《运筹学》复习资料分析

合集下载

运筹学必考知识点总结

运筹学必考知识点总结

运筹学必考知识点总结在运筹学中,有一些必考的知识点是非常重要的。

这些知识点涵盖了运筹学的基本概念、方法和模型,对于考生来说,掌握这些知识点是至关重要的。

本文将对运筹学的一些必考知识点进行总结,帮助考生更好地备考。

1. 线性规划线性规划是运筹学中的重要方法之一,它通过建立数学模型来解决各种决策问题。

在线性规划中,目标是最大化或最小化一个线性函数,同时满足一系列线性约束条件。

考生需要掌握线性规划的基本理论,包括线性规划模型的建立、单纯形法和对偶理论等内容。

2. 整数规划整数规划是线性规划的扩展,它要求决策变量取整数值。

整数规划在实际应用中有着广泛的用途,因此对于考生来说,掌握整数规划的基本理论和解题方法是必不可少的。

3. 动态规划动态规划是一种用于求解多阶段决策问题的优化方法。

在动态规划中,问题被分解为多个子问题,并且这些子问题之间存在重叠。

考生需要了解动态规划的基本原理、状态转移方程的建立以及动态规划算法的实现。

4. 网络流问题网络流问题是运筹学中的一个重要领域,它涉及到图论和优化算法等多个方面的知识。

在网络流问题中,主要考察最大流、最小割、最短路等问题的求解方法。

5. 效用理论效用理论是运筹学中的一个重要分支,它研究人们在做出决策时的偏好和选择。

效用函数、期望效用、风险偏好等概念是考试中的热点内容。

6. 排队论排队论是研究排队系统的运作规律和性能指标的数学理论。

在排队论中,考生需要了解排队系统的稳定性条件、平衡方程、性能指标的计算方法等。

7. 多目标决策多目标决策是指在考虑多个目标时的决策问题。

在多目标决策中,往往需要考虑到多个目标之间的矛盾和权衡,因此考生需要掌握多目标规划的基本原理和解题方法。

8. 随机规划随机规划是考虑到不确定因素的决策问题。

在随机规划中,目标函数、约束条件等参数都是随机变量,因此需要考虑到风险和概率的因素。

以上是一些运筹学中的必考知识点,考生在备考过程中需要重点关注这些知识点。

运筹学知识点总结

运筹学知识点总结

运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。

线性规划的三要素:变量或决策变量、目标函数、约束条件。

目标函数:是变量的线性函数。

约束条件:变量的线性等式或不等式。

可行解:满足所有约束条件的解称为该线性规划的可行解。

可行域:可行解的集合称为可行域。

最优解:使得目标函数值最大的可行解称为该线性规划的最优解。

唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。

凸集:要求集合中任意两点的连线段落在这个集合中。

等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。

松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。

剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。

2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。

4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。

5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。

当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。

第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。

2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。

4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。

运筹学 本(复习资料)

运筹学 本(复习资料)

