中考数学模拟试题答案四套汇编
中考数学模拟试题(含答案和解析)
中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。
2024年深圳市中考数学模拟题汇编:代数式(附答案解析)
2024年深圳市中考数学模拟题汇编:代数式
一.选择题(共10小题)
1.下列各式去括号正确的是()
A.﹣(a﹣3b)=﹣a﹣3b
B.a+(5a﹣3b)=a+5a﹣3b
C.﹣2(x﹣y)=﹣2x﹣2y
D.﹣y+3(y﹣2x)=﹣y+3y﹣2x
2.已知:关于x,y的多项式ax2+2bxy+3x2﹣3x﹣4xy+2y不含二次项,则3a﹣4b的值是()
A.﹣3B.2C.﹣17D.18
3.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组
)
成的大正方形,则这个窗户的外框总长为(
A.6a+πa B.12a C.15a+πa D.6a
4.若x m﹣1y2与x2y n的和仍是单项式,则n m的值()
A.3B.6C.8D.9
5.下列各选项中,不是同类项的是()
A.3a2b和﹣5ba2B.122和12B2
C.6和23D.5x n和−34
6.按如图所示的运算程序,能使运算输出的结果为2的是(
)
A.x=﹣1,y=﹣1B.x=5,y=﹣1C.x=﹣3,y=1D.x=0,y=﹣2 7.某种商品每件进价为a元,按进价增加50%出售,现“双十二”打折促销按售价的八折
第1页(共19页)。
中考数学模拟卷50题及答案
1.下列几何体的主视图和俯视图完全相同的是()A. B. C. D.2.在⊙O中按如下步骤作图:(1)作⊙O的直径AD;(2)以点D为圆心,DO长为半径画弧,交⊙O于B,C两点;(3)连接DB,DC,AB,AC,BC.根据以上作图过程及所作图形,下列四个结论中错误的是()A.∠ABD=90°B.∠BAD=∠CBDC.AD⊥BCD.AC=2CD3.面对突如其来的疫情,全国广大医务工作者以白衣为战袍,义无反顾的冲在抗疫战争的一线,用生命捍卫人民的安全.据统计,全国共有346支医疗队,将近42600名医护工作者加入到支援湖北武汉的抗疫队伍,将42600用科学记数法表示为()A.0.426×105B.4.26×104C.42.6×103D.426×1024.下列各数中比3大比4小的无理数是()A. B. C.3.14159 D.﹣π5.如图,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED =40°,则∠A的度数是()A.40°B.50°C.80°D.90°6.如图,直线y=kx+b分别交x轴、y轴于点A、C,直线y=mx+n分别交x轴、y轴于点B、D,直线AC与直线BD相交于点M(﹣1,2),则不等式kx+b≤mx+n的解集为()A.x≥﹣1B.x≤﹣1C.x≥2D.x≤27.如图,已知菱形ABCD的顶点A的坐标为(1,0),顶点B 的坐标为(4,4),若将菱形ABCD绕原点O逆时针旋转45°称为1次变换,则经过2020次变换后点C的坐标为()A.(9,4)B.(4,﹣9)C.(﹣9,﹣4)D.(﹣4,﹣9)8.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A.400名学生中每位学生是个体B.400名学生是总体C.被抽取的50名学生是总体的一个样本D.样本的容量是509.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×10610.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.xy2﹣xy2=xy2C.a5÷a2=a3D.(﹣mn3)2=m2n511.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是()A.48°B.42°C.34°D.24°12.下列各数中,最小的是()A.πB.﹣3C.D.﹣13.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°14.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x615.不等式组的解集在数轴上表示正确的是()A. B.C. D.16.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.617.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)18.如图,在长方形ABCD中,AB=4,AD=5,E为AB的中点,点F,G分别在CD,AD上,△EFG为等腰直角三角形,则四边形BCFE的面积为()A.10B.9C.D.19.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.8,7B.6,7C.8,5D.5,720.二次函数y1=ax2+bx+c(a,b,c为常数)的图象如图所示,若y1+y2=2,则下列关于函数y2的图象与性质描述正确的是()A.函数y2的图象开口向上B.函数y2的图象与x轴没有公共点C.当x=1时,函数y2的值小于0D.当x>2时,y2随x的增大而减小21.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个B.1个C.2个D.3个22.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A. B. C. D.23.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=﹣,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.3个B.4个C.5个D.6个24.如图,矩形OABC的顶点O(0,0),B(﹣2,2),若矩形绕点O逆时针旋转,每秒旋转60°,则第2017秒时,矩形的对角线交点D的坐标为()A.(﹣1,)B.(﹣1,﹣3)C.(﹣2,0)D.(1,﹣3)25.如图,矩形ABCD中,AB=3,BC=6,点E、F是BC的三等分点,连接AF,DE,相交于点M,则线段ME的长为.26.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x个,依题意可列方程得.27.若关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,则a+m﹣3的值为.28.如图,已知⊙O的半径为6,点A、B在⊙O上,∠AOB=60°,动点C在⊙O上(与A、B两点不重合),连接BC,点D是BC中点,连接AD,则线段AD的最大值为.29.不等式组的整数解是.30.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交于点D,连接BD,当BD⊥x轴时,k的值是.31.计算:2cos30°﹣﹣()﹣2=.32.如图,正方形ABCD的边长为4,连接AC,先以A为圆心,AB的长为半径作弧BD,再以A为圆心、AC的长为半径作弧CE,且A、D、E三点共线,则图中两个阴影部分的面积之和是.33.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D 是的中点,连接CD、CB.若OA=2,则阴影部分的面积为.(结果保留π)34.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为.35.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右数第5个阴影三角形的面积是,第2019个阴影三角形的面积是.36.如图,点A在反比例函数y1=(x>0)的图象上,点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,若△AOB的面积为2,则k的值为.37.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C',连接C'D交AB于点E,连接BC'.当△BC'D是直角三角形时,DE的长为.38.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段AC ,CD ,FD 的长度的几组值,如表: 位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8AC /cm 0.1 0.5 1.0 1.9 2.6 3.2 4.2 4.9CD /cm 0.1 0.5 1.0 1.8 2.2 2.5 2.3 1.0FD /cm 0.2 1.0 1.8 2.8 3.0 2.7 1.8 0.5在AC ,CD ,FD 的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD >DF 时,AC 的长度的取值范围是 .39.如图,AB 是⊙O 的直径,NM 与⊙O 相切于点M ,与AB的延长线交于点N,MH⊥AB于点H.(1)求证:∠1=∠2;(2)若∠N=30°,BN=5,求⊙O的半径;(3)在(2)的条件下,求线段BN、MN及劣弧BM围成的阴影部分面积.40.先化简,再求值:•÷,其中x、y满足=2.41.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE =90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC=90°,请直接写出DA的长.42.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A 重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.43.如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ 的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.44.如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC =30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG 平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长?(参考数据:≈1.7,结果保留一位小数)45.如图,点O是线段AH上一点,AH=3,以点O为圆心,OA的长为半径作⊙O,过点H作AH的垂线交⊙O于C,N 两点,点B在线段CN的延长线上,连接AB交⊙O于点M,以AB,BC为边作▱ABCD.(1)求证:AD是⊙O的切线;(2)若OH=AH,求四边形AHCD与⊙O重叠部分的面积;(3)若NH=AH,BN=,连接MN,求OH和MN的长.46.某商店购进A、B两种商品,购买1个A商品比购买1个B 商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?47.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.48.如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)填空:①若AC=3,MC=;②连接BM,当∠AMB的度数为时,四边形AMBC是菱形.49.如图1,△ABC是直角三角形,∠ACB=90°,点D在AC 上,DE⊥AB于E,连接BD,点F是BD的中点,连接EF,CF.(1)EF和CF的数量关系为;(2)如图2,若△ADE绕着点A旋转,当点D落在AB上时,小明通过作△ABC和△ADE斜边上的中线CM和EN,再利用全等三角形的判定,得到了EF和CF的数量关系,请写出此时EF和CF的数量关系;(3)若△AED继续绕着点A旋转到图3的位置时,EF和CF 的数量关系是什么?写出你的猜想,并给予证明.50.如图,直线y=x﹣4与x轴、y轴分别交于A,B两点,抛物线y=x2+bx+c经过A,B两点,与x轴的另一交点为C,连接BC.(1)求抛物线的解析式;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45°时,求点M的横坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q 从点B出发沿线段BC由B向C运动,P,Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P,Q同时停止运动,问在坐标平面内是否存在点D,使P,Q运动过程中的某些时刻t,以C,D,P,Q为顶点的四边形为菱形?若存在,直接写出t的值;若不存在,说明理由.参考答案1.D;2.D;3.B;4.A;5.B;6.B;7.C;8.D;9.D;10.D;11.B;12.B;13.C;14.D;15.A;16.C;17.B;18.D;19.A;20.D;21.C;22.B;23.C;24.C;25.;26.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60;27.1;28.3;29.﹣1,0,1;30.﹣12;31.﹣2﹣4;32.6π﹣8;33.+﹣1;34.或;35.29;24037;36.﹣3;37.3或;详细解析1.【解答】A、圆锥的主视图是等腰三角形,俯视图是圆,故A选项不合题意;B、圆柱主视图是矩形,俯视图是圆,故B选项不合题意;C、三棱柱主视图是一行两个矩形,俯视图是三角形,故C选项不合题意;D、正方体主视图和俯视图都为正方形,故D选项符合题意;故选:D.2.【解答】根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.3.【解答】将数据42600用科学记数法可表示为:4.26×104. 故选:B.4.【解答】3=,4=,A、是比3大比4小的无理数,故此选项符合题意;B、比4大的无理数,故此选项不合题意;C、3.14159是有理数,故此选项不合题意;D、﹣π是比﹣3小比﹣4大的无理数,故此选项不符合题意;故选:A.5.【解答】∵BE⊥AF,∠BED=40°,∴∠FED=50°,∵AB∥CD,∴∠A=∠FED=50°.故选:B.6.【解答】根据函数图象,当x≤﹣1时,kx+b≤mx+n,所以不等式kx+b≤mx+n的解集为x≤﹣1.故选:B.7.【解答】∵360°÷45°=8,∴菱形ABCD绕原点O逆时针旋转8次变换为一次循环,∵2020÷8=252…4,∴4×45=180°,∴经过2020次变换后点C的坐标处于点C绕原点逆时针旋转180°的位置.∵顶点A的坐标为(1,0),顶点B的坐标为(4,4),∴AB==5,∵四边形ABCD是菱形,∴BC∥AD,BC=AB=5,∴C(9,4),∴经过2020次变换后点C的坐标为(﹣9,﹣4).故选:C.8.【解答】A.400名学生中每位学生的体重是个体,故本选项不合题意;B.400名学生的体重是总体,故本选项不合题意;C.被抽取的50名学生的体重是总体的一个样本,故本选项不合题意;D.样本的容量是50,符号题意;故选:D.9.【解答】将1230000用科学记数法表示为1.23×106.故选:D.10.【解答】解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,原计算正确,故此选项不符合题意;选项B,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,原计算正确,故此选项不符合题意;选项C,同底数幂的除法,a5÷a2=a5﹣2=a3,原计算正确,故此选项不符合题意;选项D,积的乘方,(﹣mn3)2=m2n6,原计算错误,故此选项符合题意;故选:D.11.【解答】∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.12.【解答】∵﹣=﹣2,π>>﹣>﹣3,∴这些数中最小的是:﹣3.故选:B.13.【解答】∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.14.【解答】∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.15.【解答】解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.16.【解答】由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为12,∴AF=BF=AB=3,在Rt△ABG中,∠1=30°,∴BG=AB=1.5,AG=BG=,∴AE=2AG=3,∴菱形ABEF的面积=BF×AE=×3×3=;故选:C.17.【解答】∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BF A=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF===,∴BG==,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴,∴BG2=BH•AB,∴BH==,∴OH=,∵OG=AB=1,∴HG==,∴G(,),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(,﹣),第二次旋转90°后对应的G点的坐标为(﹣,﹣),第三次旋转90°后对应的G点的坐标为(﹣,),第四次旋转90°后对应的G点的坐标为(,),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD 绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣,).故选:B.18.【解答】∵△GEF为等腰直角三角形,∴GE=GF,∠EGF=90°,∴∠AGE+∠DGF=90°,∵∠AEG+∠AGE=90°,∴∠AEG=∠DGF,∴△AEG≌△DGF(AAS),∴AE=GD,AG=DF,∵AB=4,AD=5,E为AB的中点,∴DG=AE=2,AG=DF=AD﹣DG=3,∴CF=CD﹣DF=4﹣3=1,∴S=(2+1)×5=,四边形BCFE故选:D.19.【解答】这组数据中出现次数最多的是8,出现了3次,故众数为8,这组数据重新排列为5、5、6、7、8、8、8,故中位数为7.故选:A.20.【解答】∵y1=ax2+bx+c,y1+y2=2,∴y2=2﹣y1,∴函数y2的图象是函数y1的图象关于x轴对称,然后再向上平移2个单位长度得到的,∴函数y2的图象开口向下,故选项A错误;函数y2的图象与x轴有两个交点,故选项B错误;当x=1时,函数y2的值大于0,故选项C错误;当x>2时,y随x的增大而减小,故选项D正确;故选:D.21.【解答】如图1,当BB′=B′C时,△BCB'是等腰三角形,如图2,当BC=BB′时,△BCB'是等腰三角形,故若△BCB'是等腰三角形,则符合条件的点D的个数是2,故选:C.22.【解答】由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.23.【解答】∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0∴abc>0故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)∴9a﹣3b+c=0∵a=b∴c=﹣6a∴3a+c=﹣3a>0故结论②正确;∵当x<﹣时,y随x的增大而增大;当﹣<x<0时,y随x 的增大而减小∴结论③错误;∵cx2+bx+a=0,c>0∴x2+x+1=0∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0)∴ax2+bx+c=0的两根是﹣3和2∴=1,=﹣6∴x2+x+1=0即为:﹣6x2+x+1=0,解得x1=﹣,x2=;故结论④正确;∵当x=﹣时,y=>0∴<0故结论⑤正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2故结论⑥成立;故选:C.24.【解答】∵矩形OABC的顶点O(0,0),B(﹣2,2),∴D(﹣1,),过D作DE⊥x轴于点E,则OE=1,DE=,∴,tan∠DOE=,∴∠DOE=60°,∵60°×2017÷360°=336,∵,又∵旋转336周时,D点刚好回到起始位置,∴第2017秒时,矩形绕点O逆时针旋转336周,此时D点在x轴负半轴上,∴此时D点的坐标为(﹣2,0),故选:C.25.【解答】∵矩形ABCD中,AB=3,BC=6,点E、F是BC 的三等分点,∴CE=4,CD=3,EF=2,AD=6,∴Rt△CDE中,DE==5,∵AD∥EF,∴△ADM∽△FEM,∴=,即=,∴EM=DE=,故答案为:.26.【解答】设中间的那个人分得x个,由题意得:(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60,故答案为:(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60. 27.【解答】∵关于x的一元二次方程ax2+2ax+4﹣m=0有两个相等的实数根,∴△=b2﹣4ac=4a(a﹣4+m)=0,∵a≠0,∴a﹣4+m=0,∴a+m=4,∴a+m﹣3=4﹣3=1.故答案为:1.28.【解答】如图1,连接OC,Q取OB的中点E,连接DE. 则OE=EB=OB=3.在△OBC中,DE是△OBC的中位线,∴DE=OC=3,∴EO=ED=EB,即点D是在以E为圆心,2为半径的圆上,∴求AD的最大值就是求点A与⊙E上的点的距离的最大值,如图2,当D在线段AE延长线上时,AD取最大值,∵OA=OB=6,∠AOB=60°,OE=EB,∴AE=3,DE=3,∴AD取最大值为3+3.故答案为3.29.