金属材料学课后答案1.2.4章
《金属学与热处理》第二课后习题答案
金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属学课程-第4章 习题答案
第4章 习题4-1 分析w C =0.2%、w C =0.6%、w C =1.2%的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物和组织组成物的含量。
解:在室温下,铁碳合金的平衡相是α-Fe (碳的质量分数是0.008%)和Fe 3C (碳的质量分数是6.69%),故(1) w C =0.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为3 6.690.2%100%97.13%6.690.008%197.13% 2.87%Fe C α-=⨯=-=-= w C =0.2%的合金在室温下平衡态下的组织是α-Fe 和P ,其组织可近似看做和共析转变完时一样,在共析温度下α-Fe 碳的成分是0.0218%,P 的碳的成分为0.77%,故w C =0.2%的合金在室温时组织中P 和α的相对量分别为0.20.0218%100%23.82%0.770.0218%123.82%76.18%P α-=⨯=-=-= (2)w C =0.6%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为3 6.690.6%100%91.14%6.690.008%191.14%8.86%Fe C α-=⨯=-=-= w C =0.6%的合金在室温下平衡态下的组织是α-Fe 和P ,在室温时组织中P 和α的相对量为0.60.0218%100%77.28%0.770.0218%177.28%22.72%P α-=⨯=-=-= (3)w C =1.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为3 6.69 1.2%100%82.16%6.690.008%182.16%17.84%Fe C α-=⨯=-=-= w C =1.2%的合金在室温下平衡态下的组织是P 和Fe 3C ,在室温时组织中P 的相对量为3 6.69 1.2%100%92.74%6.690.77%192.74%7.3%P Fe C -=⨯=-=-=4-2 分析w C =3.5%、w C =4.7%的铁碳合金从液态平衡冷却至室温的平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物的含量。
工程材料课后答案(部分)
热固性: 聚合物加热加压成型固化后,不能再加热熔化和软化,称为热固性。
柔性: 在拉力作用下,呈卷曲状或线团状的线型大分子链可以伸展拉直,外力去除后,又缩回到原来的卷曲状和线团状。这种能拉伸、回缩的性能称为分子链的柔性。
解: r原子=34a=34×2.87×10-10≈1.24×10-10(m)
43πr3原子×2a3=43π34a3×2a3≈0.68=68%
(5) 在常温下,已知铜原子的直径d=2.55×10-10m,求铜的晶源自常数。 解: r原子=24a
(4) γ-Fe的一个晶胞内的原子数为(4个) .
(5) 高分子材料大分子链的化学组成以(C、H、O)为主要元素,根据组成元素的不同,可分为三类,即(碳链大分子) 、 (杂链大分子)和(元素链大分子) .
(6) 大分子链的几何形状主要为(线型) 、 (支化型)和(体型) 。热塑性聚合物主要是(线型和支化型)分子链,热固性聚合物主要是(体型)分子链。
答: ab段为右螺型位错。
bc段为刃型位错,半原子面过bc线且垂直于纸面,在纸面外。
cd段为混合位错。
de段为左螺型位错。
ea段为刃型位错,半原子面过ea线且垂直于纸面,在纸面里。 (8) 什么是固溶强化?造成固溶强化的原因是什么?
答: 形成固溶体使金属强度和硬度提高的现象称为固溶强化。
(7) 高分子材料的凝聚状态有(晶态) 、 (部分晶态)和(非晶态)三种。
(8) 线型非晶态高聚物在不同温度下的三种物理状态是(玻璃态) 、 (高弹态)和(粘流态) .