《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。

[ ]3.任何线性规划问题存在并具有惟一的对偶问题。

[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。

[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。

[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。

[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。

[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。

[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。

[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。

[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。

[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。

[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。

[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。

确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。

都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。

问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。

问题中用一组决策变量来表示一种方案。

3. 线性规划问题标准型的特征。

4. 化标准型的方法。

123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。

6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。

7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。

8. 最优解:函数达到最优的可行解叫做最优解。

9.图解法适合于变量个数为2个的线性规划问题。

10.单纯形法解线性规划问题如何确定初始基本可行解。

(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。

(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。

(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。

运筹学与系统分析 复习资料

运筹学与系统分析   复习资料

运筹学与系统分析复习资料一、单选题1在产销平衡运输问题中,设产地为m个,销地为n个,那么解中非零变量的个数【A 】A.等于(m+n-1) B.不能小于(m+n-1)C. 不能大于(m+n-1)D.不确定2 在单纯形表的终表中,若非基变量的检验数有0,那么最优解【 A 】A.不存在B.唯一C. 无穷多D.无穷大3.在用对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【 D 】A.b列元素不小于零B.检验数都大于零C.检验数都不小于零D.检验数都不大于零4 在约束方程中引入人工变量的目的是【 D 】A.体现变量的多样性B.变不等式为等式C.使目标函数为最优D.形成一个单位矩阵5若运输问题已求得最优解,此时所求出的检验数一定是全部【 A 】A.大于或等于零B.大于零C.小于零D.小于或等于零6在线性规划模型中,没有非负约束的变量称为【 C 】A.多余变量B.松弛变量C.自由变量D.人工变量7 线性规划问题的最优解对应其可行域的【 B 】A.内点B.顶点C.外点D.几何点8对偶问题的对偶是【 D 】A.基本问题B.解的问题C.其它问题D.原问题9 原问题与对偶问题具有相同的最优【 A 】A.解B.目标值C.解结构D.解的分量个数10在对偶问题中,若原问题与对偶问题均具有可行解,则【 A 】A.两者均具有最优解,且它们最优解的目标函数值相等B.两者均具有最优解,原问题最优解的目标函数值小于对偶问题最优解的目标函数值C.若原问题有无界解,则对偶问题无最优解D.若原问题有无穷多个最优解,则对偶问题只有唯一最优解11 表上作业法中初始方案均为【 A 】A.可行解B.非可行解C.待改进解D.最优解12若原问题中x i 为自由变量,那么对偶问题中的第i 个约束一定为【 B 】 A.等式约束 B.“≤”型约束 C.“≥”约束 D.无法确定 13线性规划一般模型中,自由变量可以代换为两个非负变量的【B 】 A.和 B.差 C.积 D.商 14建立运筹学模型的过程不包括的阶段是【 A 】A.观察环境B.数据分析C.模型设计D.模型实施15 使用人工变量法求解极大化线性规划问题时,当所有的检验数0≤jσ,在基变量中仍含有非零的人工变量,表明该线性规划问题 【 D 】 A.有唯一的最优解 B.有无穷多个最优解 C.为无界解 D.无可行解 16 线性规划模型不包括的要素有【 D 】A.目标函数B.约束条件C.决策变量D.状态变量二、填空题1 线性规划问题的可行解是指满足 所有约束条件 解。

运筹学期末复习资料1

运筹学期末复习资料1

第三节 单纯形法 一,确定初始基可行解 (1)特殊情况 例1maxZ=2x1+3x2 x1+2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 xj ≥ 0
(2)一般情况:大M法
maxZ=3x1-x2 -x3 x1-2x2+x3 ≤ 11 -4x1+x2+2x3 ≥ 3 -2x1+x3 =4 x1, x2 ,x3 ≥ 0
2.无界解
例maxZ=6x1+2x2 +10x3 +8x4 3x1-3x2 +2x3 +8x4 ≤ 25 5x1+6x2 -4x3 -4x4 ≤ 20 4x1-2x2 +x3 +3x4 ≤ 10 x1, x2 ,x3 , x4 ≥ 0 3.无穷多最优解
例maxZ= 4x1+14x2 2x1+7x2 ≤ 21 7x1+2x2 ≤ 21 xj ≥ 0
基本解:基变量XB == (x1, x2, …,xm)'
满足方程BXB=b,则XB=B-1 b,其余XN=0,则 称( x1, x2, …,xm,0…0)'为基本解. 基可行解:若B对应的基本解(XB,…0)'≥0, 则称该解为基可行解. 可行基:对应于基可行解的基为可行基.
例1.maxZ=2x1+3x2
练习: 练习:
maxZ=4x1+3x2 maxZ=-x1-x2 maxZ=10x1+x2 maxZ=x1+20x2 maxZ=-4x1+2x2 2x1+3x2 ≤ 6 -3x1+2x2 ≤ 3 2x2 ≤ 5 2x1+x2 ≤ 4 x1, x2 ≥ 0 ,
4
2 3 D

运筹学复习资料资料讲解

运筹学复习资料资料讲解

运筹学复习一、 填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。

4、在运输问题模型中,1m n +-个变量构成基变量的充要条件是不含闭回路。

5、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。

6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。

8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。

9、一个无圈且连通的图称为树。

10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。

13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的. 线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k )变量,正确选择状态(Sk )变量,正确选择_ 决策(UK )变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。

运筹学复习资料

运筹学复习资料

试题结构:1、判断题(10×2`)2、单选题(10×2`)3、多选题(5 ×2`)4、计算题(5×10`)(第三、五、七、十一、十三章有计算题)第一张:绪论1.定义:运筹学是应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为管理者提供有依据的最优方案,以实现最有效的管理。

2.研究内容:线性规划、整数线性规划、目标规划、图与网络模型、存储论、排队论、对策论、排序与统筹方法、决策分析、动态规划、预测3.运用运筹学解决问题的一般过程(课件答案)(课本答案)规定目标和明确问题认清问题收集数据和建立模型找出一些可供选择的方案求解模型和优化方案确定目标或评估方案的标准检验模型和评价方案评估各个方案方案实施和不断改进选出一个最优的方案执行此方案进行最后评估:问题是否得到圆满解决第二章:线性规划的图解方法1.怎样辨别一个模型是线性模型?其特征是:(1)问题的目标函数是多个决策变量的线性函数,通常是求最大值或最小值;(2)问题的约束条件是一组多个决策变量的线性不等式或等式。

