(减法运算)等5种运算。
每一运算电路需要设计两种典型的输入信号。
2. 自己设计选择电路参数和放大倍数,画出电路图并标出各电阻的阻值(μA741的最大输出电流小于10mA ,因此阻值选取不能小于1KΩ)。
3. 自拟实验步骤。
4. 电源电压一律取12V ±。
本实验用直流信号源,自己选择输入信号源的取值,已知信号源(5i u V ≤)。
5. 设计举例:反相比例运算电路的设计反相比例放大器的运算功能为:1R R u u A F i o uf -==; 设,10-=uf A 负反馈电阻Ω=K R F 100;可以计算出110R K =Ω,平衡电阻100//109.1R K '=≈Ω。
max =9o u V,max max 90.910o i uf u u V A ∴≤==,即输入信号的设计值小于0.9V ±。
实验13 集成运放组成的基本运算电路
实验13 集成运放组成的基本运算电路一、实验目的:1.掌握集成运放组成的比例、加法和积分等基本运算电路的功能。
2.了解集成运算放大器在实际应用时应考虑的一些问题。
3.掌握在放大电路中引入负反馈的方法。
二、实验内容1.实现两个信号的反相加法运算。
2.实现同相比例运算。
3.用减法器实现两信号的减法运算。
4.实现积分运算。
5.用积分电路将方波转换为三角波。
三、实验准备1.复习教材中有关集成运放的线性应用部分。
2.拟定实验任务所要求的各个运算电路,列出各电路的运算表达式。
3.拟定每项实验任务的测试步骤,选定输入测试信号υS 的类型(直流或交流)、幅度和频率范围。
4.拟定实验中所需仪器和元件。
5.在图9.30所示积分运算电路中,当选择υI =0.2V 时,若用示波器观察υO (t )的变化轨迹,并假定扫速开关置于“1s/div ”,Y 轴灵敏度开关置于“2V/div ”,光点一开始位于屏幕左上角,当开关S 2由闭合转为打开后,电容即被充电。
试分析并画出υO 随时间变化的轨迹。
四、实验原理与说明由集成运放、电阻和电容等器件可构成比例、加减、积分、微分等模拟运算电路。
在这些应用中,须确保集成运放工作在线性放大区,分析时可将其视为理想器件,从而得出输入输出间的运算表达式。
下面介绍几种常用的运算电路:1.反相加法运算电路如图9.27所示,其输入与输出之间的函数关系为:)(2211I f I fO v R R v R R v +-=图9.27 反相加法运算电路 通过该电路可实现信号υI1和υI2的反相加法运算。
为了消除运放输入偏置电流及其漂移造成的运算误差,须在运放同相端接入平衡电阻R 3,其阻值应与运放反相端的外接等效电阻相等,即要求R 3= R l ∥R 2∥R f 。
实验时应注意:(1)为了提高运算精度,首先应对输出直流电位进行调零,即保证在零输入时运放输出为零。
(2)输入信号采用交流或直流均可,但在选取信号的频率和幅度时,应考虑运放的频率响应和输出幅度的限制。
电路设计实验报告
电路设计实验报告实验目的,通过电路设计实验,掌握电路设计的基本原理和方法,提高对电路设计的理解和实践能力。
一、实验内容。
本次实验主要包括以下内容:1. 电路设计原理的学习和理解;2. 电路设计实验的具体步骤和方法;3. 电路设计实验中可能遇到的问题及解决方案。
二、实验步骤。
1. 确定电路设计的基本要求和参数;2. 进行电路设计的初步规划和布局;3. 选择合适的电子元器件,并进行电路连接;4. 调试和测试电路的性能,发现问题并及时解决;5. 对电路设计实验进行总结和分析。
三、实验结果。
通过本次电路设计实验,我们成功设计并搭建了一个简单的电路,实现了预期的功能。
在实验过程中,我们遇到了一些问题,但通过分析和调试,最终都得到了解决。
这次实验不仅加深了我们对电路设计原理的理解,也提高了我们的动手能力和解决问题的能力。
四、实验总结。
电路设计实验是电子专业学生必不可少的一门实践课程,通过实验,我们不仅能够将课堂上学到的理论知识应用到实际中,还能够培养我们的动手能力和解决问题的能力。
在今后的学习和工作中,我们将更加注重实践,不断提高自己的专业能力。
五、实验心得。
