极坐标高考大题专题训练
极坐标与参数方程高考真题58题(学生) (1)
极坐标与参数方程高考真题1、(2018北京理10)在极坐标系中,直线cos sin a ρθρθ+=(0a >)与圆2cos ρθ=相切,则_______a =.2、(2018江苏21C )在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.3、(2018新课标Ⅰ理22)在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4、(2018新课标Ⅱ理22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x t αy t α=+⎧⎨=+⎩(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5、(2018新课标Ⅲ理22)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.6、(2018天津理12)已知圆2220x y x +-=的圆心为C ,直线1232x y t ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为_______.7、(2017新课标Ⅰ理22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .8、(2017新课标Ⅱ理22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.9、(2017新课标Ⅲ理22)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ),M 为l 3与C 的交点,求M 的极径.10、(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP|的最小值为___________.11、(2017江苏21C )在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t ty ⎧=-+⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为2x 2s ,y ⎧=⎪⎨⎪=⎩(s 为参数)。
数学高考极坐标真题
数学高考极坐标真题高考数学是每一个学生心中的一块痛,尤其是极坐标这一部分,因其概念抽象、题型独特,让很多学生望而生畏。
今天,我们就来看一些高考数学中关于极坐标的真题,一起来挑战这些问题,看看自己的数学水平究竟如何。
一、选择题1.若极坐标系中点P的坐标为(2,π/2),则该点在直角坐标系中的坐标是:A.(-2,0) B.(-2,0) C.(0,2) D.(0,-2)解析:在极坐标系中,点P的极坐标为(2,π/2),则该点以原点为极点,沿着x轴正向,到圆点上的距离为2,且与x轴正向的夹角为π/2。
由正弦定理,得到该点在直角坐标系中的坐标为(0,2),故选C。
2.曲线r=1+cosθ所围封闭图形的面积等于:A.1 B.2 C.3 D.4解析:由题意可知,r=1+cosθ是一个半径为1的圆心在(-1/2,0)的圆。
封闭图形为该圆在极坐标系中所围成的图形,面积应该为整个单位圆的1/4减去该圆所围成的面积。
计算得到1-π*(1/4)^2=1-π/16,故选A。
二、解答题1.已知非零向量ā和b的夹角为120°,且|ā|=3,|b|=4,则|3ā+2b|的大小为多少?解析:首先要确定3ā和2b的方向,3ā的方向与ā的方向一致,长度变为3|ā|=9;2b的方向与b的方向一致,长度变为2|b|=8。
则3ā+2b 的大小即为9+8=17,故答案为17。
2.已知曲线r=a(1-cosθ)的极坐标方程,其中a>0,则此曲线在第一象限的极坐标方程是什么?解析:在第一象限中,θ的范围为0到π/2。
将θ代入极坐标方程中得到r=a(1-cos(0))=a, 所以在第一象限的极坐标方程就是r=a。
通过以上的练习题,希望大家对高考数学中关于极坐标的题型有了更深入的理解。
在日常练习中,多多进行题型类似的练习,相信在考场上就能游刃有余地解决这些问题。
【字数:490字】。
高中极坐标试题及答案
高中极坐标试题及答案一、选择题1. 在极坐标系中,点P的极坐标为(ρ,θ),则点P的直角坐标为:A. (ρcosθ, ρsinθ)B. (ρsinθ, ρcosθ)C. (ρcosθ, -ρsinθ)D. (-ρcosθ, ρsinθ)答案:A2. 极坐标方程ρ = 2cosθ表示的曲线是:A. 圆B. 椭圆C. 双曲线D. 抛物线答案:A二、填空题3. 已知点A的极坐标为(3, π/3),求点A的直角坐标。
答案:(3/2, 3√3/2)4. 将极坐标方程ρ= 4sinθ转化为直角坐标方程。
答案:x² + (y - 2)² = 4三、解答题5. 已知极坐标方程ρ = 6cosθ,求该曲线的圆心和半径。
答案:圆心为(3, 0),半径为3。
6. 将极坐标方程ρ = 2θ转换为直角坐标方程,并说明其代表的图形。
答案:直角坐标方程为x² + y² - 2y = 0,代表的图形是一个圆心在(0, 1),半径为1的圆。
四、计算题7. 已知点P的极坐标为(5, π/4),求点P到原点O的距离。
答案:58. 已知极坐标方程ρ = 4sinθ + 2cosθ,求该曲线与极坐标轴的交点。
答案:交点为(2, π/4)和(2, 5π/4)。
五、证明题9. 证明极坐标方程ρ² = 2ρcosθ表示的曲线是一条直线。
答案:将极坐标方程ρ² = 2ρcosθ转换为直角坐标方程,得到x²+ y² = 2x,即(x - 1)² + y² = 1,这是一个以(1, 0)为圆心,半径为1的圆的方程,因此原极坐标方程表示的曲线是一条直线。
六、应用题10. 一个圆的极坐标方程为ρ = 4,求该圆的面积。
答案:圆的面积为16π。
极坐标与参数方程---高考题练习(精编完美版)
极坐标与参数方程----高考题练习1.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( )A.14B.214C. 2D.2 22.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上3.若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π44.在极坐标系中,直线ρcos θ-3ρsin θ-1=0与圆ρ=2cos θ交于A ,B 两点,则|AB |=________.5.已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎪⎫22,7π4,则点A到直线l 的距离为________6.在极坐标系中,点⎝⎛⎭⎪⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.7.在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.9.(2014·湖北,16)已知曲线C 1的参数方程是⎩⎨⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.则C 1与C 2交点的直角坐标为________.10.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.11.在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.12.在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.13.在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.14.在极坐标系中,点A 在圆ρ2-2ρcos θ-4ρsin θ+4=0上,点P 的坐标为(1,0),则|AP |的最小值为________.15.在极坐标系中,直线4ρcos ⎝ ⎛⎭⎪⎫θ-π6+1=0与圆ρ=2sin θ的公共点的个数为________. 16.