(9) 与金属材料比较,高分子材料的主要力学性能特点是强度(低) 、弹性(高) 、弹性模量(低)等。
金属材料与热处理习题册答案
金属材料与热处理习题册答案金属材料与热处理习题册答案绪论填空题1成分组织热处理性能2.光泽延展性导电性导热性合金3.成分热处理性能性能思考题答:机械工人所使用的工具、刀、夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理的相关知识。
对我们工作中正确合理地使用这些工具;根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺性能的方法等都具有非常重要的指导意义。
第一章金属的结构与结晶填空题1.非晶体晶体晶体2.体心立方面心立方密排六方体心立方面心立方密排六方3.晶体缺陷间隙空位置代刃位错晶界亚晶界4.无序液态有序固态5.过冷度6.冷却速度冷却速度低7.形核长大8.强度硬度塑性9.固一种晶格另一种晶格10.静冲击交变11.弹性塑性塑性12.材料内部与外力相对抗13.内力不同14.外部形状内部的结构判断题1.√2.×3.×4.×5.×6.√7.√8.√9.√10.√11.×12.√13.√14.×15.√选择题1.A 2.C B A 3.B名词解释1.答:晶格是假想的反映原子排列规律的空间格架;晶胞是能够完整地反映晶体晶格特征的最小几何单元。
2.答:只由一个晶粒组成的晶体称为单晶体;由很多的小晶体组成的晶体称为多晶体。
3.答:弹性变形是指外力消除后,能够恢复的变形;塑性变形是指外力消除后,无法恢复的永久性的变形。
4.答:材料在受到外部载荷作用时,为保持其不变形,在材料内部产生的一种与外力相对抗的力,称为内力;单位面积上所受的内力就称为应力思考与练习1.冷却曲线上有一段水平线,是说明在这一时间段中温度是恒定的。
结晶实际上是原子由一个高能量级向一个较低的能量级转化的过程,所以在结晶时会放出一定的结晶潜热,结晶潜热使正在结晶的金属处于一种动态的热平衡,所以纯金属结晶是在恒温下进行的。
2.生产中常用的细化晶粒的方法有:增加过冷度、采用变质处理和采用变质处理等。
材料成形原理课后习题解答
材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
1.2答:液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;④粘度、表面张力大。
(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
1.4 解:浇注模型如下:则产生机械粘砂的临界压力ρ=2σ/r显然 r =21×0.1cm =0.05cm 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000=0.08m 1.5 解: 由Stokes 公式 上浮速度 92(2v )12r r r -= r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=9.5mm/s 3.1解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成材料成型原理第 3 页 共 16 页3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =8.59*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=6.95*10-17J3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。
第四章 二元合金相图与合金凝固参考答案
第四章二元合金相图与合金凝固一、本章主要内容:相图基本原理:相,相平衡,相律,相图的表示与测定方法,杠杆定律;二元匀晶相图:相图分析,固溶体平衡凝固过程及组织,固溶体的非平衡凝固与微观偏析固溶体的正常凝固过程与宏观偏析:成分过冷,溶质原子再分配,成分过冷的形成及对组织的影响,区域熔炼;二元共晶相图:相图分析,共晶系合金的平衡凝固和组织,共晶组织及形成机理:粗糙—粗糙界面,粗糙—光滑界面,光滑—光滑界面;共晶系非平衡凝固与组织:伪共晶,离异共晶,非平衡共晶;二元包晶相图:相图分析,包晶合金的平衡凝固与组织,包晶反应的应用铸锭:铸锭的三层典型组织,铸锭组织控制,铸锭中的偏析其它二元相图:形成化合物的二元相图,有三相平衡恒温转变的其它二元相图:共析,偏晶,熔晶,包析,合晶,有序、无序转变,磁性转变,同素异晶转变二元相图总结及分析方法二元相图实例:Fe-Fe3C亚稳平衡相图,相图与合金性能的关系相图热力学基础:自由能—成分曲线,异相平衡条件,公切线法则,由成分—自由能曲线绘制二元相图二、1.填空1 相律表达式为___f=C-P+2 ___。
2. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有___成分_______起伏。
3. 按液固界面微观结构,界面可分为____光滑界面_____和_______粗糙界面___。