【解答】解不等式x+1≥0,得:x≥﹣1,解不等式2﹣x>0,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1,故答案为:﹣1、0、1.30.【解答】延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,而顶点C的坐标为(m,3),∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(﹣6,2),∵反比例函数y=的图象经过点D,∴k=﹣6×2=﹣12.故答案为﹣12.31.【解答】原式=2×﹣3﹣4=﹣3﹣4=﹣2﹣4,故答案为:﹣2﹣4.32.【解答】∵正方形ABCD的边长为4,∴AB=BC=4,∠ABC=90°,∴AC=4,∠EAC=∠CAB=45°,∴图中阴影部分的面积是:+[]=6π﹣8,故答案为:6π﹣8.33.【解答】连接OD,过D作DH⊥OA于H,∵∠AOB=90°,D是的中点,∴∠AOD=∠BOD=45°,∵OD=OA=2,∴DH=OC=,∵C是OA的中点,∴OC=1,∴阴影部分的面积=S+S△CDO﹣S△BCO=+×1﹣扇形DOB=+﹣1,故答案为:+﹣1.34.【解答】如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF⊥BC于F.∵AB=AC=,∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=,BF=AF=,∴BD=BF﹣DF=.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF=,BD=BF+FD=,综上所述,满足条件的BD的值时.故答案为或.35.【解答】当x=0时,y=x+2=2,∴OA1=OB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴A n+1B n=B n B n+1=2n+1,∴S n+1=×(2n+1)2=22n+1.当n=4时,S5=22×4+1=29;当n=2018时,S2019=22×2018+1=24037.故答案为:29,24037;36.【解答】设点A坐标(a,)∵点B在反比例函数y2=(x<0)的图象上,AB⊥y轴,∴∴x=ak∴点B(ak,)∵△AOB的面积为2∴(a﹣ak)×=2∴1﹣k=4∴k=﹣3故答案为:﹣337.【解答】如图所示;点E与点C′重合时.在Rt△ABC中,BC===8,由翻折的性质可知;AE=AC=6、DC=DE.则EB=10﹣6=4. 设DC=ED=x,则BD=8﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+42=(8﹣x)2.解得x=3,如图所示:∠EDB=90时,由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=6.∴DB=BC﹣DC=8﹣6=2.∵DE∥AC,∴△BDE∽△BCA.=,即,解得DE=,点D在CB上运动,∠DBC′<90°,(假设∠DBC′≥90°,则AC′≥BD,这个显然不可能,故∠DBC′<90°),故∠DBC′不可能为直角.故答案为3或.38.【解答】(1)由题意可知:AC是自变量,CD,DF是自变量AC的函数.故答案为:AC,CD,FD.(2)函数图象如图所示:(3)观察图象可知CD>DF时,3.5cm<x<5cm. 故答案为:3.5cm<x<5cm.39.【解答】(1)证明:连接OM,∵NM与⊙O相切,∴OM⊥MN,∵OB=OM,∴∠OBM=∠OMB,∵NH⊥AB,∴∠2+∠MBO=90°,∵∠1+∠BMO=∠NMO=90°,∴∠1=∠2;(2)∵∠N=30°,MH⊥AB,∴∠1+∠2=60°,∴∠1=∠2=30°,∠MON=60°,∴BM=BN=5,∵OB=OM,∴△OBM为等边三角形,∴OB=OM=BM=5,即⊙O的半径为5;(3)由(2)知,∠N=30°,OM=5,∴MN=5,∴S△OMN=MN•OM==,S扇形MOB==,∴线段BN、MN及劣弧BM围成的阴影部分面积=S△OMN﹣S=﹣.扇形MOB40.【解答】•÷==,=1+,当=2时,原式=1+2=3.41.【解答】(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.42.【解答】(1)∵y=﹣2x+c与x轴交于点A(3,0),与y 轴交于点B,∴﹣2×3+c=0,解得c=6,∴B(0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB==3,∵MP∥y轴,∴△APM∽△ABO,∴,即,∴AP=(3﹣m),∵NP=AP,∴﹣m2+3m=×(3﹣m),解得:m=或3(舍去3),∴m=.(3)点Q的坐标为(,)或(﹣2,0).①当点Q在AB上方时,。
中考数学模拟试题(含答案和解析)
【答案】C
【解析】
【分析】设CF交AB于P.过C作CN⊥AB于N.设正方形JKLM边长为m.根据正方形ABGF与正方形JKLM的面积之比为5.得AF=AB= m.证明△AFL≌△FGM(AAS).可得AL=FM.设AL=FM=x.在Rt△AFL中.x2+(x+m)2=( m)2.可解得x=m.有AL=FM=m.FL=2m.从而可得AP= .FP= m.BP= .即知P为AB中点.CP=AP=BP= .由△CPN∽△FPA.得CN=m.PN= m.即得AN= m.而tan∠BAC= .又△AEC∽△BCH.根据相似三角形的性质列出方程.解方程即可求解.
【答案】B
【解析】
【分析】根据四边形的内角和等于360°计算可得∠BAC=50°.再根据圆周角定理得到∠BOC=2∠BAC.进而可以得到答案.
【详解】解:∵OD⊥AB.OE⊥AC.
∴∠ADO=90°.∠AEO=90°.
∵∠DOE=130°.
∴∠BAC=360°-90°-90°-130°=50°.
∴∠BOC=2∠BAC=100°.
A. B.
C. D.
【答案】A
【解析】
【分析】分别对每段时间的路程与时间的变化情况进行分析.画出路程与时间图像.再与选项对比判断即可.
【详解】解:对各段时间与路程的关系进行分析如下:
从家到凉亭.用时10分种.路程600米.s从0增加到600米.t从0到10分.对应图像为
在凉亭休息10分钟.t从10分到20分.s保持600米不变.对应图像为
故选:B.
【点睛】本题考查扇形统计图.解答本题的关键是明确题意.求出本次参加兴趣小组的总人数.
4.化简 的结果是( )
A. B. C. D.
中招考试数学模拟试卷(附有答案)
中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。
2024年深圳市中考数学模拟题汇编:一元二次方程(附答案解析)
2024年深圳市中考数学模拟题汇编:一元二次方程一.选择题(共10小题)1.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根2.用配方法解方程x2﹣4x+2=0时,配方后所得的方程是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=1D.(x﹣2)2=﹣2 3.4月23日是世界读书日,据有关部门统计,某市2021年人均纸质阅读量约为4本,2023年人均纸质阅读量约为4.84本,设人均纸质阅读量年均增长率为x,则根据题意可列方程()A.4(1+2x)=4.84B.4.84(1+x)2=4C.4(1+x)2=4.84D.4+4(1+x)+4(1+x)2=4.844.已知x=1是一元二次方程x2+ax﹣3=0的一个根,则a的值为()A.2B.﹣2C.1D.﹣15.关于x的一元二次方程x2﹣2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.一元二次方程2x2+1﹣4x=0的一次项系数是()A.2B.1C.﹣4D.47.一元二次方程(x+3)(x﹣1)=2x﹣4化为一般形式是()A.x2﹣1=0B.x2﹣7=0C.x2+4x+1=0D.x2+1=08.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣2B.−12C.12D.29.已知关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,则m的取值范围是()A.m<1B.m≠0C.m>1D.m≠110.要为一幅长60cm,宽40cm的照片配一个相框,要求相框的四条边宽度相等,若要使整个带框后照片的面积是3500cm2(相框和照片重叠部分忽略不计),设相框的宽度为xcm,则x满足的方程是()A.(60+2x)(40+2x)=3500B.(60+x)(40+x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500二.填空题(共5小题)11.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=.12.写出下列一元二次方程的根(2x﹣7)(x+2)=0.13.为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.14.如图,矩形绿地的长为4m,宽为3m,将此绿地的长、宽各增加相同的长度后,绿地面积增加了18m2,则绿地的长、宽增加的长度为m.15.某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为.三.解答题(共5小题)16.解方程:(1)x2+3x﹣2=0;(2)x(2x﹣5)=4x﹣10.17.已知关于x的一元二次方程2x2+x+m=0(m为常数).(1)若x=1是该方程的一个实数根,求m的值和该方程的另一个实数根;(2)若该方程有两个不相等的实数根,求m的取值范围.18.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?19.山西某县玉露香梨汁多、酥脆、含糖高,享誉全国.某水果店销售玉露香梨,进价为2元/斤,按4.5元/斤出售,每天可卖出200斤.经市场调查发现,这种玉露香梨每斤的售价每降低0.1元,每天可多卖出20斤,若该水果店想要每天销售玉露香梨盈利600元,且尽可能让利于顾客,售价应定为多少?20.惠农商行以7200元的成本收购某种农产品800kg,目前可以以12元/kg的售价全部售出,如果储存起来待涨价后销售,则每周会损耗10kg,且每周须支付其他费用1000元,但每周每千克会涨价2元.根据往年市场行情可知售价不能超过40元.请解答下列问题.(1)当前直接出售可获利元;(2)储存几周后出售利润可达到4960元?2024年深圳市中考数学模拟题汇编:一元二次方程参考答案与试题解析一.选择题(共10小题)1.方程(x+1)2=0的根是()A.x1=x2=1B.x1=x2=﹣1C.x1=﹣1,x2=1D.无实根【考点】解一元二次方程﹣直接开平方法.【专题】常规题型;运算能力.【答案】B【分析】根据一元二次方程的解法即可求出答案.【解答】解:由于(x+1)2=0,∴x+1=0,∴x1=x2=﹣1故选:B.【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.2.用配方法解方程x2﹣4x+2=0时,配方后所得的方程是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=1D.(x﹣2)2=﹣2【考点】解一元二次方程﹣配方法.【专题】一元二次方程及应用;运算能力.【答案】A【分析】方程变形后,配方得到结果,即可做出判断.【解答】解:方程x2﹣4x+2=0,变形得:x2﹣4x=﹣2,配方得:x2﹣4x+4=﹣2+4,即(x﹣2)2=2,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.4月23日是世界读书日,据有关部门统计,某市2021年人均纸质阅读量约为4本,2023年人均纸质阅读量约为4.84本,设人均纸质阅读量年均增长率为x,则根据题意可列方程()A.4(1+2x)=4.84B.4.84(1+x)2=4C.4(1+x)2=4.84D.4+4(1+x)+4(1+x)2=4.84【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】C【分析】利用该市2023年人均纸质阅读量=该市2021年人均纸质阅读量×(1+人均纸质阅读量年均增长率)2,即可列出关于x的一元二次方程,此题得解.【解答】解:根据题意得:4(1+x)2=4.84.故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.已知x=1是一元二次方程x2+ax﹣3=0的一个根,则a的值为()A.2B.﹣2C.1D.﹣1【考点】一元二次方程的解.【专题】一元二次方程及应用;推理能力.【答案】A【分析】根据一元二次方程的解的定义把x=1代入方程得到关于a的一次方程,然后解一次方程即可.【解答】解:∵x=1是一元二次方程x2+ax﹣3=0的一个根,∴1+a﹣3=0,∴a=2.故选:A.【点评】本题考查了一元二次方程的解,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.5.关于x的一元二次方程x2﹣2x﹣6=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式.【专题】判别式法;运算能力.【答案】A【分析】根据方程的系数结合根的判别式Δ=b2﹣4ac,可得出Δ=28>0,进而可得出原方程有两个不相等的实数根.【解答】解:∵a=1,b=﹣2,c=﹣6,∴Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣6)=28>0,∴关于x的一元二次方程x2﹣2x﹣6=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根”是解题的关键.6.一元二次方程2x2+1﹣4x=0的一次项系数是()A.2B.1C.﹣4D.4【考点】一元二次方程的一般形式.【专题】一元二次方程及应用;运算能力.【答案】C【分析】求出2x2﹣4x+1=0,再找出一次项系数即可.【解答】解:2x2+1﹣4x=0,2x2﹣4x+1=0,所以一元二次方程2x2+1﹣4x=0的一次项系数是﹣4.故选:C.【点评】本题考查了一元二次方程的一般形式,能熟记一元二次方程的一般形式(ax2+bx+c=0,其中a、b、c为常数,a≠0)是解此题的关键.7.一元二次方程(x+3)(x﹣1)=2x﹣4化为一般形式是()A.x2﹣1=0B.x2﹣7=0C.x2+4x+1=0D.x2+1=0【考点】一元二次方程的一般形式.【专题】一元二次方程及应用;运算能力.【答案】D【分析】根据多项式乘多项式的运算法则化简,再通过移项,合并同类项即可.【解答】解:(x+3)(x﹣1)=2x﹣4,x2+2x﹣3=2x﹣4,x2+2x﹣2x﹣3+4=0,x2+1=0,故选:D.【点评】此题主要考查了一元二次方程的一般形式,掌握多项式乘多项式的运算法则是解题关键.8.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1•x2等于()A.﹣2B.−12C.12D.2【考点】根与系数的关系.【专题】一元二次方程及应用;运算能力.【答案】C【分析】直接利用根与系数的关系求解.【解答】解:∵x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,∴x1•x2=12.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=−,x1•x2=.9.已知关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,则m的取值范围是()A.m<1B.m≠0C.m>1D.m≠1【考点】一元二次方程的定义.【专题】一元二次方程及应用;运算能力.【答案】D【分析】根据一元二次方程的定义判断即可.【解答】解:∵关于x的方程(m﹣1)x2+3x﹣1=0是一元二次方程,∴m﹣1≠0,∴m≠1,故选:D.【点评】本题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.10.要为一幅长60cm,宽40cm的照片配一个相框,要求相框的四条边宽度相等,若要使整个带框后照片的面积是3500cm2(相框和照片重叠部分忽略不计),设相框的宽度为xcm,则x满足的方程是()A.(60+2x)(40+2x)=3500B.(60+x)(40+x)=3500C.(60﹣x)(40﹣x)=3500D.(60﹣2x)(40﹣2x)=3500【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】A【分析】如果设相框的宽度为xcm,那么整个带框后照片的长和宽应该为(60+2x)cm 和(40+2x)cm,根据总面积即可列出方程.【解答】解:设相框的宽度为xcm,那么整个带框后照片的长和宽应该为(60+2x)cm 和(40+2x)cm,根据题意可得出方程为:(60+2x)(40+2x)=3500,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共5小题)11.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m=﹣1.【考点】一元二次方程的解.【答案】见试题解答内容【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,∴x=0满足关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0,且m﹣1≠0,∴m2﹣1=0,即(m﹣1)(m+1)=0且m﹣1≠0,∴m+1=0,解得,m=﹣1;故答案为:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.12.写出下列一元二次方程的根(2x﹣7)(x+2)=0x1=72,x2=﹣2.【考点】解一元二次方程﹣因式分解法.【专题】一元二次方程及应用;运算能力.【答案】x1=72,x2=﹣2.【分析】利用因式分解法把方程转化为2x﹣7=0或x+2=0,然后解一次方程即可.【解答】解:(2x﹣7)(x+2)=0,2x﹣7=0或x+2=0,所以x1=72,x2=﹣2.故答案为:x1=72,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.13.为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率20%.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】20%.【分析】设该市改造老旧小区投入资金的年平均增长率为x,利用2022年投入资金金额=2020年投入资金金额×(1+x)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x1=﹣2.2(不合题意,舍去),∴该市改造老旧小区投入资金的年平均增长率为20%.故答案为:20%.【点评】本题考查一元二次方程的应用.解题的关键是找准等量关系,正确列出一元二次方程.14.如图,矩形绿地的长为4m,宽为3m,将此绿地的长、宽各增加相同的长度后,绿地面积增加了18m2,则绿地的长、宽增加的长度为2m.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】2.【分析】设绿地的长、宽增加的长度为xm,根据绿地面积增加了18m2,可列出关于x 的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设绿地的长、宽增加的长度为xm,根据题意得:(4+x)(3+x)﹣4×3=18,整理得:x2+7x﹣18=0,解得:x1=2,x2=﹣9(不符合题意,舍去).答:绿地的长、宽增加的长度为2m.故答案为:2.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为1000(1+x)2=1440.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【答案】1000(1+x)2=1440.【分析】根据2022年底绿化面积×(1+年平均增长率)2=2024年底绿化面积,列出一元二次方程即可.【解答】解:根据题意得:1000(1+x)2=1440,故答案为:1000(1+x)2=1440.【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题(共5小题)16.解方程:(1)x2+3x﹣2=0;(2)x(2x﹣5)=4x﹣10.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【专题】一元二次方程及应用;运算能力.【答案】(1)x1=x2=(2)x1=2,2=52.【分析】(1)方程利用公式法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)∵a=1,b=3,c=﹣2,∴Δ=b2﹣4ac=32﹣4×1×(﹣2)=17,∴x==∴x1=x2=(2)移项得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(2x﹣5)(x﹣2)=0,∴2x﹣5=0或x﹣2=0,解得:x1=2,2=52.【点评】此题考查了解一元二次方程﹣因式分解法及公式法,熟练掌握各自的解法是解本题的关键.17.已知关于x的一元二次方程2x2+x+m=0(m为常数).(1)若x=1是该方程的一个实数根,求m的值和该方程的另一个实数根;(2)若该方程有两个不相等的实数根,求m的取值范围.【考点】根与系数的关系;一元二次方程的解;根的判别式.【专题】一元二次方程及应用;运算能力.【答案】(1)m=﹣3,另一实数根是−32;(2)m<18.【分析】(1)把x=1代入原方程,得到关于m的方程,即可求m的值,再利用根与系数的关系即可求另一根;(2)利用根的判别式进行求解即可.