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .15.在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.16.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.17.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.18.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+3cos t ,y =-2+3sin t (t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值.19.已知直线l :⎩⎨⎧x =5+32t ,y =3+12t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ. (1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.20.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.21.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t(t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.22.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 的距离的最大值为17,求a .23.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C2上,求△OAB 面积的最大值.24.在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎨⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求25.在平面直角坐标系中xOy 中,已知直线l 的参数方程为⎩⎨⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.。
高考极坐标与参数方程大题题型汇总(附详细答案)
高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。
例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。
解析:将x和y用极坐标表示,得到ρ=2cosθ。
例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。
解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。
求曲线C的极坐标方程和直线l被曲线C截得的弦长。
解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。
2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。
为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。
极坐标与参数方程历年高考题
4-4极坐标与参数方程历年高考题(一)一、选择题、1、(北京理3)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是( )A 、(1,)2πB 、(1,)2π- C 、(1,0) D 、(1,π)2、(2003全国)圆锥曲线θθρ2cos sin 8=的准线方程是( ) (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ3、(2011年高考安徽卷理科5)在极坐标系中,点 (,)π23 到圆2cos ρθ= 的圆心的距离为( )(A ) (4、(2001年广东、河南)极坐标方程ρ2cos2θ=1所表示的曲线是( ) (A)两条相交直线 (B)圆 (C)椭圆 (D)双曲线 5、(2003北京)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是( )(A)圆(B)椭圆(C)抛物线 (D)双曲线6、(2011年高考北京卷理科3)在极坐标系中,圆2sin ρθ=-的圆心的极坐标是( )A 、(1,)2π B 、(1,)2π- C 、(1,0) D 、(1,)π7、(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系( ) (A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合8、(2010年高考北京卷理科5)极坐标方程(p-1)(θπ-)=(p ≥0)表示的图形是( ) (A )两个圆 (B )两条直线 (C )一个圆和一条射线 (D )一条直线和一条射线9、(安徽理5)在极坐标系中,点θρπcos 2)3,2(=到圆的圆心的距离为( )(A )2 (B )942π+(C )912π+(D )310、(2004北京春)在极坐标系中,圆心在(),2π且过极点的圆的方程为( ) (A) θρcos 22= (B)θρcos 22-= (C)θρsin 22=(D)θρsin 22-=二、填空(每题5分,共20分)11、(2008广东文理数)(坐标系与参数方程选做题)已知曲线12,C C 的极坐标方程分别为cos 3,4cos (0,0)2πρθρθρθ==≥≤<,则曲线1C 2C 交点的极坐标为 ________12、(2010·广东高考理科15)在极坐标系(ρ,θ)(02θπ≤≤)中,曲线ρ=2sin θ与cos 1ρθ=- 的交点的极坐标为 。
高考极坐标参数方程含答案(经典39题)(1)_看图王
方程. C1 与 C2 公共点的个数和 C 1 与C2 公共点的个数是否相同?说明你的理由.
29.在平面直角坐标系
xoy
中,圆
C
的参数方程为
x
y
4 cos 4 sin
(
为参数),直线
l
(2)求证直线 l 和曲线 C 相交于两点 A 、 B ,并求 | MA | | MB | 的值.
(2, )
6.在极坐标系中,O 为极点,已知圆 C 的圆心为 3 ,半径 r=1,P 在圆 C 上运动。 (I)求圆 C 的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点 O 为原点, 以极轴为 x 轴正半轴)中,若 Q 为线段 OP 的中点,求点 Q 轨迹的直角坐标方程。
程是
4 cos
,直线 l
的参数方程是
x
3 y1 2
3 2 t.
t
,
(t
为参数)。求极点在直线 l
上的射影点
P
的
极坐标;若 M 、 N 分别为曲线 C 、直线 l 上的动点,求 MN 的最小值。
x 4 cos
8.平面直角坐标系中,将曲线
y
sin
( 为参数)上的每一点纵坐标不变,横坐标变为原来的
为
t
2
,Q
为
C
2
上的动点,求
PQ
中点
M
到直线
C3
:
2x
y
7
0
(t
为参数)距离的最大值。
第 13页 共 16页
◎
第 14页 共 16页
极坐标参数方程高考练习含答案非常好的练习题