4. 液态金属凝固时,粗糙界面晶体的长大机制是______垂直长大机制_____,光滑界面晶体的长大机制是____二维平面长大____和_____依靠晶体缺陷长大___。
5 在一般铸造条件下固溶体合金容易产生__枝晶____偏析,用____均匀化退火___热处理方法可以消除。
6 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈___平直状___状,dT/dX<0时(负温度梯度下),则固、液界面为______树枝___状。
7. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为____伪共晶__。
金属材料与热处理第六版习题册答案
金属材料与热处理习题册答案绪论一、填空题1、成分、组织、热处理、性能之间。
2、石器时代、青铜器时代、铁器时代、钢铁时代、人工合成材料时代。
3、成分、热处理、性能、性能。
二、选择题:1、A2、B3、C三、简答题1、掌握金属材料与热处理的相关知识对机械加工有什么现实意义?答:机械工人所使用的工具、刀夹、量具以及加工的零件大都是金属材料.所以了解金属材料与热处理后相关知识.对我们工作中正确合理地使用这些工具.根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺必能的方法都具有非常的现实意义。
2、如何学好《金属材料与热热处理》这门课程?答:在学习过程中.只要认真掌握重要的概念和基本理论.按照材料的成分和热处理决定组织.组织决定其性能.性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际.认真完成作业和实验等教学环节.是完全可以学好这门课程的。
第一章金属的结构和结晶1-1金属的晶体结构一、填空题1、非晶体晶体晶体2、体心立方面心立方密排立方体心立方面心立方密排立方3、晶体缺陷点缺陷面缺陷二、判断题1、√2、√3、×4、√三、选择题1、A2、C3、C四、名词解释1、晶格与晶胞:P5答:将原子简化为一个质点.再用假想的线将它们连接起来.这样就形成了一个能反映原子排列规律的空间格架.称为晶格;晶胞是能够完整地反映晶体晶格特征的最小几何单元。
3、单晶体与多晶体答:只由一个晶粒组成称为单晶格.多晶格是由很多大小.外形和晶格排列方向均不相同的小晶格组成的。
五、简答题书P6□1-2纯金属的结晶一、填空题1、液体状态固体状态2、过冷度3、冷却速度冷却速度4、晶核的产生长大5、强度硬度塑性二、判断题1、×2、×3、×4、×5、√6、√三、选择题1、C、B、A2、B3、A4、A四、名词解释1、结晶与结晶潜热 (P8)答:(1)结晶:是金属从高温液体状态.冷却凝固为原子有序排列的固体状态的过程。
材料力学性能课后习题答案
材料力学性能课后答案(整理版)1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。
外在因素:温度、应变速率和应力状态。
2、试述韧性断裂与脆性断裂的区别。
《材料性能学》课后答案.
《工程材料力学性能》(第二版)课后答案第一章材料单向静拉伸载荷下的力学性能一、解释下列名词滞弹性:在外加载荷作用下,应变落后于应力现象。
静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。
弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
比例极限:应力—应变曲线上符合线性关系的最高应力。
包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服强度(σS)降低的现象。
解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数,表面能低的晶面。
解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。
静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。
二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。
改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。
三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。
包辛格效应可以用位错理论解释。
第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。
机械基础复习资料金属材料和热处理含习题答案
第二部分 机械基础第四章 金属材料和热处理本章重点1.掌握:强度、硬度、塑性、韧性、疲劳强度的含义。
2.了解:工艺性能的含义。
3.了解:热处理的概念及目的。
4.熟悉:退火、正火、淬火、回火,表面热处理的方法。
5.掌握:碳素钢的概念、分类、牌号的表示方法及性能。