通过本次电路设计实验,我深刻体会到了实践的重要性。
只有将理论知识与实际操作相结合,才能更好地理解和掌握所学内容。
在今后的学习和工作中,我会更加注重实践,不断提高自己的动手能力和解决问题的能力,为将来的发展打下坚实的基础。
六、参考文献。
[1] 《电路设计与分析》,XXX,XX出版社,200X年。
[2] 《电子电路设计基础》,XXX,XX出版社,200X年。
七、致谢。
在本次实验中,感谢指导老师的悉心指导和同学们的合作,让我收获颇丰。
同时也感谢家人的支持和鼓励,让我能够安心学习和实践。
以上就是本次电路设计实验的实验报告,谢谢大家的阅读。
集成运放基本运算电路实验报告
实验七 集成运放基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1.12n fRR R R in i i i ++++ΛΛ321= i f于是有V=RRf- (V i1 +V i2 +V i3 +……+V in)如果各电阻的阻值不同,则可作为比例加法器,则有⎥⎦⎤⎢⎣⎡+++-=innfifif VRRVRRVRRVΛΛ22112、减法器是指输出信号为两个输入信号之差的放大器。
用数学关系表示时,可写为:y = x1- x2下图为减法器的基本结构图。
由于 VA= VBffAAi iRVVRVVi=-=-=0112ffiB RRRVV+=12(已知R3= Rf)所以()2110iif VVRRV-=3⎰=xdty这里反馈网络的一个部分用电容来代替电=II4算的结果。
运算电路实验报告
实验报告课程名称:___模拟电子技术实验____________指导老师:_ _成绩:__________________ 实验名称:实验13 基本运算电路实验类型:__________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一. 实验目的和要求1、研究集成运放组成的比例、加法和积分等基本运算电路的功能。
2、掌握集成运算放大电路的三种输入方式。
3、了解集成运算放大器在实际应用时应考虑的一些问题。
4、理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响。
二. 实验内容和原理1. 实现两个信号的反相加法运算。
2. 实现同相比例运算。
3. 用减法器实现两信号的减法运算。
4. 实现积分运算。
5. 用积分电路将方波转换为三角波。
运放μa741介绍:集成运算放大器(简称集成运放)是一种高增益的直流放大器,它有二个输入端。
根据输入电路的不同,有同相输入、反相输入和差动输入三种方式。
集成运放在实际运用中,都必须用外接负反馈网络构成闭环放大,用以实现各种模拟运算。
μa741引脚排列:三. 主要仪器设备示波器、信号发生器、晶体管毫伏表运算电路实验电路板μa741、电阻电容等元件四. 操作方法和实验步骤1. 实现两个信号的反相加法运算?r frf v?????v?vos1s2??r2 ?r1?通过该电路可实现两个信号的反相加法运算。
为了消除运放输入偏置电流及其漂移造成的运算误差,需在运放同相端接入平衡电阻r3,其阻值应与运放反相端地外接等效电阻相等,即要求r3=r1//r2//rf。
测量出输入和输出信号的幅值,并记录示波器波形。
注意事项:①被加输入信号可以为直流,也可以选用正弦、方波或三角波信号。
但在选取信号的频率和幅度时,应考虑运放的频响和输出幅度的限制。
基本运算器实验实验报告
基本运算器实验实验报告一、实验目的本次基本运算器实验的主要目的是深入理解计算机中基本运算的原理和实现方式,通过实际搭建和测试运算器电路,掌握加法、减法、乘法和除法等基本运算的逻辑实现,以及运算过程中的进位、借位和溢出等概念。
同时,通过实验培养我们的动手能力、逻辑思维能力和问题解决能力,为进一步学习计算机组成原理和数字电路等相关课程打下坚实的基础。
二、实验设备与环境1、实验设备数字电路实验箱示波器逻辑分析仪万用表2、实验环境实验室提供稳定的电源和良好的通风条件。
