48米下承式简支栓焊钢桁梁桥课程设计讲解

合集下载

简支钢板梁和钢桁梁桥ppt课件

简支钢板梁和钢桁梁桥ppt课件

二、主桁的几何图式
30
三、主桁的主要尺寸
桁高-经济高度,跨度的1/5~1/10,满足桥上净空要求 节间长度-一般为桁高的0.8~1.2倍 斜杆倾度-与竖直线的交角在30°~ 50°范围内为宜 主桁中心距-不应小于跨长的1/20,满足桥上净空要
求 主桁尺寸与主桁图式有密切关系,各主要尺寸之间也
人行道 ) ❖ 桥面系-纵梁、横梁及纵梁间的联结系 ❖ 主桁-由上弦杆、下弦杆、腹杆(斜杆,竖杆)及节
点组成 ❖ 联结系-水平纵向联结系(简称平纵联,分上平纵联,
下平纵联 ),横向联结系
26
铁路下承式简支桁架桥各组成部分
27
铁路下承式简支桁架桥各组成部分(续)
横梁
28
铁路上承式钢桁梁组成部分
29
钢桥的基本特点: ① 构件特别适合用工业化方法来制造,便于运输,工地的安装速度也 快,因而钢桥的施工工期较短; ② 钢桥在受到破坏后,易于修复和更换; ③ 耐候性差、易锈蚀,铁路钢桥采用明桥面时噪声大,维护费用高。 本节所讨论的钢桥主要以铁路钢桥为主。
2
一、钢桥所用的材料
钢种-碳素钢(含碳量为0.03~0.25%的钢) 、低合金钢(各种合 金元素总含量不超过3%的钢)
摇臂钻床
覆盖式机器样 板及钻孔套
43
制造示例(焊接)
半自动埋弧焊
杆件组焊
44
制造示例(整形)
↓H形杆件矫正机示意
↑H形杆件的焊接变形
← 钢 梁 矫 正
45
制造示例(试装)
钢桁梁试拼装(九江大桥第一联)
46
二、钢桥安装
钢桥跨的构件由制造工厂运抵桥址以后,必须架设到设计位置上, 牢固支承连接,准备好桥面和其它必要设施,才能行车。这部分 施工工作,总称为安装(或架设)。

钢桥课程设计48米单线铁路下承式栓焊简支梁主桁设计

钢桥课程设计48米单线铁路下承式栓焊简支梁主桁设计

48米单线铁路下承式栓焊简支梁主桁设计目录第一部分设计说明书一、设计资料----------------------------4二、钢梁上部总体布置及尺寸拟定--------------------------41、钢桁架梁桥的优缺点--------------------------42、设计假定和计算方法---------------------------43、主桁杆件截面选择---------------------------54、节点设计原则---------------------------55、设计思路和步骤----------------------------56、参考文献 ----------------------------6第二部分设计计算书一、打开软件-----------------------------------7二、创建模型-----------------------------------71.设定造作环境-----------------------------------72.定义材料和截面-----------------------------------73.建立节点和单元-----------------------------------84.输入边界条件-----------------------------------85.输入荷载(1)——加载自重--------------------------------9 6.运行结构分析(1)-----------------------------------107.查看结果-----------------------------------108.输入荷载(2)——活载添加-------------------------------12 9.运行结构分析(2)----------------------------------1310.查看结果-----------------------------------13三、主力求解-----------------------------------141.冲击系数-----------------------------------142.活载发展均衡系数-----------------------------------143.活载产生内力-----------------------------------14四、横向附加力产生主桁内力计算---------------------------------151.由已知条件确定横向控制力--------------------------------15 2.用软件计算横向力作用下的桁架杆件内----------------------16 3.桥门架效应计算------------------------------17五、纵向荷载产生主桁内力计算--------------------------------18六、内力组合----------------------------------19七、截面验算----------------------------------211.验算内容----------------------------------212.主桁杆件截面几何特征计算---------------------------------21 3.主桁杆件截面验算----------------------------------24八、节点设计计算与验算---------------------------------27第一部分设计说明书一、设计资料1. 设计规范:《铁路桥梁设计规范》2. 活载等级:中—活载3. 结构轮廓尺寸:计算跨度48米,桥全长48.6米,桁高11米,主桁中距5.75米,节间长度8米,倾斜角809.0sin 1-=θ4.材料:主桁采用16Mnq 钢,板厚限于24mm ,高强螺栓用40B 钢5.连接:工厂焊接,工地栓接,基本参数为:栓直径23mm ,预紧力200KN ,摩擦系数0.456.恒载:钢桥桥面为明桥面,双侧人行道,自重按34KN/m 计,风力为1000KN/m*m二、钢梁上部总体布置及尺寸拟定一、钢桁架梁桥的优缺点钢桁架梁桥具有自重轻、跨度大,结构形式更趋于合理,形成更多优美、实用的体系等优点。