6.掌握:合金钢的牌号及表示方法。
7.熟悉:铸铁分类牌号及用途。
本章内容提要一.金属材料的性能1.物理、化学性能物理性能是指金属材料的密度、熔点、导电性、导热性、热膨胀性、磁性等具有物理特征的一些性能。
化学性能是指金属在化学作用下所表现的性能。
如:耐腐蚀性、抗氧化性和化学稳定性。
2.金属材料的机械性能金属材料在外力作用下所表现出来的性能就是力学性能。
主要有强度、塑性、硬度、韧性和疲劳强度等。
(1)强度强度是材料在静载荷作用下抵抗变形和破坏的能力。
可分为抗拉强度、抗压强度、抗剪强度和抗扭强度。
常用的强度是抗拉强度。
工程上常用的强度指标是屈服点和抗拉强度。
(2)塑性塑性是金属材料在静载荷作用下产生永久变形的能力。
常用塑性指标是伸长率和断面收缩率。
伸长率:是指试样拉断后的伸长与原始标距的百分比。
式中,L 0表示试样原长度(mm ),L 1表示试样拉断时的长度(mm )。
断面收缩率:是指试样拉断后,缩颈处横截面积(A 1)的最大缩减量与原始横截面积(A 0)的百分比。
(3)硬度硬度是金属材料表面抵抗比它更硬的物体压入时所引起的塑性变形能力;是金属表面局部体积内抵抗塑性变形和破裂的能力。
目前最常用的硬度是布氏硬度(HB )、洛氏硬度(HRC 、HRB 、HRA )和维氏硬度(HV )。
(4)韧性1o o 100%L L L -=⨯δ010A A 100%A -=⨯ψ韧性是脆性的反意,指金属材料抵抗冲击载荷的能力。
工程技术上常用一次冲击弯曲试验来测定金属抵抗冲击载荷的能力。
(5)疲劳强度疲劳强度是指材料在无限多次交变载荷作用下不发生断裂的最大应力。
一般规定,钢铁材料的应力循环次数取108,有色金属取107。
《金属学与热处理》(第二版)课后习题参考答案
金属学与热处理第一章习题1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。
今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。
解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5故该晶面的晶面指数为(2 5 5)4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3三个晶面晶面中面间距最大的晶面为(1 1 0)7.证明理想密排六方晶胞中的轴比c/a=1.633证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示则OD=c/2,AB=BC=CA=CD=a因△ABC是等边三角形,所以有OC=2/3CE由于(BC)2=(CE)2+(BE)2则有(CD)2=(OC)2+(1/2c)2,即因此c/a=√8/3=1.6338.试证明面心立方晶格的八面体间隙半径为r=0.414R解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有R=0.146X4R/√2=0.414R9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。
b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。
金属材料学课后答案(较全)
金属材料学课后答案(较全)第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
金属材料与热处理教材习题答案
《金属材料与热处理》教材习题答案作者:陈志毅绪论1.金属材料与热处理是一门怎样的课程?答:金属材料与热处理这门课程的内容主要包括金属材料的基本知识、金属的性能、金属学基础知识和热处理的基本知识等。
2.什么是从属与从属材料?答:所谓金属是指由单一元素构成的具有特殊的光泽、延展性、导电性、导热性的物质。
如金、银、铜、铁、锰、锌、铝等。
而合金是指由一种金属元素与其它金属元素或非金属元素通过熔炼或其它方法合成的具有金属特性的材料,所以金属材料是金属及其合金的总称,即指金属元素或以金属元素为主构成的,并具有金属特性的物质。
3.怎样才能学好金属材料与热处理这门课程?答:金属材料与热处理是一门从生产实践中发展起来,又直接为生产服务的专业基础课,具有很强的实践性,因此在学习时应结合生产实际,弄清楚重要的概念和基本理论,按照材料的成分和热处理决定其组织,组织决定其性能,性能又决定其用途这一内在关系进行学习和记忆;认真完成作业和实验等教学环节,就完全可以学好这门课程的。
第一章金属的结构与结晶1.什么是晶体和非晶体?它们在性能上有什么不同?想一想,除了金属,你在生活中还见过哪些晶体?答:原子呈有序、有规则排列的物质称为晶体;而原子呈无序、无规则堆积状态的物质称为非晶体。
晶体一般具有规则的几何形状、有一定的熔点,性能呈各向异性;而非晶体一般没有规则的几何形状和一定的熔点,性能呈各向同性。
生活中常见的食盐、冰糖、明矾等都有是典型的晶体。
2.什么是晶格和晶胞?金属中主要有哪三种晶格类型?它们的晶胞各有何特点?答:假想的能反映原子排列规律的空间格架,称为晶格。