2.线性规划三个要素建模步骤决策变量、目标函数、约束条件3.LP 问题的标准型11max .1,2,,0,1,2,,nj jj nij ji j j Z c x a x b s t i m x j n ===⎧=⎪=⎨⎪≥=⎩∑∑ 特点:(1)目标函数求最大值(2)约束条件都为等式方程,且右端常数项b i 都大于或等于零 (3)决策变量x j 为非负。

一般形式目标函数: max (min ) z = c 1 x 1 + c 2 x 2 + … + c n x n约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n ≤ ( =, ≥ )b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n ≤ ( =, ≥ )b 2…… …… a m1 x 1 + a m2 x 2 + … + a mn x n ≤ ( =, ≥ )b mx 1 ,x 2 ,… ,x n ≥ 0 标准形式目标函数: max z = c 1 x 1 + c 2 x 2 + … + c n x n 约束条件: s.t. a 11 x 1 + a 12 x 2 + … + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + … + a 2n x n = b 2 …… …… a m1 x 1 + a m2 x 2 + … + a mn x n = b mx 1 ,x 2 ,… ,x n ≥ 0,b i ≥04.线性问题的性质与判断 (1 )线性规划可行域为凸集(2)最优解在凸集上某一顶点达到(特殊情况下为凸集的某条边)(3 )可行域有界,则一定有最优解5.图解法与解的状况(1)图解法使用范围:仅有两个决策变量的LP(2)基本步骤:a.建立平面直角坐标系;b.将约束条件图解,求得满足约束条件的解的集合;c.作出目标函数的等值线,并根据优化要求,平移目标函数等值线,求出最优解。

《运筹学》复习资料

《运筹学》复习资料

《运筹学》复习资料注:如学员使用其他版本教材,请参考相关知识点一、客观部分:(单项选择、多项选择、判断)(一)多选题1.线性规划模型由下面哪几部分组成?(ABC)A决策变量 B约束条件 C目标函数 D 价值向量★考核知识点: 线性规划模型的构成.(1.1)附1.1.1(考核知识点解释):线性规划模型的构成:实际上,所有的线性规划问题都包含这三个因素:(1)决策变量是问题中有待确定的未知因素。

例如决定企业经营目标的各产品的产量等。

(2)目标函数是指对问题所追求的目标的数学描述。

例如利润最大、成本最小等。

(3)约束条件是指实现问题目标的限制因素。

如原材料供应量、生产能力、市场需求等,它们限制了目标值所能到达的程度。

2.下面关于线性规划问题的说法正确的是(AB)A.线性规划问题是指在线性等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。

B.线性规划问题是指在线性不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。

C.线性规划问题是指在一般不等式的限制条件下,使某一线性目标函数取得最大值(或最小值)的问题。

D.以上说法均不正确★考核知识点: 线性规划模型的线性含义.(1.1)附1.1.2(考核知识点解释):所谓“线性”规划,是指如果目标函数是关于决策变量的线性函数,而且约束条件也都是关于决策变量的线性等式或线性不等式,则相应的规划问题就称为线性规划问题。

3.下面关于图解法解线性规划问题的说法不正确的是( BC )A在平面直角坐标系下,图解法只适用于两个决策变量的线性规划B 图解法适用于两个或两个以上决策变量的线性规划C 图解法解线性规划要求决策变量个数不要太多,一般都能得到满意解D 以上说法A正确,B,C不正确★考核知识点: 线性规划图解法的条件. (1.2)附 1.1.3(考核知识点解释):线性规划图解法的条件:对于只有两个变量的线性规划问题,可以在二维直角坐标上作图.4.在下面电子表格模型中,“决策变量”的单元格地址为( AB )A . C12B . D12C . C4 D. D4★考核知识点: 电子表格中如何建立线性数学模型. (1.3)附1.1.4(考核知识点解释):电子表格中的数学模型的建立:(1)要做出的决策是什么?(决策变量);(2)在做出这些决策时有哪些约束条件?(约束条件);(3)这些决策的目标是什么?(目标函数),将对应的问题数据放在相应的电子表格中即可.5.通常,在使用“给单元格命名”时,一般会给(ABCD )有关的单元格命名A 公式B 决策变量C 目标函数D 约束右端值★考核知识点: 给单元格命名的原则. (1.3)附1.1.5(考核知识点解释):给单元格命名的原则:一般给跟公式和模型有关的四类单元格命名。

