2007年上海交通大学自主招生选拔测试试卷(数学篇)
高校自招数学试题及答案
高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。
A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。
A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。
B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。
设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。
A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。
答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。
历年自主招生考试数学试题大全-2007年上海复旦大学自主招生数学试题Word版缺答案
2007年复旦大学自主招生考试数学试题选择题(每题5分,共150分,答对得5分,答错扣2分,不答得0分) 1.三边均为整数,且最大边长为11的三角形,共有 个. A .20B .26C .30D .362.若a>1,b>1且lg (a+b )=lga+lgb ,则lg (a −1)+lg (b −1)= . A .lg2B .1C .不是与a 、b 无关的常数D .03.已知z ∈C ,若∣z ∣=2-4i ,则z1的值是 . A .3+4i B .i 5453+ C .i 154153+ D .i 254253- 4.已知函数f (x )=cos (x k 2316++π)+cos (x k 2316--)=23sin (x 23+π),其中x 为实数且k 为整数.则f (x )的最小正周期为 .A .3πB .2π C .πD .2π5.已知A ={(x ,y )∣y ≥x 2},B={(x ,y )∣x 2+(y −a )2≤1}.则使A∩B=B 成立的充分必要条件为 .A .a=45B .a≥45 C .0<a<1 D .a≥16.已知平面上三角形ABC 为等边三角形且每边边长为a ,在AB 和BC 上分别取D ,E 两点使得AD =BE =3a,连接A ,E 两点以及C ,D 两点.则AE 和CD 之间的最小夹角为 . A .9πa B .3πa C .3π D .以上均不对7.已知数列{a n }满足3a n+1+a n =4,(n≥1),且a 1=9, 其前n 项之和为S n ,则满足不等式∣S n −n −6∣<1251的最小整数是45. A .6B .7C .8D .98.将一个四棱锥的每个顶点染上一种颜色,并使用一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法的总数为 .A .120B .260C .340D .4209.设甲乙两个袋子中装有若干个均匀白球和红球,且甲乙两个袋子中的球数比为1∶3.已知从甲袋中摸到红球的概率为31,而将甲乙两个袋子中的球装在一起后,从中摸到红球的概率为32.则从乙袋中摸到红球率为 . A .97 B . 4519C .3013D .4522 10.方程f (x )=543423322212321---------x x x x x x x x x =0 的实根的个数是 .A .1个B . 2个C .3个D .无实根11.已知a ,b 为实数,满足(a+b )59=−1,(a −b )60=1,则∑=-601)(n n nb a= .A .0121B .−49C .0D .2312.a=21是“直线(a+2)x +3a y +1=0与直线(a −2)x +(a+2)y −3=0相互垂直”的 . A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件13.设函数y =f (x )对一切实数x 均满足f (2+x )=f (2−x ),且方程f (x )=0恰好有7个不同的实根,则这7个不同实根的和为 .A .0B .10C .12D .1414.已知α,β,γ分别为某三角形中的三个内角且满足tan 2βα+=sin γ,则下列四个表达式:(1)tan αtan β=1 (2)0<sin α+sin β≤2 (3)sin 2α+sin 2β=1 (4)cos 2α+cos 2β=sin 2γ中,恒成立的是 .A .(1)(3)B .(10(4)C .(2)(3)D .(2)(4)15.设S n =1+2+…+n,n ∈N .则∞→n lim1)32(2++n nS n nS = .A .2B .321C .161 D .6416.复数z =iia 212+-(a ∈R ,i=1-)在复平面上对应的点不可能位于 . A .第一象限B .第二象限C .第三象限D .第四象限17.已知f (x )=asin x +b 3x +4(a ,b 为实数)且f [lg (lg 310)]=5,则f [lg (lg3)]= .A .−5B .−3C .3D .随a ,b 取不同值而取不同值18.已知四棱锥P -ABCD ,底面ABCD 是菱形,∠DAB =3π,PD ⊥平面ABCD ,线段PD =AD ,点E 是AB 的中点,点F 是PD 的中点,则二面角P -AB -F 的平面角的余弦值= .A .21 B .552 C .1475D .1473 19.在(32-)50的展开式中有 项为有理数. A .10B .11C .12D .1320.棱长为a 的正方体内有两球互相外切,且两球各与正方体的三个面相切.则两球半径之和为为 .A .无法确定B .aC .a 233-D .a 255- 21.在集合{1,2,…11}中任选两个作为椭圆方程12222=+by a x 中的a 和b ,则能组成落在矩形区域{(x ,y )||x |<11,|y |<9}内的椭圆个数是 .A .70B .72C .80D .8822.设a ,b ,c 为非负实数,且满足方程02562684495495=+⨯-++++cb a cb a ,则a+b+c的最大值和最小值 .A .互为倒数B .其和为13C .其乘积为4D .均不存在23.给定正整数n 和正常数a ,对于满足不等式a 12+a n+12≤a 的所有等差数列a 1,a 2,a 3,…,和式∑++=1211n n i a的最大值= .A .)1(210+n aB .n a210 C .)1(25+n aD .n a 2524.设z 0(z 0≠0)为复平面上一定点,z 1为复平面上的动点,其轨迹方程为|z 1−z 0|=|z 1|,z 为复平面上另一个动点满足z 1z =−1.则z 在复平面上的轨迹形状是 .A .一条直线B .以01z -为圆心,01z 为半径的圆 C .焦距为012z 的双曲线 D .以上均不对25.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为 .A .3123a π B .343a π C .3242a π D .3243a π 26.已知函数f (x )的定义域为(0,2),则函数g (x )=f (x +c )+f (x −c ) 在 0<21时的定义域为 .A .(1−c ,2+c )B .(c ,2−c )C .(1−c ,2−c )D .(c ,2+c ) 27.设函数f (x )=sin (2x +ϕ),(−π<ϕ<0),y =f (x )图象的一条直线x =8π.则ϕ的值为 .A .4πB .43πC .-43πD .2π28.设f (x )是定义在实数集上的周期为2的周期函数,且是偶函数.已知当x ∈[2,3]时,f (x )=−x ,则当x ∈[-2,0]时,f (x )的表达式为 .A .−3+|x +1|B .2−|x +1|C .3−|x +1|D .2+|x +1|29.当a 和b 取遍所有实数时,则函数f (a ,b )=(a+5−3|cosb|)2+(a −2)|sinb|)2所能达到的最小值为 .A .1B .2C .3D .430.对任意实数x ,y ,定义运算x ºy 为x ºy =a x +b y +c xy ,其中a ,b ,c 为常数,且等式右端中的运算为通常的实数加法、乘法运算.已知1º2=3,2º3=4且有一个非零实数d ,使得对于任意实数x 均有x ºd=x ,则d= .A .-4B .-2C .1D .4历年自主招生考试数学试题大全专题下载链接:/a760682.html链接打开方法:1、按住ctrl键单击链接即可打开专题链接2、复制链接到网页。
2007年上海市普通高等学校春季招生考试数学试卷
页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根 学问是异常珍贵的东西,从任何源泉吸收都不可耻。
——阿卜·日·法拉兹2007年上海市普通高等学校春季招生考试数 学 试 卷考生注意:1.答卷前,考生务必将姓名、高考座位号、校验码等填写清楚.2.本试卷共有21道试题,满分150分.考试时间120分钟. . 填空题 (本大题满分44分)本大题共有11题,只要求直接 填写结果,每题填对得4分,否则一律得零分.1.计算=++∞→)1(312lim 2n n n n . 2.若关于x 的一元二次实系数方程02=++q px x 有一个根为i 1+(i 是虚数单位),则=q .3.若关于x 的不等式01>+-x a x 的解集为),4()1,(∞+-∞- ,则实数=a . 4.函数2)cos sin (x x y +=的最小正周期为 .5.设函数)(x f y =是奇函数. 若3)2()1(3)1()2(++=--+-f f f f ,则=+)2()1(f f .6.在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6,则点P 的横坐标=x .7.在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则实数=m .8.若向量a ,b 满足2=a ,1=b ,()1=+⋅b a a ,则向量a ,b 的夹角的大小为 . 9.若21x x 、为方程11212+-⎪⎭⎫ ⎝⎛=x x 的两个实数解,则=+21x x .10.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
——培根学问是异常珍贵的东西,从任何源泉吸收都不可耻。
——阿卜·日·法拉兹演节目. 若选到男教师的概率为209,则参加联欢会的教师共有 人. 11.函数⎪⎩⎪⎨⎧<≥+=0,2,0,12x xx x y 的反函数是 .二.选择题 (本大题满分16分)本大题共有4题,每题都给出 四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得 4分,否则一律得零分.12.若集合{}2,1m A =,{}4,2=B ,则“2=m ”是“{}4=B A ”的(A) 充分不必要条件. (B) 必要不充分条件.(C) 充要条件. (D) 既不充分也不必要条件.[答] ( )13.如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ (不包括边界). 若21OP b OP a +=,且点P 落在第Ⅲ部分,则实数b a 、满足(A) 0,0>>b a . (B) 0,0<>b a .(C) 0,0><b a . (D) 0,0<<b a .[答] ( )14.下列四个函数中,图像如图所示的只能是(A) x x y lg +=. (B) x x y lg -=.(C) x x y lg +-=. (D) x x y lg --=.[答] ( )15.设b a 、是正实数,以下不等式① b a ab ab +>2,② b b a a -->,③ 22234b ab b a ->+,④ 22>+abab页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。
上海交通大学2002-2010年保送生考试数学试题
一、填空题(每小题 5 分,共 50 分)
1.方程 x2
−
px −
1 2 p2
= 0 的两根 x1, x2 满
2 ,则 p=_________(p∈R).
2. sin8 x + cos8 x = 41 , x ∈ (0, π ) ,则 x=________________.
128
3,14 台,现在为使各小学的电脑数相等,各向相邻小学移交若干台,且要使移交的电 脑的总台数最小,因此,从第一小学向第二小学移交了________台,从第二小学向第三 小学移交了______台,从第五小学向第一小学移交了________台,移动总数是_________ 台. 二、计算与证明题(本题共 86 分) 17.(本题 12 分)(1)设 n 为大于 2 的整数,试用数学归纳法证明下列不等式:
任意正整数 n 都有 an = r [ n + s ] + t 恒成立([x]表示不超过 x 的最大整数).
60
又
3
2 3
3
=9
3
>8
=2
= 3log32 , 所以 b
>
c , a > b > c. 所以输出的数为 a.
例 6 (2001 年上海市高考题) 对任意函
数 f ( x ) , x ∈D 可按图所示构造一个数列发
3.f(x)=ax4+x3+(5−8a)x2+6x−9a,证明:(1)总有 f(x)=0;(2)总有 f(x)≠0.
4.
f1
(x)
=
1− x x +1
,对于一切自然数
n,都有
f n+1 (x) =
2008年上海交通大学自主招生选拔测试试卷(数学篇)
4.通信工程中常用 n 元数组( a1 , a2 , a3 , …, an )表示信息,其中 ai = 0 或 1, i, n ∈ N .设
u = (a1 , a2 , a3 , …, an ) , v = (b1 , b2 , b3 , …, bn ) 表示 u 和 v 中相对碰的元素不同的个数.
2008 年上海交通大学冬令营选拔测试 数学试题
说明:考试时间 2 小时,考生根据自己情况选题作答,综合优秀或单科突出给予 A 的 认定。满分 l00 分。 一、填空题 1.若 f ( x) = 2.函数 y =
2x −1 3 , g ( x) = f −1 ( x) ,则 g ( ) = x 5 2 +1
.
.
x +1 最大值为 x2 + 8
3.等差数列中, 5a8 = 3a13 ,则前 n 项和 S n 取最大值时, n 的值为 4.复数 | z |= 1 ,若存在负数 a 使得 z − 2az + a − a = 0 ,则 a =
2 2
. .