极坐标参数方程高考练习含答案非常好的练习题公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]极坐标与参数方程高考精练(经典39题)1.在极坐标系中,以点(2,)2C π为圆心,半径为3的圆C 与直线:()3l R πθρ=∈交于,A B两点.(1)求圆C 及直线l 的普通方程.(2)求弦长AB .2.在极坐标系中,曲线2:sin 2cos L ρθθ=,过点A (5,α)(α为锐角且3tan 4α=)作平行于()4R πθρ=∈的直线l ,且l 与曲线L 分别交于B ,C 两点.(Ⅰ)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L 和直线l 的普通方程;(Ⅱ)求|BC|的长.3.在极坐标系中,点M 坐标是)2,3(π,曲线C 的方程为)4sin(22πθρ+=;以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率是1-的直线l 经过点M .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)求证直线l 和曲线C 相交于两点A 、B ,并求||||MB MA ⋅的值.4.已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C 的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值.5.在直角坐标系xOy 中,直线l 的参数方程为()为参数t ty ta x ,3⎩⎨⎧=+=.在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为θρcos 4=.(Ⅰ)求圆C 在直角坐标系中的方程;(Ⅱ)若圆C 与直线l 相切,求实数a 的值.6.在极坐标系中,O 为极点,已知圆C 的圆心为(2,)3π,半径r=1,P 在圆C 上运动。
(I )求圆C 的极坐标方程;(II )在直角坐标系(与极坐标系取相同的长度单位,且以极点O 为原点,以极轴为x 轴正半轴)中,若Q 为线段OP 的中点,求点Q 轨迹的直角坐标方程。
极坐标与参数方程大题及答案
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
高考数学题极坐标与参数方程大训练含答案
高考23题极坐标与参数方程大训练1.1在极坐标系中,O 为极点,已知圆C 的圆心为,半径r =1,P 在圆C 上运动,求圆C 的极坐标方程;2.设直线l 经过点)3,2(πP ,倾斜角6πα=,写出直线l 的极坐标方程. 2.2009·高考辽宁卷在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos θ-=1,M 、N 分别为C 与x 轴、y 轴的交点. 1写出C 的直角坐标方程,并求出M 、N 的极坐标; 2设MN 的中点为P ,求直线OP 的极坐标方程.3.已知曲线C 的极坐标方程是=ρ2sin θ ,设直线l 的参数方程是32,545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩t 为参数.1将曲线C 的极坐标方程转化为直角坐标方程; 2设直线l 与x 轴的交点是,M N 是曲线C 上一动点,求MN 的最大值.4.已知曲线1C 的参数方程为210,10x y θθ⎧=-+⎪⎨=⎪⎩ θ为参数,曲线2C 的极坐标方程为θθρsin 6cos 2+=. 1将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程. 2曲线1C ,2C 是否相交 若相交,请求出公共弦的长;若不相交,请说明理由.5.2015·高考全国卷Ⅰ在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:x -12+y -22=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. 1求C 1,C 2的极坐标方程;2若直线C 3的极坐标方程为θ=ρ∈R ,设C 2与C 3的交点为M ,N ,求△C 2MN 的面积. 6.本题满分12分已知圆的极坐标方程为ρ2-4ρcos +6=0.1将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; 2若点Px ,y 在该圆上,求x +y 的最大值和最小值.7.2014·高考课标全国卷Ⅱ在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈. 1求C 的参数方程;2设点D 在C 上,C 在D 处的切线与直线l :y =x +2垂直,根据1中你得到的参数方程,确定D 的坐标.8.2013·高考课标全国卷已知曲线C 1的参数方程为t 为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.1把C 1的参数方程化为极坐标方程;2求C 1与C 2交点的极坐标ρ≥0,0≤θ<2π.9.2015·高考陕西卷在直角坐标系xOy 中,直线l 的参数方程为t 为参数.以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.121⎝⎛Ⅰ答方2的31解所以曲线C 的直角坐标方程为2220x y y +-=.2将直线l 的参数方程化为直角坐标方程为4(2)3y x =--.令0y =,得2x =,即M 点的直角坐标为(2,0).又曲线C 为圆,圆C 圆心的直角坐标为(0,1),半径1r =,则MC =∴1MN MC r +=≤.故MN 的最大值为15+. 4.14分已知曲线1C 的参数方程为2,x y θθ⎧=-+⎪⎨=⎪⎩ θ为参数,曲线2C 的极坐标方程为θθρsin 6cos 2+=. 1将曲线1C 的参数方程化为普通方程,将曲线2C 的极坐标方程化为直角坐标方程. 2曲线1C ,2C 是否相交 若相交,请求出公共弦的长;若不相交,请说明理由..解:1由2,,x y θθ⎧=-⎪⎨=⎪⎩ 得22(2)10x y ++=.∴曲线1C 的普通方程为22(2)10x y ++=. ∵θθρsin 6cos 2+=, ∴θρθρρsin 6cos 22+=.∵θρθρρsin ,cos ,222==+=y x y x ,∴y x y x 6222+=+,即10)3()1(22=-+-y x . ∴曲线2C 的直角坐标方程为10)3()1(22=-+-y x .2∵圆1C 圆心的直角坐标为)0,2(-,圆2C 圆心的直角坐标为)3,1(,∴12C C∴两圆相交. 设相交弦长为d ,原ρ的立坐的l8.2013·高考课标全国卷已知曲线C 1的参数方程为t 为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.1把C 1的参数方程化为极坐标方程;2求C 1与C 2交点的极坐标ρ≥0,0≤θ<2π.解:1将消去参数t ,化为普通方程x -42+y -52=25,即C 1:x 2+y 2-8x -10y +16=0. 将代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. 2C 2的普通方程为x 2+y 2-2y =0. 由解得或所以C 1与C 2交点的极坐标分别为,,2,.9.2015·高考陕西卷在直角坐标系xOy 中,直线l 的参数方程为t 为参数.以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.1写出⊙C 的直角坐标方程;2P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:1由ρ=2sin θ,得ρ2=2ρsin θ, 从而有x 2+y 2=2y ,所以x 2+y -2=3. 2设P ,又C 0,, 则|PC |==,故当t =0时,|PC |取得最小值, 此时,点P 的直角坐标为3,0.10.2013·福建高考理科·T21在直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎪⎭⎫ ⎝⎛4,2π,直线l 的极坐标方程为a =-)4cos(πθρ,且点A 在直线l 上;Ⅰ求a 的值及直线l 的直角坐标方程;Ⅱ圆C 的参数方程为)(sin ,cos 1为参数a a y a x ⎩⎨⎧=+=,试判断直线l 与圆C 的位置关系.解析Ⅰ由点)4A π在直线cos()4a πρθ-=上,可得a =所以直线l 的方程可化为cos sin 2ρθρθ+= 从而直线l 的直角坐标方程为20x y +-=Ⅱ由已知得圆C 的直角坐标方程为22(1)1x y -+=所以圆心为(1,0),半径1r=以为圆心到直线的距离12d =<,所以直线与圆相交。
高考极坐标与参数方程习题大全
一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。