运筹学复习资料

运筹学复习资料

运筹学复习资料
运筹学是数学和计算机科学的一个分支,旨在寻找最佳决策和优化问题的解决方案。

以下是有关运筹学的复习资料:
1. 模型建立:在运筹学中,解决问题的第一步是建立数学模型。

数学模型是指将实际问题抽象为数学语言,建立相应的数学方程式,使之成为可计算的问题。

在建模时需要明确问题目标、约束条件等。

2. 线性规划:线性规划是一种常用的优化方法,其目标函数和约束条件都是线性的。

采用单纯形法、内点法等算法可以求得最优解。

常见应用包括生产计划、库存管理等方面。

3. 整数规划:整数规划针对决策变量必须为整数这一特殊问题,增加了解整数约束条件的限制,采用分支定界法、割平面法等算法进行求解。

常见应用包括制造业需求计划、网络设计等方面。

4. 动态规划:动态规划和线性规划不同,其适用于序列决策问题,采用递推式方法实现求解。

常见应用包括背包问题、任务调度等方面。

5. 随机规划:随机规划引入随机变量,结合概率模型,可对不确定因素进行分析。

常见应用包括金融风险管理、供应链问题等方面。

6. 对策论:对策论是一种博弈论,面对竞争环境下的决策,需要考虑对手的策略,采用最小最大原则求解博弈双方的最佳决策。

常见应用包括竞价拍卖、垄断竞争等方面。

运筹学是实际问题求解的一种强有力的工具和方法,深入了解运筹学的理论与方法对于提高问题求解的精度、效率具有重要意义。

《运筹学》知识点全总结汇总

《运筹学》知识点全总结汇总

一、线性规划:基本概念1、下面的表格总结了两种产品A和B的关键信息以及生产所需的资源Q, R, S:资源每单位产品资源使用量可用资源产品A 产品BQ R S 213123224利润/单位3000美元2000美元满足所有线性规划假设。

(1)在电子表格上为这一问题建立线性规划模型;(2)用代数方法建立一个相同的模型;(3)用图解法求解这个模型。

5、普里默(Primo)保险公司引入了两种新产品:特殊风险保险和抵押。

每单位特殊风险保险的利润是5美元,每单位抵押是2美元。

管理层希望确定新产品的销售量使得总期望利润最大。

工作的要求如下:部门单位工时可使用工时特殊风险抵押承保管理索赔322124008001200(1)为这个问题在电子表格上建立一个线性规划模型并求解。

(2)用代数形式建立相同的模型。

8、拉尔夫·艾德蒙(Ralph Edmund)喜欢吃牛排和土豆,因此他决定将这两种食品作为正餐的全部(加上一些饮料和补充维生素的食品)。

拉尔夫意识到这不是最健康的膳食结构,因此他想要确定两种食品的食用量多少是合适的,以满足一些主要营养的需求。

他获得了以下营养和成本的信息:成分每份各种成分的克数每天需要量(克)牛排土豆碳水化合物蛋白质脂肪520151552≥50≥40≤60每份成本4美元 2美元拉尔夫想确定牛排和土豆所需要的份数(可能是小数),以最低的成本满足这些需求。

(1)为这个问题在电子表格上建立一个线性规划模型并求解。

(2)用代数形式建立相同的模型;(3)用图解法求解这个模型。

二、线性规划的what-if分析1、G.A.T公司的产品之一是一种新式玩具,该产品的估计单位利润为3美元。

因为该产品具有极大的需求,公司决定增加该产品原来每天1000件的生产量。

但是从卖主那里可以购得的玩具配件(A,B)是有限的。

每一玩具需要两个A类配件,而卖主只能将其供应量从现在的每天2000增加到3000。

同时,每一玩具需要一个B类的配件,但卖主却无法增加目前每天1000的供应量。

运筹学期末复习重点

运筹学期末复习重点

一、线性规划问题约束条件:不超过各工序可用时间非负约束1)0.7x1+x2≤6302) x1,x2≥0图解法:设定Z值然后带入值取各个公式的两个端点描点画图二、单纯形法步骤:标准化目标函数最大约束条件等式化≤引入松弛变量S ≥剩余变量e 右端非负Max Z=x1+x2. x1+2x2≤6 ,2x1+x2≤16,x1,x2≥0z−x1−x2=0 x1+2x2+s1=6 ,2x1+x2+s2=16 ,x1,x2,s1,s2 ≥0两组约束四个变量故有2个非基本变量,2个基本变量进入变量与离开变量的确定从非基本变量中找一个进入变量(进入到基本变量中),从基本变量中找一个离开变量(作为非基本变量)在Row 0 中,从左往右选择非基本变量中系数最小的作为进入变量(前面化为单位矩阵,为最优解)大M法:步骤同上,约束等式化≤引入松弛变量S ≥剩余变量e+人工变量a(=也是加a)min z=4x1+x2. s.t 3x1+x2=3 ,4x1+3x2≥6, x1+2x2≤4,x1,x2≥0 max z=−4x1−x2−Ma1−Ma2(M=100) s.t 3x1+x2+a1=3 , 4x1+3x2−e2+a2=6, x1+2x2+s3=4,x1,x2,e2,s3,a1,a2 ≥0M假定为无限大正值1.判断是否为最优解ROW a1 a2 系数化为0. 由于此时ROW 0 非基本变量的系数不全为非负数,因此,并非最优解。