【解答】解:(1)∵x=1是该方程的一个实数根,∴2×12+1+m=0,解得:m=﹣3,∴原方程为:2x2+x﹣3=0,令方程的另一实数根为y,则有:1+y=−12,解得:y=−32;(2)∵方程有两个不相等的实数根,∴Δ=12﹣4×2m>0,解得:m<18.【点评】本题主要考查根与系数的关系,根的判别式,解答的关键是对相应的知识的掌握与灵活运用.18.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】(1)20%;(2)50元.【分析】(1)设该景区七、八月游客人数的月平均增长率为x,利用该景区八月份的游客人数=该景区六月份的游客人数×(1+该景区七、八月游客人数的月平均增长率)2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该纪念品的销售价应定为y元,则每件的销售利润为(y﹣30)元,日销售量为(180﹣2y)件,利用每天销售这种纪念品获得的总利润=每件的销售利润×日销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:(1)设该景区七、八月游客人数的月平均增长率为x,根据题意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不符合题意,舍去).答:该景区七、八月游客人数的月平均增长率为20%;(2)设该纪念品的销售价应定为y元,则每件的销售利润为(y﹣30)元,日销售量为100﹣10×K405=(180﹣2y)件,根据题意得:(y﹣30)(180﹣2y)=1600,整理得:y2﹣120y+3500=0,解得:y1=50,y2=70,又∵要利于游客,∴y=50.答:该纪念品的销售价应定为50元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.山西某县玉露香梨汁多、酥脆、含糖高,享誉全国.某水果店销售玉露香梨,进价为2元/斤,按4.5元/斤出售,每天可卖出200斤.经市场调查发现,这种玉露香梨每斤的售价每降低0.1元,每天可多卖出20斤,若该水果店想要每天销售玉露香梨盈利600元,且尽可能让利于顾客,售价应定为多少?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】售价应定为3.5元/斤.【分析】设每斤玉露香梨降价x元,根据题意得到方程,解方程即可得到结论.【解答】解;设每斤玉露香梨降价x元,根据题意得(4.5﹣2﹣x)(200+0.1×20)=600,解得x1=1,x2=0.5,因为要让利于顾客,所以x取1,∴4.5﹣1=3.5(元),答:售价应定为3.5元/斤.【点评】本题考查了一元二次方程的应用,正确地列出方程是解题的关键.20.惠农商行以7200元的成本收购某种农产品800kg,目前可以以12元/kg的售价全部售出,如果储存起来待涨价后销售,则每周会损耗10kg,且每周须支付其他费用1000元,但每周每千克会涨价2元.根据往年市场行情可知售价不能超过40元.请解答下列问题.(1)当前直接出售可获利2400元;(2)储存几周后出售利润可达到4960元?【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【答案】(1)2400;(2)储藏了8个星期后出售,利润可达到4960元.【分析】(1)根据题意列式计算即可;(2)设储藏了x个星期后出售,利润可达到4960元,根据题意列方程即可得到结论.【解答】解:(1)当前直接出售可获利800×12﹣7200=2400(元),故答案为:2400;(2)设储藏了x个星期后出售,利润可达到4960元,由题意得:(12+2x)(800﹣10x)﹣7200﹣1000x=4960,解得x1=16,x2=8,当x=16时,12+2x=44>40(不合题意舍去),当x=8时,12+2x=28,答:储藏了8个星期后出售,利润可达到4960元.【点评】本题考查了一元二次方程的应用,正确地理解题意,列出方程是解题的关键.。
2024年中考数学模拟测试试卷(带有答案)
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
2024年安徽中考数学模拟试题及答案
2024年安徽中考数学模拟试题及答案2024年安徽中考数学模拟试题及答案(一)一、选择题:(每小题3分,共30分)1.|2|--的倒数是()A.2B.12C.12-D.2-2.2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.43.8410⨯千米B.53.8410⨯千米C.63.8410⨯千米D.438.410⨯千米3.右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个4.下列运算正确的是()A.2224(2)2a a a -=B.236()a a a-= C.236(2)8x x-=-D.2()x x x-÷=-5.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为3606.已知代数式1312a x y -与23b a b x y -+-是同类项,那么a b ,的值分别是()A.21a b =⎧⎨=-⎩,B.21a b =⎧⎨=⎩,C.21a b =-⎧⎨=-⎩,D.21a b =-⎧⎨=⎩,7.把一张长方形的纸片按如图所示的方式折叠,EM FM ,为折痕,折叠后的C 点落在B M '或B M '的延长线上,那么EMF ∠的度数是()A.85B.90C.95D.100主(正)视图左视图俯视图AEBMCDFD 'B 'C '8.如图,在Rt ABC △中,90ACB CD AB =⊥,∠于点D .已知5AC =,2BC =,那么sin ACD ∠=()A.53B.23C.255D.529.为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示.根据统计图分析,这组车速数据的众数和中位数分别是()A.60千米/小时,60千米/小时B.58千米/小时,60千米/小时C.60千米/小时,58千米/小时D.58千米/小时,58千米/小时10.如图,小丽要制作一个圆锥模型,要求圆锥的母线长为9cm,底面圆的直径为10cm,那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是()A.150B.200C.180D.240第II 卷(非选择题,共70分)注意事项:1.A 卷的第II 卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上.11.把3222a ab a b +-分解因式的结果是.12.函数1xy x =-的自变量x 的取值范围是.13.如图,小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.14.如图,在等腰梯形ABCD 中,AD BC AB AD ≠,∥,对角线AC BD ,相交于点O .如下四个结论:①梯形ABCD 是轴对称图形;②DAC DCA =∠∠;③AOB DOC △≌△;④AOD BOC △∽△.请把其中正确结论的序号填在横线上:.15.右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶ABCD391252555860626584车速车辆数09cm 10cmADCBOy (千米)甲乙4545千米,由A 地到B 地时,行驶的路程y (千米)与经过的时间x (小时)之间的函数关系.请根据这个行驶过程中的图象填空:汽车出发小时与电动自行车相遇;电动自行车的速度为千米/小时;汽车的速度为千米/小时;汽车比电动自行车早小时到达B 地.三、(共18分)16.解答下列各题:(每小题6分)(1)计算:12012tan 60(2)(1)|3-⎛⎫-+-⨯-- ⎪⎝⎭.(2)先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.(3)解方程:11262213x x=---.答案一、选择题:(每小题3分,共30分)1.C2.B3.D4.C5.D6.A7.B8.A9.C10.BA卷第Ⅱ卷(共70分)二、填空题:(每小题4分,共20分)11.()2aa b -;12.0x ≥且1x ≠;13.48;14.①,③,④;15.0.5,9,45,2.三、(共18分)16.(1)解:原式341=+⨯--··································4分34=+-1=.·································································2分(2)解:原式()()2229455441x x x x x =-----+2229455441x x x x x =--+-+-95x =-.······························································4分当13x =-时,原式195953x ⎛⎫=-=⨯-- ⎪⎝⎭35=--8=-.·················································································2分(3)解:去分母,得1314x =-+.···············································3分32x =-,解这个方程,得23x =-.······························································2分经检验,23x =-是原方程的解.····················································1分2024年安徽中考数学模拟试题及答案(二)一、选择题(共60分,每小题3分)以下每小题给出的四个选项中,只有一个是符合题目要求的,请选出并把答题卡上对应题目的正确答案标号涂黑.1.在-2,0,2,1,43,-0.4中,正确的个数为A.2个B.3个C.4个D.5个2.3的倒数为A.-3B.3C.31-D.313.计算()023≠÷x x x 的结果为A.5x B.6x C.52x D.x4.现在我市人口约有4580000人,用科学记数法表示为A.458×104B.45.8×105C.4.58×106D.0.458×1075.函数11-=x y 中,自变量x 的取值范围为A.1-≠x B.1≠x C.1>x D.1-<x 6.不等式2x ≥x +2的解集为A.x >2B.x <2C.x ≥2D.x ≤27.把12-x 分解因式为A.()21-x B.()21+x C.()()11-+-x x D.()()11-+x x 8.下列图形中,是中心对称图形的是A.等边三角形B.平行四边形C.梯形D.正五边形9.某装修公司到科维商场买同样一种多边形的地砖平铺地面,在以下四种地砖中,你认为该公司不能买A.正三角形地砖B.正方形地砖C.正五边形地砖D.正六边形地砖10.在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图1),看不清所印的字,请问被墨迹遮盖了的文字应是A.等边三角形B.四边形C.等腰梯形D.菱形11.已知P (-1,2),则点P 所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限12.用换元法解方程()()0122222=-+++x x x x ,若设x x y +=2,则原方程可变形为A.0122=++y y B.0122=+-y y C.0122=-+y y D.0122=--y y 13.两圆的半径分别是4cm 和5cm ,圆心矩为9cm ,则两圆的位置关系是A.外切B.内切C.外离D.内含14.一位卖“运动鞋”的经销商到一所学校对9位学生的鞋号进行了抽样调查.其号码为:24、22、21、24、23、20、24、23、24.经销商最感兴趣的是这组数据中的A.中位数B.众数C.平均数D.方差15.下列方程中,没有实数根的是A.012=++x x B.0122=++x x C.0122=--x x D.022=--x x 16.如图2,为了测量一池塘的宽DE ,在岸边找到一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC =5m ,过点A 作AB ∥DE 交EC 的延长线于B ,测出AB =6m ,则池塘的宽DE 为A.25m B.30m C.36m D.40m17.如图3,四边形ABCD 为⊙O 的内接四边形,∠BOD =120°,则∠BCD 为A.120°B.90°C.60°D.30°18.如图4,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在A.在AC 、BC 两边高线的交点处B.在AC 、BC 两边中线的交点处C.在AC 、BC 两边垂直平分线的交点处D.在∠A 、∠B 两内角平分线的交点处19.已知一个矩形的面积为24cm 2,其长为ycm ,宽为xcm ,则y 与x 之间的函数关系的图象大致是平行四边形矩形正方形图1A B CD E图2AB CD图3O ·y y yy A B C 图4A B C D20.如图5,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为A.600m 2B.551m2C.550m 2D.500m2二、(本题共15分,每小题5分)21.计算:2251220+⎪⎭⎫⎝⎛--.22.如图6,在⊙O 中,弦AB 与DC 相交于E ,且AE =EC ,求证:AD =BC .23.解方程组⎩⎨⎧=-=+.82,7y x y x 答案一、选择题(本题共60分,每小题3分)图5A BC图6D O E·题号1234567891011121314151617181920答案BDDCBCDBCDBCABACACDB二、(本题共15分,每小题5分)21.解:原式=2122+-………………(每化简正确一项给一分)3分=123-……………………………………………………5分22.证明:在△AED 和△CEB 中⎪⎩⎪⎨⎧∠=∠=∠=∠CEB AED ECAE C A …………………………………………………………3分∴△AED ≌△CEB ………………………………………………………4分∴AD =BC …………………………………………………………………5分23.解:①+②,得3x =15…………………………………………………………………2分∴x =15………………………………………………………………3分把x =5代入①,得y =2…………………………………………………4分∴⎩⎨⎧==25y x 是原方程组的解…………………………………………………5分2024年安徽中考数学模拟试题及答案(三)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.我市峨眉山上某天的最高气温为12℃,最低气温为4-℃,那么这天的最高气温比最低气温高()A.4℃B.8℃C.12℃D.16℃2.在平面直角坐标系中,点(34)P -,到x 轴的距离为()A.3B.3-C.4D.4-3.如图(1),在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =∠,则BCE =∠()A.55B.35C.25D.304.下列各式中正确的是()A E BCD图(1)A.0(2)0-=B.236-=-C.43(0)m m m m ÷=≠D.=5.如图(2),数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为()A.7B.3C.3-D.2-6.图(3)为一个多面体的表面展开图,每个面内都标注了数字.若数字为3的面是底面,则朝上一面所标注的数字为()A.2B.4C.5D.67.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是()A.14016615x y x y +=⎧⎨+=⎩B.14061615x y x y +=⎧⎨+=⎩C.15166140x y x y +=⎧⎨+=⎩D.15616140x y x y +=⎧⎨+=⎩8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图(4)所示的统计图,则这组数据的众数和中位数分别是()A.77,B.87.5,C.77.5,D.86.5,9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y+元的价格卖完后,结果发现自己赔了钱,其原因是()A.x y<B.x y>C.x y≤D.x y≥10.如图(5),把矩形纸条ABCD 沿EF GH ,同时折叠,B C ,两点恰好落在AD 边的P 点处,若90FPH =∠,8PF =,6PH =,则矩形ABCD 的边BC 长为()A.20B.22C.24D.3010A2B5C图(2)342156图(3)人数环数763215678910图(4)AEPDG HFBA CD11.已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是()A.20y -<<B.40y -<<C.2y <-D.4y <-12.如图(7),MN 是O 的直径,2MN =,点A 在O 上,30AMN =∠,B 为 AN的中点,P 是直径MN 上一动点,则PA PB +的最小值为()A.C.1D.2第Ⅱ卷(非选择题共114分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上)13.4的算术平方根是_______.14.分解因式:216x -=_______.15.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.16.用图(8)所示的正方形和长方形卡片若干张,拼成一个长为2a b +,宽为a b +的矩形,需要A 类卡片_______张,B 类卡片_______张,C 类卡片_______张.a aabb bA 类B 类C 类图(8)17.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全等人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________.18.如图(9),半圆的直径10AB =,P 为AB 上一点,点C D ,为半圆的三等分点,则阴影部分的面积等于_______.三、(本大题共3小题,每小题9分,共27分)图(6)2-4xy MO PNB A图(7)CD APOB图(9)19.计算:22(2)2sin 60--+ .20.当13x =-时,求23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭的值.21.解不等式组3(1)5412123x x x x +>+⎧⎪⎨--⎪⎩ ①≤ ②,并将解集在数轴上表示出来.答案一、选择题(每小题3分,共12小题,共计36分)1.D2.C3.B4.C5.D6.C7.D8.C9.B10.C11.C12.B二、填空题(每小题3分,6小题,共计18分)13.214.(4)(4)x x -+15.2-或116.2,3,117.样本在总体中所占比例太小;或样本不具代表性、广泛性、随机性;(只要答对其中一项均可得分)18.25π6三、本大题共3小题,每小题9分,共27分.19.解:原式32422=-+⨯ (6)分24=+7分2=-······································································································9分20.解:原式3(1)(1)(1)(1)(1)(1)x x x x x x x x x+--+-=-+··········································4分2233(1)(1)(1)(1)x x x x x x x x x+-++-=⨯+-24x =+··································································································6分当13x =-时,原式1243⎛⎫=⨯-+ ⎪⎝⎭···················································································8分103=······································································································9分11/1121.解:解不等式①得12x <-····································································2分解不等式②得1x -≥·················································································4分∴不等式组的解集为112x -<-≤·······························································7分其解集在数轴上表示为:·····························································9分。
中考模拟考试数学试卷及答案解析(共五套)
19.(8分)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:
(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?