5.若 cos x − sin x = ,则 cos x − sin x =
(1) u = (0, 0, 0, 0, 0) 问存在多少个 5 元数组 v 使得 d (u , v) = 1 ; (2) u = (1,1,1,1,1) 问存在多少个 5 元数组 v 使得 d (u , v) = 3 ; (3)令 w = , u = ( a1 , a2 , a3 , …, an ) , v = (b1 , b2 , b3 , …, bn) ( 0,0,0,0,0 )
3.世界杯预选赛中,中国、澳大利亚、卡塔尔和伊拉克被分在 A 组,进行主客场比赛. 规定每场比赛胜者得三分,平局各得一分,败者不得分 比赛结束后前两名可以晋级 (1)由于 4 支队伍均为强队,每支队伍至少得 3 分于是甲专家预测:中国队至少得 10 分才能确保出线;乙专家预测:中国队至少得 1 分才能确保出线.问:甲、乙专家哪个说的 对?为什么? (2)若不考虑中条件,中国队至少得多少分才能确保出线?
(完整)上海交通大学_2007-2008学年_高等数学(高数)_期末考试_解答
1、解 22()()()0xy xx yy B AC f ab f ab f ab -=-≥,排除A 、B.(,)f x b 在点x a =处取得极小值:(,)0xx f a b ≥,同理:(,)0yy f a b ≥.答案:C2、解 0[()()()]C W F dr yzx t xzy t zz t dt π'''=⋅=-++⎰⎰u r r22200[sin cos ]2t t t t t dt tdt πππ=++==⎰⎰答案:B3、解 22:1(1)S z x y =+≤,方向为下侧,[221]S S S I y y dv dxdy -++Ω∑+=+=--+-⎰⎰⎰⎰⎰⎰⎰⎰⎰Ò32251133πππ=-⋅-⋅=-答案:A4、解1|(1)|nn n n a ∞∞==-=∑∑――A 错11||n n n n n a a ∞∞∞+====≥∑∑∑,发散 ――B 错1111||||n nn n n n n a a +∞∞∞+===-=-≥∑∑∑,发散 ――C 错1111||||n nn n n n n a a +∞∞∞+===+=+=∑∑∑n n ∞∞===≈∑∑,收敛 ――D 对答案:D5、解 (0)(0)(3)()02S S S S ππππ-+-+===答案:D6、解1 2{(,)|cos 2}D r r θθ=≤,2.......Dxy dxdy =⎰⎰解2 ***22***Dxy dxdy dy xy dx +-==⎰⎰⎰⎰07、解()()()222222552323222cc c x xy y ds x y ds x y ds π-+=+=+=⋅=⎰⎰⎰蜒?5π8、2cos x P Qx e y y x∂∂=+=∂∂ 解1 2(2sin )(cos )0x x xy e y dx x e y dy +++= ⇒ 2(2)(sin cos )0x x xydx x dy e ydx e ydy +++= ⇒ 2()(sin )0x d x y d e y += 通解为:2sin x x y e y C +=解2 (,)2(0,0)(2sin )(cos )x y x x u xy e y dx x e y dy =+++⎰220(cos )sin y x x x e y dy x y e y =+=+⎰通解为:2sin x x y e y C +=9、()()div rot F F =∇⋅∇⨯u r u r ()5(2)(3)23xy zx y z x y z x y z yzxz xy∂∂∂∂∂∂∂∂∂∂∂-∂-==++=∂∂∂∂∂∂-010、解1(1)n n n a x ∞=+∑的收敛半径2R =111(1)(1)(1)n n n n n n na x n a x ∞∞-+==⇒+=++∑∑的收敛半径2R =,11(1)n n n n a x ∞+=⇒+∑的收敛半径R =211、32332x x u z e yz e yz x x∂∂=+∂∂ 323232()3x x zyze yz e yz e xy+=+--+ (0,1,1)u x -∂⇒∂121232()333e e--=--=--12、解 12112xy yI dy ye dx =⎰⎰1212()y e e dy =-⎰21(2)2e e =-13、解 1C : 0y =(:15x →),11CC C C +=-⎰⎰⎰Ñ51[(2Dy dxdy xdx =+⋅--⎰⎰⎰512Ddxdy xdx =-⎰⎰⎰12512222π-=⋅⋅-212π=-14、解1(1) xzSD S dS ==⎰⎰⎰⎰(2) yzSD S dS ==⎰⎰⎰⎰ √yzSD S dS ==⎰⎰⎰⎰(yz D :0z =,z y =和1y =所围成的三角形区域)100dy =⎰⎰10==⎰ 解2:(01)C y x =≤≤c c S zds yds ==⎰⎰0=⎰012==⎰z 11Oz15、合一投影法:{}{}{}(cos cos cos ),,cos ,cos ,cos ,,xyD Pdydz Qdzdx Rdxdy P Q R dSP Q R dS P Q R ndxdyαβγαβγ∑∑∑++=++=⋅=±⋅⎰⎰⎰⎰⎰⎰⎰⎰v其中 {}(,),,,1x y z z x y n z z ==--v解1 合一投影法:原式{}{}2223,,22,2,1x y yx y z x y dxdy +≤=--⋅-⎰⎰2222(1)1(622)x y x y z dxdy +-≤=-+⎰⎰222(1)18x y x dxdy +-≤=⎰⎰22222221184()u v u v u dudv u v dudv +≤+≤==+⎰⎰⎰⎰14224ππ=⋅⋅= 解2 Gauss 公式设22:2()z y x y z ∑=+≤,取上侧,则原式SS +∑∑==-⎰⎰⎰⎰⎰⎰Ò()31232dV xdydz ydzdx zdxdy Ω∑=-----⎰⎰⎰⎰⎰22222442z x y yx z zdxdz ydxdy +≤+≤=-+⎰⎰⎰⎰ 22222(1)1()122(1)[4(1)4]2z x y x z dxdz y dxdy -+-≤+≤-=-++-+⎰⎰⎰⎰ 2222112(1)4[1]u v u v v dudv v dudv +≤+≤=-+++⎰⎰⎰⎰22122u v dudv π+≤==⎰⎰16、解 对级数10(1)321n n nn yn +∞=-+∑,1233321n n u n u n ++=⋅→+,13R =,13y =-时,100(1)313()21321n n n n n n n +∞∞==--=++∑∑发散, 13y =时,100(1)31(1)3()21321n n n nn n n n +∞∞==--=++∑∑收敛, 得10(1)321n n nn y n +∞=-+∑的收敛域为:11(,]33-,故原级数的收敛域为:22211,332x x -⎛⎤∈- ⎥+⎝⎦, 即 (][)2,11,2x ∈--⋃.17、解()()()2111(1)11()1913nnn n n nn n n ∞∞==-+-=-++∑∑11111919nnn n n ∞∞==⎛⎫⎛⎫=--- ⎪ ⎪+⎝⎭⎝⎭∑∑ 11911|101n x n x n ∞=-==--+∑()101111111()11x n n n n n n S x x x x dx n x n x ∞∞∞+======++∑∑∑⎰011()[ln(1)]1x x dx x x x x x==----⎰ ()()21113n n n nn ∞=-⇒+∑1111109109(ln )9ln 1091099109S ⎛⎫=---=-+-=- ⎪⎝⎭18、证 (1)22343232,22.2n n a a a a a a -==+<=<假设, 121122,3:2n n n n n n n a a a a n a --+-=+<<∀><则故.(2) 11211222n n n n n a x x x ----<=,故当12x <时,级数 11n n n a x ∞-=∑(绝对)收敛.111212231()n n n n n n S x a a x a xa a x a x ∞∞-++===++=++∑∑111111n n n n n n x a xa x ∞∞+++===+++∑∑211121n n n n n n x x a xx a x ∞∞--===+++∑∑21()[()1]x x S x x S x =+++-211x x=--。
上海交通大学《高等数学》2006-2007学年期末试卷
1上海交通大学《高等数学》2006-2007 学年期末考试及答案一、 单项选择题 (每小题3分, 共 15分) 1. 设 xoy 平面上区域D ={(x , y )| x 2+y2≤1, y ≥ x }, D 1 是D 在第一象限的部分, 则∫∫(xy 3 +sin 2 x sin y )dxdy 等于 ( )D(A ) 2 ∫∫ sin 2 x sin ydxdy ; D (C ) 4 ∫∫ (xy 3 + sin 2 x sin y )dxdy ;D 解 ∫∫(xy 3 + sin 2 x sin y )dxdyD= ∫∫ xy 3dxdy + ∫∫ sin 2x s in y dxdyD D= 2 ∫∫ sin 2x sin ydxdyD 答案: A(B ) 2 ∫∫ xy 3dxdy ;D (D ) 0 .2. 设 Ω ={(x , y , z ) | x 2+ y 2+ z2≤ 1}, 则三重积分∫∫∫e xdv = ( )Ω(A ) ; (B ) π; (C ); (D ) 2π .解 1 e xdv >dv = π, 排除答案 A 、 B ; 猜: C 或 De |x | : 1 → 2.718, 3π/ 4π = 1.125, 2π/ 4π= 1.52 3 3答案: D解 2 ∫∫∫ e xdv = ∫1 dx ∫∫ e xdydzΩ y 2 +z 2 ≤1−x 2= ∫1πe x (1 − x 2 )dx = 2π∫01e x (1 − x 2 )dx= −2π+4π∫01xe x dx= −2π+4πe − 4π(e − 1) = 2π答案: D解 3 ∫∫∫e xdv = ∫∫∫e zdv = ∫02πd θ∫0ππππd ϕ∫01eρcos ϕρ2sin ϕd ρΩ Ω= 2π∫0ππππd ϕ∫01eρcos ϕρ2sin ϕd ρD 1111π= 2π∫1d ρ[∫02 e ρcos ϕρ2 sin ϕd ϕ+∫ππππππππe −ρcos ϕρ2sin ϕd ϕ] 2= 2π∫01d ρ[ −ρe ρcos ϕ02 +ρe −ρcos ϕ|ϕϕ=ππππππππ] 2= 4π∫01ρ(e ρ − 1)d ρ= 2π答案: D3. 设 F = y i + zj + x k ,则 rot F = ( )(A )i + j + k ; (B )−( i + j + k ); (C )i − j + k ; (D )−i + j − k .解 rot F = ∂ ∂ ∂( −1, −1, −1)答案: B4. 幂级数x n 在收敛域[ −1,1) 上的和函数s (x ) = ( )(A )ln(1 − x ); (B )− ln(1 − x ); (C )− ; (D )−x ln(1 − x ) .解x n = xx n −1 = x ∫0x(x n −2 )dx= x ∫0x()dx = −x ln(1 − x )答案: D1,π 0 ≤ x <2≤ x ≤π展开成正弦级数, 其和函数s (x ) =b n sin nx , 则s (−) =(A ) −1; (B ) −2;(C ) 1;( )(D ) 2 .解 s (− 9π) = s (−π) = −s (π) = − 1 + 3= −22 2 2 2 答案: B二、 填空题 (每小题3分, 共 15分) 6. 设 u = z +,则div (grad u ) = .∂x ∂y ∂zϕ=π5. 设函数f (x ) = 45 − x , π解 div (grad u ) = div (x , y,1)x 2 + y 2 x 2 + y 2x 2 + y 2 − x ⋅ x x 2 + y 2 − y ⋅y= ( x 2 + y 2 ) + ( x 2 + y 2 ) + 0y 2 + x 2 1= =7. 设 f (x ) 是连续函数,F (t ) = ∫∫∫ f (x 2 + y 2 + z 2 )dv ,F ′(t ) = .x 2 +y 2 +z 2 ≤t 2解 F (t ) = 2π⋅ 2 ⋅ ∫0tf (ρ2 )ρ2d ρ, F ′(t ) = 4πt 2 f (t 2)8. 设 C 为曲线x = e t cos t , y = e t sin t , z = e t 上对应于t 从0 变到2 的这段弧, 则曲线积分ds = .解 该积分 = ∫02dt= ∫02dt =(1 − e −2)9. 全微分方程(x +y − 1)dx +(e y +x )dy = 0 的通解为 .解 1 (x + y − 1)dx + (e y + x )dy = 0⇒ (x − 1)dx +(ydx +xdy )+e y dy = 0⇒ d () +d (xy )+d (e y ) = 0⇒ 通解:+xy +e y = C解 2 u = ∫(x + y − 1)dx + (e y + x )dy= ∫0x(x − 1)dx + ∫0y(e y+x )dy=+ xy +e y − 1⇒ 通解:+xy +e y − 1 = Cx 2 + y 2 x 2 + y 2(x 2 + y 2 ) x 2 + y 2 x 2 + y 210. 级数 的敛散性为 .解 un +1 == n + 1 = 1, 收敛u n n ! (2n + 1)(2n + 2) 2(2n )!三、计算下列各题 (第 1小题6分, 第2 小题8分, 共 14分) 11. 设 z 是方程x +y − z = e z所确定的x , y 的隐函数, 求∂2z解 ∂z = − 1 = 1 ∂z = − 1 =1 ∂x −1 − e z 1 + e z,∂y −1 − e z 1 +e z= () y = −= − = −12. 计算曲面z = y 2 − x 2 夹在圆柱面x 2 +y 2 = 1 和x 2 +y 2 = 9 之间部分 的面积.解 1 +2+ 2=, 则所求面积I = ∫∫dxdy1≤x 2 +y 2 ≤9 = ∫02πd θ∫13rdr= 2π⋅ (1 + 4r 2 ) |13 = (37 − 5)四、计算下列各题 (每小题 10分, 共30分)13. 计算曲线积分(x +e sin y )dy − (y − )dx , 其中C 是位于第一象限中的直线x +y = 1 与位于第二象限中的圆弧x 2 +y 2 = 1 构成的曲线, 方向从A (1, 0) 经过B (0,1), 再到C (−1, 0) .解 L : y = 0, 方向从(−1, 0) 到(1, 0), 并记C + L 所围区域为D , 则所求曲线积分I = −∫C +L L= 2dxdy − ∫−1 2dx∂x ∂y .1 1π π2 214. 