进入变量与离开变量的确定重复以上步骤化为单位矩阵取得最优解。

两阶段法:第一阶段:引入人工变量a1,a2 min z=a1+a2 , max z=−a1−a2 min z=4x1+x2, s.t. 3x1+x2=3 ,4x1+3x2≥6 ,x1+2x2≤4,x1,x2≥0 max z=−a1−a2 s.t.3x1+x2+a1=3,4x1+3x2−e2+a2=6x1+2x2+s3=4,x1,x2,e2,s3,a1,a2≥0经过前面变换单位矩阵得到最优解的单纯形表第二阶段:min z=4x1+x2→max z=−4x1−x2将第一阶段最后最优解的单纯形表Row 0 替换为z+4x1+x2=0的系数然后重复上述步骤得到最优解。

运筹学复习要点

运筹学复习要点

运筹学复习要点第二章线性规划与单纯形法一、标准型:规定具有下述条件的线性规划问题为标准型式的线性规划问题:1、目标函数为求最大;2、约束条件为等式约束;3、决策变量为非负。

二、线性规划问题具有的特征:1、每一问题都用一组决策变量(x1, x2, . . . ,xn)表示某一方案;2这组决策变量的值就代表一个具体方案,一般这些变量值是非负的;3、存在一定的约束条件,它们可用线性等式或不等式表示;4、都有一个要求达到的目标,它们可用决策变量的线性函数表示,称目标函数。

根据问题不同,要求目标函数实现最大化或最小化。

三、图解法的结论:1、可行域一定是凸集,即该区域内任意两点间连线上的点仍在该区域内;2、线性规划最优解不可能在凸集内的点上实现;3、线性规划问题有可能存在无穷多最优解;4、如果可行域无界,则最优解可能是无界解;5、如果不存在可行域,则没有可行解,也一定不存在最优解;6图解法只适用于两个决策变量的情况。

四、单纯形法:其基本思路是首先确定一个初始基可行解,然后判断该基可行解是否为最优解。

如果是最优解,则求解过程结束;如果不是最优解,则在此基础上变换找出另一个基可行解,该基可行解的目标函数值应该优于原基可行解。

再判断新的基可行解是否为最优解,如果是最优解,则求解过程结束;如果不是最优解,则在此基础上变换再找出另一个新基可行解,如此进行下去,直到找到最优解为止。

五、最优性检验与解的形式:最优解的判别定理,若X(0) = (b′1, b′2, ……… ,b′m, 0, …… , 0)T为对应于基B的一个基可行解,且对于一切j = m + 1, …… , n,有σj6 0,则X(0)为最优解,称σj为检验数。

无穷最多解判别定理,若X(0) = (b′1, b′2, …… , b′m, 0, …… , 0)T为对应于基B的一个基可行解,且对于一切j = m + 1, …… , n,有σj6 0,又存在某个非基变量的检验数σm+k= 0,则线性规划问题有无穷多最优解。