A. 53,-⎛⎝ ⎫πB. 543,π⎛⎝ ⎫⎭⎪C. 523,-⎛⎝ ⎫⎭⎪πD. ⎪⎭⎫ ⎝⎛-355π, 2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。
2、若A 33,π⎛⎝ ⎫⎭⎪,B ⎪⎭⎫ ⎝⎛-64π,,则|AB|=___________,S AOB ∆=___________。
(其中O 是极点)3、极点到直线()cos sin ρθθ+=________ _____。
4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。
5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。
6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。
三、解答题(第1题14分,第2题16分,第3题15分;共45分)1、求圆心为C 36,π⎛⎝ ⎫⎭⎪,半径为3的圆的极坐标方程。
2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。
极坐标参数方程大题及答案高中
极坐标参数方程大题及答案高中问题一已知极坐标方程$r = 2\\sin(\\theta)$,求图形的方程。
解答:为了求得图形的方程,我们需要将极坐标方程转化为直角坐标方程。
通过换元法,我们可以将极坐标方程转化为两个直角坐标方程,如下所示:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$我们将极坐标方程$r = 2\\sin(\\theta)$代入上述直角坐标方程中,得到:$$x = 2\\sin(\\theta)\\cos(\\theta)$$$$y = 2\\sin^2(\\theta)$$从以上方程可以看出,这是一个平面上的曲线,但我们还需要进一步确定它的形状。
为了做到这一点,我们可以进行图形绘制。
问题二绘制$r = 2\\sin(\\theta)$的图形。
解答:通过绘制$r = 2\\sin(\\theta)$的图形,我们可以更好地理解它的形状。
下面是该图形的绘制结果:import numpy as npimport matplotlib.pyplot as plttheta = np.linspace(0, 2 * np.pi, 1000)r = 2 * np.sin(theta)x = r * np.cos(theta)y = r * np.sin(theta)plt.figure(figsize=(6, 6))plt.plot(x, y, color='blue')plt.title('Graph of r = 2 * sin(theta)')plt.xlabel('x')plt.ylabel('y')plt.grid(True)plt.show()通过运行上述代码,我们可以得到$r = 2\\sin(\\theta)$的图形。
从图中可以看出,该曲线是一个以原点为中心的对称图形,形状类似于玫瑰花。
高中数学极坐标与参数方程大题(详解)
:+=1,直线l :(t 为参数)为参数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程.的普通方程.(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A|的最大值与最小值.的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (Ⅰ)联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线C 的参数方程,直接消掉参数t 得直线l 的普通方程;方程;(Ⅱ)设曲线C 上任意一点P (2cos θ,3sin θ).由点到直线的距离公式得到P 到直线l 的距离,除以的距离,除以 sin30°进一步得到|P A|,化积后由三角函数的范围求得|P A|的最大值与最小值.的最大值与最小值.解答:解:(Ⅰ)对于曲线C :+=1,可令x=2cos θ、y=3sin θ,故曲线C 的参数方程为,(θ为参数).对于直线l :,由①得:t=x ﹣2,代入②并整理得:2x+y ﹣6=0; (Ⅱ)设曲线C 上任意一点P (2cos θ,3sin θ). P 到直线l 的距离为.则,其中α为锐角.为锐角.当sin (θ+α)=﹣1时,|P A|取得最大值,最大值为. 当sin (θ+α)=1时,|P A|取得最小值,最小值为.点评: 本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:,曲线C 的参数方程为:(α为参数).(I )写出直线l 的直角坐标方程;的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值.的距离的最大值.考点: 参数方程化成普通方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C 的参数方程,然后,根据直线与圆的位置关系进行转化求解.的参数方程,然后,根据直线与圆的位置关系进行转化求解.解答:解:(1)∵直线l 的极坐标方程为:,∴ρ(sin θ﹣cos θ)=,参数方程极坐标系 解答题 1.已知曲线C∴,∴x ﹣y+1=0(α为参数).得(x ﹣2)2+y 2=4,它表示一个以(2,0)为圆心,以2为半径的圆,为半径的圆, 圆心到直线的距离为:圆心到直线的距离为: d=,∴曲线C 上的点到直线l 的距离的最大值最小值.最小值.考点: 圆的参数方程;点到直线的距离公式;直线的参数方程. 专题: 计算题;压轴题;转化思想.计算题;压轴题;转化思想.分析: (1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C 1表示一个圆;曲线C 2表示一个椭圆;一个椭圆;(2)把t 的值代入曲线C 1的参数方程得点P 的坐标,然后把直线的参数方程化为普通方程,根据曲线C 2的参数方程设出Q 的坐标,利用中点坐标公式表示出M 的坐标,利用点到直线的距离公式表示出M 到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C 1:(t 为参数)化为普通方程得:(x+4)2+(y ﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;的圆; 把C 2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x 轴上,长半轴为8,短半轴为3的椭圆;的椭圆; (2)把t=代入到曲线C 1的参数方程得:P (﹣4,4),把直线C 3:(t 为参数)化为普通方程得:x ﹣2y ﹣7=0,设Q 的坐标为Q (8cos θ,3sin θ),故M (﹣2+4cos θ,2+sin θ) 所以M 到直线的距离d==,(其中sin α=,cos α=)从而当cos θ=,sin θ=﹣时,d 取得最小值..(2)根据曲线C 的参数方程为:=.点评: 本题重点考查了直线的本题重点考查了直线的极坐标极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.方程、曲线的参数方程、及其之间的互化等知识,属于中档题.3.已知曲线C 1:(t 为参数),C 2:(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t=,Q 为C 2上的动点,求PQ 中点M 到直线C 3:(t 为参数)距离的考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题: 坐标系和参数方程.坐标系和参数方程. 分析:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入即可得出.代入即可得出.