三、实验原理1、加法器半加器:只考虑两个一位二进制数相加,不考虑低位进位的加法电路。
其逻辑表达式为:和= A ⊕ B,进位= A ∧ B。
全加器:考虑两个一位二进制数相加以及低位进位的加法电路。
其逻辑表达式为:和= A ⊕ B ⊕ C_in,进位=(A ∧ B) ∨(A ∧C_in) ∨(B ∧ C_in)。
多位加法器:通过将多个全加器级联可以实现多位二进制数的加法运算。
2、减法器利用补码原理实现减法运算。
将减数取反加 1 得到其补码,然后与被减数相加,结果即为减法的结果。
3、乘法器移位相加乘法器:通过将被乘数逐位与乘数相乘,并根据乘数对应位的值进行移位相加,得到乘法结果。
4、除法器恢复余数法除法器:通过不断试商、减去除数、恢复余数等操作,逐步得到商和余数。
四、实验内容与步骤1、加法器实验按照实验原理图,在数字电路实验箱上连接全加器电路。
输入不同的两位二进制数 A 和 B 以及低位进位 C_in,观察输出的和 S 和进位 C_out。
使用示波器和逻辑分析仪监测输入和输出信号的波形,验证加法器的功能。
2、减法器实验按照补码原理,设计减法器电路。
输入被减数和减数,观察输出的差和借位标志。
使用万用表测量相关节点的电压,验证减法器的正确性。
3、乘法器实验搭建移位相加乘法器电路。
输入两位二进制被乘数和乘数,观察输出的乘积。
通过逻辑分析仪分析乘法运算过程中的信号变化。
基础电路实验的实验报告
基础电路实验的实验报告实验名称:基础电路实验摘要:本实验旨在通过搭建和分析基础电路,了解电路中的基本元件、电流与电压的关系以及欧姆定律等基础概念。
实验中,我们搭建了串联和并联电阻电路,测量了电路中的电流和电压,并分析了实验数据。
一、实验目的1. 了解基础电路中常见的电路元件,如电源、电阻等。
2. 掌握并理解电路中电流、电压、电阻的概念。
3. 实践欧姆定律,并验证其正确性。
二、实验仪器和材料1. 直流电源2. 电阻箱3. 电流表4. 电压表5. 连接线三、实验原理1. 电流:电流是电荷在单位时间内通过导线的量,用符号I表示,单位为安培(A)。
在闭合电路中,电子从负极向正极流动,所以电流的方向与电子流动的方向相反。
2. 电压:电压是电场对电荷做功的结果,用符号U表示,单位为伏特(V)。
在闭合电路中,负极的电势低于正极,所以电压的方向从负极指向正极。
3. 电阻:电阻是电流受电压作用下,电子在导体中移动时遇到的阻碍,用符号R表示,单位为欧姆(Ω)。
电阻越大,电流受到的阻碍越大。
4. 欧姆定律:欧姆定律描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压与电阻之比,即I = U / R。
四、实验步骤1. 将直流电源接入电路中,一端连接到电流表,另一端连接到电阻箱。
2. 将电压表分别连接在电源的正负极和电阻之间,测量电路的电压值。
3. 调节电阻箱的电阻值,记录不同电阻下的电流和电压值。
4. 分别搭建串联电阻电路和并联电阻电路,重复步骤2和步骤3,记录数据。
五、实验结果与数据分析通过实验我们测得了不同电阻下的电流和电压值,并对数据进行了整理和分析。
六、实验结论1. 实验结果验证了欧姆定律的正确性,即电流等于电压与电阻之比。
2. 在串联电路中,电流相等,电压之和等于总电压;在并联电路中,电压相等,电流之和等于总电流。
七、实验心得体会通过本次实验,我们加深了对基础电路中电流、电压、电阻的概念的理解。
同时,也学会了如何使用直流电源、电流表和电压表等仪器进行基础电路实验。
电路基础实验报告
电路基础实验报告一、实验目的二、实验器材三、实验原理四、实验步骤及结果五、实验分析六、实验结论一、实验目的:本次电路基础实验的主要目的是让学生掌握基础电路的搭建和测量技能,了解电路中基本元件的特性,以及理解并应用欧姆定律和基尔霍夫定律。
二、实验器材:1.数字万用表;2.直流电源;3.面包板;4.电阻(1kΩ,10kΩ);5.开关;6.LED灯。
三、实验原理:1.欧姆定律:在一个导体两端施加电压时,通过导体的电流与导体两端施加的电压成正比例关系。
即I=V/R。