试求参数λ, 使当曲线C 落在区域D ={(x , y )| y > 0}时, 曲线积分(x 2 +y 2 )λdx −(x 2 +y 2 )λdy 与路径无关, 并求u (x , y ) = ∫(x 2 + y 2 )λdx −(x 2 + y 2 )λdy .解 记P =(x 2 + y 2)λ, Q = −(x 2 + y 2)λ, 则∂P2λxy 2 (x 2 + y 2)λ−1− x (x 2 + y 2)λ=∂Q 2x (x 2 + y2)λ+ 2λx 3 (x 2 + y 2)λ−1= −= ⇒ 2λxy 2 + x (x 2 + y 2 ) + 2λx 3 = 0⇒λ= −解 1 = ⇒ u =+ϕ(y )= −及 u (0,1) = 0 ⇒ u =− 1解 2 u (x , y ) = ∫dx −dy= ∫1y0dy + ∫0xdxx 2 + y 2y15. 求 ∫∫2xzdydz + yzdzdx − z 2dxdy , 其中Σ 为Σz = 与 z = 所围立体表面的外侧.解 记Σ 所围立体为Ω, 则∫∫ 2xzdydz + yzdzdx − z 2dxdy = ∫∫∫ zdxdydzΣ Ω∂x y 2∂P ∂Q∂y ∂x ∂y y 2= − 1= + 1 − 1 == zdz dxdy +∫ 22 2zdz dxdyx 2 +y 2 ≤z 2 x 2 +y 2 ≤8 −z 2= ∫02z ⋅πz 2dz + 2z ⋅π(8 − z 2 )dz = 8π 五、(本题 10 分) 16. 将函数f (x ) =展开为x − 1 的幂级数.解 f (x ) =4x − 3 = 2 +12 1 1= ⋅ −3 1 +1 − (x − 1)= −n(x − 1)n −(x − 1)n=( −1)nn +1− 1 (x − 1)n, 0 < x < 2六、(本题8 分) 17. 设 f (x ) =(x − 1)n , 求f (n ) (1) .解 f (x ) = (x − 1)nf (k ) (1) =, (k = 0,1, 2, )f (n ) (1) == e −1七、(本题8 分)18. 设 f (x ) 在(−1,1) 内具有三阶连续导数, 且f ′′′(0) ≠ 0, 证明: 级数∞ 1 1绝对收敛.(2x +1)(x − 2) 2x +1 x − 22 1 2(x − 1) +3 (x − 1) − 1 = + 证明 lim x →∑ {n [f ( ) − f ( − )] − 2f ′(0)}n =1 n n( )( ) = lim = > 0→ lim n f n 1 − f − n 1− 2f ' 0= f ''' 0 > 0f (x ) − f ( −x ) − 2xf '(0) f ′(x ) + f ′( −x ) − 2f '(0) f ′′(x ) − f ′′( −x ) ( ) ( )x →0 6 3( ) n →∞ 1 32故由级数收敛, 可知级数∞ 1 1n lim 3 x →0 xlim 2 ∑ {n [f ( ) − f ( − )] − 2f ′(0)}n =1 n n绝对收敛.x →0 3x limx →0 6x ===f ′′′ x + f ′′′ −x f ''' 0。
2007年上海交通大学自主招生保送生测试数学试卷
2007年上海交通大学冬令营选拔测试
数学试题
说明:考试时间2小时,考生根据自己情况选题作答,综合优秀或单科突出给予A的认定。
满分l00分。
一、填空题
1.设函数满足,则.
2.设均为实数,且,则.
3.设且n≠1,则方程的解的个数为.
4.设扇形的周长为6,则其面积的最大值为.
5..
6.设不等式与的解集分别为和.若,则
的最小值为.
7.设函数,则.
8.设n≥0,且函数的最大值为,则
.
9.6名考生坐在两侧各有通道的同一排座位上应考,考生答完试卷的先后次序不定,且每人答完后立即交卷离开座位,则其中一人交卷时为到达通道而打扰其余尚在考试的考生的概率为.
10.已知函数,对于,若,则
=.
二、计算与证明题
11.工件内圆弧半径测量问题.为测量一工件的内圆弧半径,工人用三个半径均为的圆柱形量棒放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面
到中间量棒顶侧面的垂直深度,试写出用表示的函数关系式,并计算当,时,的值
12.设函数,试讨论的性态(有界性、命偶性、单调性和周期性),求其极值,并作出其在内的图像.
13.已知线段长度为3,两端均在抛物线上,试求的中点到轴的最短距离和此时点的坐标.
14.设,试证明对任意实数:
(1)方程总有相同实根;
(2)存在,恒有.
15.已知等差数列的首项为,公差为,等比数列的首项为,公比为,
,其中均为正整数,且.
(1)求的值;
(2)若对于,存在关系式。
试求的值;
(3)对于满足(2)中关系式的,试求.。
2007年上海高考数学试卷与答案(理科)
2007年全国普通高等学校招生统一考试(上海卷)一.填空题(本大题满分44分)1.函数3)4lg(--=x x y 的定义域是 .2.若直线1210l x my ++=: 与直线231l y x =-:平行,则=m .3.函数1)(-=x xx f 的反函数=-)(1x f .4.方程 96370x x -∙-=的解是 .5.若x y ∈+R ,,且14=+y x ,则x y ∙的最大值是 . 6.函数⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=2πsin 3πsin x x y 的最小正周期=T . 7.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).8.以双曲线15422=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 9.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 10.在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个 相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异面直线的充分条件: .11.已知P 为圆1)1(22=-+y x 上任意一点(原点O 除外),直线OP 的倾斜角为θ弧度,记||OP d =.在右侧的坐标致图形为系中,画出以()d θ,为坐标的点的轨迹的大二.选择题(本大题满分16分) 12.已知a b ∈R ,,且i ,i 2++b a (i 是虚数单位)是实系数一元二次方程02=++q px x 的两个根,那么p q ,的值分别是( ) A.45p q =-=, B.43p q =-=, C.45p q ==,D.43p q ==,13.设a b ,是非零实数,若b a <,则下列不等式成立的是( ) A.22b a < B.b a ab 22< C.ba ab 2211< D.b aa b <14.直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC 中,若j k i j i+=+=3,2,则k 的可能值个数是( )A.1 B.2 C.3 D.415.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推 出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立 C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立 D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立 三.解答题(本大题满分90分) 16.(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB.求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).17.(本题满分14分)4π,2==C a ,在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若5522cos=B ,求ABC △的面积S . 18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%). (1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 已知函数0()(2≠+=x xax x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 如果有穷数列123n a a a a ,,,,(n 为正整数)满足条件n a a =1,12-=n a a ,…,1a a n =,即1+-=i n i a a (12i n =,,,),我们称其为“对称数列”.例如,由组合数组成的数列01mm m m C C C ,,,就是“对称数列”. (1)设{}n b 是项数为7的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是项数为12-k (正整数1>k )的“对称数列”,其中121k k k c c c +-,,,是首项为50,公差为4-的等差数列.记{}n c 各项的和为12-k S .当k 为何值时,12-k S 取得最大值?并求出12-k S 的最大值;(3)对于确定的正整数1>m ,写出所有项数不超过m 2的“对称数列”,使得211222m -,,,,依次是该数列中连续的项;当m 1500>时,求其中一个“对称数列”前2008项的和2008S .21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.(1)若012F F F △是边长为1的等边三角形,求 “果圆”的方程;(2)当21A A >21B B 时,求ab的取值范围;(3)连接“果圆”上任意两点的线段称为“果圆”的弦.试研究:是否存在实数k ,使斜率为k答案要点一、填空题(第1题至第11题)1. {}34≠<x x x 且 2. 32- 3. )(11≠-x x x 4.7log 3 5. 161 6. π 7. 3.0 8. )3(122+=x y9.②④10. 21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)11.二、选择题(第12题至第15题)三、解答题(第16题至第21题)16.解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ====△, ∴ 211==CC AA .连接1BC .1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51tan 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan. 解法二: 由题意,可得 体积11111122ABC V CC S CC AC BC CC ∆====, 21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =--,,, 平面C C BB 11的法向量为(100)n =,,. 设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ,则116cos 6A B n A Bn ϕ==-, 66arcsin ,66|cos |sin ===∴θϕθ,即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯=.18.解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为 %36,%38,%40,%42.则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥. 解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61. 19.解:(1)当0=a 时,2)(x x f =, 对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数. (2)解法一:设122x x <≤, 22212121)()(x a x x a x x f x f --+=-[]a x x x x x x x x -+-=)()(21212121, 要使函数)(x f 在[2)x ∈+∞,上为增函数,必须0)()(21<-x f x f 恒成立.121204x x x x -<>,,即)(2121x x x x a +<恒成立.又421>+x x ,16)(2121>+∴x x x x . a ∴的取值范围是(16]-∞,.解法二:当0=a 时,2)(x x f =,显然在[2)+∞,为增函数.当0<a 时,反比例函数xa在[2)+∞,为增函数,xax x f +=∴2)(在[2)+∞,为增函数. 当0>a 时,同解法一.20.解:(1)设{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,.(2)12112112-+--+++++++=k k k k k c c c c c c S k k k k c c c c -+++=-+)(2121 ,50134)13(42212-⨯+--=-k S k ,∴当13=k 时,12-k S 取得最大值.12-k S 的最大值为626. (3)所有可能的“对称数列”是: ① 22122122222221m m m ---,,,,,,,,,,; ② 2211221222222221m m m m ----,,,,,,,,,,,; ③ 122221222212222m m m m ----,,,,,,,,,,; ④ 1222212222112222m m m m ----,,,,,,,,,,,. 对于①,当2008m ≥时,1222212008200722008-=++++= S . 当15002007m <≤时,200922122008222221----+++++++=m m m m S 2009212212---+-=m m m 1222200921--+=--m m m .对于②,当2008m ≥时,1220082008-=S . 当15002007m <≤时,2008S 122200821--=-+m m .对于③,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 3222009-+=-mm .对于④,当2008m ≥时,2008200822--=m m S .当15002007m <≤时,2008S 2222008-+=-mm .21. 解:(1) ()()012(0)00F c F F ,,,,,021211F F b F F ∴==,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,222)2(a b b a ->-∴,得54<a b . 又21,222222>∴-=>a b b a c b . 45b a ⎫∴∈⎪⎪⎝⎭,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22221(0)y x x b c+=≤.记平行弦的斜率为k .当0=k 时,直线()y t b t b =-≤≤与半椭圆22221(0)x y x a b +=≥的交点是P t ⎛⎫ ⎪ ⎪⎝⎭,与半椭圆22221(0)y x x b c +=≤的交点是Q t ⎛⎫- ⎪ ⎪⎝⎭. ∴ P Q ,的中点M ()x y ,满足 221,2a ct x b y t ⎧-⎪=-⎨⎪=⎩,得122222=+⎪⎭⎫ ⎝⎛-b y c a x . b a 2<,∴ 22220222a c a c b a c b b ----+⎛⎫-=≠ ⎪⎝⎭. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22221(0)x y x a b +=≥的交点是22232222222ka b k a b b k a b k a b ⎛⎫- ⎪++⎝⎭,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x kab y 22-=上,即不在某一椭圆上.当0<k 时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年高等学校招生考试上海卷