(II )把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d ,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C 的极坐标方程为,化为ρ2=,把代入可得:圆C 的普通方程为x 2+y 2﹣2x+2y=0,即(x ﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1), ∴圆心极坐标为;(Ⅱ)由直线l 的参数方程(t 为参数),把t=x 代入y=﹣1+2t 可得直线l 的普通方程:,∴圆心到直线l 的距离,∴|AB|=2==,点P 直线AB 距离的最大值为,.点评: 本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.角形的面积计算公式,考查了推理能力与计算能力,属于中档题.5.在平面直角坐标系xoy 中,椭圆的参数方程为为参数).以o 为极点,x 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值..求椭圆上点到直线距离的最大值和最小值.考点: 椭圆的参数方程;椭圆的应用. 专题: 计算题;压轴题.计算题;压轴题.点评: 此题考查学生理解并运用直线和圆的此题考查学生理解并运用直线和圆的参数方程参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题.简求值,是一道综合题.4.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立直角坐标系,圆C 的极坐标方程为,直线l 的参数方程为(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C上不同于A ,B 的任意一点.的任意一点. (Ⅰ)求圆心的极坐标;(Ⅰ)求圆心的极坐标;(Ⅱ)求△P AB 面积的最大值.面积的最大值.圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.圆和直线先化为一般方程坐标,然后再计算椭圆上点到直线距离的最大值和最小值.解答:解:将化为普通方程为(4分)分)点到直线的距离(6分)分)所以椭圆上点到直线距离的最大值为,最小值为.(10分)分)点评: 此题考查参数方程、极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.进行求解,这也是每年高考必考的热点问题.6.在直角坐标系xoy 中,直线I 的参数方程为(t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=cos (θ+).(1)求直线I 被曲线C 所截得的弦长;所截得的弦长;(2)若M (x ,y )是曲线C 上的动点,求x+y 的最大值.的最大值.考点: 参数方程化成普通方程.专题: 计算题;直线与圆;坐标系和参数方程.计算题;直线与圆;坐标系和参数方程.分析: (1)将曲线C 化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.可求弦长. (2)运用圆的参数方程,设出M ,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值. 解答:解:(1)直线I 的参数方程为(t 为参数),消去t ,可得,3x+4y+1=0; 由于ρ=cos (θ+)=(),即有ρ2=ρcos θ﹣ρsin θ,则有x 2+y 2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==, 故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M (,), 则x+y==sin (),由于θ∈R ,则x+y 的最大值为1.分析:由题意椭圆的由题意椭圆的参数方程参数方程为为参数),直线的直线的极坐标极坐标方程为.将椭7.选修4﹣4:参数方程选讲:参数方程选讲 已知平面直角坐标系xOy ,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为,曲线C 的极坐标方程为.(Ⅰ)写出点P 的直角坐标及曲线C 的普通方程;的普通方程; (Ⅱ)若Q 为C 上的动点,求PQ 中点M 到直线l :(t 为参数)距离的最小值.为参数)距离的最小值.考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题:坐标系和参数方程.坐标系和参数方程. 分析: (1)利用x=ρcos θ,y=ρsin θ即可得出;即可得出; (2)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出,)利用中点坐标公式、点到直线的距离公式及三角函数的单调性即可得出, 解答:解 (1)∵P 点的极坐标为,∴=3,=.∴点P 的直角坐标把ρ2=x 2+y 2,y=ρsin θ代入可得,即∴曲线C 的直角坐标方程为.(2)曲线C 的参数方程为(θ为参数),直线l 的普通方程为x ﹣2y ﹣7=0 设,则线段PQ 的中点.那么点M 到直线l 的距离.,∴点M 到直线l 的最小距离为.点评: 本题考查了极坐标与直角坐标的互化、中点坐标公式、点到直线的距离公式、两角和差的正弦公式、三角函数的单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.单调性等基础知识与基本技能方法,考查了计算能力,属于中档题.8.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.标系.(Ⅰ)求圆C 的极坐标方程;的极坐标方程; (Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.的长.点评: 本题考查参数方程化为标准方程,本题考查参数方程化为标准方程,极坐标极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.专题: 直线与圆.直线与圆. 分析: )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简得:ρ=2cos θ,即为此圆的极坐标方程.,即为此圆的极坐标方程. (II )如图所示,由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.联立,解得,即Q .联立,解得或.∴P .∴|PQ|==2.点评: 本题考查了极坐标化为普通方程、本题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、曲线交点与方程联立得到的方程组的解的关系、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知两点间的距离公式等基础知识与基本方法,属于中档题.识与基本方法,属于中档题.9.在直角坐标系xoy 中,曲线C 1的参数方程为(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+)=4.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;的直角坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.的坐标.考点: 简单曲线的极坐标方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式考点: 简单曲线的简单曲线的极坐标极坐标方程;直线与圆的位置关系.(I )圆C 的参数方程(φ为参数).消去参数可得:(x ﹣1)2+y 2=1.把x=ρcos θ,y=ρsin θ代入化简即可得到此圆的极坐标方程.化简即可得到此圆的极坐标方程. (II )由直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出..分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.解答:解:(Ix=ρcos θ、y=ρ的距离为,可得d 的最小值,以及此时的α的值,从而求得点P的坐标.的坐标.解答:解:(1)由曲线C 1:,可得,两式两边平方相加得:,即曲线C 1的普通方程为:. 