20.(8分)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
18.(8分)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.
(1)求这种商品的单价;
(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.
C.三四线城市购买新能源汽车用户达到11万
D.四线城市以下购买新能源汽车用户最少
【分析】根据扇形统计图中的数据一一分析即可判断.
【解答】解:A、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;
B、二线城市购买新能源汽车用户达37%,故本选项正确,不符合题意;
C、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;
全国备战中考数学平行四边形的综合备战中考模拟和真题汇总含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.(问题情景)利用三角形的面积相等来求解的方法是一种常见的等积法,此方法是我们解决几何问题的途径之一.例如:张老师给小聪提出这样一个问题:如图1,在△ABC中,AB=3,AD=6,问△ABC的高AD与CE的比是多少?小聪的计算思路是:根据题意得:S△ABC=12BC•AD=12AB•CE.从而得2AD=CE,∴12 AD CE请运用上述材料中所积累的经验和方法解决下列问题:(1)(类比探究)如图2,在▱ABCD中,点E、F分别在AD,CD上,且AF=CE,并相交于点O,连接BE、BF,求证:BO平分角AOC.(2)(探究延伸)如图3,已知直线m∥n,点A、C是直线m上两点,点B、D是直线n上两点,点P是线段CD中点,且∠APB=90°,两平行线m、n间的距离为4.求证:PA•PB=2AB.(3)(迁移应用)如图4,E为AB边上一点,ED⊥AD,CE⊥CB,垂足分别为D,C,∠DAB=∠B,AB=34,BC=2,AC=26,又已知M、N分别为AE、BE的中点,连接DM、CN.求△DEM与△CEN的周长之和.【答案】(1)见解析;(2)见解析;(3)34【解析】分析:(1)、根据平行四边形的性质得出△ABF和△BCE的面积相等,过点B作OG⊥AF于G,OH⊥CE于H,从而得出AF=CE,然后证明△BOG和△BOH全等,从而得出∠BOG=∠BOH,即角平分线;(2)、过点P作PG⊥n于G,交m于F,根据平行线的性质得出△CPF和△DPG全等,延长BP交AC于E,证明△CPE和△DPB全等,根据等积法得出AB=AP×PB,从而得出答案;(3)、,延长AD,BC交于点G,过点A作AF⊥BC于F,设CF=x,根据Rt△ABF和Rt△ACF的勾股定理得出x的值,根据等积法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,从而得出两个三角形的周长之和.同理:EM+EN=AB详解:证明:(1)如图2,∵四边形ABCD是平行四边形,∴S△ABF=S▱ABCD,S△BCE=S▱ABCD,∴S△ABF=S△BCE,过点B作OG⊥AF于G,OH⊥CE于H,∴S△ABF=AF×BG,S△BCE=CE×BH,∴AF×BG=CE×BH,即:AF×BG=CE×BH,∵AF=CE,∴BG=BH,在Rt△BOG和Rt△BOH中,,∴Rt△BOG≌Rt△BOH,∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如图3,过点P作PG⊥n于G,交m于F,∵m∥n,∴PF⊥AC,∴∠CFP=∠BGP=90°,∵点P是CD中点,在△CPF和△DPG中,,∴△CPF≌△DPG,∴PF=PG=FG=2,延长BP交AC于E,∵m∥n,∴∠ECP=∠BDP,∴CP=DP,在△CPE和△DPB中,,∴△CPE≌△DPB,∴PE=PB,∵∠APB=90°,∴AE=AB,∴S△APE=S△APB,∵S△APE=AE×PF=AE=AB,S△APB=AP×PB,∴AB=AP×PB,即:PA•PB=2AB;(3)如图4,延长AD,BC交于点G,∵∠BAD=∠B,∴AG=BG,过点A作AF⊥BC于F,设CF=x(x>0),∴BF=BC+CF=x+2,在Rt△ABF中,AB=,根据勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2,在Rt△ACF中,AC=,根据勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2,∴x=﹣1(舍)或x=1,∴AF==5,连接EG,∵S△ABG=BG×AF=S△AEG+S△BEG=AG×DE+BG×CE=BG(DE+CE),∴DE+CE=AF=5,在Rt△ADE中,点M是AE的中点,∴AE=2DM=2EM,同理:BE=2CN=2EN,∵AB=AE+BE,∴2DM+2CN=AB,∴DM+CN=AB,同理:EM+EN=AB ∴△DEM与△CEN的周长之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.点睛:本题主要考查的就是三角形全等的判定与性质以及三角形的等积法,综合性非常强,难度较大.在解决这个问题的关键就是作出辅助线,然后根据勾股定理和三角形全等得出各个线段之间的关系.2.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.操作示例当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.思考发现小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.实践探究(1)正方形FGCH的面积是;(用含a, b的式子表示)(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.联想拓展小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;剪拼方法如图2-图4;联想拓展:能,剪拼方法如图5(图中BG=DH=b)..点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.3.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=223BD AD-=,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=22AB AF+=23.5.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.6.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G 交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.【解析】【分析】(1)证明△BAF≌△ADE(ASA)即可解决问题.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.7.如图,抛物线交x轴的正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上的一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,(1)求a的值及点A的坐标;(2)当点D恰好落在抛物线上时,求n的值;(3)记CD与抛物线的交点为E,连接AE,BE,当△AEB的面积为7时,n=___________.(直接写出答案)【答案】(1), A(3,0);(2)【解析】试题解析:(1)把点B的坐标代入抛物线的解析式中,即可求出a的值,令y=0即可求出点A的坐标.(2)求出点D的坐标即可求解;(3)运用△AEB的面积为7,列式计算即可得解.试题解析:(1)当时,由,得(舍去),(1分)∴A(3,0)(2)过D作DG⊥轴于G,BH⊥轴于H.∵CD∥AB,CD=AB∴,∴,∴(3)8.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°.∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF.又∵∠A=∠B=90°,∴△AHE≌△BEF.同理可证△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)过点G作GM⊥BC交BC的延长线于M,连接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面积不能等于2.说明一:∵若S△GFC=2,则12-a=2,∴a=10.此时,在△BEF中,.在△AHE中,,∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.说明二:△GFC的面积不能等于2.∵点H在AD上,∴菱形边EH的最大值为,∴BF的最大值为.又∵函数S△GFC=12-a的值随着a的增大而减小,∴S△GFC的最小值为.又∵,∴△GFC的面积不能等于2.9.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF=BC.考点:四边形综合题.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。
2024年深圳市中考数学模拟题汇编:一次函数(附答案解析)
2024年深圳市中考数学模拟题汇编:一次函数一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()A.B.C.D.2.甲乙两车从A城出发匀速驶向B城,在整个行驶过程中,两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图,则下列结论错误的是()①A、B两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t的值为54或56或156或254A.①②B.②③C.①④D.③④3.关于x的一次函数=12+2,下列说法正确的是()A.图象不经过第二象限B.图象与y轴的交点坐标是(2,0)C.点A(3,y1)和点B(﹣2,y2)都在该函数图象上,则y1>y2 D.图象沿y轴方向向上平移2个单位长度得到=12函数的图象4.函数①y=kx+b;②y=2x;③=−3;④=13+3;⑤y=x2﹣2x+1.是一次函数的有()A.1个B.2个C.3个D.4个5.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 6.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则方程ax+4=0的解为()A.x=6B.x=3C.x=﹣6D.x=﹣37.如图,点A的坐标为(﹣1,0),直线y=x﹣2与x轴交于点C,与y轴交于点D,点B 在直线y=x﹣2上运动.当线段AB最短时,求点B的坐标()A.(12,−32)B.(1,﹣1)C.(13,−53)D.(0,﹣2)8.已知点(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.9.对于函数y=﹣2x+3的图象,下列结论错误的是()A.图象必经过点(1,1)B.图象经过第一、二、四象限C.与x轴的交点为(0,3)D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1>y210.函数y=﹣2x+1图象上有两点A(1,y1),B(3,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定二.填空题(共5小题)11.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲年;④当甲、乙两车相距50千米时,=54或154,其中正确的结论序号为.12.已知点A(1,a)和点B(﹣2,b)是一次函数y=−12x+c图象上的两点,则a b.(填“>”、“<”或“=”)13.若点(a,b)在函数y=3x﹣2的图象上,则2b﹣6a+2的值是.14.如图是一支温度计的示意图,图中左边是用摄氏温度表示的温度值,右边是用华氏温度表示的温度值,该表是这两个温度值之间的部分对应关系:摄氏温度值x /℃01020304050华氏温度值y /℉32506886104122根据以上信息,可以得到y 与x 之间的关系式为.15.一水池现蓄水20m 3,用水管以16m 3/h 的速度向水池中注水,则水池蓄水量y (m 3)与注水时间x (h )之间的函数关系式是.三.解答题(共5小题)16.世界上大部分国家都使用摄氏温度(℃),但仍有一些国家和地区使用华氏温度(℉).两种计量之间有如下对应:摄氏温度x (℃)01020304050华氏温度y (℉)32506886104122(1)在平面直角坐标系中描出相应的点.(2)观察这些点发现,这些点是否在一条直线上,如果在一条直线上,求这条直线所对应的函数表达式.(3)求华氏0度时所对应的摄氏温度.(4)华氏温度的值与所对应的摄氏温度的值有相等的可能吗?如果有;请求出此时的摄氏温度;如果没有,请说明理由.17.因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.18.如图,在平面直角坐标系中,直线OA的表达式为y=3x,直线BC的表达式为y=ax+4,A(m,3)是直线OA与直线BC的交点.(1)求点A的坐标;(2)求△AOB的面积.19.综合与探究:定义:一次函数y=kx+b(k≠0)的相垂函数是=−1−2,如:一次函数y=2x+4的相垂函数是=−12−1.(1)一次函数y=x﹣2的相垂函数是;(2)请在平面直角坐标系中画出一次函数=−12+1的图象及其相垂函数的图象;(3)在(2)的条件下,P是一次函数=−12+1的图象上的一个动点,过点P作直线PQ平行于y轴,且交其相垂函数的图象于点Q,当线段PQ=3时,求点P的坐标.20.已知在平面直角坐标系中A(2,﹣1)、B(0,3),线段AB与x轴交于点C,经过点B 的直线y=﹣x+b与x轴交于点D.(1)求点C、D的坐标;(2)连接AD、BD、DA,求△ABD的面积;(3)点P在x轴上且在点D的右侧,如果∠APB=45°,求点P的坐标.2024年深圳市中考数学模拟题汇编:一次函数参考答案与试题解析一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()A.B.C.D.【考点】一次函数的性质;一次函数的图象.【专题】一次函数及其应用.【答案】C【分析】对选项中的y1,y2分别对应的a,b的值进行分析可得答案.【解答】解:A、y1=ax+b:a>0,b<0;y2=bx+a:a<0,b<0;故此选项中的图象不可能存在;B、y1=ax+b:a>0,b>0;y2=bx+a:b<0,a>0;故此选项的图象不可能存在;C、y1=ax+b:a>0,b<0;y2=bx+a:b<0,a>0;故此选项的图象可能存在;D、y1=ax+b:a<0,b>0;y2=bx+a:b<0,a<0;故此选项的图象不可能存在;故选:C.【点评】本题考查了一次函数的图形,熟知一次函数y=ax+b(a≠0)中:a>0,y随x增大而增大;a<0,y随x增大而减小;b>0,函数图象与y轴交于正半轴;b<0,函数图象与y轴交于负半轴;是解本题的关键.2.甲乙两车从A城出发匀速驶向B城,在整个行驶过程中,两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图,则下列结论错误的是()①A、B两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t的值为54或56或156或254A.①②B.②③C.①④D.③④【考点】一次函数的应用.【专题】一次函数及其应用;应用意识.【答案】D【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y 与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;=kt,设甲车离开A城的距离y与t的关系式为y甲把(5,300)代入可求得k=60,=60t,∴y甲设乙车离开A城的距离y与t的关系式为y=mt+n,乙把(1,0)和(4,300)代入可得+=04+=300,解得=100=−100,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③错误;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=54,当100﹣40t=﹣50时,可解得t=154,又当t=56时,y甲=50,此时乙还没出发,当t=256时,乙到达B城,y甲=250;综上可知当t的值为56或54或154或256时,两车相距50千米,∴④错误;综上可知正确的有③④共三个,故选:D.【点评】本题考查了一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.3.关于x的一次函数=12+2,下列说法正确的是()A.图象不经过第二象限B.图象与y轴的交点坐标是(2,0)C.点A(3,y1)和点B(﹣2,y2)都在该函数图象上,则y1>y2 D.图象沿y轴方向向上平移2个单位长度得到=12函数的图象【考点】一次函数图象与几何变换;正比例函数的图象;一次函数的性质.【专题】一次函数及其应用;运算能力.【答案】C【分析】根据一次函数的图象和性质,一次函数图象平移规律:“上加下减”分别判断即可.【解答】解:在一次函数=12+2中,k=12>0,b=2>0,∴一次函数图象经过第一、二、三象限,不经过第四象限,故A选项不符合题意;当x=0时,=12+2=2,∴一次函数图象与y轴的交点坐标为(0,2),故B选项不符合题意;∵k=12>0,∴y随着x增大而增大,∵点A(3,y1)和点B(﹣2,y2)都在该函数图象上,3>﹣2,∴y1>y2,故C选项符合题意;图象沿y轴方向向上平移2个单位长度得到=12+4函数的图象,故D选项不符合题意,故选:C.【点评】本题考查了一次函数的图象和性质,一次函数图形与几何变换,一次函数图象上点的坐标特征等,熟练掌握这些知识是解题的关键.4.