1CCB1B1AA2007年高等学校招生考试(上海卷)数学试卷(文史类)一.填空题(本大题满分44分)本大题共有11题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1.方程9131=-x 的解是 . 2.函数11)(-=x x f 的反函数=-)(1x f .3.直线014=-+y x 的倾斜角=θ .4.函数πsec cos 2y x x ⎛⎫=∙+ ⎪⎝⎭的最小正周期=T .5.以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .6.若向量a b ,的夹角为60,1==b a ,则()a ab -= .7.如图,在直三棱柱111C B A ABC -中,90=∠ACB , 21=AA ,1==BC AC ,则异面直线B A 1与AC 所成角的 大小是 (结果用反三角函数值表示).8.某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工 序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C , 完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 . 9.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). 10.对于非零实数a b ,,以下四个命题都成立: ① 01≠+aa ; ② 2222)(b ab a b a ++=+; ③ 若||||b a =,则b a ±=; ④ 若ab a =2,则b a =.那么,对于非零复数a b ,,仍然成立的命题的所有序号是 . 11.如图,A B ,是直线l 上的两点,且2=AB A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 线段AB 围成图形面积S 的取值范围是 .二.选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A ,B ,C ,D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.12.已知a b ∈R ,,且i 3,i 2++b a (i 是虚数单位)是一个实系数一元二次方程的两个根,那么a b ,的值分别是( )A.32a b =-=, B.32a b ==-, C.32a b =-=-, D.32a b ==, 13.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x14.数列{}n a 中,22211100010012n n n a n n n n ⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( ) A.等于0 B.等于1C.等于0或1D.不存在15.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”. 那么,下列命题总成立的是( )A.若1)1(<f 成立,则100)10(<f 成立 B.若4)2(<f 成立,则(1)1f ≥成立 C.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立 D.若(4)25f ≥成立,则当4k ≥时,均有2()f k k ≥成立三.解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16.(本题满分12分)在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成的角为60,求正四棱锥ABCD P -的体积V .PCA D17.(本题满分14分)在ABC △中,a b c ,,分别是三个内角A B C ,,的对边.若4π,2==C a ,5522cos=B ,求ABC △的面积S .18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳电池的年生产量达到670兆瓦,年生产量的增长率为34%. 以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.已知函数0()(2≠+=x xa x x f ,常数)a ∈R .(1)当2=a 时,解不等式12)1()(->--x x f x f ; (2)讨论函数)(x f 的奇偶性,并说明理由.20.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123m a a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m = ,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”. (1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中252649c c c ,,,是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n = ,,,.121.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分9分.我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆12222=+cx b y (0)x ≤合成的曲线称作“果圆”,其中222c b a +=,0>a ,0>>c b .如图,设点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 是“果圆” 与x ,y轴的交点,M 是线段21A A 的中点.(1)若012F F F △是边长为1的等边三角形,求该 “果圆”的方程;(2)设P 是“果圆”的半椭圆12222=+cx b y(0)x ≤上任意一点.求证:当PM 取得最小值时,P 在点12B B ,或1A 处;(3)若P 是“果圆”上任意一点,求PM 取得最小值时点P 的横坐标.PBCADO2007年高等学校招生考试(上海卷)数学试卷(文史类)答案要点一、填空题(第1题至第11题) 1. 1-=x 2. )0(11≠+x x3. 4arctan π- 4. π 5. x y 122= 6.217. 66arccos8. 39. 3.010. ② ④11. π022⎛⎤- ⎥⎝⎦,二、选择题(第12题至第15题)三、解答题(第16题至第21题)16.解:作⊥PO 平面ABCD ,垂足为O .连接AO ,O 是正方形ABCD 的中心,PAO ∠是直线PA 与平面 A B C D 所成的角.PAO ∠= 60,2=PA .∴ 3=PO .1=AO ,2=AB ,11233ABCD V PO S ∴===17.解: 由题意,得3cos 5B B =,为锐角,54sin =B ,10274π3sin )πsin(sin =⎪⎭⎫ ⎝⎛-=--=B C B A , 由正弦定理得 710=c , ∴ 111048sin 222757S ac B ==⨯⨯⨯= .18.解:(1) 由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为%36,%38,%40,%42. 则2006年全球太阳电池的年生产量为8.249942.140.138.136.1670≈⨯⨯⨯⨯(兆瓦).(2)设太阳电池的年安装量的平均增长率为x ,则441420(1)95%2499.8(142%)x ++≥. 解得0.615x ≥.因此,这四年中太阳电池的年安装量的平均增长率至少应达到%5.61.19.解: (1)1212)1(222->----+x x x x x , 0122>--x x , 0)1(<-x x . ∴ 原不等式的解为10<<x . (2)当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞ ,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,, 取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,, (1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.20.解:(1)设数列{}n b 的公差为d ,则1132314=+=+=d d b b ,解得 3=d , ∴数列{}n b 为25811852,,,,,,. (2)4921c c c S +++= 25492625)(2c c c c -+++= ()122212242-++++= ()3211222625-=--==67108861.(3)51100223(501)149d d ==+⨯-=,.由题意得 1250d d d ,,,是首项为149,公差为3-的等差数列. 当50n ≤时,n n d d d S +++= 21 n n n n n 230123)3(2)1(1492+-=--+=.当51100n ≤≤时,n n d d d S +++= 21()n d d d S ++++= 525150 (50)(51)37752(50)32n n n --=+-+⨯75002299232+-=n n . 综上所述,22330115022329975005110022n n n n S n n n ⎧-+⎪⎪=⎨⎪-+⎪⎩,≤≤,,≤≤.21.解:(1)((012(0)00F c F F ,,,,,021211F F b F F ∴====,,于是22223744c a b c ==+=,,所求“果圆”方程为2241(0)7x y x +=≥,2241(0)3y x x +=≤.(2)设()P x y ,,则 2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222()1()04b a c x a c x b c x c ⎛⎫-=---++- ⎪⎝⎭,≤≤, 0122<-cb ,∴ 2||PM 的最小值只能在0=x 或c x -=处取到.即当PM 取得最小值时,P 在点12B B ,或1A 处.(3)||||21MA M A = ,且1B 和2B 同时位于“果圆”的半椭圆22221(0)x y x a b +=≥和半椭圆22221(0)y x x b c +=≤上,所以,由(2)知,只需研究P 位于“果圆”的半椭圆22221(0)x y x a b+=≥上的情形即可. 2222||y c a x PM +⎪⎭⎫ ⎝⎛--=22222222224)(4)(2)(c c a a c a b c c a a x a c ---++⎥⎦⎤⎢⎣⎡--=.当22()2a a c x a c -=≤,即2a c ≤时,2||PM 的最小值在222)(cc a a x -=时取到, 此时P 的横坐标是222)(cc a a -. 当a cc a a x >-=222)(,即c a 2>时,由于2||PM 在a x <时是递减的,2||PM 的最小值在a x =时取到,此时P 的横坐标是a .综上所述,若2a c ≤,当||PM 取得最小值时,点P 的横坐标是222)(cc a a -;若c a 2>,当||PM 取得最小值时,点P 的横坐标是a 或c -.。
交大自主招生高考数学试卷
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知函数f(x) = x^2 - 4x + 3,求f(x)的图像与x轴的交点坐标。
A. (1, 0),(3, 0)B. (0, 1),(3, 1)C. (1, 3),(3, 1)D. (0, 3),(3, 1)2. 已知等差数列{an}的公差d=2,若a1+a5=18,求a3的值。
A. 8B. 10C. 12D. 143. 在平面直角坐标系中,点A(2, 3),点B(5, 7),求线段AB的中点坐标。
A. (3, 5)B. (4, 6)C. (5, 7)D. (7, 9)4. 已知复数z = 3 + 4i,求z的模。
A. 5B. 7C. 9D. 115. 已知三角形ABC的边长分别为a、b、c,且满足a+b+c=12,a^2+b^2=c^2,求三角形ABC的面积。
A. 6B. 8C. 10D. 126. 已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f(x)的极值点。
A. x=1,x=2B. x=1,x=3C. x=2,x=3D. x=1,x=47. 已知等比数列{an}的公比q=2,若a1+a3+a5=24,求a2的值。
A. 6B. 8C. 10D. 128. 在平面直角坐标系中,点P(1, 2),点Q(4, 6),求线段PQ的长度。
A. 3B. 4C. 5D. 69. 已知复数z = 1 - 3i,求z的共轭复数。
A. 1 + 3iB. 1 - 3iC. -1 + 3iD. -1 - 3i10. 已知函数f(x) = x^2 - 4x + 3,求f(x)的图像与y轴的交点坐标。
A. (1, 0),(3, 0)B. (0, 1),(3, 1)C. (1, 3),(3, 1)D. (0, 3),(3, 1)11. 已知等差数列{an}的公差d=-2,若a1+a5=18,求a3的值。
历年名牌大学自主招生数学考试试题及答案