由曲线C 2:得:,即ρsin θ+ρcos θ=8,所以x+y ﹣8=0,即曲线C 2的直角坐标方程为:x+y ﹣8=0.(2)由(1)知椭圆C 1与直线C 2无公共点,椭圆上的点到直线x+y ﹣8=0的距离为,∴当时,d 的最小值为,此时点P 的坐标为.10.已知直线l 的参数方程是(t 为参数),圆C 的极坐标方程为ρ=2cos (θ+).(Ⅰ)求圆心C 的直角坐标;的直角坐标;(Ⅱ)由直线l 上的点向圆C 引切线,求切线长的最小值.引切线,求切线长的最小值.考点: 简单曲线的极坐标方程. 专题: 计算题.计算题.分析: (I )先利用三角函数的和角公式展开圆C 的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程,从而得到圆心C 的直角坐标.的直角坐标.(II )欲求切线长的最小值,转化为求直线l 上的点到圆心的距离的最小值,故先在直角坐标系中算出直线l 上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.上的点到圆心的距离的最小值,再利用直角三角形中边的关系求出切线长的最小值即可.解答:解:(I )∵,∴,∴圆C 的直角坐标方程为,即,∴圆心直角坐标为.(5分)分)(II )∵直线l 的普通方程为, 圆心C 到直线l 距离是,∴直线l 上的点向圆C 引的切线长的最小值是(10分)分)点评: 本题考查点的极坐标和直角坐标的互化,本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,能在极坐标系中用极坐标刻画点的位置,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角体会在极坐标系和平面直角sin θ,把,把极坐标极坐标方程化为直角坐标方程.方程化为直角坐标方程. (2)求得椭圆上的点到直线x+y ﹣8=0点评: 本题主要考查把本题主要考查把参数方程参数方程、极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,正弦函数的值域,属于基础题.2的直角坐标方程;的直角坐标方程;(2)直线l 与直线C 2交于A ,B 两点,若|AB|≥2,求实数a 的取值范围.的取值范围.考点: 简单曲线的极坐标方程;参数方程化成普通方程. 专题: 坐标系和参数方程.坐标系和参数方程.分析: (1)首先,将曲线C 1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q 的轨迹C 2的直角坐标方程;直角坐标方程; (2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答: 解:(1)根据题意,得)根据题意,得曲线C 1的直角坐标方程为:x 2+y 2﹣4y=12, 设点P (x ʹ,y ʹ),Q (x ,y ), 根据中点坐标公式,得根据中点坐标公式,得,代入x 2+y 2﹣4y=12,得点Q 的轨迹C 2的直角坐标方程为:(x ﹣3)2+(y ﹣1)2=4, (2)直线l 的普通方程为:y=ax ,根据题意,得,根据题意,得,解得实数a 的取值范围为:[0,].点评: 本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.解题关键是准确运用直线和圆的特定方程求解.12.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ()=2.(Ⅰ)求C 1与C 2交点的极坐标;交点的极坐标;坐标系中刻画点的位置的区别,能进行坐标系中刻画点的位置的区别,能进行极坐标极坐标和直角坐标的互化.和直角坐标的互化.11.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的参数方程为,(t 为参数),曲线C 1的方程为ρ(ρ﹣4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.的中点.(1)求点Q 的轨迹C(Ⅱ)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点,已知直线PQ 0,2),(1,3),从而直线PQ 的直角坐标方程为x ﹣y+2=0,由参数方程可得y=x ﹣+1,从而构造关于a ,b 的方程组,解得a ,b 的值.的值.解答: 解:(I )圆C 1,直线C 2的直角坐标方程分别为的直角坐标方程分别为x 2+(y ﹣2)2=4,x+y ﹣4=0,解得或,∴C 1与C 2交点的极坐标为(4,).(2,).(II )由(I )得,P 与Q 点的坐标分别为(0,2),(1,3), 故直线PQ 的直角坐标方程为x ﹣y+2=0, 由参数方程可得y=x ﹣+1,∴,解得a=﹣1,b=2.点评: 本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.题.13.在直角坐标系xOy 中,l 是过定点P (4,2)且倾斜角为α的直线;在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴,取相同单位长度)中,曲线C 的极坐标方程为ρ=4cos θ (Ⅰ)写出直线l 的参数方程,并将曲线C 的方程化为直角坐标方程;的方程化为直角坐标方程;(Ⅱ)若曲线C 与直线相交于不同的两点M 、N ,求|PM|+|PN|的取值范围.的取值范围.解答:解:(I )直线l 的参数方程为(t 为参数).曲线C 的极坐标方程ρ=4cos θ可化为ρ2=4ρcos θ.把x=ρcos θ,y=ρsin θ代入曲线C 的极坐标方程可得x 2+y 2=4x ,即(x ﹣2)2+y 2=4. (II )把直线l 的参数方程为(t 为参数)代入圆的方程可得:t 2+4(sin α+cos α)t+4=0.∵曲线C 与直线相交于不同的两点M 、N ,∴△=16(sin α+cos α)2﹣16>0, ∴sin αcos α>0,又α∈[0,π), ∴.又t 1+t 2=﹣4(sin α+cos α),t 1t 2=4. ∴|PM|+|PN|=|t 1|+|t 2|=|t 1+t 2|=4|sin α+cos α|=,∵,∴,的参数方程为(t ∈R 为参数),求a ,b 的值.的值.考点: 点的点的极坐标极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程. 专题: 压轴题;直线与圆.压轴题;直线与圆.分析: (I )先将圆C 1,直线C 2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II )由(I )得,P 与Q 点的坐标分别为(∴.∴|PM|+|PN|的取值范围是.点评:考点: 点的极坐标和直角坐标的互化. 专题: 坐标系和参数方程.坐标系和参数方程. 分析:(I )由⊙C 的极坐标方程为ρ=2sin θ.化为ρ2=2,把代入即可得出;.(II )设P ,又C .利用两点之间的距离公式可得|PC|=,再利用二次函数的性质即可得出.函数的性质即可得出.解答: 解:(I )由⊙C 的极坐标方程为ρ=2sin θ. ∴ρ2=2,化为x 2+y 2=,配方为=3.(II )设P ,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P (3,0).点评: 本题考查了极坐标化为直角坐标方程、参数方程的应用、两点之间的距离公式、二次函数的性质,考查了推理能力与计算能力,属于中档题.能力与计算能力,属于中档题.15.已知曲线C 1的极坐标方程为ρ=6cos θ,曲线C 2的极坐标方程为θ=(p ∈R ),曲线C 1,C 2相交于A ,B 两点.两点.(Ⅰ)把曲线C 1,C 2的极坐标方程转化为直角坐标方程;的极坐标方程转化为直角坐标方程; (Ⅱ)求弦AB 的长度.的长度.考点: 简单曲线的极坐标方程. 专题: 计算题.计算题.分析: (Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,进行代换即得曲线C 2及曲线C 1的直角坐标方程.