2.基尔霍夫定律:在一个封闭回路中,各个支路中电流代数和等于零;在一个节点处,进入该节点的电流等于从该节点出去的电流之和。
四、实验步骤及结果:1.搭建简单串联电路,并测量各个元件之间的电压和总电压。
结果表明,在串联电路中各个元件之间的总电压等于各个元件电压之和。
2.搭建简单并联电路,并测量各个元件之间的电流和总电流。
结果表明,在并联电路中各个元件之间的总电流等于各个元件电流之和。
3.搭建简单开关控制LED灯的电路,并测量LED灯亮度随着不同电阻值的变化情况。
结果表明,当电阻值增大时,LED灯亮度降低。
五、实验分析:1.在串联电路中,各个元件之间的总电压等于各个元件电压之和,这是因为在串联电路中,整个回路中只有一个路径可以通行,因此通过每个元件的电流相同,而根据欧姆定律可知,通过每个元件的电压与其阻值成正比例关系,因此总电压等于各个元件之间的累加和。
2.在并联电路中,各个元件之间的总电流等于各个元件之间的累加和。
这是因为在并联电路中,整个回路中有多条路径可以通行,因此通过每个元件的总电流相同,而根据欧姆定律可知,在每条支路上通过不同元件的总阻值相同,则通过每条支路的电流与支路上电阻成反比例关系,因此总电流等于各个元件之间的累加和。
3.在控制LED灯亮度的电路中,通过改变电阻值可以改变LED灯亮度。
这是因为LED灯是一种非线性元件,其亮度与通过其的电流成正比例关系,而根据欧姆定律可知,通过一个电阻的电流与其阻值成反比例关系,因此改变电阻值可以改变通过LED灯的电流大小,从而控制LED灯亮度。
实验3.8 集成运算放大器基本运算电路
113实验3.8 集成运算放大器基本运算电路一、实验目的(1)掌握由集成运算放大器组成的比例、加法、减法和积分等模拟运算电路功能。
(2)熟悉运算放大器在模拟运算中的应用。
二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、数字万用表、直流稳压电源、实验电路板。
三、实验原理集成运算放大器在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。
1、反相比例运算电路反相比例运算电路如图3.8.1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为:i 1f o U R RU -= (3-8-1)为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ´=R 1||R f 。
实验中采用10 k Ω和100 k Ω两个电阻并联。
2、同相比例运算电路图3.8.2是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1f o )1(U R RU += (3-8-2)当R 1→∞时,U o =U i ,即为电压跟随器。
3、反相加法电路反相加法电路电路如图3.8.3所示,输出电压与输入电压之间的关系为)+(=B 2f A 1f o U R RU R R U - (3-8-3)R ´ = R 1 || R 2 || R f4、同相加法电路同相加法电路电路如图3.8.4所示,输出电压与输入电压之间的关系为:)+++(+=B211A 2123f 3o U R R R U R R R R R R U(3-8-4)图3.8.3 反相加法运算电路图3.8.2 同相比例运算电路图3.8.1 反相比例运算电路1145、减法运算电路(差动放大器)减法运算电路如图3.8.5所示,输出电压与输入电压之间的关系为:f f o A B 1121 ()()R R R U U U R R R R '=+'+-+当R 1 = R 2,R ´ = R f 时,图3.8.5电路为差动放大器,输出电压为:)(=A B 1f o U U R RU - (3-8-5)6、积分运算电路反相积分电路如图3.8.6所示,其中R f是为限制低频增益、减小失调电压的影响而增加的。
电路设计实验报告
电路设计实验报告实验目的,通过设计和实验,掌握电路设计的基本原理和方法,提高实际动手能力,培养实际动手能力。