运筹学复习资料

运筹学复习资料

运筹学复习资料导言:运筹学是一门研究管理、决策和规划问题的学科,使用数学、统计学和计算机科学等工具和技术来解决实际问题。

在现代社会中,运筹学在各个领域都有广泛的应用,包括制造业、物流管理、供应链管理、信息技术等。

本文档将介绍运筹学的基本概念、方法和应用,以帮助读者复习和理解该学科。

一、运筹学的概述1.1 定义和背景运筹学是一门综合性学科,旨在解决实际问题和优化决策。

它结合了数学、统计学和计算机科学等多个领域的方法和技术,可以帮助决策者做出最佳的决策。

1.2 运筹学的历史运筹学的起源可以追溯到第二次世界大战期间,当时运筹学的方法和技术被用于军事决策和规划。

随着计算机的发展和应用,运筹学得到了快速发展,并在各个领域都得到了广泛应用。

二、线性规划2.1 线性规划的基本概念线性规划是运筹学中最重要的方法之一,其基本思想是通过数学模型来描述和解决实际问题。

线性规划的目标是寻找一个最优解,使得目标函数最大或最小,同时满足一系列约束条件。

2.2 线性规划的求解方法线性规划的求解方法主要有图形法和单纯形法两种。

图形法适用于二维规划问题,通过绘制等式和不等式的图形来找到最优解。

而单纯形法适用于高维规划问题,通过迭代计算来找到最优解。

三、网络优化3.1 网络的基本概念在运筹学中,网络是指由节点和弧组成的图形,用于描述和解决一系列连接和流动问题。

节点表示供应点或需求点,弧表示连接的路径。

网络优化的目标是寻找最佳的路径和流量分布。

3.2 最小生成树算法最小生成树算法是网络优化中常用的一种算法,用于寻找一个连通图的最小生成树。

最小生成树算法主要有Prim算法和Kruskal 算法两种,可以有效地减少路径的总长度。

四、整数规划4.1 整数规划的概念整数规划是一种特殊的线性规划问题,其变量需要取整数值。

整数规划适用于某些决策变量只能是整数的问题,如分配问题、路径选择问题等。

4.2 整数规划的求解方法整数规划的求解方法主要有分支定界法和割平面法两种。

运筹学复习资料(1)

运筹学复习资料(1)

运筹学复习一、单纯形方法(表格、人工变量、基础知识)线性规划解的情况:唯一最优解、多重最优解、无界解、无解。

其中,可行域无界,并不意味着目标函数值无界。

无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。

有界可行域对应唯一最优解和多重最优解两种情况。

线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。

单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。

换基迭代要求除了进基的非基变量外,其余非基变量全为零。

检验最优性的一个方法是在目标函数中,用非基变量表示基变量。

要求检验数全部小于等于零。

“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。

”这句话是最小比值法的一种通俗的说法,但是很有意义。

这里,x1为进基变量,x3为出基变量。

将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。

单纯型原理的矩阵描述。

在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。

最初基变量对应的基矩阵的逆矩阵。

这个样子:'1222 1 0 -32580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5所有的检验数均小于或等于零,有最优解。

但是如果出现非基变量的检验数为0,则有无穷多的最优解,这时应该继续迭代。

解的结果应该是:X *= a X 1*+(1-a)X 2* (0<=a<=1)说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。

运筹学复习笔记

运筹学复习笔记

运筹学复习笔记Part 1 题型1.选择题(20分)2.填空题(40分)3.建模题(40分)4.决策问题(20分)5.运输问题(10分)计算Part 2 需要掌握的知识点Chapter 2 线性规划与单纯型法一、线性规划问题(建模)二、求解两个变量的线性规划模型——图解法附:图解法的启示1)图解法求解结果的几种可能情况:➢唯一最优解➢无穷多最优解➢无界解(并不是说可行域是无界的线性规划问题的解就一定是无界解)➢无可行解2)若线性规划问题的可行域非空,则可行域是一个凸集。

3)若线性规划问题的最优解存在,则一定可以在可行域的凸集的某个顶点达到。

(线性规划问题的基可行解X对应于可行域D的顶点。

)三、单纯形法准备知识——标准型1) 标准型的四个条件➢ 目标函数为极大(max ) ➢ 所有的约束条件满足等式 ➢ 所有的决策变量非负 ➢ 右端常数均为非负数 2) 化为标准型的方法➢ 若要求目标函数实现最大化,即max z=CX 。

这时只需将目标函数最小化变换求目标函数最大化,即令 z ′=-z ,于是得到max z ′= -CX 。

这就同标准型的目标函数的形式一致了。

➢ 约束方程为不等式。

这里有两种情况:一种是约束方程为‘≤’不等式,则可在‘≤’不等式的左端加入非负松弛变量j x ,把原‘≤’不等式变为等式,j x 0;另一种是约束方程为‘≥’不等式,则可在‘≥’不等式的左端减去一个非负剩余变量k x (也可称松弛变量),把不等式约束条件变为等式约束条件,目标函数中加上k x 0 (松弛变量).➢ 若变量约束中:0≤i x ,则令i i x x -=',得到0≥'i x ;若R ∈j x ,则令"'=j j j x x x -,其中0≥"'j j x x ,,用 'i x 、'j x 、"j x 分别代替i x 、j x 后得到线性规划的变量约束均为非负约束。