钢桁梁桥设计与计算详细解读,从基础开始~

钢桁梁桥设计与计算详细解读,从基础开始~

钢桁梁桥设计与计算详细解读,从基础开始~一、钢桁梁的组成1、分类:按桥面位置的不同分为上承式桁梁桥、下承式桁梁桥、和双层桁梁桥2、组成:由主桁、联结系、桥面系及桥面组成(一)主桁它是的主要承重结构,承受竖向荷载。

主桁架由上、下弦杆和腹杆组成。

腹杆又分为斜杆和竖杆;节点分大节点和小节点;节间距指节点之间的距离。

(二)联结系1、分类:纵向联结系和横向联结系2、作用:联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向荷载3、纵向联结系分上部水平纵向联结系和下部水平纵向联结系;主要作用为承受作用于桥跨结构上的横向水平荷载、横向风力、车上横向摇摆力及离心力。

另外是横向支撑弦杆,减少其平面以外的自由长度。

4、横向联结系分桥门架和中横联;主要作用为是增加钢桁梁的抗扭刚度。

适当调节两片主桁或两片纵联的受力不均。

(三)桥面系1、组成:由纵梁、横梁及纵梁之间的联结系2、传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主桁架节点。

(四)桥面桥面是供车辆和行人走行的部分。

桥面的形式与钢梁桥及结合梁桥相似。

二、主桁架的图式及特点⌝三角形桁架(Warren trussesυ节间距较小时不设竖腹杆,较大时可设竖腹杆υ弦杆的规格和大节点的个数较少,适应定型化设计,便于制造和安装υ我国铁路中等跨度(L=48m~80m)下承式栓焊钢桁梁桥标准设计。