上海交通大学2007年冬令营选拔测试数学试题一、填空题(每小题5分,共50分)1 设函数f(x)满足2f(3x) f (2 3x) 6x 1,贝卩f(x) ________________________ .2.设a,b,c均为实数,且3a 6b 4,则1丄.a b3 .设a 0且a 1 ,则方程a x 1 x2 2x 2a的解的个数为____________ .4. _______________________________________________ 设扇形的周长为6,则其面积的最大值为___________________________ .5. 1 1! 2 2! 3 3! L n n! ____________________ .6•设不等式x(x 1) y(1 y)与x2 y2 k的解集分别为M和N.若M N ,贝H k的最小值为___________ .7 设函数f(x)- , 则xS 1 2 f (x) 3f2(x) L nf n1(x) _____________ .8 .设a 0 ,且函数f (x) (a cosx)(a sin x)的最大值为空,则2a ________________ .9. 6名考生坐在两侧各有通道的同一排座位上应考,考生答完试卷的先后次序不定,且每人答完后立即交卷离开座位,则其中一人交卷时为到达通道而打扰其余尚在考试的考生的概率为 _______________ .10. 已知函数f1(x)気」,对于n 1,2,L,定义f n 1(x) f1(f n(x)),若x 1f35 ( x) f s(x),贝S f28(X) _____________ .二、计算与证明题(每小题10分,共50分)11.工件内圆弧半径测量问题.为测量一工件的内圆弧半径R,工人用三个半径均为r的圆柱形量棒O1Q2Q3放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面到中间量棒02顶侧面的垂直深度h,试写出R用h表示的函数关系式,并计算当r 10mm, h 4mm 时,R 的值.12. 设函数f(x) |sinx cosx,试讨论f(x)的性态(有界性、奇偶性、单调性和周期性),求其极值,并作出其在0,2内的图像.13. 已知线段AB长度为3,两端均在抛物线x y2上,试求AB的中点M 到y轴的最短距离和此时M点的坐标.参考答案:1. 2x 12. 1丄3. 2 4. n 1 ! 1 6. 242410.7. 11. !n n 12n11 2n 1 42 2R r r ,h12.1^.21k 2d min14.略; 反证法x 08.x 060mm15. 2 29.;周期为2;3; 3 43 45222n2008年交大冬令营数学试题参考答案 1.若 f(x)2 1 3厂,g(x) f1(x)'则 g(5)2x 3 5 3x2008.1.1xH 的最大值为 ------------ .13 .等差数列中,5a 8 3^3,则前n 项和S n 取最大值时,2.函数y.204 .复数|z| 1 ,若存在负数a 使得z 2 2az a 25.若 cosx sin xcos 3x2.3sin x111613.n 的值为a 0,则6.数列a.的通项公式为a n1 nn 1 (n 1). n,则这个数列的前 99乙厂生产的占20%甲厂商品的合格率为95%乙厂商品的合格率为 90%若某人购买了此商品发现为次品,贝眦次品为甲厂生产的概率10.若曲线C i :x 2 y 2 0与C 2:(x a)2 y 2 1的图像有3个交点,则a _______ . 1二.解答题1. 30个人排成矩形,身高各不相同.把每列最矮的人选出,这些人 中最高的设为a ;把每行最高的人选出,这些人中最矮的设为 b .(1) a 是否有可能比b 咼? (2)a 和b 是否可能相等?1. 解:1不可能① 若a 、b 为同一人,有a b ;② 若a 、b 在同一行、列,则均有a b ;③ 若a 、b 不在同一行、列,同如图1以5*6的矩形为例,记a所在列与b 所在行相交的人为x 。
2007年上海市普通高等学校春季招生考试
2007年上海市普通高等学校春季招生考试数 学 试 卷考生注意:1.答卷前,考生务必将姓名、高考座位号、校验码等填写清楚. 2.本试卷共有21道试题,满分150分.考试时间120分钟.一. 填空题 (本大题满分44分)本大题共有11题,只要求直接 填写结果,每题填对得4分,否则一律得零分.1.计算=++∞→)1(312lim2n n n n . 2.若关于x 的一元二次实系数方程02=++q px x 有一个根为i 1+(i 是虚数单位),则 =q . 3.若关于x 的不等式01>+-x ax 的解集为),4()1,(∞+-∞-Y ,则实数=a . 4.函数2)cos sin (x x y +=的最小正周期为 .5.设函数)(x f y =是奇函数. 若3)2()1(3)1()2(++=--+-f f f f ,则=+)2()1(f f . 6.在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x .7.在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m .8.若向量a ρ,b ρ满足2=a ρ,1=b ρ,()1=+⋅b a a ρρρ,则向量a ρ,b ρ的夹角的大小为 . 9.若21x x 、为方程11212+-⎪⎭⎫⎝⎛=xx 的两个实数解,则=+21x x .10.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表 演节目. 若选到男教师的概率为209,则参加联欢会的教师共有 人. 得 分 评 卷 人数学2007春—第2页 (共10页)得 分 评 卷 人11.函数⎪⎩⎪⎨⎧<≥+=0,2,0,12x xx x y 的反函数是 .二.选择题 (本大题满分16分)本大题共有4题,每题都给出 四个结论,其中有且只有一个结论是正确的,必须把正确结论的 代号写在题后的圆括号内,选对得 4分,否则一律得零分.12.若集合{}2,1m A =,{}4,2=B ,则“2=m ”是“{}4=B A I ”的 (A) 充分不必要条件. (B) 必要不充分条件. (C) 充要条件. (D) 既不充分也不必要条件.[答] ( )13.如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ (不 包括边界). 若21OP b OP a OP +=,且点P 落在第Ⅲ部分,则实数b a 、满足 (A) 0,0>>b a . (B) 0,0<>b a . (C) 0,0><b a . (D) 0,0<<b a .[答] ( )14.下列四个函数中,图像如图所示的只能是(A) x x y lg +=. (B) x x y lg -=. (C) x x y lg +-=. (D) x x y lg --=.[答] ( )15.设b a 、是正实数,以下不等式 ①b a ab ab +>2,② b b a a -->,③ 22234b ab b a ->+,④ 22>+abab 恒成立的序号为(A) ①、③. (B) ①、④. (C) ②、③. (D) ②、④.[答] ( )三.解答题 (本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤. 16. (本题满分12分)如图,在棱长为2的正方体D C B A ABCD ''''-中,F E 、分别是B A ''和AB 的中点,求异面直线F A '与CE 所成角的大小 (结果用反三角函数值表示). [解]17. (本题满分14分) 得 分 评 卷 人得 分 评 卷 人数学2007春—第4页 (共10页)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积316后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为316,求侧棱长”;也可以是“若正四棱锥的体积为316,求所有侧面面积之和的最小值”. 试给出问题“在平面直角坐标系xOy 中,求点)1,2(P 到直线043=+y x 的距离.”的一个有意义的“逆向”问题,并解答你所给出的“逆向”问题. [解]18. (本题满分14分) 本题共有2个小题,第1小题满分6分, 得 分 评 卷 人xy第2小题满分8分.如图,在直角坐标系xOy 中,设椭圆)0(1:2222>>=+b a by a x C 的左右两个焦点 分别为21F F 、. 过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为()1,2M.(1) 求椭圆C 的方程;(2) 设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积. [解] (1) (2)19. (本题满分14分)本题共有2个小题,第1小题满分4分, 第2小题满分10分. 得 分 评 卷 人数学2007春—第6页 (共10页)图1图2某人定制了一批地砖. 每块地砖 (如图1所示)是边长为4.0米的正方形ABCD ,点E 、F 分别在边BC 和CD 上, △CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形EFGH . (1) 求证:四边形EFGH 是正方形;(2) F E 、在什么位置时,定制这批地砖所需的材料费用最省? [解] (1) (2)20. (本题满分18分)本题共有3个小题,第1小题满分6分, 第2小题满分4分,第3小题满分8分. 得 分 评 卷 人OCBA通常用c b a 、、分别表示△ABC 的三个内角C B A ,,所对边的边长,R 表示△ABC 的外接圆半径.(1) 如图,在以O 为圆心、半径为2的⊙O 中,BC 和BA 是⊙O 的弦,其中2=BC ,ο45=∠ABC ,求弦AB 的长;(2) 在△ABC 中,若C ∠是钝角,求证:2224R b a <+; (3) 给定三个正实数R b a 、、,其中a b ≤. 问:R b a 、、满足怎样的关系时,以b a 、为边长,R 为外接圆半径的△ABC 不存在、存在一个或存在两个(全等的三角形算作同一个)?在△ABC 存在的情况下,用R b a 、、表示c . [解] (1) (2) (3)21. (本题满分18分)本题共有3个小题,第1小题满分4分,得分评卷人第2小题满分6分,第3小题满分8分.数学2007春—第8页(共10页)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q 的数列{}n a 依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.第1列 第2列 第3列 … 第n 列 第1行 1 1 1 … 1 第2行 q第3行 2q… …第n 行1-n q(1) 设第2行的数依次为n B B B ,,,21Λ,试用q n ,表示n B B B +++Λ21的值; (2) 设第3列的数依次为n c c c c ,,,,321Λ,求证:对于任意非零实数q ,2312c c c >+; (3) 请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).① 能否找到q 的值,使得(2) 中的数列n c c c c ,,,,321Λ的前m 项m c c c ,,,21Λ (3≥m ) 成为等比数列?若能找到,m 的值有多少个?若不能找到,说明理由.② 能否找到q 的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由. [解] (1) (2)(3) 选择第( )问.数学2007春—第10页 (共10页)2007年上海市普通高等学校春季招生考试数 学 试 卷参考答案及评分标准说明1.本解答列出试题的一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,这时原则上不应超过后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第16题至第21题中右端所注的分数,表示考生正确做到这一步应得的该题累加分数.4.给分或扣分均以1分为单位.答案及评分标准一.( 第1至11题)每一题正确的给4分,否则一律得零分.1.32. 2. 2. 3. 4. 4. π. 5. 3-. 6. 5. 7. 2. 8. 43π. 9. 1-. 10. 120. 11. ⎪⎩⎪⎨⎧<≥-=.0,2,1,1x xx x y二.( 第12至15题)每一题正确的给4分,否则一律得零分.题 号 12 13 14 15 代 号ABBD三.( 第16至21题)16. [解法一] 如图建立空间直角坐标系. …… 2分 由题意可知)0,1,2(),2,1,2(),0,2,0(),2,0,2(F E C A '. )2,1,2(),2,1,0(-=-='∴CE F A . …… 6分设直线F A '与CE 所成角为θ,则 35355cos =⋅=⋅'⋅'=CEF A CE F A θ. …… 10分35arccos=∴θ, 即异面直线F A '与CE 所成角的大小为35arccos . …… 12分 [解法二] 连接EB , …… 2分BF E A //'Θ,且BF E A =',FBE A '∴是平行四边形,则EB F A //',∴ 异面直线F A '与CE 所成的角就是CE 与EB 所成的角. …… 6分 由⊥CB 平面A B AB '',得BE CB ⊥. 在Rt △CEB 中,5,2==BE CB ,则552tan =∠CEB , …… 10分 ∴ 552arctan=∠CEB . ∴ 异面直线F A '与CE 所成角的大小为552arctan . …… 12分 17. 评分说明:(ⅰ) 在本题的解答过程中,如果考生所给问题的意义不大,那么在评分标准的第二阶段所列6分中,应只给2分,但第三阶段所列4分由考生对自己所给问题的解答正确与否而定. (ⅱ) 当考生所给出的“逆向”问题与所列解答不同,可参照所列评分标准的精神进行评分. [解] 点)1,2(到直线043=+y x 的距离为243|1423|22=+⋅+⋅. …… 4分“逆向”问题可以是:数学2007春—第12页 (共10页)xy(1) 求到直线043=+y x 的距离为2的点的轨迹方程. …… 10分 [解] 设所求轨迹上任意一点为),(y x P ,则25|43|=+y x , 所求轨迹为01043=-+y x 或01043=++y x . …… 14分 (2) 若点)1,2(P 到直线0:=+by ax l 的距离为2,求直线l 的方程. …… 10分 [解]2|2|22=++b a b a ,化简得0342=-b ab ,0=b 或b a 34=,所以,直线l 的方程为0=x 或043=+y x . …… 14分 意义不大的“逆向”问题可能是:(3) 点)1,2(P 是不是到直线043=+y x 的距离为2的一个点? …… 6分 [解] 因为243|1423|22=+⋅+⋅,所以点)1,2(P 是到直线043=+y x 的距离为2的一个点. ……10分 (4) 点)1,1(Q 是不是到直线043=+y x 的距离为2的一个点? …… 6分[解] 因为25743|1413|22≠=+⋅+⋅, 所以点)1,1(Q 不是到直线043=+y x 的距离为2的一个点. ……10分 (5) 点)1,2(P 是不是到直线0125=+y x 的距离为2的一个点? …… 6分 [解] 因为21322125|11225|22≠=+⋅+⋅, 所以点)1,2(P 不是到直线0125=+y x 的距离为2的一个点. ……10分 18. (1) [解法一] x l ⊥Θ轴, 2F ∴的坐标为()0,2. …… 2分图 2由题意可知 ⎪⎩⎪⎨⎧=-=+,2,1122222b a ba 得 ⎩⎨⎧==.2,422b a ∴ 所求椭圆方程为12422=+y x . …… 6分[解法二]由椭圆定义可知a MF MF 221=+. 