晶格是由许多形状、大小相同的小几何单元重复堆积而成的。
我们把其中能够完整地反映晶体晶格特征的最小几何单元称为晶胞。
金属中主要有体心立方晶格、面心立方晶格和密排六方晶格等三种晶格类型,体心立方晶格的晶胞是一个立方体,原子位于立方体的八个顶点和立方体的中心;面心立方晶格的晶胞也是一个立方体,原子位于立方体的八个顶点和立方体六个面的中心;密排六方晶格的晶胞是一个正六棱柱,原子除排列于柱体的每个顶点和上、下两个底面的中心外,正六棱柱的中心还有三个原子。
金属工艺学课后答案
第一篇金属材料导论P9:(1):应力:试样单位横截面上的拉力,。
应变:试样单位长度上的伸长量,。
(5)::抗拉强度,指金属材料在拉断之前所能承受的最大应力。
:屈服点,指拉伸试样产生屈服现象时的应力。
:屈服点,对没有明显屈服现象的金属材料,工程上规定以试样产生0.2%塑性变形时的应力作为该材料的屈服点,用σr0.2表示。
:疲劳强度,金属材料在无数次循环载荷作用下不致引起断裂的最大应力,当应力按正弦曲线对称循环时,疲劳强度以符号σ-1表示。
:伸长率,衡量塑性的指标之一:冲击韧性,材料抵抗冲击载荷作用下断裂的能力,其值大小是试样缺口处单位截面积上所吸收的冲击功。
HRC:洛氏硬度,以顶角为120度金刚石圆锥体为压头,在1500N载荷下硬度计的硬度标尺。
HBS:布氏硬度,钢球压头测出的硬度值。
HBW:布氏硬度,硬质合金球压头测出的硬度值。
第二章铁碳合金P261.一般来说,同一成分的金属,晶粒愈细,其强度、硬度愈高,而且塑性和韧性也愈好。
2.随着温度的改变,固态金属晶格也随之改变的现象,同素异晶转变;室温时,纯铁的晶格是体心立方晶格。
1100摄氏度时是面心立方晶格。
5.缓慢冷却条件下,45钢的结晶过程如下:1点以上:L; 1-2点:L+A; 2-3点:A; 3-4点:A+F; 室温时:P+FT10钢的结晶过程如下:1点以上:L; 1-2点:L+A; 2-3点:A; 3-4点:A+Fe CII 室温时:P+Fe3 CII第三章钢的热处理P321.答:在此温度范围内加热,淬火后可获得细小的马氏体组织。
这样的组织硬度高、耐磨性好,并且脆性相对较小。
如果淬火加热的温度不足,因未能完全形成奥氏体,致使淬火后的组织除马氏体外,还残存有少量的铁素体,使钢的硬度不足。
如果淬火温度过高,因奥氏体晶粒长大,淬火后的马氏体晶粒也粗大,会增加钢的脆性,致使工件产生裂纹、变形倾向。
2.答:钢在淬火后淬火是为了消除淬火内应力,以降低钢的脆性,防止产生裂纹,同时使钢获得所需的力学性能.①.低温回火的目的是降低淬火钢的内应力和脆性,但基本保持淬火所获得的高硬度(56~64HRC)和高的耐磨性。
金属材料学课后答案主编戴启勋
第一章钢的合金化原理1.名词解释1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。
(常用M来表示)2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在%左右(如B %,V %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。
3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如 Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。
如:V,Nb, Ti 等。
5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr:ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C66)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC 和强度提高(二次硬化效应)。
如 V,Nb, Ti等都属于此类型。
2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在a-Fe中形成无限固溶体?哪些能在g-Fe 中形成无限固溶体?答:铁素体形成元素:V、Cr、W、Mo、Ti、Al;奥氏体形成元素:Mn、Co、Ni、Cu能在a-Fe中形成无限固溶体:V、Cr;能在g-Fe 中形成无限固溶体:Mn、Co、Ni3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?答:(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶.b.扩大γ相区:有C,N,Cu等。
如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。
(2)缩小γ相区:使A3升高,A4降低。
一般为铁素体形成元素分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。
工程材料(金属材料)课后习题答案