实验仪器,示波器、信号发生器、直流电源、万用表、电阻箱、电容箱、电感箱等。
实验内容:1. 电阻电路的设计。
首先,我们设计了一个简单的电阻电路,利用电阻箱和直流电源进行搭建。
通过调节电阻箱的阻值,观察电路中电流和电压的变化规律,探究欧姆定律在电路中的应用。
2. 电容电路的设计。
接着,我们进行了电容电路的设计实验。
利用信号发生器产生正弦波信号,通过连接电容和电阻,观察电压和电流的相位差,探究电容在交流电路中的作用。
3. 电感电路的设计。
最后,我们进行了电感电路的设计实验。
利用信号发生器产生正弦波信号,通过连接电感和电阻,观察电压和电流的相位差,探究电感在交流电路中的作用。
实验结果分析:通过以上实验,我们深入理解了电阻、电容、电感在电路中的作用和应用。
在实验中,我们发现了电路中电流和电压的变化规律,掌握了电路的基本原理和方法。
同时,我们也发现了电容和电感在交流电路中的特殊作用,对于电路的频率响应和相位差有了更深入的了解。
实验总结:通过本次实验,我们不仅掌握了电路设计的基本原理和方法,提高了实际动手能力,还培养了实际动手能力。
在今后的学习和工作中,我们将会更加熟练地运用电路设计的知识,为自己的专业发展打下坚实的基础。
实验中遇到的问题及解决方法:在实验过程中,我们遇到了一些电路连接错误和参数调节不准确的问题,但通过仔细检查和耐心调试,最终成功解决了这些问题,保证了实验的顺利进行。
展望:在今后的学习和工作中,我们将会继续深入学习电路设计的知识,不断提高自己的实际动手能力,为将来的科研和工程实践做好充分的准备。
结语:通过本次实验,我们对电路设计有了更深入的了解,增强了对专业知识的掌握和实际动手能力,为今后的学习和工作打下了坚实的基础。
希望在今后的学习中能够继续努力,取得更好的成绩。
集成运放的基本运算电路实验报告
集成运放的基本运算电路实验报告实验报告:集成运放的基本运算电路实验目的:1. 了解集成运放的基本原理和性质;2. 学习基本运算电路的设计和实现方法;3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。
实验器材:1. 集成运放(可以使用LM741等常见型号);2. 电阻(包括不同阻值的固定电阻和可变电阻);3. 电源(正负双电源,供应电压根据集成运放的需求确定);4. 示波器;5. 信号源。
实验步骤:1. 反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
2. 非反相放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
3. 求和放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
4. 差分放大器的设计和实现:a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。
实验结果:1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。
实验分析:1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。
2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:电路与模拟电子技术实验 指导老师:
成绩: __________________ 实验名称: 基本运算电路设计 实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得
实验目的和要求
1. 掌握集成运放组成的比例、加法和积分等基本运算电路的设计。
2. 掌握基本运算电路的调试方法。
3. 学习集成运算放大器的实际应用。
二、实验内容和原理(仿真和实验结果放在一起) 1、反相加法运算电路:
1212
12121
2
=(
)
f
o I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+