由题意12=MF ,121-=∴a MF . …… 2分又由Rt △21F MF 可知 ()122)12(22+=-a ,0>a ,2=∴a ,又222=-b a ,得22=b .∴ 椭圆C 的方程为12422=+y x . …… 6分[解] (2) 直线2BF 的方程为2-=x y . …… 8分由 ⎪⎩⎪⎨⎧=+-=,124,222y x x y 得点N 的纵坐标为32. …… 10分又2221=F F ,3822322211=⨯⎪⎪⎭⎫ ⎝⎛+⨯=∴∆BN F S . …… 14分 19. [证明] (1) 图2是由四块图1所示地砖绕点C 按顺时针旋转ο90后得到,△CFE 为等腰直角三角形,∴ 四边形EFGH 是正方形. …… 4分 [解] (2) 设x CE =,则x BE -=4.0,每块地砖的费用 为W ,制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a 、2a 、a (元), …… 6分数学2007春—第14页 (共10页)OCB Aa x x a x a x W ⎥⎦⎤⎢⎣⎡-⨯⨯--+⨯-⨯⨯+⋅=)4.0(4.0212116.02)4.0(4.02132122 ()24.02.02+-=x x a …… 10分[]4.00,23.0)1.0(2<<+-=x x a .由0>a ,当1.0=x 时,W 有最小值,即总费用为最省.答:当1.0==CF CE 米时,总费用最省. …… 14分 20. [解] (1) △ABC 的外接圆半径为2,在△ABC 中,22sin 2==B R AC ,ο30212sin ===A R BC A ,, …… 3分 C AC BC AC BC AB cos 2222⋅⋅-+=)cos(2884B A +++=()()2132234+=+=26+=∴AB . …… 6分 [证明] (2) RbB R a A 2sin ,2sin ==,由于C ∠是钝角,B A ∠∠、都是锐角,得 2222421cos ,421cos b R RB a R R A -=-=, )cos(cos B A C +-= 0444122222<⎪⎭⎫ ⎝⎛---=b R a R ab R, ()()22222244b R a R b a --<Θ,()04162224>+-∴b a R R ,即2224R b a <+. …… 10分 [解] (3) ⅰ)当R a 2>或R b a 2==时,所求的△ABC 不存在.ⅱ)当R a 2=且a b <时,ο90=∠A ,所求的△ABC 只存在一个,且22b a c -=.ⅲ)当R a 2<且a b =时,B A ∠=∠,且B A 、都是锐角,由B Rb R a A sin 22sin ===,B A 、唯一确定.因此,所求的△ABC 只存在一个,且224cos 2a R RaA a c -=⋅=. …… 14分 ⅳ)当R a b 2<<时,B ∠总是锐角,A ∠可以是钝角也可以是锐角,因此,所求的△ABC 存在两个. 由R a A 2sin =,R b B 2sin =,得 当ο90<∠A 时,22421cos a R RA -=, )cos(222B A ab b a c +++= ⎪⎭⎫ ⎝⎛---++=ab b R a R Rab b a 2222222442. 当ο90>∠A 时,22421cos a R RA --=, ⎪⎭⎫ ⎝⎛+---+=ab b R a R Rab b a c 2222222442. …… 18分 21. [解] (1) q n B q q B q B q B n +-=+=++=+==)1(,,2)1(1,1,321Λ,所以 nq n B B B n +-+++=+++)1(2121ΛΛnq n n +-=2)1(. …… 4分 (2) 11=c ,q q c +=++=2)1(12,22323)1()2(q q q q q c ++=++++=, …… 7分 由 )2(223122231q q q c c c +-+++=-+ 02>=q ,得 2312c c c >+. …… 10分(3) ①先设321,,c c c 成等比数列,由2231c c c =,得 22)2(23q q q +=++,21-=q . 此时 11=c ,49,2332==c c ,数学2007春—第16页 (共10页)所以321,,c c c 是一个公比为23的等比数列. …… 13分 如果4≥m ,m c c c ,,,21Λ为等比数列,那么321,,c c c 一定是等比数列. 由上所述,此时21-=q ,11=c ,49,2332==c c ,8234=c ,… 由于2334≠c c ,因此,对于任意4≥m ,m c c c c ,,,,321Λ一定不是等比数列. …… 16分 综上所述,当且仅当3=m 且21-=q 时,数列m c c c c ,,,,321Λ是等比数列.…… 18分 ② 设321,,x x x 和321,,y y y 分别为第1+k 列和第1+m 列的前三项,11-≤<≤n m k ,则q k x x +==21,1,23)321(q kq k x ++++++=Λ22)1(q kq k k +++=. …… 13分 若第1+k 列的前三项321,,x x x 是等比数列,则由2231x x x =,得()222)1(q k q kq k k +=+++, 022=+-kq kk ,21k q -=. …… 16分 同理,若第1+m 列的前三项321,,y y y 是等比数列,则21mq -=. 当m k ≠时,2121mk -≠-. 所以,无论怎样的q ,都不能同时找到两列数 (除第1列外),使它们的前三项都成等比数列. (18)。
2007年上海市高考数学试卷(理科)及解析
2007年上海市高考数学试卷(理科)一、填空题(共11小题,每小题4分,满分44分)1.(4分)函数的定义域为.2.(4分)已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.3.(4分)函数的反函数f﹣1(x)=4.(4分)方程9x﹣6•3x﹣7=0的解是.5.(4分)已知x,y∈R+,且x+4y=1,则x•y的最大值为.6.(4分)函数的最小正周期是T=7.(4分)有数字1、2、3、4、5,若从中任取三个数字,剩下两个数字为奇数的概率为8.(4分)已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为9.(4分)对于非零实数a,b,以下四个命题都成立:①;②(a+b)2=a2+2ab+b2;③若|a|=|b|,则a=±b;④若a2=ab,则a=b.那么,对于非零复数a,b,仍然成立的命题的所有序号是.10.(4分)平面内两直线有三种位置关系:相交,平行与重合.已知两个相交平面α,β与两直线l1,l2,又知l1,l2在α内的射影为s1,s2,在β内的射影为t1,t2.试写出s1,s2与t1,t2满足的条件,使之一定能成为l1,l2是异面直线的充分条件.11.(4分)已知圆的方程x2+(y﹣1)2=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.二、选择题(共4小题,每小题4分,满分16分)12.(4分)已知a,b∈R,且2+ai,b+i(i是虚数单位)是实系数一元二次方程x2+px+q=0的两个根,那么p,q的值分别是()A.p=﹣4,q=5 B.p=﹣4,q=3 C.p=4,q=5 D.p=4,q=313.(4分)设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2b C.D.14.(4分)在直角坐标系xOy中,分别是与x轴,y轴平行的单位向量,若直角三角形ABC中,,,则k的可能值有()A.1个 B.2个 C.3个 D.4个15.(4分)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立三、解答题(共6小题,满分90分)16.(15分)体积为1的直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=1,求直线AB1与平面BCC1B1所成角.17.(15分)在三角形ABC中,,求三角形ABC的面积S.18.(15分)近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%.在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)(1)求2006年的太阳能年生产量(精确到0.1兆瓦)(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)19.(15分)已知函数f(x)=x2+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.20.(15分)若有穷数列a1,a2…a n(n是正整数),满足a1=a n,a2=a n﹣1…a n=a1即a i=a n﹣i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.(1)已知数列{b n}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{b n}的每一项(2)已知{c n}是项数为2k﹣1(k≥1)的对称数列,且c k,c k+1…c2k﹣1构成首项为50,公差为﹣4的等差数列,数列{c n}的前2k﹣1项和为S2k﹣1,则当k为何值时,S2k﹣1取到最大值?最大值为多少?(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m﹣1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008.21.(15分)已知半椭圆与半椭圆组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,(1)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程;(2)若|A1A|>|B1B|,求的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.2007年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共11小题,每小题4分,满分44分)1.(4分)(2007•上海)函数的定义域为{x|x<4且x≠3} .【分析】欲求此函数的定义域一定要满足:4﹣x>0,x﹣3≠0,进而求出x的取值范围,得到答案.【解答】解:由,解得:x<4且x≠3故答案为:{x|x<4且x≠3}2.(4分)(2007•上海)已知l1:2x+my+1=0与l2:y=3x﹣1,若两直线平行,则m的值为.【分析】两直线平行,则方程中一次项系数之比相等,但不等于常数项之比,接解出m的值.【解答】解:∵两直线平行,∴,故答案为﹣.3.(4分)(2007•上海)函数的反函数f﹣1(x)=【分析】本题考查反函数相关概念、求反函数的方法等相关知识.将函数的解析式看做方程,解出x,然后利用与函数的值域确定反函数的定义域即可.【解答】解:由解得:即:∴函数的反函数答案:4.(4分)(2007•上海)方程9x﹣6•3x﹣7=0的解是x=log37.【分析】把3x看做一个整体,得到关于它的一元二次方程求出解,利用对数定义得到x的解.【解答】解:把3x看做一个整体,(3x)2﹣6•3x﹣7=0;可得3x=7或3x=﹣1(舍去),∴x=log37.故答案为x=log375.(4分)(2007•上海)已知x,y∈R+,且x+4y=1,则x•y的最大值为.【分析】变形为x与4y的乘积,利用基本不等式求最大值【解答】解:,当且仅当x=4y=时取等号.故应填.6.(4分)(2007•上海)函数的最小正周期是T=π【分析】利用三角函数的和角公式,将原函数式化成y=Asin(ωx+φ)+B的形式,再结合三角函数的周期公式求出周期即可.【解答】解:==∴T=π.故填:π.7.(4分)(2007•上海)有数字1、2、3、4、5,若从中任取三个数字,剩下两个数字为奇数的概率为0.3【分析】从五个数字中任取三个数字有C53种取法,剩下的两个数字为奇数有C22C31种取法,两个求比值,得到要求的概率.【解答】解:由题意知,故答案为:0.38.(4分)(2007•上海)已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为y2=12(x+3)【分析】先根据双曲线方程求得双曲线的中心和焦点,进而求得抛物线中的p,得到抛物线方程.【解答】解:双曲线的中心坐标为(0,0),该双曲线的左焦点为F(﹣3,0)则抛物线的顶点为(﹣3,0),焦点为(0,0),所以p=6,故答案为y2=12(x+3).9.(4分)(2007•上海)对于非零实数a,b,以下四个命题都成立:①;②(a+b)2=a2+2ab+b2;③若|a|=|b|,则a=±b;④若a2=ab,则a=b.那么,对于非零复数a,b,仍然成立的命题的所有序号是②④.【分析】要熟悉复数的概念和性质及其基本运算.【解答】解:对于①:解方程得a=i,所以非零复数a=i使得,①不成立;②:显然成立;③:在复数集C中,|1|=|i|,则|a|=|b|,所以当a=i,b=1时,i=1不成立,所以③不成立;④:显然成立.则对于任意非零复数a,b,上述命题仍然成立的所有序号是②④所以应填上②④.10.(4分)(2007•上海)平面内两直线有三种位置关系:相交,平行与重合.已知两个相交平面α,β与两直线l1,l2,又知l1,l2在α内的射影为s1,s2,在β内的射影为t1,t2.试写出s1,s2与t1,t2满足的条件,使之一定能成为l1,l2是异面直线的充分条件s1∥s2,并且t1与t2相交(t1∥t2,并且s1与s2相交).【分析】当两直线在一个平面内的射影是两条平行线,在另一个相交面内的射影是两条相交直线时,这两条直线一定是异面直线.【解答】解:两个相交平面α,β,当两直线在平面α内的射影是两条平行线,在平面β内的射影是两条相交直线时,这两直线是异面直线.当两直线在平面α内的射影是两条相交直线,在平面β内的射影是两条平行线时,这两直线也是异面直线.