的直角坐标方程.(Ⅱ)利用直角坐标方程的形式,先求出圆心(3,0)到直线的距离,最后结合点到直线的距离公式弦AB 的长度.长度.解答:解:(Ⅰ)曲线C 2:(p ∈R )表示直线y=x ,曲线C 1:ρ=6cos θ,即ρ2=6ρcos θ 所以x 2+y 2=6x 即(x ﹣3)2+y 2=9 本题考查了直线的参数方程、圆的本题考查了直线的参数方程、圆的极坐标极坐标方程、直线与圆相交弦长问题,属于中档题.方程、直线与圆相交弦长问题,属于中档题.14.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2sin θ.(Ⅰ)写出⊙C 的直角坐标方程;的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.的直角坐标.(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==. ∴弦AB 的长度.考点: 简单曲线的极坐标方程;直线与圆的位置关系.专题: 计算题.计算题.分析: (1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l 的普通方程;利用同角三角函数的基本关系,本关系,消去θ可得曲线C 的普通方程,得出圆心的直角坐标后再化面极坐标即可.的普通方程,得出圆心的直角坐标后再化面极坐标即可.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P 到直线l 的距离的最大值,最后列出关于r 的方程即可求出r 值.值.解答: 解:(1)由)由 ρsin (θ+)=,得,得 ρ(cos θ+sin θ)=1,∴直线l :x+y ﹣1=0.由 得C :圆心(﹣,﹣).∴圆心C 的极坐标(1,).(2)在圆C :的圆心到直线l 的距离为:的距离为:∵圆C 上的点到直线l 的最大距离为3,∴. r=2﹣∴当r=2﹣时,圆C 上的点到直线l 的最大距离为3. 点评: 本小题主要考查坐标系与参数方程的相关知识,具体涉及到极坐标方程、参数方程与普通方程的互化,点到直线距离公式、三角变换等内容.线距离公式、三角变换等内容.17.选修4﹣4:坐标系与参数方程:坐标系与参数方程 点评: 本小题主要考查圆和直线的本小题主要考查圆和直线的极坐标极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.基本方法,属于基础题.16.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线l 的极坐标方程为ρsin (θ+)=,圆C 的参数方程为,(θ为参数,r >0)(Ⅰ)求圆心C 的极坐标;的极坐标;(Ⅱ)当r 为何值时,圆C 上的点到直线l 的最大距离为3.考点:简单曲线的极坐标方程;直线的参数方程.计算题;压轴题.专题:计算题;压轴题.分析:(I)利用,以及x2+y2=ρ2,直接写出圆C1,C2的极坐标方程,求出圆C1,C2的交点极坐标,然后求出直角坐标(用坐标表示);(II)解法一:求出两个圆的直角坐标,直接写出圆C1与C2的公共弦的参数方程.的公共弦的参数方程.的公共弦的参数方程. 解法二利用直角坐标与极坐标的关系求出,然后求出圆C1与C2的公共弦的参数方程.解答:解:(I)由,x2+y2=ρ2,可知圆,的极坐标方程为ρ=2,圆,即的极坐标方程为ρ=4cosθ,解得:ρ=2,,故圆C1,C2的交点坐标(2,),(2,).(II)解法一:由得圆C1,C2的交点的直角坐标(1,),(1,).故圆C1,C2的公共弦的参数方程为(或圆C1,C2的公共弦的参数方程为)(解法二)将x=1代入得ρcosθ=1 从而于是圆C1,C2的公共弦的参数方程为.点评:本题考查简单曲线的极坐标方程,直线的参数方程的求法,极坐标与直角坐标的互化,考查计算能力.。
极坐标与参数方程高考题专题练习
1.在平面直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,以分别为与轴,轴的交点(1)写出的直角坐标方程,并求出的极坐标.(2)设的中点为,求直线的极坐标方程.2.已知曲线:(为参数),:的参数方程(为参数)(1)化,的方程为普通方程,并说明它们分别表示什么曲线.(2)若上的点对应的参数为,为上的动点,求中点到直线:(为参数)距离的最小值.3.已知曲线:(为参数),:的参数方程(为参数)(1)指出,是什么曲线,并说明与的公共点的个数.(2)若把,上各点的纵坐标都压缩为原来的一半,分别得到曲线,,写出,参数方程,与公共点的个数和与公共点个数是否相同,说明理由.4.在在平面直角坐标系中,点是椭圆上的一个动点,求的最大值.5.已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段长度.6.已知圆的参数方程为,若是圆与轴正半轴的交点,以坐标原点为极点,轴正半轴为极轴建立极坐标系,试求过点的圆的切线的极坐标方程.7.在极坐标系中,已知圆的圆心坐标为,半径,求圆的极坐标方程.8.在平面直角坐标系中,动圆,的圆心为,求的取值范围.9.已知圆锥曲线:(为参数),点、分别是圆锥曲线的左、右焦点,点为圆锥曲线上的上顶点,求经过点且垂直于直线的直线的方程.10.求圆被直线(为参数)截得的弦长.11.已知直线的参数方程(为参数),是椭圆上的任意一点,求点到直线距离的最大值.12.已知圆,直线,求过点且与直线垂直的直线的极坐标方程。
13.已知直线的参数方程为(为参数),曲线参数方程(为参数)(1)将曲线的参数方程化为普通方程.(2)若直线与曲线相交于点,两点,试求线段的长.14.已知在一个极坐标系中,定点,动点对极点和点的张角,在的延长线上取一点,使,当在极轴上方运动时,求点的轨迹的极坐标方程.15.设是曲线:(为参数,)上任意一点(1)将曲线化为普通方程.(2)求的取值范围.16.在平面直角坐标系中,圆参数方程(为参数),直线经过点,倾斜角.(1)写出直线的参数方程.(2)设与圆交于点,两点,求点到,两点的距离之积.17.在曲线:(为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点坐标和最小距离.18.以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心,为半径.(1)求直线的参数方程和圆的极坐标方程.(2)试判定直线和圆的位置关系.19.已知圆参数方程(为参数),若是圆与轴正半轴的交点,以圆心为极点,轴正半轴为极轴建立极坐标系,求过点的圆的切线的极坐标方程.。
高考极坐标专项训练及答案 (1)
1.已知曲线的极坐标方程为,曲线的参数方程为(为参数).(Ⅰ) 将曲线的极坐标方程化为直角坐标方程;(Ⅱ) 曲线和曲线交于、两点,求长.答案:(Ⅰ)(Ⅱ)解析:(Ⅰ)曲线的直角方程为---------------------------------------4分(Ⅱ)曲线的直角方程为①曲线的直角方程为②则直线的方程为①-②,即,则.--------------------------------------------10分2.已知直线的极坐标方程为,曲线C的参数方程为,设点是曲线C上的任意一点,求到直线的距离的最大值.答案:5解析:……………………3分由得……………………6分∴圆心到直线的距离……………………8分所以,到直线的距离的最大值为……………………10分3.在极坐标系中,定点,点B在直线上运动,当线段AB最短时,点B的极坐标为__________。
答案:4.(坐标系与参数方程选做题)在极坐标系中,若圆的极坐标方程为,若以极点为原点,以极轴为轴的正半轴建立相应的平面直角坐标系中,则在直角坐标系中,圆心的直角坐标是.答案:.5. (坐标系与参数方程选做题)曲线对称的曲线的极坐标方程为。