⌝斜杆形桁架(Pratt trusses)υ斜腹杆仅受压或受拉υ弦杆和竖杆规格多,均为大节点。

⌝双重腹杆桁架(Parallel chord rhombic truss)υ斜杆只承受节间剪力的一半υ受压斜杆短,对压屈稳定有利。

υ适用于大跨度钢桁梁,如武汉、南京长江大桥和我国铁路标准设计(L=96m~120m)下承式简支栓焊钢桁梁桥。

主桁架的主要尺寸⌝先确定桥梁跨度,再确定主桁架的主要尺寸包括:桁架高度、节间长度、斜杆倾角和两片主桁架的中心距。

⌝在拟定上述尺寸时,要综合考虑各种影响因素,相互协调,尽可能采用标准化和模数化,目的在于使设计、制造、安装、养护和更换工作简化及方便。

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁3

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁3

在交叉形的纵向联结系中,应计算由于主桁弦杆变形
或横梁变形所引起的联结系杆件的内力。
由于主桁弦杆变形或横梁变形所引起的联结系杆件的
内力,可按下列公式计算:
交叉形斜杆因弦杆变形而生的内力:
Nd
=
N A
× 1+ 2
Ad
Ad cos2 α sin 3 α + Ad
cos3 α
Ap
A
交叉形,当横梁兼作撑杆:
Nd
交叉形的腹杆体系
桥梁工程
交叉形上平纵联
桥梁工程
交叉形的腹杆体系
2、平纵联的计算 简支桁架桥的平纵联的计算图式是水平放置的简支铰
接桁架,其计算跨度或等于主桁跨度,或等于主桁上弦端 节点之间的距离。
平纵联所受的荷载包括:横向风力,列车横向摇摆 力,离心力(若是弯道桥),由于弦杆变形所引起的力。
桥梁工程
纵梁跨中弯矩和梁端剪力影响线见下图 跨中恒载弯矩:
M p = p × Ω1
梁端恒载剪力:
Qp = p×Ω2
跨中活载弯矩:
M k = η(1 + μ)K1 × Ω1
梁端活载剪力:
Qk = η(1 + μ)K 2 × Ω2
(2)纵梁的应力计算 包括:弯曲应力、疲劳强度、剪应力
桥梁工程
桥梁工程
二、纵梁和横梁的计算
鱼形板应力计算和疲劳强度的验算如下:
σ = N0 ≤ [σ ]
A0
γ dγ n (σ max − σ min ) ≤ γ t [σ 0 ]
式中 A0 —鱼形板的净截面面积; [σ ] —鱼形板的容许应力;
[σ 0 ] —疲劳容许应力幅。
桥梁工程
每块鱼形板与纵梁翼缘连接所需的螺栓数:

48m钢桥设计

48m钢桥设计

.48m钢桁架铁路桥设计学院:土木工程学院班级:土木0906姓名:张宇学号:1801090603指导老师:方海整理日期:2012年01月07日——目录——第一章设计依据 (2)第二章主桁架杆件内力计算 (4)第三章主桁杆件设计 (10)第四章弦杆拼接计算 (14)第五章节点板设计 (16)第六章节点板强度检算 (16)48m钢桁架桥课程设计一、设计目的:跨度L=48米单线铁路下承载式简支栓焊钢桁梁桥部分设计二、设计依据:1. 设计《规范》铁道部1986TB12-85《铁路桥涵设计规范》简称《桥规》。

2. 结构基本尺寸计算跨度L=48m;桥跨全长L=48.10m;节间长度d=8.00m;主桁节间数n=6;主桁中心距B=5.75m;平纵联宽B0=5.30m;主桁高度H=12.00m;纵梁高度h=1.35m;纵梁中心距b=2.00m;3. 钢材及其基本容许应力:杆件及构件——16Mnq;高强螺栓——40B;精制螺栓——ML3;螺母及垫圈——45号碳素钢;铸件——ZG25;辊轴——锻钢35钢材的基本容许应力参照1986年颁布的《铁路桥涵设计规范》。

4. 结构的连接方式:桁梁杆件及构件,采用工厂焊接,工地高强螺栓连接;人行道托架采用精制螺栓连接;焊缝的最小正边尺寸参照《桥规》;高强螺栓和精制螺栓的杆径为Φ22,孔径d=23mm;5. 设计活载等级——标准中活载6. 设计恒载主桁P3=16kN/m;联结系P4=2.76kN/m;桥面系P2=6.81kN/m;高强螺栓P6=(P2+P3+P4)×3%; 检查设备P5=1.00kN/m;桥面P1=10.00kN/m;焊缝P7=(P2+P3+P4)×1.5%。

计算主桁恒载时,按每线恒载P=P1+P2+P3+P4+P5+P6+P7。

三、设计内容:1. 主桁杆件内力计算,并将计算结果汇整于2号图上;2. 围绕E2节点主桁杆件截面选择及检算;3. 主桁E2节点设计及检算;4. 绘制主桁E2节点图(3号图)。

下承式钢桁梁桥结构设计及优化(跨度48m)