故“能成为l1,l2是异面直线的充分条件”的是“s1∥s2,并且t1与t2相交”或“t1∥t2,并且s1与s2相交”.故答案为:s1∥s2,并且t1与t2相交,或t1∥t2,并且s1与s2相交.11.(4分)(2007•上海)已知圆的方程x2+(y﹣1)2=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.【分析】由图形可以看出,可以在OP与直径围成的三角形中通过解三角形求出d与θ的函数关系,再根据函数表达式作出图象即可.【解答】解:在直角三角形中,因直径的长度为2,其所邻的角为故故函数图象为故应填:二、选择题(共4小题,每小题4分,满分16分)12.(4分)(2007•上海)已知a,b∈R,且2+ai,b+i(i是虚数单位)是实系数一元二次方程x2+px+q=0的两个根,那么p,q的值分别是()A.p=﹣4,q=5 B.p=﹣4,q=3 C.p=4,q=5 D.p=4,q=3【分析】把根代入方程,利用复数相等列出方程组,可解出结果.【解答】解:分别将2+ai,b+i代入方程得:(2+ai)2+p(2+ai)+q=0①(b+i)2+p(b+i)+q=0②对①②整理得:;解得:p=﹣4,q=5.本题也可以用“韦达定理”求解:2+ai+b+i=﹣p③,(2+ai)(b+i)=q④对③④整理得:⇒故选A.13.(4分)(2007•上海)设a,b是非零实数,若a<b,则下列不等式成立的是()A.a2<b2B.ab2<a2b C.D.【分析】由不等式的相关性质,对四个选项逐一判断,由于a,b为非零实数,故可利用特例进行讨论得出正确选项【解答】解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选C.14.(4分)(2007•上海)在直角坐标系xOy中,分别是与x轴,y轴平行的单位向量,若直角三角形ABC中,,,则k的可能值有()A.1个 B.2个 C.3个 D.4个【分析】根据给的两个向量写出第三条边所对应的向量,分别检验三个角是直角时根据判断向量垂直的充要条件,若数量积为零,能做出对应的值则是,否则不是.【解答】解:∵(1)若A为直角,则;(2)若B为直角,则;(3)若C为直角,则.∴k的可能值个数是2,故选B15.(4分)(2007•上海)已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立,下列命题成立的是()A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k2成立;B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k2成立;C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k2成立;D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k2成立【分析】由题意对于定义域内任意的k,若f(k)≥k2成立,则f(k+1)≥(k+1)2成立的含义是对前一个数成立,则能推出后一个数成立,反之不成立.【解答】解:对A,当k=1或2时,不一定有f(k)≥k2成立;对B,应有f(k)≥k2成立;对C,只能得出:对于任意的k≥7,均有f(k)≥k2成立,不能得出:任意的k <7,均有f(k)<k2成立;对D,∵f(4)=25≥16,∴对于任意的k≥4,均有f(k)≥k2成立.故选D三、解答题(共6小题,满分90分)16.(15分)(2007•上海)体积为1的直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=1,求直线AB1与平面BCC1B1所成角.【分析】根据体积先求出AA1=CC1的长,连接BC1,易证∠A1BC1是直线A1B与平面BB1C1C所成的角,在直角三角形A1BC1中求出此角即可.【解答】解:由题意,可得体积,∴AA1=CC1=2.连接BC1.∵A1C1⊥B1C1,A1C1⊥CC1,∴A1C1⊥平面BB1C1C,∴∠A1BC1是直线A1B与平面BB1C1C所成的角.,∴,则∠A1BC1=;即直线A1B与平面BB1C1C所成角的大小为.17.(15分)(2007•上海)在三角形ABC中,,求三角形ABC的面积S.【分析】先根据cosB求出sinB的值,再由两角和与差的正弦公式求出sinA的值,由余弦定理求出c的值,最后根据三角形的面积公式求得最后答案.【解答】解:由题意,得为锐角,,,由正弦定理得,∴.18.(15分)(2007•上海)近年来,太阳能技术运用的步伐日益加快,已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%.在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)(1)求2006年的太阳能年生产量(精确到0.1兆瓦)(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)【分析】(1)根据年增长率可直接算出.(2)设平均增长率为x,根据题意可得安装量和生产量的比值,进而解不等式即可.【解答】解:(1)由已知得2003,2004,2005,2006年太阳电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳电池的年生产量为670×1.36×1.38×1.40×1.42≈2499.8(兆瓦).(2)设太阳电池的年安装量的平均增长率为x,则.解得x≥0.615.因此,这四年中太阳电池的年安装量的平均增长率至少应达到61.5%.19.(15分)(2007•上海)已知函数f(x)=x2+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.【分析】(1)x2为偶函数,欲判函数f(x)=x2+的奇偶性,只需判定的奇偶性,讨论a判定就可.(2)处理函数的单调性问题通常采用定义法好用.【解答】解:(1)当a=0时,f(x)=x2对任意x∈(﹣∞,0)∪(0,+∞),有f(﹣x)=(﹣x)2=x2=f(x),∴f(x)为偶函数.当a≠0时,f(x)=x2+(x≠0,常数a∈R),取x=±1,得f(﹣1)+f(1)=2≠0,f(﹣1)﹣f(1)=﹣2a≠0,∴f(﹣1)≠﹣f(1),f(﹣1)≠f(1).∴函数f(x)既不是奇函数也不是偶函数.(2)设2≤x1<x2,f(x1)﹣f(x2)==[x1x2(x1+x2)﹣a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)﹣f(x2)<0恒成立.∵x1﹣x2<0,x1x2>4,即a<x1x2(x1+x2)恒成立.又∵x1+x2>4,∴x1x2(x1+x2)>16,∴a的取值范围是(﹣∞,16].20.(15分)(2007•上海)若有穷数列a1,a2…a n(n是正整数),满足a1=a n,a2=a n …a n=a1即a i=a n﹣i+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.﹣1(1)已知数列{b n}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{b n}的每一项(2)已知{c n}是项数为2k﹣1(k≥1)的对称数列,且c k,c k+1…c2k﹣1构成首项为50,公差为﹣4的等差数列,数列{c n}的前2k﹣1项和为S2k﹣1,则当k为何值时,S2k﹣1取到最大值?最大值为多少?(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m﹣1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008.【分析】(1)设{b n}的公差为d,由b1,b2,b3,b4成等差数列求解d从而求得数列{b n},=﹣4(k﹣13)2+4×132﹣50,用二次函数求解,(2)先得到S2k﹣1(3)按照1,2,22…2m﹣1是数列中的连续项按照定义,用组合的方式写出来所有可能的数列,再按其数列的规律求前n项和取符合条件的一组即可.【解答】解:(1)设{b n}的公差为d,则b4=b1+3d=2+3d=11,解得d=3,∴数列{b n}为2,5,8,11,8,5,2.=c1+c2+…+c k﹣1+c k+c k+1+…+c2k﹣1=2(c k+c k+1+…+c2k﹣1)﹣c k,(2)S2k﹣1S2k﹣1=﹣4(k﹣13)2+4×132﹣50,取得最大值.S2k﹣1的最大值为626.∴当k=13时,S2k﹣1(3)所有可能的“对称数列”是:①1,2,22,2m﹣2,2m﹣1,2m﹣2,22,2,1;②1,2,22,2m﹣2,2m﹣1,2m﹣1,2m﹣2,22,2,1;③2m﹣1,2m﹣2,22,2,1,2,22,2m﹣2,2m﹣1;④2m﹣1,2m﹣2,22,2,1,1,2,22,2m﹣2,2m﹣1.对于①,当m≥2008时,S2008=1+2+22+…+22007=22008﹣1.当1500<m≤2007时,S2008=1+2+…+2m﹣2+2m﹣1+2m﹣2+…+22m﹣2009=2m﹣1+2m﹣1﹣22m ﹣2009=2m+2m﹣1﹣22m﹣2009﹣1.对于②,当m≥2008时,S2008=22008﹣1.当1500<m≤2007时,S2008=2m+1﹣22m﹣2008﹣1.对于③,当m≥2008时,S2008=2m﹣2m﹣2008.当1500<m≤2007时,S2008=2m+22009﹣m﹣3.对于④,当m≥2008时,S2008=2m﹣2m﹣2008.当1500<m≤2007时,S2008=2m+22008﹣m﹣2.21.(15分)(2007•上海)已知半椭圆与半椭圆组成的曲线称为“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,(1)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程;(2)若|A1A|>|B1B|,求的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦.是否存在实数k,使得斜率为k的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有k的值;若不存在,说明理由.【分析】(1)因为,所以,由此可知“果圆”方程为,.(2)由题意,得,所以a2﹣b2>(2b﹣a)2,得.再由可知的取值范围.(3)设“果圆”C的方程为,.记平行弦的斜率为k.当k=0时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当k>0时,以k为斜率过B1的直线l与半椭圆的交点是.由此,在直线l右侧,以k为斜率的平行弦的中点轨迹在直线上,即不在某一椭圆上.当k<0时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.【解答】解:(1)∵,∴,于是,所求“果圆”方程为,(2)由题意,得a+c>2b,即.∵(2b)2>b2+c2=a2,∴a2﹣b2>(2b﹣a)2,得.又b2>c2=a2﹣b2,∴.∴.(3)设“果圆”C的方程为,.记平行弦的斜率为k.当k=0时,直线y=t(﹣b≤t≤b)与半椭圆的交点是P,与半椭圆的交点是Q.∴P,Q的中点M(x,y)满足得.∵a<2b,∴.综上所述,当k=0时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.当k>0时,以k为斜率过B1的直线l与半椭圆的交点是.由此,在直线l右侧,以k为斜率的平行弦的中点为,轨迹在直线上,即不在某一椭圆上.当k<0时,可类似讨论得到平行弦中点轨迹不都在某一椭圆上.。
2007年普通高等学校招生全国统一考试数学(文)试题(上海)
4 3 【解析】由题意,得 cos B , B 为锐角, sin B , 5 5
3π 7 2 , sin A sin( π B C ) sin B 4 10
由正弦定理得 c
10 1 1 10 4 8 , S ac sin B 2 . 2 2 7 5 7 7
(结果用数值表示) . 【答案】 0.3 【解析】剩下两个数字都是奇数,取出的三个数为两偶一奇,所以剩下两个数字都是奇数的
2 1 C2 C3 3 0.3 。 概率是 P 3 C5 10
10.对于非零实数 a,b ,以下四个命题都成立: ① a
1 0; a
② (a b) a 2ab b ;
不成立;②显然成立;对于③:在复数集 C 中,|1|=|i|,则 a b a b ,所以③不成 立;④显然成立。则对于任意非零复数 a, b ,上述命题仍然成立的所有序号是②④ 11.如图, A,B 是直线 l 上的两点,且 AB 2 .两个半径相等的动圆分别与 l 相切于
A,B 点, C 是这两个圆的公共点,则圆弧 AC , CB 与
18. (本题满分 14 分)本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分. 近年来,太阳能技术运用的步伐日益加快.2002 年全球太阳电池的年生产量达到 670 兆瓦,年生产量的增长率为 34%. 以后四年 中,年生产量的增长率逐年递增 2%(如,2003 年的年生产量的增长率为 36%) . (1)求 2006 年全球太阳电池的年生产量(结果精确到 0.1 兆瓦) ;[来源:][来 源:学|科|网 Z|X|X|K]
§K] 5.以双曲线
x2 y2 1 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 4 5
2007年上海春季高考数学解析版
2007年上海市普通高等学校春季招生考试数 学 试 卷一、填空题 (本大题满分44分)本大题共有11题,只要求直接填写结果,每题填对得4分,否则一律得零分。
1.计算221lim3(1)n n n n →∞+=+ . 2.若关于x 的一元二次实系数方程20x px q ++=有一个根为1i +(i 是虚数单位),则=q . 3.若关于x 的不等式01x ax ->+的解集为(,1)(4,)-∞-+∞,则实数=a . 4.函数2(sin cos )y x x =+的最小正周期为 .5.设函数)(x f y =是奇函数.若(2)(1)3(1)(2)3f f f f -+--=++,则(1)(2)f f += . 6.在平面直角坐标系xoy 中,若抛物线24y x =上的点P 到该抛物线的焦点的距离为6,则点P 的横坐标=x .7.在平面直角坐标系xoy 中,若曲线24x y =-与直线x m =有且只有一个公共点,则实数=m .8.若向量a ,b满足2a =,1b =,()1a a b ⋅+=,则向量a ,b的夹角的大小为 .9.若21x x 、为方程11122xx-+⎛⎫=⎪⎝⎭的两个实数解,则=+21x x .10.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有 人. 11.函数21,0,2,0x x y x x⎧+≥⎪=⎨<⎪⎩ 的反函数是 .二、选择题 (本大题满分16分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得 4分,否则一律得零分。