工程材料参考答案第1章机械工程对材料性能的要求思考题与习题P201.3、机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?p4工程构件与机械零件(以下简称零件或构件)在工作条件下可能受到力学负荷、热负荷或环境介质的作用。
有时只受到一种负荷作用,更多的时候将受到两种或三种负荷的同时作用。
在力学负荷作用条件下,零件将产生变形,甚至出现断裂;在热负荷作用下,将产生尺寸和体积的改变,并产生热应力,同时随温度的升高,零件的承载能力下降;环境介质的作用主要表现为环境对零件表面造成的化学腐蚀,电化学腐蚀及摩擦磨损等作用。
1.4 整机性能、机械零件的性能和制造该零件所用材料的力学性能间是什么关系?p7机器的整机性能除与机器构造、加工与制造等因素有关外,主要取决于零部件的结构与性能,尤其是关键件的性能。
在合理而优质的设计与制造的基础上,机器的性能主要由其零部件的强度及其它相关性能来决定。
机械零件的强度是由结构因素、加工工艺因素、材料因素和使用因素等确定的。
在结构因素和加工工艺因素正确合理的条件下,大多数零件的体积、重量、性能和寿命主要由材料因素,即主要由材料的强度及其它力学性能所决定。
在设计机械产品时,主要是根据零件失效的方式正确选择的材料的强度等力学性能判据指标来进行定量计算,以确定产品的结构和零件的尺寸。
1.5常用机械工程材料按化学组成分为几个大类?各自的主要特征是什么?p17机械工程中使用的材料常按化学组成分为四大类:金属材料、高分子材料、陶瓷材料和复合材料。
1.7、常用哪几种硬度试验?如何选用P18?硬度试验的优点何在P11?硬度试验有以下优点:●试验设备简单,操作迅速方便;●试验时一般不破坏成品零件,因而无需加工专门的试样,试验对象可以是各类工程材料和各种尺寸的零件;●硬度作为一种综合的性能参量,与其它力学性能如强度、塑性、耐磨性之间的关系密切,由此可按硬度估算强度而免做复杂的拉伸实验(强韧性要求高时则例外);●材料的硬度还与工艺性能之间有联系,如塑性加工性能、切削加工性能和焊接性能等,因而可作为评定材料工艺性能的参考;●硬度能较敏感地反映材料的成分与组织结构的变化,故可用来检验原材料和控制冷、热加工质量。
材料成型与工艺课后答案 1-3,1-4
(4)阶梯式浇注系统 是具有多层内浇道。 优点:兼有底注式和顶 注式的优点,又克服了 两者的缺点,即浇注平 稳,减少了飞溅,又有 利于补缩。 缺点:浇注系统结构复 杂,加大了造型和铸件 清理工作量。 多用于高度较高、型腔 较复杂、收缩率较大或 品质要求较高的铸件。
3. 内浇道与铸件型腔连接位置的选择原则
2)铸件的大平面应朝下,减少辐射,防开裂夹渣。
3)面积较大的薄壁部分应置于铸型下部或垂直、 倾斜位置。防止产生浇不足、冷隔。
4)易形成缩孔的铸件,较厚部分置于上部或 侧面。考虑安放冒口利于补缩。
5) 应尽量减少型芯的数量。
6)要便于安放型芯、固定和排气。
Back to page-4
浇注位置
内浇道的位置、数目应服从所选定的凝固顺序和补缩方法。
内浇道在铸件上开设位置的选择可遵循如下原则:
1.为使铸件实现同时凝固,对壁厚均匀的铸件,可选用多个内
浇道分散引入金属液。对壁厚不太均匀的铸件,内浇道应开设 在薄壁处。
2.为使铸件实现顺序凝固,内浇道应设在有冒口的厚壁处,
从厚壁处引入金属液,形成铸件从薄壁至厚壁,最后到冒口的 凝固顺序。
分型面
浇注位置和分型面选择总原则: 优先保证铸件质量为主
操作便捷为辅:造型、起模、下芯、合箱
不可牺牲铸件质量来满足操作便利
四、铸造工艺参数的确定
铸造工艺参数包括收缩余量、加工余量、起模斜度、 铸造圆角、型芯和芯头等。 1)收缩余量 模样比铸件图纸尺寸增大的数值称收缩余量。 在制作模样和芯盒时,模样和芯盒的制造尺寸应比铸件 放大一个该合金的线收缩率。这个线收缩率称为铸造收缩 率: ∑=(L模-L铸件)/ L模*100% 通常,灰铸铁的铸造收缩率为0.7%~1.0%,铸造碳钢的 铸造收缩率为1.3%~2.0%,铝硅合金的铸造收缩率为0.8 %~1.2%,锡青铜的铸造收缩率为1.2%~1.4%。
材料成型与工艺课后答案 1-3,1-4
铸造工艺图:铸造工艺图是利用各种工 艺符号,把制造模样和铸型所需的资料, 直接绘在零件图上的图样。
它是制造模样和铸型,进行生产准备和铸件检验的依 据——基本工艺文件 收缩余量
工 浇注位置 艺 方 分型面的选择 案
工 加工余量 艺 参 起模斜度 数 铸造圆角 型芯及芯头
浇 组成及作用 注 常见类型 系 统 冒口
2)铸件的大平面应朝下,减少辐射,防开裂夹渣。
3)面积较大的薄壁部分应置于铸型下部或垂直、 倾斜位置。防止产生浇不足、冷隔。
4)易形成缩孔的铸件,较厚部分置于上部或 侧面。考虑安放冒口利于补缩。
5) 应尽量减少型芯的数量。
6)要便于安放型芯、固定和排气。
Back to page-4
浇注位置
较大的铸件,宜将内浇道
从铸件薄壁处引入,以利 铸件同时凝固,减少铸件 的内应力、变形,防止裂 纹产生。
二、浇注位置的选择-六点注意
浇注位置:浇注时铸件在铸型中所处的空间位置;浇 注位置对铸件质量及铸造工艺都有很大影响。选择时应考 虑如下原则:
选择原则:
1)铸件的重要加工面和受力面应朝下或位于侧面, 避免砂眼气孔和夹渣。
1)冒口就近设在铸件热节的上方或侧旁; 2) 冒口尽量设在铸件最高、最厚的部位,对低处的热节增设补 贴或使用冷铁。 3)冒口不应设在铸件重要的、受力大的部位,以防晶粒粗大降 低力学性能。 4)冒口位置不要选在铸造应力集中处,应注意减轻对铸件的收 缩阻碍,以免引起裂纹。 5)尽量用一个冒口同时补缩几个热节或铸件 6)冒口布置在加工面上,可借加工精整铸件表面,零件外观质 量好。 7)对不同高度上的多个冒口,应用冷铁使各个冒口的补缩范围 相隔开
起模斜度的大小根据立壁的高度、造型方法和模样材料来 确定:立壁愈高,斜度愈小;外壁斜度比内壁小;机器造型 的一般比手工造型的小;金属模斜度比木模小。具体数据可 查有关手册。一般外壁为3º ~ 15°,内壁为3°~10°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?
答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;
P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?
答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量
5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?答:提高回火稳定性的合金元素:Cr、Mn、Ni、Mo、W、V、Si
作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。
10.就合金元素对铁素体力学性能、碳化物形成倾向、奥氏体晶粒长大倾向、淬透性、回火稳定性和回火脆性等几个方面总结下列元素的作用:Si、Mn、Cr、Mo、W、V、Ni。
答:Si:
①Si是铁素体形成元素,固溶强化效果显著;(强度增加,韧性减小)②Si是非碳化物形成元素,增大钢中的碳活度,所以含Si钢的脱C倾向和石墨化倾向较大;③Si量少时,如果以化合物形式存在,则阻止奥氏体晶粒长大,从而细化A晶粒,同时增大了钢的强度和韧性;
④Si提高了钢的淬透性,使工件得到均匀而良好的力学性能。
在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。
⑤Si提高钢的低温回火稳定性,使相同回火温度下的合金钢的硬度高于碳钢;⑥Si能够防止第一类回火脆性。
11.根据合金元素在钢中的作用,从淬透性、回火稳定性、奥氏体晶粒长大倾向、韧性和回火脆性等方面比较下列钢号的性能:40Cr、40CrNi、40CrMn、40CrNiMo
答:①淬透性:40CrNiMo>40CrMn >40CrNi >40Cr
(因为在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni,而合金元素的复合作用更大。
)
②回火稳定性:40CrNiMo>40CrMn >40CrNi >40Cr
③奥氏体晶粒长大倾向:40CrMn>40Cr >40CrNi>40CrNiMo
④韧性:40CrNiMo>40CrNi>40CrMn>40Cr(Ni能够改善基体的韧度)⑤回火脆性:
40CrNi>40CrMn>40Cr>40CrNiMo(Mo降低回火脆性
17.40Cr、40CrNi、40CrNiMo钢,其油淬临界淬透直径Dc分别为25-30mm、40-60mm、60-100mm,试解释淬透性成倍增大的现象。
答:在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni 等。
Cr、Ni、Mo都能提高淬透性,40Cr、40CrNi、40CrNiMo单一加入到复合加入,淬透性从小到大。
较多的Cr和Ni的适当配合可大大提高钢的淬透性,而Mo提高淬透性的作用非常显著
19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。
答:①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于0.4%,所以含0.4%C、13%Cr的40Cr13不锈钢就属于过共析钢。
②Cr使E点左移,意味着出现莱氏体的碳含量减小。
在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。
但是如果加入了12%的Cr,尽管含碳量只有2%左右,钢中却已经出现了莱氏体组织。
第二章工程结构钢
1.叙述构件用钢一般的服役条件、加工特点和性能要求。
答:服役条件:①工程结构件长期受静载;②互相无相对运动受大气(海水)的侵蚀;③有些构件受疲劳冲击;④一般在-50~100℃范围内使用;
加工特点:焊接是构成金属结构的常用方法;一般都要经过如剪切、冲孔、热弯、深冲等成型工艺。
性能要求:①足够的强度与韧度(特别是低温韧度);②良好的焊接性和成型工艺性;③良好的耐腐蚀性
3.为什么普低钢中基本上都含有不大于2.0%w(Mn)?