当R1=R2时,
121
()
f o I I R u u u R =-
+,输出电压与Ui1,Ui2之和成正
比,其比例系数为1f
R R ,电阻R ’=R1//R2//Rf 。
2、减法器(差分放大电路)
专业:机械电子工程 姓名:许世飞
学号: 日期: 桌号:
11o
I f
u u
u u R R ----=
由于虚短特性有:2
3
23
321231
1233211
11,()
I f
f o I I f
f o I I f u u u R R R R R R u u u R R R R R R R R R u u u R R R -+==
⨯+⎛⎫
=+
- ⎪+⎝⎭===-=因此解得:时,有可见,当时,输出电压等于出入电压值差。
3、由积分电路将方波转化为三角波:
电路中电阻R2的接入是为了抑制由IIO 、VIO 所造成的积分漂移,从而稳定运放的输出零点。
在t<<τ2(τ2=R2C )的条件下,若vS 为常数,则vO 与t 将近似成线性关系。
因此,当vS 为方波信号并满足Tp<<τ2时(Tp 为方波半个周期时间),则vO 将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。
4 、同相比例计算电压运算特性:
电压传输特性是表征输入与输出之间的关系曲线,即vO= f(vS) 。
同相比例运算电路是由集成运放组成的同相放大电路,其输出与输入成比例关系,但输出信号的大小受集成运放的最大输出电压幅度的限制,因此输出与输入只在一定范围内是保持线性关系的。
主要仪器设备:信号源、示波器、实验箱、电源。
实验步骤与结果记录:
反相加法运算电路:
1) 按设计的运算电路进行连接。
2) 静态测试:将输入接地,测试直流输出电压。
保证零输入时电路为零输出。
3) 调出峰值三角波和峰值方波,送示波器验证。
4) vS1输入峰值三角波,vS2输入峰值方波,用示波器双踪观察输入和输出波形,确认电路功能正确。
记录示波器波形(坐标对齐,注明幅值)。
仿真电路图:
仿真结果:
实验所得示波器波形:
观察仿真图像,电压都为负值,最低点为-7V,在输入电压峰值为和时,反相放大了10倍,符合理论推导结果。
差分电路(减法器):
仿真结果:
设输入电压为和,输出电压为13V,放大倍数为10倍,实现了减法功能。
积分电路将方波转化为三角波:
仿真:
T=10τ时,
T=τ时,
T=时,
实验结果:
T=τ时,
T=时,
相比例运算电压传输特性(电压跟随器)
思考题:
什么是集成运算放大器的电压传输特性输入方式的改变将如何影响电压传输特性
不同频率的输入信号经过放大器得到一定的输出,两者之间的关系式曲线就反映了该放大器的电压传输特性。
电压传输特性受电路影响。
(2)集成运算放大器的输入输出成线性关系,输出电压将会无限增大,这话对吗为什么
不对。
输出时会存在饱和电压。
实验中信号的频率不一样是否对实验的结果有影响
有影响。
信号频率不同不能生成稳定波形。
基本运算电路,没有输出信号,输出端电压接近饱和,为什么怎样处理
频率不在正常工作范围内。
减小信号频率。
在积分运算电路中,当选择Vs=时,若用示波器观察υo(t)的变化轨迹,并假定扫速开关置于“1s/div”,Y轴灵敏度开关置于“2V/div”,光点一开始位于屏幕左上角,当开关S2由闭合转为打开后,电容即被充电。
试分析并画出Vo随时间变化的轨迹。
若采用电解电容时,电解电容的正负极该如何接
(5)为防止出现自激振荡和饱和失真,应用什么仪器监视输出电压波形。
用示波器监视输出电压波形。
(6)在基本运算电路中,当输入信号为正弦波、方波或直流信号等不同形式时,应分别选择什么仪器来测量其幅度
正弦波:示波器看波形,毫伏表测幅度;方波:示波器看波形,直接用示波器测幅度;直流信号:万用表。
(7)实验中,若测得运放静态输出电压为+14V(或不为0),其根本原因是什么应如何进一步调试
可能是没有构成负反馈,输入电阻与反馈电阻断开。
此时应检查线路是否接错,元件是否出现问题,然后再测量静态输出,为零后再加入信号。