12.若集合{}21,A m =,{}2,4B =,则“2m =”是“{}4A B =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13.如图,平面内的两条相交直线1OP 和2OP 将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ (不包括边界).若12OP aOP bOP =+,且点P 落在第Ⅲ部分,则实数b a 、满足( )A .0,0a b >>B .0,0a b ><C .0,0a b <>D .0,0a b <<14.下列四个函数中,图像如图所示的只能是( )A .lg y x x =+B .lg y x x =-C .lg y x x =-+D .lg y x x =--15.设b a 、是正实数,以下不等式①2ab ab a b >+,② a a b b >--,③ 22243a b ab b +>-,④ 22ab ab+> 恒成立的序号为( )A .①、③B .①、④C .②、③D .②、④三、解答题 (本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤。
历年自主招生考试数学试题大全-2006年上海交通大学自主招生数学试题
2006年上海交通大学自主招生考试数学试题一、填空题(每题5分,共50分)1.矩形ABCD 中,AD =a ,AB =b ,过A 、C 作相距为h 的平行线AE 、CF ,则AF =____.2.一个正实数与它的整数部分,小数部分成等比数列,那么这个正实数是_________.3.2005!的末尾有连续________个零.4.210(2)x x -+展开式中,3x 项的系数为__________. 5.在地面距离塔基分别为100m 、200m 、300m 的A 、B 、C 处测得塔顶的仰角分别为,,,90αβγαβγ++=︒且,则塔高为______________.6.三人玩剪子、石头、布的游戏,在一次游戏中,三人不分输赢的概率为_____________;在一次游戏中,甲获胜的概率为___________.7.函数23log ()(,1y x ax a =----∞在上单调递增,则实数a 的取值范围是________.8.51x ω=是的非实数根,2(1)(1)ωωω++=_____________.9.2张100元,3张50元,4张10元人民币,共可组成_______种不同的面值.10.已知2!(1)!(2)!k k a k k k +=++++,则数列{}n a 前100项和为___________. 二、解答题(第11题8分,第12、13、14题每题10分,第15题12分)11.a ,b ,c,abc ,b c ,a (b )x 2b (c a )x c (a b )有两个相等根,求证:111,,a b c成等差数列.A D CF E B12.椭圆2221(1)x y a a+=>,一顶点A (0,1),是否存在这样的以A 为直角顶点的内接于椭圆的等腰直角三角形,若存在,求出共有几个,若不存在,请说明理由.13.已知|z |=1,k 是实数,z 是复数,求|z 2+kz +1|的最大值.14.若函数形式为(,)()()()(),(),()f x y a x b y c x d y a x c x =+其中为关于x 的多项式,(),()b y d y 为关于y 的多项式,则称(,)f x y 为P 类函数,判断下列函数是否是P 类函数,并说明理由.(1) 1+xy ; (2) 1+xy +x 2y 2.15.设3229,29270k x kx k x k ≥++++=解方程.。
自招 上海自主招生数学试题
B. 30 A 45
C. 45 A 60
D. 60 A 90
3
8. 观察右图,根据规律,从 0
3→4
7→8
11 → …
↓
↑
↓
↑
↓
↑
…
2002 到 2004,箭头方向 1 → 2
2
2004 年交大附中自主招生数学试题及答案
(本试卷满分 100 分,90 分钟完成)
一、单项选择题:(本大题满分 30 分)本大题共有 10 个小题,每小题给出了代号为 A 、B 、
C 、 D 四个答案,其中有且只有一个答案是正确的.请把正确答案的代号写在题后的
圆括号内.每小题选对得 3 分;不选、错选或选出的代表字母超过一个(不论是否写在
2011-2015 年 上海初中自主招生数学
试题及答案
1
目录
2004 年交大附中自主招生数学试题及答案................................................................................... 3 2011 年华师二附自主招生数学试题及答案................................................................................... 7 2011 年上海中学自主招生数学试题及答案(部分)................................................................... 9 2012 年复旦附中自主招生数学试题及答案................................................................................. 11 2013 年复旦附中自主招生数学试题及答案(部分)................................................................. 13 2013 年华二附中自主招生数学试题与答案(部分)................................................................. 14 2013 年交大附中自主招生数学试题及答案(部分)................................................................. 16 2013 年上海中学自主招生数学试题及答案................................................................................. 17 2014 年交大附中自主招生数学试题及答案................................................................................. 20 2014 年进才中学自主招生数学试题及答案................................................................................. 23 2014 年上海中学自主招生数学试题及答案................................................................................. 25 2014 年复旦附中自主招生数学试题及答案................................................................................. 27 2014 年华师二附自主招生数学试题............................................................................................. 29 2014 年华中一附自主招生数学试题............................................................................................. 33 2015 年复旦附中自主招生数学试题............................................................................................. 37 2015 年华师一附自主招生数学试题及答案................................................................................. 39
2007年上海交大推优
2007年上海交大推优、保送生考试数学题(摘选)加入时间:2008-6-30 18:53:17 浏览次数:433一、填空题(每题5分,共50分)1.若2f(3x)+f(2-3x)=6x+1则f(x)=__________2.已知3a=4b=6,则1a-1b=_________3.a>0,且a≠1,则方程ax+1=-x2+2x+2a的解的个数是_______4.一个扇形周长为6,则此扇形面积的最大值是_________5.集合M={(x,y)—x(x-1)≤y(1-y)},N={(x,y)—x2+y2≤K}若M奂N,则K的最小值为________6.化简1·1!+2·2!+3·3!+…+n·n!=___________7.函数f(x)=—x—x则s=1+2f(x)+3f2(x)+……+nf(n-1)(x)=8.若a≥0,f(x)=(a+cosx)(a+sinx)的最大值为252,则a为________9.6名考生坐在西侧各有通道的同一排座位上应考,考生答完试卷的先后顺序不一定,每人考完后立即交卷,则其中一人交卷时为达到通道而打扰其它正在考试的学生的概率为_________10.f(x)=2x-1x+1f n+1 (x)=f(f n (x)),已知f 35 (x)=f 5 (x)则f28(x)=________二、解答题设f(x)=—sin—+—cosx—,试讨论其函数特性(有界性、单调性、奇偶性,周期性),求出最值,并画出其在[0,2蒹]上的函数图象13.线段AB=3,端点都在y2=x上,求AB中点M 到y轴距离的最小值,并求此时的M点坐标。
2007年上海交大推优、保送生考试数学题(摘选)加入时间:2008-6-30 18:53:17 浏览次数:433一、填空题(每题5分,共50分)1.若2f(3x)+f(2-3x)=6x+1则f(x)=__________2.已知3a=4b=6,则1a-1b=_________3.a>0,且a≠1,则方程ax+1=-x2+2x+2a的解的个数是_______4.一个扇形周长为6,则此扇形面积的最大值是_________5.集合M={(x,y)—x(x-1)≤y(1-y)},N={(x,y)—x2+y2≤K}若M奂N,则K的最小值为________6.化简1·1!+2·2!+3·3!+…+n·n!=___________7.函数f(x)=—x—x则s=1+2f(x)+3f2(x)+……+nf(n-1)(x)=8.若a≥0,f(x)=(a+cosx)(a+sinx)的最大值为252,则a为________9.6名考生坐在西侧各有通道的同一排座位上应考,考生答完试卷的先后顺序不一定,每人考完后立即交卷,则其中一人交卷时为达到通道而打扰其它正在考试的学生的概率为_________10.f(x)=2x-1x+1f n+1 (x)=f(f n (x)),已知f 35 (x)=f 5 (x)则f28(x)=________二、解答题设f(x)=—sin—+—cosx—,试讨论其函数特性(有界性、单调性、奇偶性,周期性),求出最值,并画出其在[0,2蒹]上的函数图象13.线段AB=3,端点都在y2=x上,求AB中点M 到y轴距离的最小值,并求此时的M点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 2
. . .
1 1 − = a b
3.设 a>0 且 n≠1,则方程 a + 1 = − x + 2 x + 2a 的解的个数为 4.设扇形的周长为 6,则其面积的最大值为 5. 11!+ 22!+ 33!+ … + nn ! = . .
6.设不等式 x( x − 1)≤y (1 − y ) 与 x 2 + y 2 ≤k 的解集分别为 M 和 N .若 M ∈ N ,则 k 的最小值为 7.设函数 f ( x) = .
答案与解析索取 邮箱:iienglish@
| x| ,则 S = . 1 + 2 f ( x) + 3 f 2 ( x) + … + nf n −1 ( x) = x 25 8. 设 n≥0 n≥0, 且函 数 f ( x) = 则n = (a + cos x)(a + sin x) 的最大值为 , 2
.
9.6 名考生坐在两侧各有通道的同一排座位上应考,考生答完试卷的先后次序不定, 且每人答完后立即交卷离开座位, 则其中一人交卷时为到达通道而打扰其余尚在考试的考生 的概率为 . 10 . 已 知 函 数 f ( x) =
2x −1 , 对 于 f n +1 ( x) = f1 ( f n ( x)) , 若 f 35 ( x) = f 5 ( x) , 则 x +1
f 28 ( x) =
.
二、计算与证明题 11.工件内圆弧半径测量问题.为测量一工件的内圆弧半径 R ,工人用三个半径均为 r 的圆柱形量棒 O1 , O2 , O3 放在如图与工件圆弧相切的位置上,通过深度卡尺测出卡尺水平面 到 中 间 量 棒 O2 顶 侧 面 的 垂 直 深 度 h , 试 写 出 用 R 表 示 h 的 函 数 关 系 式 , 并 计 算 当
2007 年上海交通大学冬令营选拔测试 数学试题
说明:考试时间 2 小时,考生根据自己情况选题作答,综合优秀或单科突出给予 A 的 认定。满分 l00 分。 一、填空题 1.设函数 f ( x) 满足 2 f ( x) + f (2 − 3 x) =6 x + 1 ,则 f ( x) = 2.设 a, b, c 均为实数,且 2= 6= 4 ,则
13.已知线段 AB 长度为 3,两端均在抛物线 x = y 2 上,试求 AB 的中点 M 到 y 轴的 最短距离和此时 M 点的坐标.
14.设 f ( x) =(1 + a ) x 4 + x 3 − (3a + 2) x 2 − 4a ,试证明对任意实数 a : (1)方程 f ( x) = 0 总有相同实根; (2)存在 x0 ,恒有 f ( x0 ) ≠ 0 .
15 .已知等差数列 {an } 的首项为 a ,公差为 b ,等比数列 {bn } 的= 1, 2, … ,其中 a, b 均为正整数,且 a1<<<<
(1)求 a 的值;
(2)若对于 {an },{bn } ,存在关系式 am + 1 = bn 。试求 b 的值; (3)对于满足(2)中关系式的 am ,试求 a1 + a2 + … + am .
r = 10mm , h = 4mm 时, R 的值
答案与解析索取 邮箱:iienglish@
12.设函数 = f ( x) | sin x | + | cos x | ,试讨论 f ( x) 的性态(有界性、命偶性、单调性和 周期性),求其极值,并作出其在 [0, 2π ] 内的图像.