答案:一般:1.(本题10分)在直角坐标系xOy中,曲线C1的参数方程为 (α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2.(1)求C2的参数方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.答案:(1);(2).解析:第一问中设P(x,y),则由条件知M,由于M点在C1上,所以第二问曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ1-ρ2|=.解: (1)设P(x,y),则由条件知M,由于M点在C1上,所以从而C2的参数方程为(α为参数)(2)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ1-ρ2|=.2.已知曲线的极坐标方程是ρ=2,以极点为原点,极轴为轴的正半轴建立平面直角坐标系(1) 写出曲线的直角坐标方程;(2)若把上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.答案:⑴的普通方程为 x2+y2=4 ;⑵最大值为12.解析:(1)根据进行转化即可。
极坐标与参数方程高考题(含答案)
极坐标与参数方程高考题1。
在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I)求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ=,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12。
2。
已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.解:(1)曲线C 的参数方程为(θ为参数)。
直线l 的普通方程为2x+y-6=0.(2)曲线C 上任意一点P(2cos θ,3sin θ)到l 的距离为|4cos θ+3sin θ—6|, 则|PA|==|5sin(θ+α)—6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA|取得最大值,当sin (θ+α)=1时,|PA|取得最小值, 3。
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ02πθ⎡⎤∈⎢⎥⎣⎦,,(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线x+2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x-1)2+y 2=1(0≤y ≤1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标高考大题专题训练学校:________ 班级:________ 姓名:________ 学号:________一、解答题(共11小题)1. [较易] (2019•新课标Ⅲ)如图,在极坐标系Ox中,A(2,0),B(,),C(,),D(2,π),弧,,所在圆的圆心分别是(1,0),(1,),(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.2. [较易] (2019•海南)在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.3. [一般] (2019•新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.4. [一般] (2018•新课标Ⅲ)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.5. [一般] (2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.6. [较易] (2017•新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.7. [一般] (2017•新课标Ⅲ)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.8. [一般] (2016•新课标Ⅲ)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.9. [一般] (2016•新课标Ⅰ)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.10. [一般] (2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.11. [一般] (2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.极坐标高考大题专题训练参考答案一、解答题(共11小题)1.【解答】解:(1)由题设得,弧,,所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=﹣2cosθ,则M1的极坐标方程为ρ=2cosθ,(0≤θ≤),M2的极坐标方程为ρ=2sinθ,(≤θ≤),M3的极坐标方程为ρ=﹣2cosθ,(≤θ≤π),(2)设P(ρ,θ),由题设及(1)知,若0≤θ≤,由2cosθ=得cosθ=,得θ=,若≤θ≤,由2sinθ=得sinθ=,得θ=或,若≤θ≤π,由﹣2cosθ=得cosθ=﹣,得θ=,综上P的极坐标为(,)或(,)或(,)或(,).2.【解答】解:(1)当θ0=时,,在直线l上任取一点(ρ,θ),则有,故l的极坐标方程为有;(2)设P(ρ,θ),则在Rt△OAP中,有ρ=4cosθ,∵P在线段OM上,∴θ∈[,],故P点轨迹的极坐标方程为ρ=4cosθ,θ∈[,].3.【解答】解:(1)由(t为参数),得,两式平方相加,得(x≠﹣1),∴C的直角坐标方程为(x≠﹣1),由2ρcosθ+ρsinθ+11=0,得.即直线l的直角坐标方程为得;(2)法一、设C上的点P(cosθ,2sinθ)(θ≠π),则P到直线得的距离为:d==.∴当sin(θ+φ)=﹣1时,d有最小值为.法二、设与直线平行的直线方程为,联立,得16x2+4mx+m2﹣12=0.由△=16m2﹣64(m2﹣12)=0,得m=±4.∴当m=4时,直线与曲线C的切点到直线的距离最小,为.4.【解答】解:(1)∵⊙O的参数方程为(θ为参数),∴⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,过点(0,﹣)且倾斜角为α的直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanα•x﹣,∵倾斜角为α的直线l与⊙O交于A,B两点,∴圆心O(0,0)到直线l的距离d=<1,∴tan2α>1,∴tanα>1或tanα<﹣1,∴或,综上α的取值范围是(,).(2)l的参数方程为,(t为参数,),设A,B,P对应的参数分别为t A,t B,t P,则,且t A,t B满足,∴,∵P(x,y)满足,(α为参数,).∴AB中点P的轨迹的参数方程为:,5.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.6.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+φ)﹣a﹣4|≤|﹣5﹣a﹣4|=|5+a+4|=17解得a=8和﹣26,a=8符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+φ)﹣a﹣4|≤|5﹣a﹣4|=|5﹣a﹣4|=17,解得a=﹣16和18,a=﹣16符合题意.7.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4(y≠0);(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.8.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).9.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).10.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.11.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.。