答:加入Mn有固溶强化作用,每1%Mn能够使屈服强度增加33MPa。
但是由于Mn能降低A3温度,使奥氏体在更低的温度下转变为铁素体而有轻微细化铁素体晶粒的作用。
Mn 的含量过多时,可大为降低塑韧性,所以Mn控制在<2.0%
4-5 分析比较T9和9SiCr:
1)为什么9SiCr钢的热处理加热温度比T9钢高?
2)直径为φ30 ~ 40mm的9SiCr钢在油中能淬透,相同尺寸的T9钢能否淬透? 为什么? 3)T9钢制造的刀具刃部受热到200-250℃,其硬度和耐磨性已迅速下降而失效;9SiCr钢制造的刀具,其刃部受热至230-250℃,硬度仍不低于60HRC,耐磨性良好,还可正常工作。
为什么?
4)为什么9SiCr钢适宜制作要求变形小、硬度较高和耐磨性较高的圆板牙等薄刃工具? 1) 9SiCr中合金元素比T9多,加热奥实体化时,要想使合金元素熔入奥氏体中并且还能成分均匀,需要更高的温度。
2)不能。
因为9SiCr中Si、Cr提高了钢的淬透性,比T9的淬透性好,9SiCr的油淬临界直径D油<40mm,所以相同尺寸的T9钢不能淬透。
3)Si、Cr提高回火稳定性,经250℃回火,硬度>60HRC;
4)Cr、Si的加入提高了淬透性并使钢中碳化物细小均匀,使用时刃口部位不易崩刀;Si抑制低温回火时的组织转变非常有效,所以该钢的低温回火稳定性好,热处理是的变形也很小。
缺点是脱碳敏感性比较大。
因此,如果采用合适的工艺措施,控制脱碳现象,适合制造圆板牙等薄刃工具。
4-9 高速钢(如W18Cr4V)在淬火后,一般常采用在560摄氏度左右回火3次的工艺,为什么?
高速钢淬火后三次560℃回火主要目的是:促进残余奥氏体转变为马氏体,未回火马氏体转
变为回火马氏体;减少残余应力。
高速钢淬火后大部分转变为马氏体,残留奥氏体量是20—25%,甚至更高。
第一次回火后,又有15%左右的残留奥氏体转变为马氏体,还有10%左右的残留奥氏体,15%左右新转变未经回火的马氏体,还会产生新的应力,对性能还有一定的影响。
为此,要进行二次回火,这时又有5—6%的残留奥氏体转变为马氏体,同样原因为了使剩余的残留奥氏体发生转变,和使淬火马氏体转变为回火马氏体并消除应力,需进行第三次回火。
经过三次回火残留奥氏体约剩1—3%左右。
4-10高速钢每次回火为什么一定要冷到室温再进行下一次回火? 为什么不能用较长时间的一次回火来代替多次回火?
这是因为残余奥氏体转变为马氏体是在回火冷却过程中进行的。
因此,在每次回火后,都要空冷至室温,再进行下一次回火。
否则,容易产生回火不足的现象(回火不足是指钢中残余奥氏体未完全消除)。
不能:因为高速钢合金元素多而导致残余奥氏体多,淬火后的组织是马氏体+残余奥氏体,第一次回火使得马氏体回火变成为回火马氏体,而残余奥氏体转变为马氏体,这部分马氏体却在第一次回火中没有得到回火,因此,高速钢一次回火不能使所有的残余奥氏体转变成为马氏体。
由于多次回火可以较完全消除奥氏体以及残余奥氏体转变成为马氏体时产生的应力,必须多次回火,一般3次。