函数①y=kx+b;②y=2x;③=−3;④=13+3;⑤y=x2﹣2x+1.是一次函数的有()A.1个B.2个C.3个D.4个【考点】一次函数的定义.【专题】一次函数及其应用;模型思想.【答案】B【分析】根据一次函数的定义对各函数进行逐一分析即可.【解答】解:①y=kx+b,当k=0时,不是一次函数;②y=2x是一次函数;③=−3不是一次函数;④=13+3是一次函数;⑤y=x2﹣2x+1不是一次函数;所以是一次函数的有2个.故选:B.【点评】本题考查的是一次函数的定义,熟知一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数是解答此题的关键.5.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【考点】一次函数图象与系数的关系.【专题】常规题型;几何直观.【答案】B【分析】本题考查一次函数的系数k,b对图象的影响.一次函数图象经过第一、三、四象限,则k>0,b<0.【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.【点评】本题考查了一次函数的系数k,b对图象的影响,这属于常考的基础题型.要理解k>0时,图象过一、三象限,k<0时,图象过二、四象限;b是图象与y轴交点的纵坐标,这样就可以很容易找出正确答案.6.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则方程ax+4=0的解为()A.x=6B.x=3C.x=﹣6D.x=﹣3【考点】一次函数与一元一次方程.【专题】一次函数及其应用;推理能力.【答案】A【分析】可先求得A点坐标,再结合函数图象可知方程的解即为两函数图象的交点横坐标,进而得出a的值,把a的值代入方程ax+4=0,求出x的值即可.【解答】解:∵A点在直线y=2x上,∴3=2m,解得m=32,∴A点坐标为(32,3),∵y=ax+4,∴32a+4=3,解得a=−23,∴方程ax+4=0可化为−23x+4=0,解得x=6.故选:A.【点评】本题主要考查的是一次函数与一元一次方程,掌握函数图象的交点即为对应方程组的解是解题的关键.7.如图,点A的坐标为(﹣1,0),直线y=x﹣2与x轴交于点C,与y轴交于点D,点B 在直线y=x﹣2上运动.当线段AB最短时,求点B的坐标()A.(12,−32)B.(1,﹣1)C.(13,−53)D.(0,﹣2)【考点】一次函数图象上点的坐标特征;垂线段最短.【专题】一次函数及其应用;运算能力.【答案】A【分析】当线段AB最短时,AB⊥BC,求出直线AB的解析式为:y=﹣x﹣1,联立方程组求出点的坐标.【解答】解:当线段AB最短时,AB⊥BC,∵直线BC为y=x﹣2,∴设直线AB的解析式为:y=﹣x+b,∵点A的坐标为(﹣1,0),∴0=1+b,∴b=﹣1,∴直线AB的解析式为y=﹣x﹣1解=−−1=−2,得=12=−32,∴B(12,−32).故选:A.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,垂线段最短,解方程组求直线的交点坐标,关键是明确线段AB最短时,是AB垂直于CD.8.已知点(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.【考点】一次函数图象与系数的关系.【答案】A【分析】根据点在第二象限可得出m<0、n>0,结合一次函数图象与系数的关系可得出直线y=nx+m在一、三、四象限,此题得解.【解答】解:∵点(m,n)在第二象限,∴m<0,n>0,∴直线y=nx+m在一、三、四象限.【点评】本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.9.对于函数y=﹣2x+3的图象,下列结论错误的是()A.图象必经过点(1,1)B.图象经过第一、二、四象限C.与x轴的交点为(0,3)D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1>y2【考点】一次函数图象上点的坐标特征;一次函数的性质;一次函数图象与系数的关系.【专题】一次函数及其应用;运算能力;推理能力.【答案】C【分析】A.利用一次函数图象上点的坐标特征,可得出一次函数y=﹣2x+3的图象必过点(1,1);B.由k=﹣2<0,b=3>0,利用一次函数图象与系数的关系,可得出一次函数y=﹣2x+3的图象经过第一、二、四象限;C.利用x轴上一次函数图象上点的坐标特征,可得出一次函数y=﹣2x+3的图象与x轴的交点为(32,0);D.由k=﹣2<0,可得出y随x的增大而减小,结合1<3,可得出y1>y2.【解答】解:A.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象必过点(1,1),选项A不符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.当y=0时,﹣2x+3=0,解得:x=32,∴一次函数y=﹣2x+3的图象与x轴的交点为(32,0),选项C符合题意;D.∵k=﹣2<0,∴y随x的增大而减小,又∵点A(1,y1),B(3,y2)在一次函数y=﹣2x+3的图象上,且1<3,∴y1>y2,选项D不符合题意.【点评】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一分析各结论的正误是解题的关键.10.函数y=﹣2x+1图象上有两点A(1,y1),B(3,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;模型思想.【答案】A【分析】根据k=﹣2<0得出函数值y随x的增大而减小,再根据1<3,即可比较y1与y2的大小关系.【解答】解:∵﹣2<0,∴y随x的增大而减小,∵1<3,∴y1>y2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.二.填空题(共5小题)11.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲年;④当甲、乙两车相距50千米时,=54或154,其中正确的结论序号为①②③.【考点】一次函数的应用.【专题】一次函数及其应用;推理能力.【答案】①②③.【分析】由图象可知A,B两城相距300千米,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,即①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入得,5k=300,进行计算得y甲=60t,设甲车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0),(4,300)代入,进行计算得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即③正确;令|y甲﹣y乙|=50,计算得,此时y甲=250,乙已到达B城,即当=54或=154或=56或=256时,两车相距50千米,即④错误,综上,即可得.【解答】解:由图象可知A,B两城相距300千米,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入得,5k=300,k=60,∴y甲=60t,设甲车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0),(4,300)代入得,+=04+=300,解得=100=−100,∴y乙=100t﹣100,令y甲=y乙,得60t=100t﹣100,t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③正确;令|y甲﹣y乙|=50,得|60t﹣100t+100|=50,即|100﹣40t|=50,100﹣40t=50,100﹣40t=﹣50,解得,=54,=154,60t=50,=56,此时y=50,乙还没有出发,甲60t=250,=256,=250,乙已到达B城,此时y甲即当=54或=154或=56或=256时,两车相距50千米,∴④错误,综上,①②③正确,故答案为:①②③.【点评】本题考查了一次函数的应用,解题的关键是掌握一次函数的应用,从图象上获取相应的信息.12.已知点A(1,a)和点B(﹣2,b)是一次函数y=−12x+c图象上的两点,则a<b.(填“>”、“<”或“=”)【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;运算能力.【答案】<.【分析】把A(1,a),B(﹣2,b)代入一次函数y=−12x+c得两个二元一次方程,把两个方程相减,求出a﹣b的值,进行判断即可.【解答】解:把A(1,a),B(﹣2,b)代入一次函数y=−12x+c得:−12+=s1+=t,①﹣②得:−=−32<0,∴a<b,故答案为:<.【点评】本题主要考查了一次函数图象上点的坐标特征,解题关键是熟练掌握比较两数大小的几种常用方法.13.若点(a,b)在函数y=3x﹣2的图象上,则2b﹣6a+2的值是﹣2.【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;推理能力.【答案】﹣2.【分析】把点(a,b)代入函数解析式,得b=3a﹣2,变形得3a﹣b=2,然后把所求代数式变形为﹣2(3a﹣b)+2,整体代入计算即可求解.【解答】解:把点(a,b)代入y=3x﹣2,得b=3a﹣2,则3a﹣b=2,∴2b﹣6a+2=﹣2(3a﹣b)+2=﹣2,故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点坐标一定适合此函数的解析式是解答此题的关键.14.如图是一支温度计的示意图,图中左边是用摄氏温度表示的温度值,右边是用华氏温度表示的温度值,该表是这两个温度值之间的部分对应关系:摄氏温度值x/℃010********华氏温度值y/℉32506886104122根据以上信息,可以得到y与x之间的关系式为y=1.8x+32.【考点】一次函数的应用.【专题】一次函数及其应用;运算能力.【答案】见试题解答内容【分析】根据表格中的数据可以得到摄氏温度每升高10℃,华氏温度升高18℉,则y与x成一次函数关系,然后设出y与x的函数解析式,再根据表格中的数据求出k和b的值即可.【解答】解:由表格可知,摄氏温度每升高10℃,华氏温度升高18℉,则y与x成一次函数关系,设y=kx+b,=3210+=50,解得=1.8=32,即y与x的函数关系式为y=1.8x+32,故答案为:y=1.8x+32.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式.15.一水池现蓄水20m3,用水管以16m3/h的速度向水池中注水,则水池蓄水量y(m3)与注水时间x(h)之间的函数关系式是y=20+16x.【考点】一次函数的应用.【专题】一次函数及其应用;符号意识;模型思想.【答案】y=20+16x.【分析】根据“水池蓄水量=现蓄水量+注水量”列关系式即可.【解答】解:∵水池现蓄水20m3,用水管以16m/h的速度向水池中注水,∴水池蓄水量y(m3)与注水时间x(h)之间的函数关系式是:y=20+16x.故答案为:y=20+16x.【点评】本题考查一次函数的应用,理解题意,弄清数量关系是解题的关键.三.解答题(共5小题)16.世界上大部分国家都使用摄氏温度(℃),但仍有一些国家和地区使用华氏温度(℉).两种计量之间有如下对应:010********摄氏温度x(℃)32506886104122华氏温度y(℉)(1)在平面直角坐标系中描出相应的点.(2)观察这些点发现,这些点是否在一条直线上,如果在一条直线上,求这条直线所对应的函数表达式.(3)求华氏0度时所对应的摄氏温度.(4)华氏温度的值与所对应的摄氏温度的值有相等的可能吗?如果有;请求出此时的摄氏温度;如果没有,请说明理由.【考点】一次函数的应用.【专题】一次函数及其应用;数感;运算能力;应用意识.【答案】见试题解答内容【分析】(1)根据表中数据描点即可;(2)利用待定系数法求解即可;(3)令y=0,求出x的值即可;(4)x=1.8x+32,解方程即可.【解答】解:(1)如图,(2)这些点在一条直线上.设这条直线所对应的的函数表达式为y=kx+b(k≠0).将(0,32)、(10,50)代入,得32=50=10+,解得=1.8=32,∴这条直线所对应的函数表达式为:y=1.8x+32;(3)令y=0,得1.8x+32=0.解得x=−1609,∴华氏0度时所对应的摄氏温度为−1609℃;(4)有相等的可能,令x=1.8x+32.解得x=﹣40,所以华氏温度的值与所对应的摄氏温度的值相等时,摄氏温度为﹣40℃.【点评】本题主要考查了待定系数法求一次函数解析式,由函数求自变量的值的运用,解答时求出函数的解析式是解题的关键.17.因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.【考点】一次函数图象与几何变换.【专题】新定义.【答案】见试题解答内容【分析】(1)直接利用“镜子”函数的定义得出答案;(2)利用等腰直角三角形的性质得出AO=BO=CO,进而得出各点坐标,即可得出函数解析式.【解答】解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:12x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:−4+=0=4,解得:=1=4,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.【点评】此题主要考查了待定系数法求一次函数解析式以及等腰直角三角形的性质,得出各点坐标是解题关键.18.如图,在平面直角坐标系中,直线OA的表达式为y=3x,直线BC的表达式为y=ax+4,A(m,3)是直线OA与直线BC的交点.(1)求点A的坐标;(2)求△AOB的面积.【考点】两条直线相交或平行问题;一次函数的性质.【专题】一次函数及其应用;运算能力.【答案】(1)A(1,3);(2)6.【分析】(1)首先把A点坐标代入直线OA的解析式y=3x可得m的值,进而可得A点坐标,;(2)再把A点坐标代入直线BC的解析式可得a的值,进一步求出B点坐标,再利用三角形面积公式算出面积即可.【解答】解:(1)∵直线OA过点A(m,3),∴3=3m,m=1,∴A(1,3);(2)∵直线BC经过点A(1,3),∴3=a+4,∴a=﹣1,∴直线BC的解析式为y=﹣x+4,当y=0时,x=4,∴B(4,0),∴BO=4,∴△AOB的面积为:12×4×3=6.【点评】此题主要考查了正比例函数和一次函数的性质,关键是掌握凡是函数图象经过的点,必能满足解析式.19.综合与探究:定义:一次函数y=kx+b(k≠0)的相垂函数是=−1−2,如:一次函数y=2x+4的相垂函数是=−12−1.(1)一次函数y=x﹣2的相垂函数是y=﹣x+2;(2)请在平面直角坐标系中画出一次函数=−12+1的图象及其相垂函数的图象;(3)在(2)的条件下,P是一次函数=−12+1的图象上的一个动点,过点P作直线PQ平行于y轴,且交其相垂函数的图象于点Q,当线段PQ=3时,求点P的坐标.【考点】一次函数综合题.【专题】作图题;代数几何综合题;新定义;分类讨论;推理能力.【答案】(1)y=﹣x+2;(2)相垂函数为:y=2x﹣4,函数图象见解答;(3)点P的坐标为:(165,−35)或(45,35).【分析】(1)由相垂函数的定义即可求解;(2)根据新定义得=−12+1的相垂函数为:y=2x﹣4,即可求解;(3)设点P(x,−12x+1),则点Q(x,2x﹣4),则PQ=|(−12x+1)﹣(2x﹣4)|=3,即可求解.【解答】解:(1)由题意得,相垂函数是:y=﹣x+2,故答案为:y=﹣x+2;(2)根据新定义得到=−12+1的相垂函数为:y=2x﹣4,对于=−12+1,当x=0时,y=1,当y=0时,x=2;对于y=2x﹣4,当x=0时,y=﹣4,当y=0时,x=2,将上述4个点描点绘制函数图象如下:(3)设点P(x,−12x+1),则点Q(x,2x﹣4),则PQ=|(−12x+1)﹣(2x﹣4)|=3,解得:x=165或45,即点P的坐标为:(165,−35)或(45,35).【点评】本题为一次函数综合题,涉及到新定义、线段长度的计算、函数作图等,理解新定义是解题的关键.20.已知在平面直角坐标系中A(2,﹣1)、B(0,3),线段AB与x轴交于点C,经过点B 的直线y=﹣x+b与x轴交于点D.(1)求点C、D的坐标;(2)连接AD、BD、DA,求△ABD的面积;(3)点P在x轴上且在点D的右侧,如果∠APB=45°,求点P的坐标.【考点】一次函数综合题.【专题】代数几何综合题;图形的相似;推理能力.【答案】(1)点D(3,0),点o32,0);(2)3;(3)点P的坐标为:(3+6,0).【分析】(1)由待定系数法求出函数表达式,进而求解;(2)证明△ABD为直角三角形,即可求解;(3)证明△PDB∽△ADP,得到PD2=AD•BD=2×32=6,即可求解.【解答】解:(1)将点B的坐标代入y=﹣x+b得:0=﹣3+b,则b=3,则直线BC的表达式为:y=﹣x+3,则点D(3,0);设直线AB的表达式为:y=kx+3,将点A的坐标代入上式得:﹣1=2k+3,则k=﹣2,则直线AB解析式:y=﹣2x+3,令y=﹣2x+3=0,则x=32,故点o32,0);(2)由点A、B、D的坐标得:A=(3−2)2+(0+1)2=2,A=(0−3)2+(3−0)2=32,B=(2−0)2+(3+1)2=25,则AB2=BD2+AD2,则△ABD为直角三角形,则△ABD的面积=12×AD•BD=12×2×32=3;(3)由点B、D的坐标知,∠BDC=45°=∠DBP+∠BPD,而∠BPA=45°=∠BPD+∠DPA,则∠DPA=∠DBP,∵∠BDP=∠ADP=135°,∴△PDB∽△ADP,则PD2=AD•BD=2×32=6,则PD=6,则点P的坐标为:(3+6,0).【点评】本题考查的是一次函数综合运用,涉及到三角形相似、勾股定理的运用、面积的计算等,综合性强,难度适中.。
中考数学模拟试题含答案(精选5套)
〔2〕学校根据实际情况,要求购置这两种课桌凳总费用不能超过40880元,并且购置A型课桌凳的数量不能超过B型课桌凳数量的 ,求该校本次购置A型和B型课桌凳共有几种方案?哪种方案的总费用最低?