运筹学知识点总结

运筹学知识点总结

运筹学知识点总结运筹学是一门现代应用数学学科,目的是通过对问题进行建模、分析和计算,以便在各种约束条件下达到最优解。

它主要涉及优化、线性规划、非线性规划、整数规划、动态规划、排队论、库存管理、网络流、决策分析等领域。

1. 优化优化是运筹学的核心概念,它是一种在有限资源限制下寻找最优解的一种方法。

其中包括单目标优化和多目标优化、约束优化和无约束优化、线性规划和非线性规划等。

2. 线性规划线性规划是优化中最常见的形式之一,它是优化一个线性函数的目标,以满足一些线性约束条件。

它有广泛的应用,在农业、工业、金融、物流等各个领域都有着重要的作用。

非线性规划是优化问题中更为复杂的形式,其中目标函数或约束条件中存在非线性项。

它的解决方法包括数值优化和分析优化两种方法,分别适用于不同的情况。

4. 整数规划整数规划是规划问题的一种形式,在线性规划的基础上增加了整数变量的限制条件。

它有重要的应用,如在生产调度、项目管理等方面。

5. 动态规划动态规划是优化问题解决中的一种常见方法,它通常用于求解具有重叠子问题和最优子结构性质的问题,如背包问题、最短路径问题等。

6. 排队论排队论是运筹学中的一种最基础的模型,用于研究人口、货物、流量等在现实中排成队形的情况。

它涵盖了顾客到达、排队、服务、离开等过程,是现代生产和服务行业最重要的决策依据。

7. 库存管理库存管理是运筹学中的一个领域,它涉及到如何管理和控制商品或零件的库存,以保证公司的正常运作。

库存管理的目标是在满足需求的同时尽量减少库存成本。

8. 网络流网络流是运筹学中的另一个重要概念,它是图论的一部分。

网络流用于研究通过网络传输物品等物品。

它经常应用于电信、电子商务等领域。

9. 决策分析决策分析是运筹学的一个重要领域,它包含制定和评估决策的工具和方法。

决策分析用于在不确定性和风险的条件下制定决策,例如投资决策、战略制定等。

总之,运筹学是一种分析和优化现实问题的有力工具,可用于各种组织和企业的经营管理和决策。

(完整版)《运筹学》复习参考资料知识点及习题

(完整版)《运筹学》复习参考资料知识点及习题

第一部分线性规划问题的求解一、两个变量的线性规划问题的图解法:㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。

定义:达到目标的可行解为最优解。

㈡图解法:图解法采用直角坐标求解:x1——横轴;x2——竖轴。

1、将约束条件(取等号)用直线绘出;2、确定可行解域;3、绘出目标函数的图形(等值线),确定它向最优解的移动方向;注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。

4、确定最优解及目标函数值。

㈢参考例题:(只要求下面这些有唯一最优解的类型)例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示:问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?(此题也可用“单纯形法”或化“对偶问题”用大M法求解)解:设x 1、x 2为生产甲、乙产品的数量。

max z = 70x 1+30x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,可行解域为oabcd0,最优解为b 点。

由方程组⎩⎨⎧=+=+72039450552121x x x x 解出x 1=75,x 2=15 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(75,15)T∴max z =Z *= 70×75+30×15=5700⑴⑵ ⑶ ⑷ ⑸、⑹max z = 6x 1+4x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:可行解域为oabcd0,最优解为b 点。

由方程组⎩⎨⎧=+=+81022121x x x x 解出x 1=2,x 2=6 ∴X *=⎪⎪⎭⎫⎝⎛21x x =(2,6)T∴max z = 6×2+4×6=36⑴⑵ ⑶ ⑷ ⑸、⑹min z =-3x 1+x 2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x , 解:可行解域为bcdefb ,最优解为b 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》综合复习资料
一、判断题
1、LP 问题的可行域是凸集。

2、LP 问题的基可行解对应可行域的顶点。

3、LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。

4、若LP 问题有两个最优解,则它一定有无穷多个最优解.
5、求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中∶0≥"
'
j j
x x ,
在用单纯形法求得的最优解中,有可能同时出现0>"
'
j j
x x .
6、在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路
7、在一个随机服务系统中,当其输入过程是一普阿松流时,即有
(){}()t
n e
n t n t N P λλ-==!

则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数
分布,即有()t
e t X p λλ-==
8、分枝定界求解整数规划时,分枝问题的最优解不会优于原(上一级)问题的最优解. 9、对偶问题的对偶问题一定是原问题。

10、运输问题是一种特殊的LP 问题,因而其求解结果也可能会有唯一的最优解或无穷多个最优解。

11、动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。

12、用割平面法求解整数规划时,每次增加一个割平面/线性约束条件后,在新的线性规划可行域中,除了割去一些不属于整数解的可行解外,还割去了上级问题不属于整数解的最优解。

13、在求解目标规划时,遵循的基本原则就是在考虑低级目标时,不能破坏已经满足的高级目标。

14、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

15、已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。

16、表上作业法中,按最小元素法给出的初始调运方案,从每一空格出发可以找出而且
仅能找出唯一的闭回路。

17、目标规划中正偏差变量应取正值,负偏差变量应取负值。

二、计算题
1. 某LP模型为∶
,
,
,
3 5.0
2
18 4
10
2
3
..
19 50
8 9
4
3
2
1
4 3
4 3
2 1
4
3
2
1

≤+
≤+
+ +
+ +
+ =
x
x
x
x
x x
x x
x
x
t s
x
x
x
x
z
Max
填上表中尚缺数据,回答该问题的最优解,最优目标函数值。