26.〔本小题总分值12分〕在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为〔-1,0〕.如下图,B点在抛物线y= x2- x–2图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.
A.〔x+ 2〕2= 9B.〔x- 2〕2= 9
C.〔x+ 2〕2= 1D.〔x- 2〕2=1
9.如图,在△ABC中,AD,BE是两条中线,那么S△EDC∶S△ABC=〔〕
A. 1∶2B. 1∶4C. 1∶3D. 2∶3
10.以下各因式分解正确的选项是〔〕
A.x2+ 2x-1=〔x- 1〕2B. -x2+〔-2〕2=〔x- 2〕〔x+ 2〕
∴4x+ 5〔x+ 40〕=1820.………………………………………2分
∴x= 180,x+ 40 = 220.
即购置一套A型课桌凳和一套B型课桌凳各需180元、220元.……………3分
〔2〕设购置A型课桌凳a套,那么购置B型课桌凳〔200-a〕套.
a≤ 〔200 -a〕,
∴……………4分
180a+220〔200-a〕≤40880.
〔1〕求证:△BDC≌△COA;
〔2〕求BC所在直线的函数关系式;
〔3〕抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的
直角三角形?假设存在,求出所有点P的坐标;假设不存在,请说明理由.
初三中考数学模拟试卷和答案(4套)
图1图2 1节链条2节链条50节链条初三中考数学模拟试卷及答案(一)一.选择题(本大题共有8小题,每小题3分,共24分.) 1.下列各式计算不正确...的是( ) A .-(-3)=3 B .4=2 C .(3x)3=9x 3 D .2-1= 122.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是( ) A .a >b B . a >-bC .-a >bD .-a <-b3.据报道,中国首个火星探测器“萤火一号”将于2011年发射升空。
这项计划是我国继载人航天、探月工程后,又一次重大航天科学计划。
火星和地球的最近距离5670万公里,最远距离则有4亿公里。
其中的数据“5670万公里”用科学记数法表示为( )A .75.6710km ⨯B .85.6710km ⨯C .95.6710km ⨯D .105.6710km ⨯4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是 ( )A .1 3B .512C .112D .1 25.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y6.一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .9或12 D . 127.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A .正视图的面积最大 B .俯视图的面积最大 C .左视图的面积最大 D .三个视图的面积一样大8.如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm ,如果某种型号自行车的链条(没有安装前)共有60节链条组成,那么链条的总长度是( )A .100 cmB .85.8 cmC .85 cmD .102.8 cm二.填空题(本大题共有10小题,每小题3分,共30分.)9.函数13y x =-中,自变量x 的取值范围是 . 10. 分解因式:3x 2+6x +3= .11. 红星化工厂要在两年内使工厂的年利润翻一番,那么在这两年中利润的年平均增长_______.12. 已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的方差是 . 13. 若12=+a a ,则2a 2+2a -2010的值为 .14. 如图,梯形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°,若AD=3cm ,BC=10cm ,则CD 等于 cm . 15. 不等式2x-5>0的最小整数解是16. 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于 .17. 如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋45O后,B 点的坐标为 .18. 如图,Rt △AOB 中,O 为坐标原点,∠AOB=90°,∠B=30°,如果点A 在反比例函数y=x1(x>0)的图像上运动,那么点B 在函数 (填函数解析式)的图像上运动.三.解答题(本大题共有10小题,共96分.) 19.(本大题满分8分,每小题4分) (1)计算: 10)31()145(sin 313---︒+⨯- (2)解方程:2512112x x+=--20.(本题满分8分)2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动. 同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果做出的统计图的一部分.请根据以上信息解答问题: (1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.第14题OCFGD E第16题 第17题第18题AECBF D21.(本题满分8分)从我市火车站开往南京站的某车次城市快铁,中途只停靠泰州站和扬州站。
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵
∴
∵
∴
∴
∴
在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式
;
【小问2详解】
原式
.
【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54
2024年中考数学模拟考试试卷(带有答案)
A. B. C. D.
【答案】C
【解析】
【分析】根据题意可得反比例函数 图象在一三象限,进而可得 ,解不等式即可求解.
【详解】解:∵当 时有
∴反比例函数 的图象在一三象限
∴
解得:
故选:C.
【点睛】本题考查了反比例函数图象 性质,根据题意得出反比例函数 的图象在一三象限是解题的关键.
故答案为①③④.
【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.
三、解答题(本大题共9个题,满分75分)
16.(1)计算: ;
(2)解分式方程: .
【答案】(1) ;(2)
【详解】解:如图:作 的垂直平分线 ,作 的垂直平分线 ,设 与 相交于点O,连接 ,则点O是 外接圆的圆心
由题意得:
∴
∴ 是直角三角形
∴
∵
∴
故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
8.如图,在 中 ,点 在边 上,且 平分 的周长,则 的长是()
A. B. C. D.
【答案】B
【解析】
【分析】用科学记数法表示较大的数时一般形式为 ,其中 , 为整数,据此判断即可.
【详解】解:数12910000用科学记数法表示为 .
故选:B.
【点睛】本题考查了科学记数法,科学记数法的表示形式为 的形式,其中 , 为整数.确定 的值时要看把原来的数,变成 时小数点移动了多少位, 的绝对值与小数点移动的位数相同.
2024年深圳市中考数学模拟题汇编:反比例函数(附答案解析)
2024年深圳市中考数学模拟题汇编:反比例函数一.选择题(共10小题)1.已知点A(x1,y1),B(x2,y2)在反比例函数=−2的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1﹣y2>02.若ab<0,则一次函数y=ax+b与反比例函数=在同一直角坐标系中的图象大致可能是()A.B.C.D.3.如图,平面直角坐标系中有M,N、P,Q四个点,其中的三个点在同一反比例函数的图象上,则不在这个图象上的点是()A.点N B.点M C.点P D.点Q4.在压力不变的情况下,某物体承受的压强p(单位:Pa)与它的受力面积S(单位:m2)是反比例函数关系,其图象如图所示.下列说法错误的是()A.函数解析式为=100B.物体承受的压力是100NC.当p≤500Pa时,S≤0.2m2D.当S=0.5m2时,p=200Pa5.下列函数中,是y关于x的反比例函数的是()A.y=2x B.y=32C.y=2K1D.y=2−16.杠杆原理也称为“杠杆平衡条件”,要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等,即F1×L1=F2×L2.如图,铁架台左侧钩码的个数与位置都不变,在保证杠杆水平平衡的条件下,右侧力F与力臂L满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系7.若反比例函数=−6的图象经过点A(a,b),则下列结论中不正确的是()A.点A位于第二或四象限B.图象一定经过(﹣a,﹣b)C.在每个象限内,y随x的增大而减小D.图象一定经过(﹣b,﹣a)8.已知点(﹣2,a),(2,b),(3,c)在函数=2−2r2(k为常数)的图象上,则下列判断正确的是()A.a<c<b B.b<a<c C.a<b<c D.c<b<a 9.下面四个图中反比例函数的表达式均为=3,则阴影部分的图形的面积为3的有()A.1个B.2个C.3个D.4个10.如图所示,过反比例函数y=(k>0)在第一象限内的图象上任意两点A,B,分别作x轴的垂线,垂足分别为C,D,连接OA,OB,设△AOC与△BOD的面积为S1,S2,那么它们的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.不能确定二.填空题(共5小题)11.如图,点A在反比例函数=(>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=.12.如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,过A1、A2、A3、A4、A5…分别作x轴的垂线与反比例函数y=4的图象交于点P1、P2、P3、P4、P5…,并设△OA1P1、△A1A2P2、△A2A3P3…面积分别为S1、S2、S3…,按此作法进行下去,则S2023的值为.=AB,若△ABO的面积为4,则k的值为.14.定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.则反比例函数=−18的图象上关于点(1,2)的k级变换点是.15.一个用电器的电阻R是可调节的,其范围为50≤R≤100Ω.已知电压为220V,这个用电器的电路图如图所示,则通过这个用电器的电流I的范围是.三.解答题(共5小题)16.如图,正比例函数1=12和反比例函数2=(>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)将直线OA向上平移3个单位后,与y轴交于点B,与2=(>0)的图象交于点C,连接AB,AC,求△ABC的面积.17.如图,直线y=mx+n与双曲线y=相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.(1)直线y=mx+n与双曲线y=的表达式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)请根据图像,直接写出不等式mx+n>的解.18.如图,直线y=k1x+b与反比例函数y=2的图象相交于点A、B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的表达式;(2)求C的坐标.19.某种原料需要达到60℃及以上才能加工制作零件,如图表示原料的温度y(℃)与时间x(min)之间的关系,其中线段AB表示原料加热阶段;线段BC∥x轴,表示原料的恒温阶段;曲线CD是双曲线y=2100的一部分,表示原料的降温阶段.根据图象回答下列问题:(1)填空:a的值为;(2)求线段AB对应的函数解析式;(3)在图中所示的温度变化过程中,求可进行零件加工的时间长度.20.根据物理学知识,在压力不变的情况下,某物体承受的压强P(Pa)是它的受力面积S (m2)的反比例函数,其函数图象如图所示.(1)求出P关于S的函数关系式;(2)当1000<P<4000时,求受力面积S的变化范围.2024年深圳市中考数学模拟题汇编:反比例函数参考答案与试题解析一.选择题(共10小题)1.已知点A(x1,y1),B(x2,y2)在反比例函数=−2的图象上,且x1<0<x2,则下列结论一定正确的是()A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1﹣y2>0【考点】反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;符号意识.【答案】D【分析】根据反比例函数的图象和性质,由x1<0<x2,可判断y1>0>y2,进而得出答案.【解答】解:∵反比例函数=−2的图象在二、四象限,而x1<0<x2,∴点A(x1,y1)在第二象限反比例函数=−2的图象上,B(x2,y2)在第四象限反比例函数=−2的图象上,∴y1>0>y2,∴y1﹣y2>0,故选:D.【点评】本题考查反比例函数的图象上点的坐标特征,掌握反比例函数的图象上点的坐标特征是正确解答的前提.2.若ab<0,则一次函数y=ax+b与反比例函数=在同一直角坐标系中的图象大致可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】一次函数及其应用;反比例函数及其应用;几何直观;应用意识.【答案】C【分析】根据ab<0,可知a、b异号,再根据各个选项中一次函数的图象和反比例函数的图象,可以判断a、b的正负情况,然后即可判断哪个选项符合题意.【解答】解:∵ab<0,∴a、b异号,A选项中,由一次函数图象可知:a>0,b>0,故选项A不符合题意;B选项中,由一次函数图象可知:a<0,b<0,故选项B不符合题意;C选项中,由一次函数图象可知:a<0,b>0,由反比例函数图象可知b>0,故选项C 符合题意;D选项中,由一次函数图象可知:a>0,b>0,故选项D不符合题意;故选:C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,判断出a、b的正负情况.3.如图,平面直角坐标系中有M,N、P,Q四个点,其中的三个点在同一反比例函数的图象上,则不在这个图象上的点是()A.点N B.点M C.点P D.点Q【考点】反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;运算能力.【答案】A【分析】此题可以先假设M,N、P,Q四点都位于反比例函数图象上,求出各点对应的k值,找出与其它三个不同的k值即可【解答】解:∵2×(﹣6)=12;﹣3×4=﹣12;﹣2×6=﹣12;﹣5×1=﹣5;从上面求值情况可明显看出:若其中有三个点在同一反比例函数图象上,则不在这个反比例函数的图象上的点是N(﹣5,1).故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.4.在压力不变的情况下,某物体承受的压强p(单位:Pa)与它的受力面积S(单位:m2)是反比例函数关系,其图象如图所示.下列说法错误的是()A.函数解析式为=100B.物体承受的压力是100NC.当p≤500Pa时,S≤0.2m2D.当S=0.5m2时,p=200Pa【考点】反比例函数的应用.【专题】反比例函数及其应用;运算能力;应用意识.【答案】C【分析】压力一定时,压强和受力面积成反比,根据当S=0.1时,p=1000写出解析式,根据解析式即可判定各个选项.【解答】解:设p=,∵点(0.1,1000)在这个函数的图象上,∴1000=0.1,∴k=100,∴p与S的函数关系式为p=100,故选项A,B不符合题意;当p=500时,S=100=100500=0.2,∴当p≤500Pa时,S≥0.2m2,故选项C符合题意;当S=0.5时,p=200Pa,当S=0.2时,p=1000.2=500,∴当受力面积S=0.2m2时,压强p=500Pa,故选项D不符合题意;故选:C.【点评】本题考查反比例函数的应用,根据题意写出反比例函数的解析式是解题的关键.5.下列函数中,是y关于x的反比例函数的是()A.y=2x B.y=32C.y=2K1D.y=2−1【考点】反比例函数的定义.【答案】B【分析】根据反比例函数的定义,反比例函数的一般式是y=(k≠0),即可判定各函数的类型是否符合题意.【解答】解:A、y=2x是正比例函数,故错误;B、该函数符合反比例函数的定义,故本选项正确;C、该函数是关于(x﹣1)的反函数,故本选项错误;D、该函数是y﹣1关于x的反函数,故本选项错误;故选:B.【点评】本题考查了反比例函数的定义,解决本题的关键是熟记反比例函数的定义.6.杠杆原理也称为“杠杆平衡条件”,要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等,即F1×L1=F2×L2.如图,铁架台左侧钩码的个数与位置都不变,在保证杠杆水平平衡的条件下,右侧力F与力臂L满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系【考点】反比例函数的应用;二次函数的应用.【专题】反比例函数及其应用;应用意识.【答案】C【分析】根据F1×L1=F2×L2以及铁架台左侧钩码的个数与位置都不变即可得到结论.【解答】解:∵保证杠杆水平平衡的条件,∴F1×L1=F2×L2,∵铁架台左侧钩码的个数与位置都不变,∴F1×L1为常数,∴右侧力F与力臂L满足的函数关系是反比例函数关系,故选:C.【点评】本题考查了反比例函数的应用,正确理解题意是解题的关键.7.若反比例函数=−6的图象经过点A(a,b),则下列结论中不正确的是()A.点A位于第二或四象限B.图象一定经过(﹣a,﹣b)C.在每个象限内,y随x的增大而减小D.图象一定经过(﹣b,﹣a)【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【专题】反比例函数及其应用;推理能力.【答案】C【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:∵反比例函数=−6的图象经过点A(a,b),∴ab=﹣6,∵k=﹣6<0,∴图象位于第二、四象限,故选项A正确,不符合题意;在每个象限内,y随x的增大而增大,故选项C不正确,符合题意.∵ab=﹣6,∴图象一定经过(﹣a,﹣b)和(﹣b,﹣a)故选项B、D正确,不符合题意;故选:C.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.8.已知点(﹣2,a),(2,b),(3,c)在函数=2−2r2(k为常数)的图象上,则下列判断正确的是()A.a<c<b B.b<a<c C.a<b<c D.c<b<a【考点】反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;运算能力.【答案】A【分析】根据完全平方公式得k2﹣2k+2≥1,则函数=2−2r2(k为常数)在每一个象限内,y随x的增大而减小,根据﹣2<0<2<3得a<0,b>c>0,即可得.【解答】解:∵k2﹣2k+2=(k+1)2+1≥1,∴函数=2−2r2(k为常数)在每一个象限内,y随x的增大而减小,∵﹣2<0<2<3,∴a<0,b>c>0,∴a<c<b,故选:A.【点评】本题考查了完全平方公式,反比例函数的性质,解题的关键是掌握这些知识点.9.下面四个图中反比例函数的表达式均为=3,则阴影部分的图形的面积为3的有()A.1个B.2个C.3个D.4个【考点】反比例函数系数k的几何意义.【专题】反比例函数及其应用;推理能力.【答案】B【分析】根据反比例函数比例系数k=xy的几何意义,三角形的面积公式,分别求出四个图形中阴影部分的面积,即可求解.【解答】解:第1个图中,阴影面积为3,故符合题意;第2个图中,阴影面积为12×3=1.5,故不符合题意;第3个图中,阴影面积为2×12×3=3,故符合题意;第4个图中,阴影面积为4×12×3=6,故不符合题意;故选:B.【点评】本题考查了反比例函数=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,解此类题一定要正确理解k的几何意义.也考查了反比例函数的对称性,三角形的面积.10.如图所示,过反比例函数y=(k>0)在第一象限内的图象上任意两点A,B,分别作x轴的垂线,垂足分别为C,D,连接OA,OB,设△AOC与△BOD的面积为S1,S2,那么它们的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.不能确定【考点】反比例函数系数k的几何意义.【专题】数形结合.【答案】B【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12|k|.【解答】解:依题意有:Rt△AOC和Rt△BOD的面积是个定值12|k|.所以S1=S2.故选:B.【点评】主要考查了反比例函数=中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.二.填空题(共5小题)11.如图,点A在反比例函数=(>0)的图象上,AB⊥x轴于点B,C是OB的中点,连接AO,AC,若△AOC的面积为4,则k=16.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【专题】反比例函数及其应用;运算能力;推理能力.【答案】16.=2S△AOC,则12AB•OB=8,所以AB•OB=16,因【分析】由C是OB的中点推出S△AOB此k=16.【解答】解:∵C是OB的中点,△AOC的面积为4,∴△AOB的面积为8,∵AB⊥x轴,=12AB•OB=8,∴S△AOB∴AB•OB=16,∴k=16.故答案为:16.=2S△【点评】本题考查了反比例函数图象上点的坐标特征,三角形的面积,明确S△AOB AOC是解题的关键.12.如图所示,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5…,过A1、A2、A3、A4、A5…分别作x轴的垂线与反比例函数y=4的图象交于点P1、P2、P3、P4、P5…,并设△OA1P1、△A1A2P2、△A2A3P3…面积分别为S1、S2、S3…,按此作法进行下去,则S2023的值为22023.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;规律型:图形的变化类.【专题】反比例函数及其应用;应用意识.【答案】22023.【分析】根据反比例函数y=中k的几何意义再结合图象即可解答.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=12|k|=2,∵OA1=A1A2=A2A3=A3A4=A4A5,∴S1=2,S2=12S1=1,S3=13S1=23,S4=14S1=24,S5=15S1=25,依此类推:S n的值为2,∴S2023=22023,故答案为:22023.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.13.如图,点A是反比例函数y=(x<0)的图象上的一点,点B在x轴的负半轴上且AO =AB,若△ABO的面积为4,则k的值为﹣4.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰三角形的性质.【专题】反比例函数及其应用;推理能力.【答案】﹣4.【分析】过点A作AC⊥x轴,设点A(x,y),可得出xy=k,再根据三角形的面积公式即可得出答案.【解答】解:过点A作AC⊥x轴,设点A(x,y),∵OA=AB,∴OC=BC,∴点B(2x,0),∵顶点A在反比例函数y=(x<0)的图象上,∴xy=k,∵△OAB的面积为4,∴12OB•AC=4,即12×2|x|×y=4,∴xy=﹣4,即k=﹣4.故答案为:﹣4.【点评】本题考查了反比例函数系数k的几何意义以及等腰三角形的性质,反比例函数y=图象上的点(x,y)一定满足xy=k.14.定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.则反比例函数=−18的图象上关于点(1,2)的k级变换点是(3,﹣6)或(﹣3,6).【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【专题】反比例函数及其应用;运算能力.【答案】(3,﹣6)或(﹣3,6).【分析】求出(1,2)的“k级变换点”的坐标,即可求解.【解答】解:由题意得,(1,2)的“k级变换点”为:(k,﹣2k),将(k,﹣2k)代入反比例函数表达式得:﹣2k=−18,解得:k=±3;∴反比例函数=−18的图象上关于点(1,2)的k级变换点是(3,﹣6)或(﹣3,6).故答案为:(3,﹣6)或(﹣3,6).【点评】本题为考查了反比例函数图象上点的坐标特征,反比例函数的性质,理解新定义是本题解题的关键.15.一个用电器的电阻R是可调节的,其范围为50≤R≤100Ω.已知电压为220V,这个用电器的电路图如图所示,则通过这个用电器的电流I的范围是 2.2A~4.4A.【考点】反比例函数的应用.【专题】反比例函数及其应用;运算能力.【答案】2.2A~4.4A.【分析】根据功率公式R=220,求得I的范围即可求解.【解答】解:∵R=220,电阻的范围为50~100Ω,电压为220V,当R=100Ω时,I=220100=2.2A,当R=50时,I=22050=4.4A,∴这个用电流的范围是2.2A~4.4A.故答案为:2.2A~4.4A.【点评】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是解题的关键.三.解答题(共5小题)16.如图,正比例函数1=12和反比例函数2=(>0)的图象交于点A(m,2).(1)求反比例函数的解析式;(2)将直线OA向上平移3个单位后,与y轴交于点B,与2=(>0)的图象交于点C,连接AB,AC,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】数形结合;一次函数及其应用;反比例函数及其应用;运算能力.【答案】(1)2=8;(2)3.【分析】(1)用待定系数法求函数解析式;(2)根据平移的性质求得平移后直线的函数解析式,确定B点坐标,再用待定系数法求直线AB的解析式,利用三角形面积公式列式计算.【解答】解:(1)把A(m,2)代入1=12得:12=2,解得m=4,∴A(4,2),把A(4,2)代入2=(>0)得:4=2,解得k=8,∴反比例函数的解析式为2=8;(2)过点C作CM⊥x轴于M,交AB于点N,如图:将直线OA向上平移3个单位后,其函数解析式为=12+3,当x=0时,y=3,∴点B的坐标为(0,3),设直线AB的函数解析式为y=mx+n,将A(4,2),B(0,3)代入可得:4+=2=3,解得:=−14=3,∴直线AB的函数解析式为y=−14x+3,联立解析式得:=12+3=8解得:=2=4,∴C点坐标为(2,4),在y=−14x+3中,当x=2时,=52,∴CN=4−52=32,=12×32×4=3;∴S△ABC∴△ABC的面积为3.【点评】本题考查一次函数和反比例函数的交点问题,掌握待定系数法求函数解析式,运用数形结合思想解题是关键.17.如图,直线y=mx+n与双曲线y=相交于A(﹣1,2)、B(2,b)两点,与y轴相交于点C.(1)直线y=mx+n与双曲线y=的表达式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)请根据图像,直接写出不等式mx+n>的解.【考点】反比例函数综合题.【专题】几何综合题;几何直观;运算能力;推理能力.【答案】(1)直线的解析式为:y=﹣x+1;双曲线解析式为y=−2;(2)3;(3)x<﹣1或0<x<2.【分析】(1)将A(﹣1,2)和B(2,b)分别代入=中,即可得k=﹣2,b=﹣1,即可算出点B的坐标及反比例函数解析式,再把A(﹣1,2)和B(2,﹣1)分别代入y =mx+n中,列出二元一次方程组,求解m、n即可得出一次函数解析式;(2)将x=0代入y=﹣x+2中,即可得出点C的坐标,根据题意即可得出点D的坐标=12BD•h代入数值即可得出答案;以及BD=2与点A到直线BD的距离h=3,根据S△ABD(3)根据图象即可求得.【解答】解:(1)将A(﹣1,2)和B(2,b)分别代入=中,得k=﹣2,b=﹣1,∴双曲线解析式为y=−2,将A(﹣1,2)和B(2,﹣1)分别代入y=mx+n中,得:−+=22+=−1,解得:=−1=1,∴直线AB的解析式为:y=﹣x+1;(2)将x=0代入y=﹣x+1中,得y=1,∴C(0,1),∴点D(0,﹣1),∴BD=2,∴点A到直线BD的距离为h=3,=12BD•h=12×2×3=3;∴S△ABD(3)∵mx+n>,点A(﹣1,2),点B(2,﹣1),观察图象,不等式B+>的解集为x<﹣1或0<x<2.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数解析式,三角形的面积,不等式与函数的关系,数形结合是解决本题的关键.18.如图,直线y=k1x+b与反比例函数y=2的图象相交于点A、B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的表达式;(2)求C的坐标.【考点】反比例函数与一次函数的交点问题.【专题】一次函数及其应用;反比例函数及其应用;运算能力.【答案】(1)反比例函数的关系式为:y=−8;(2)C(﹣6,0).【分析】(1)把点A的坐标代入反比例函数y=2中,可得k2的值,即可得出反比例函数的关系式;(2)先利用待定系数法求一次函数的解析式,再令y=0,可得点C的坐标.【解答】解:(1)∵点A在反比例函数y=2的图象上,∴k2=﹣2×4=﹣8,∴反比例函数的关系式为:y=−8;(2)当x=﹣4时,y=−8−4=2,∴B(﹣4,2),把点A(﹣2,4)和B(﹣4,2)代入得:−2+=4−4+=2,解得:=1=6,∴y=x+6,当y=0时,x+6=0,x=﹣6,∴C(﹣6,0).【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.19.某种原料需要达到60℃及以上才能加工制作零件,如图表示原料的温度y(℃)与时间x(min)之间的关系,其中线段AB表示原料加热阶段;线段BC∥x轴,表示原料的恒温阶段;曲线CD是双曲线y=2100的一部分,表示原料的降温阶段.根据图象回答下列问题:(1)填空:a的值为21;(2)求线段AB对应的函数解析式;(3)在图中所示的温度变化过程中,求可进行零件加工的时间长度.【考点】反比例函数的应用.【专题】一次函数及其应用;反比例函数及其应用;应用意识.【答案】(1)21;(2)y=8x+20(0≤x≤10);(3)可进行零件加工的时间长度为30分钟.【分析】(1)把y=100代入y=2100可得a=21;(2)用待定系数法可得线段AB对应的函数解析式为y=8x+20(0≤x≤10);(3)由8x+20=60得x=5,由2100=60得x=35,即可得到答案.【解答】解:(1)把y=100代入y=2100得:x=21,∴a=21,故答案为:21;(2)设线段AB对应的函数解析式为y=kx+20,把(10,100)代入得:100=10k+20,解得k=8,∴线段AB对应的函数解析式为y=8x+20(0≤x≤10);(3)由8x+20=60得x=5,由2100=60得x=35,∵35﹣5=30,∴可进行零件加工的时间长度为30分钟.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,求出函数关系式.20.根据物理学知识,在压力不变的情况下,某物体承受的压强P(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.(1)求出P关于S的函数关系式;(2)当1000<P<4000时,求受力面积S的变化范围.【考点】反比例函数的应用.【专题】反比例函数及其应用;运算能力.【答案】(1)P=100(S>0);(2)0.025<S<0.1.【分析】(1)观察图象易知P与S之间的是反比例函数关系,所以可以设P=,依据图象上点A的坐标可以求得P与S之间的函数关系式.(2)将压强代入函数关系式即可求得受力面积的取值范围.【解答】解:(1)设P=,∵点(0.1,1000)在这个函数的图象上,∴1000=0.1.∴k=100.∴P与S的函数关系式为:P=100(S>0);(2)令P=1000,S=1001000=0.1(m2),令P=4000,S=1004000=0.025(m2),∴当1000<p<4000时,0.025<S<0.1.答:受力面积S的变化范围0.025<S<0.1.【点评】本题考查反比例函数的应用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.。
2022年初三年级下学期中考数学仿真模拟试卷及答案(四)
A BOM图12022年中考仿真模拟(四)数 学 试 卷考前须知:1、本卷共8页,总分120分,考试时间120分钟。
2、答题前请将密封线左侧的工程填写清楚。
卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题,1—6小题,每题2分;7—12小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.以下各数中是正整数的是……………………………………………………………【】A .1-B .2)2(-C .15- D 2.检测4袋食盐,其中超过尺度质量的克数记为正数,缺乏尺度质量的克数记为负数,以下检测结果中,最接近尺度质量的是……………………………………………【 】 A .+2.1 B .+0.7C .-0.8D .-3.23.如图1,以O 为圆心,任意长为半径画弧,与射线OM 交于点A , 再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB , 则sin ∠AOB 的值等于……………………………………【 】A.12B.C. D.4. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是……【 】 A .14cm B .15cm C .16cm D . 16cm 或17cm 5.四名运发动加入了射击预选赛,他们成就的平均环数x 及其方差s 2如表所示.如果选出一个成就较好且状态稳定的人去参赛,那么应选…………【 】A .甲B .乙C .丙D .丁6.有3人携带装修资料乘坐电梯,这3人的体重共200kg ,每捆资料重20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载资料( )捆.【 】 A .41 B .42 C .43 D .447.一个几何体的三视图如图2,其中主视图、左视图、都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为………………………………………【 】 A .12πB .2πC . 4πD .8π绝密★启用前图2主视图左视图 俯视图8.如图3,AD AC 、分别是O ⊙的直径和弦,且30CAD ∠=︒,OB AD ⊥,交AC 于点B ,若OB =2,则BC 的长等于…………………………………………………【 】A .2.B .3. C.4 D.9.为了加入2012年石家庄我市举办的铁人三项(游泳、自行车、长跑)系列赛业余组的竞赛,李明针对自行车和长跑工程进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.设自行车路段的长度为x 米,长跑路段的长度y 米,下面所列方程组正确的选项是…………………………………【 】A. 5000,15.600200x y x y +=⎧⎪⎨+=⎪⎩B. 5,15.600200x y x y+=⎧⎪⎨+=⎪⎩ C. 5000,15.60020060x y x y +=⎧⎪⎨+=⎪⎩ D. 5,15.62x y x y+=⎧⎪⎨+=⎪⎩ 10. 如图4,点P (3a ,a )是反比例函y =k x(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为………………………………………【 】=3 B .y =5x C .y =10x D .y =12x11. 如图5,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为……………………………………【 】 A .2B .3C .4D .512.如图6,直线l 是菱形ABCD 和矩形EFGH 的对称轴,C 点在EF 边上,若菱形ABCD 沿直线l 从左向右匀速运动,运动到C 在GH 边上为止,在整个运动的过程中,菱形与矩形重叠部分的面积(S )与运动的路程(x 】ABCDl图6A BCDEF 图5A BCOxy图10卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小题;每题3分,共18分.把答案写在题中横线上) 13.函数21y x =+x 的取值范围是 .14.已知关于x 的方程x 2+bx +a =0的一个根是-a (a ≠0),则a -b 值为 .15.如图7,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为 .16.在边长为1的小正方形组成的44⨯网格中,有如图8所示的A 、B 两点,在格点上任意放置点C ,恰好能使△ABC 的面积为1的概率为 .17. 如图9,AB 是⊙O 的切线,半径OA =2,OB 交⊙O 于C , ∠B =30°,则劣弧AC 的长是 .(结果保存π)18.如以下图,观察每一个图中黑色正六边形的排列规律,则第n 个图中黑色正六边形有 个.第1个图 第2个图 第3个图三、解答题(本大题8个小题,共72分.解容许写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)先化简,再求值:2(2)2()()()a a b a b a b a b -++-++,其中22a b ==. 20.(本小题满分8分)如图10,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1)点A 的坐标为 ,点C 的坐标为 .(2)将△ABC 向左平移7个单位,请画出平移后的△A 1B 1C 1.若M 为△ABC 内的一点,其坐标为(a ,b ),则平移后点M 的对应点M 1的坐标为 .(3)以原点O 为位似中心,将△ABC 缩小,使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1∶2.请在网格内画出△A 2B 2C 2,并写出点A 2的坐标: .BAOC 图9AB 图8ABOCD图721.(本小题满分8分)某太阳能热水器经销商在六周内试销A ,B 两个品牌的太阳能热水器,试销期间两种品牌的销量相同,试销结束后,依据统计数据绘制了以下尚不完整的统计图表.(1)在图11-1中,“第五周”所在扇形的圆心角等于 °; (2)在图11-2中补全A 品牌销量折线图,画出B 品牌销量折线图. (3)请分别写出A ,B 两种品牌太阳能热水器周销售量的中位数.(4)如果该经销商决定从这两种品牌中挑选一种作为该品牌的一级代理商,请结合折线的走势进行简要分析,判断该经销商应选择代理哪种品牌的太阳能热水器?22.(本小题满分8分)石家庄市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你辅助设计出来.23.(本小题满分9分)数学课上,老师出示了如下框中的题目.B 品牌销量统计表周次一 二 三 四 五 六销量(台) 14 12 14 8 7 5第 一 周 A 品牌销量扇形统计图第 二 周第三周第四周第五周第六周图11-1A 品牌销量折线统图11-2 销售/台时间/周第六周第五周第四周A BCED图12-2FABC ED图12-1小明与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图12-1,确定线段AE 与DB 的大小关系.请你直接写出结论:AE _______DB (填“>”,“<”或“=”).(2)特例启发,解答题目解:猜想题目中,AE 与DB 的大小关系是: AE _______DB (填“>”,“<”或“=”),理由如下.如图12-2,过点E 作EF ∥BC , 交AC 于点F .(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED =EC .若△ABC 的边长为3,AE =1,求CD 的长(请你直接写出结果).24.(本小题满分9分)如图13-1是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图13-2),然后用这条平行四边形纸带按如图13-3 的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面环绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请在图13-2中,计算裁剪的角度∠BAD ;(2)计算按图13-3方式包贴这个三棱柱包装盒所需的矩形纸带的长度.在等边三角形ABC 中,点E 在AB 上, 点D 在CB 的延长线上,且ED =EC,如图.试确定线段AE 与DB 的大小关系,并说明ABCED图13-1CN DBMA 图13-225.(本小题满分10分)由于受金融危机的影响,石家庄某店经销的甲型号手机今年的售价比去年每部降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每部售价为多少元?(2)为了提高利润,该店方案购进乙型号手机销售,已知甲型号手机每部进价为1000元,乙型号手机每部进价为800元,预计用未几于1.84万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?26.(本小题满分12分)如图14,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P 、Q 分别从点A 、B 同时出发,运动速度均为1cm/s ,动点P 沿A →B →C →E 的方向运动,到点E 停止;动点Q 沿B →C →E →D 的方向运动,到点D 停止,设运动时间为x s ,△PAQ 的面积为y cm 2.(这里规定:线段是面积为0的三角形)解答以下问题:(1)当x =2s时,y =_________cm 2;当x =92s时,y =_________cm 2;(2)当5≤x ≤14时,求y 与x 之间的函数关系式; (3)当动点P 在线段BC 上运动时,求出使y =415S 梯形ABCD 的x 的值;(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.图14CDA B E备用图AB COxA 1yB 1C 1 A 2 C 2B 2图1B 2A 2C 2参考答案一、选择题(1—6小题,每题2分;7—12小题,每题3分,共30分)题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案BBCDABCAADCD二、填空题(每题3分,共18分) 13.12x ≥-; 14.1-; 15.90°; 16.625; 17.23π; 18.2n . 三、解答题(本大题共8个小题;共72分) 19.原式22222=2222,a ab a b a ab b -+-+++22=4,a b ---------------------------------------5分当2,22a b =-=时,原式222=4()22⨯--=-2.- ------8分20.解:(1)(2,6) (6,4);-------------2分 (2)如图1,--------------------------3分 (7a b -,);-------------------------4分 (3)如图1,两种情况,-----------------6分 (13--,)或(1,3)-----------------------8分 21.解:(1)90°;---------------------1分 (2)折线图如图2所示;----------------4分 (3)A 品牌太阳能热水器周销售量的中位数为:按大小排列后,第3个数与第4个数是8和10, ∴A 的中位数是:(8+10)÷2=9,----------5分 B 品牌太阳能热水器周销售量的中位数为:按大小排列后,第3个数与第4个数是12和8, ∴B 的中位数是:(8+12)÷2=10;---------6分 (4)A 的周销售折线图整体呈上升趋势,而B 的周销售折线图从第三周以后一直呈下降趋势,所以商店应选择代理A 品牌的太阳能热水器.----------8分 22.(1)设甲工程队每天能铺设x 米,则乙工程队每天能铺设(x -20)米. 根据题意得:35025020x x =-.--------------2分 解得:x =70,经检验, x =70是原分式方程的解.答:甲、乙工程队每天分别能铺设70米和50米. ---------------------4分 (2)设分配给甲工程队y 米,则分配给乙工程队(1000-y )米.A 、B 品牌销量折线统计图图2由题意,得10,70100010.50yy ⎧≤⎪⎪⎨-⎪≤⎪⎩解得500700y ≤≤.--------------------6分∵y 以百米为单位,∴分配方案有3种.方案一:分配给甲工程队500米,分配给乙工程队500米; 方案二:分配给甲工程队600米,分配给乙工程队400米;方案三:分配给甲工程队700米,分配给乙工程队300米.------------8分 23.解:(1)=.----------------------------------------------2分 (2)=.----------------------------------------------------3分 证明:如图3,在等边三角形ABC 中, ∠ABC =∠ACB =∠A =60°,AB =BC =AC , ∵EF ∥BC ,∴∠AEF =∠AFE =60°=∠A , ∴△AEF 是等边三角形,∴AE =AF =EF , ∴AB -AE =AC -AF ,即BE =CF . ∵ED =EC ,∴∠D =ECB .又∵∠ABC =∠D +∠BED =60°,∠ACB =∠ECB +∠FCE =60°, ∴∠BED =∠FCE ,∴△DBE ≌△EFC ,∴DB =EF ,∴AE =DB .----------------------------------------7分 (3)4或2.-------------------------------------------------9分24.(1)由图2的包贴方法知:AB 的长等于三棱柱的底边周长,∴AB =30. ∵纸带宽为15,∴AM =15,-------------------------------------2分 ∵平行四边形ABCD 中, AD ∥BC , ∴∠DAB =∠ABM . ∴在Rt △ABM 中,sin ∠DAB =sin ∠ABM =151302AM AB==, ∴∠DAB =30°.-------4分(2)在图12-3中,将三棱柱沿过点A 的侧棱剪开,得到如图4-1的侧面展开图,将图4-1中的△ABE 向左平移30cm ,△CDF 向右平移30cm ,拼成如图4-2中的平行四边形AQCP ,此平行四边形即为图12-2中的平行四边形ABCD , 矩形纸带的长即为图4-2中矩形SQTP 的长.------------------------------------------6分图3-2中,由题意知:AQ = EF = CP =30, 在Rt △AQF 中, QF = CF =cos30AQ=在Rt △CTP 中,CT =cos3015CP =∴所需矩形纸带的长为QF + CF +CT=2⨯=cm .--------------9分PCE图4-1A BCEDF图325.解:(1)设今年甲型号手机每部售价为x元,由题意得:80000x+500=60000x,解得x=1500.经检验x=1500是方程的解.∴今年甲型号手机每部售价为1500元.---------------------------------3分(2)设购进甲型号手机m部,由题意得:17600≤1000m+800(20-m)≤18400,解得8≤m≤12.∵m只能取整数,∴m取8、9、10、11、12,共有5种进货方案.------------6分(3)方法一:设总获利W元,则:W=(1500-1000)m+(1400-800-a)(20-m)=(a-100)m+12000-20a.∴当a=100时,(2)中所有的方案获利相同.---------------------------10分方法二:由(2)知,当m=8时,有20-m=12.此时获利y1=(1500-1000)×8+(1400-800-a)×12=4000+(600-a)×12.当m=9时,有20-m=11.此时获利y2=(1500-1000)×9+(1400-800-a)×11=4500+(600-a)×11.由于获利相同,则有y1=y2,即4000+(600-a)×12=4500+(600-a)×11,解得a=100.∴当a=100时,(2)中所有方案获利相同.----------------------------10分26.解:(1)2 ,9 .---------------------------------------------2分(2)如图5-1,当5≤x≤9时,y=S梯形ABCQ-S△ABP-S△PCQ=12(5+x-4)×4-12×5(x-5)-12(9-x)(x-4)=12x2-7x+652.即y=12x2-7x+652.-------------------------------------------4分如图5-2,当9<x≤13时,y=12(x-9+4)(14-x)=-12x2+192x-35.即y=-12x2+192x-35.----------------------6分如图5-3,当13<x≤14时,图5-1y=12×8(14-x)=-4x+56.即y=-4x+56.------------------------------7分(3)当动点P在线段BC上运动时,∵y=415S梯形ABCD=415×12(4+8)×5=8,∴12x2-7x+652=8 .解得x1=x2=7,∴当x=7时,y=415S梯形ABCD.------------------9分(4)x=209,619,1019.----------------------12分提示:①如图5-4,当P在AB上时,若PQ∥AC,则△BPQ∽△BAC∴BPBQ=BABC,∴5-xx=54,解得x=209.②如图5-5,当P在BC上时,若PQ∥BE,则△CPQ∽△CBE∴CPCQ=CBCE,∴9-xx-4=45,解得x=619.③如图5-6,当P在CE上时,若PQ∥BE,则△EPQ∽△ECD∴EPEQ=ECED,∴14-xx-9=54,解得x=1019.CDABEPQ CDABEPQCDABEPQ图5-6图5-5图5-4。