2. 某运输问题的运价及各产地、销地的数据如下表,试确定总运费最低的运输方案。

3. 某公司计划制造Ⅰ、Ⅱ两种家电产品,已知各制造一件时分别占用的设备A、B的台时、调试时间及每天可用的设备能力和单件产品的获利情况如下表:
(1) 建立获利最大的线性规划模型并求解(可不考虑整数要求)
(2) 对上问中获利最大的线性规划模型建立其对偶规划模型,并回答其最优解和说明该公司的短缺资源是哪些?
(3) 如获利最大的线性规划模型要求其变量为整数,试用割平面法解之。

(4) 如该公司新研制的产品Ⅲ对三种资源的单位产品消耗是(3 4 2T),预期盈利为3元∕
件,试判断且仅判断产品Ⅲ是否值得生产?
4. 某公司有某种高效率设备3 台,拟分配给所属甲、乙、丙工厂,各工厂得到设备后,获利情况如下表,试建立最优分配方案。

(1) 正确设定状态变量、决策变量并写出状态转移方程;(2) 写出规范的(形式)基本方程;(3) 求解。

5.
(1) 3343122211312=x );(2) 若价值系数4,2C 由1变为3,所求最优解是否仍为最优解;(3) 若所有价值系数均增加
1,最优解是否改变?
6.有一辆卡车最大载重为10吨,用以装载3种货物,每种货物的单位重量及相应的单位价值如下表所示,问如何装载可使运输货物的总价值最大?
三、建立模型并计算
1. 设有A ,B ,C ,D 四个工人,可以完成1,2,3,4四项工作任务,由于每个工人完成不同的任务成本不同,试建立总成本最低的指派模型并求解。

2. 某采油区已建有n个计量站B1,B2…B n,各站目前尚未被利用的能力为b1,b2…b n(吨液量/日)。

为适应油田开发的需要,规划在该油区打m口调整井A1,A2…A m,且这些井的位置已经确定。

根据预测,调整井的产量分别为a1,a2…a m(吨液量/日)。

考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。

按规划要求,每口井只能属于一个计量站。

假定A i到B j的距离d ij已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。

(设定变量,写出模型)。

3.不允许缺货、补充时间无限短的确定型存储模型的假设条件是:
不允许缺货
补充时间无限短
需求是连续的且需求速率R为常数
单位物资单位时间的存储费用C1是常数
每次定购费C3(不考虑货款)是常数
试:(1)画出存储量变化曲线;(2)分析费用,建立总平均费用最低的订货模型(订货周期、订货量)。

四、绘图并计算
某工程的PERT数据如下表∶
(1) 画出网络图并予节点以正确的编号;(2) 计算最早.最迟节点时刻;(3)据所画网络图填写计算下表。

《运筹学》综合复习资料参考答案
一、判断题
1. 参考答案:
2. 参考答案:
63461343231231413======x x x x x x
3. 参考答案:
(1) 2
172
32
721===z x x
(2) 2
14
1
0321===y y y ,短缺资源为设备B 与调试工序。

(3) 823
21===z x x
(4) ()1243234102141021545112033
=⎪⎪⎪

⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=x σ,故产品Ⅲ值得生产。

4. 参考答案:
(1) 设状态变量s k 表示k 阶段开始时,可供分配的机器台数;决策变量x k 表示k 阶段分配给k 工厂机器台数,则状态转移方程为:k
k k x s s -=+1
(2) ()()()1,2,3,max )(0
)(1
10441=+==++-=≤≤+k s f x s v s f s f k k k k k x s s s x k k k
k k k
k
(3) ()1431
201321====f x x x
5.参考答案:
(1)最优调运方案:x 12=2 x 13=6 X 21=4 x 22=3 x 23=3 X 31=4 (2)是 (3)不改变
6.参考答案:
运送第一种货物2件,运送第二种货物1件,共重10砘,可达最大价值为13。

三、建立模型并计算 1. 参考答案:
111142332411====x x x x
2. 参考答案:
设ij x 表示i 井是否连到j 站
positive
iable n
j b x
a m i x
t s x d z Min j
m i ij
i
n
j ij
m i n
j ij
ij var 111.
.1
111
=≤===∑∑∑∑====
3.参考答案:
平均存储费用:
S
T
0 t
平均存储量
Rt Rtdt t t 2110=⎰ 平均存储费用 t RC 12
1
订货费:
一个周期内的平均每天的订货费 t
C 3
总平均费用: ()t
C t RC t C 3121
+=
模型的建立:
令 ()02131=-=t C RC dt t dC (其中33222C dt
d =) 则得:
1
3
2*RC C t =
1
3
2*C RC Q = ()R C C t C 312*= 四、绘图并计算 参考答案:。

相关文档
最新文档