下承式钢桁梁桥结构设计及优化(跨度48m)

(请在以上相应方框内打“√”)
作者签名: 导师签名:
XXXX 年 X 月 X 日 XXXX 年 X 月 X 日
-2-
武汉理工大学毕业设计(论文)
武汉理工大学毕业设计(论文)任务书
学生姓名: XXXX 指导教师: XXXX 专业班级: XXXX 工作单位: XXXX
设计(论文)题目:下承式钢桁梁桥结构设计及优化(跨度 48m) 设计(论文)主要内容:
指导教师签名: 2013 年 3 月 15 日
-7-
武汉理工大学毕业设计(论文)


摘 要 ................................................................................ 1 Abstract .............................................................................. 2 1 绪论 ................................................................................ 3 1.1 引言 .......................................................................... 3 1.2 钢桥的特点 .................................................................... 3 1.2.1 自身特点 ................................................................ 3 1.2.2 适用范围 ................................................................ 3 1.3 我国钢桥的发展历程 ............................................................ 4 1.3.1 我国钢桥发展的历程回顾 .................................................. 4 1.3.2 三个里程碑和新技术发展的新纪元 .......................................... 4 1.4 钢桥的发展现状 ................................................................ 5 1.4.1 大跨度钢桥 .............................................................. 5 1.4.2 复合桥梁 ................................................................ 7 1.4.3 我国铁路钢桥的新型结构 .................................................. 7 1.5 国外钢桥概况 .................................................................. 8 1.6 国内外桥梁情况比较 ............................................................ 9 1.7 钢桥发展的要求 ............................................................... 10 1.8 钢桥发展的趋势 ............................................................... 10 2 设计资料 ........................................................................... 12 2.1 设计目的 ..................................................................... 12 2.2 设计依据 ..................................................................... 12 2.2.1 设计《规范》 ........................................................... 12 2.2.2 结构基本尺寸 ........................................................... 12 2.2 钢材及其基本容许应力 ..................................................... 12 2.2.4 结构的连接方式 ......................................................... 12 2.2.5 设计活载等级 ........................................................... 13 2.2.6 设计恒载 ............................................................... 13 2.3 主桁架杆件内力计算 ........................................................... 14 2.3.1 内力的组成 ............................................................. 14 2.3.2 影响线 ................................................................. 14 2.3.3 恒载所产生的内力 ....................................................... 15 2.3.4 活载所产生的内力 ....................................................... 17 2.3.5 横向风力作用下的主桁杆件附加力计算 ..................................... 21

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

桥梁工程
特别说明 活载发展系数是用在使设计的桥梁各部件在强度检算 时,能承受的活载均匀,对疲劳损伤没关系。所以在疲劳 内力组合中,不考虑活载发展系数。
′ = η (1 + μ )kΩ N k = η (1 + μ )N k
′ = (1 + μ f ) kΩ N k = (1 + μ f )N k
桥梁工程
桥梁工程
⑤当由于将实际结构转化为各个平面计算模型产生的误 差较大时,需要进行必要的校正: a.由于主桁弦杆变形所引起的平纵联杆件的内力。 b.桥面系的纵、横梁和主桁弦杆的共同作用产生的内力 c.由横梁、主桁竖杆和横向联结系的眉杆所构成的横向 框架
桥梁工程
d.节点刚性连接引起的主桁杆件附加应力(次应 力),设计时,主桁杆件截面高度与其长度之比在连续桁 梁中大于1/15时,简支桁梁中大于1/10时,应计算由于节 点刚性所产生的次应力。
桥梁工程 b.桥面重量
p2
明桥面(包括双侧人行道): 当木步行板时,单线=8KN/m,双线=15KN/m; 当为钢筋混凝土或钢步行板时,单线=10KN/m, 双线 =17KN/m。 当采用有砟桥面,桥面重量需进行道砟板、道砟、轨枕和 钢轨等的计算,规范中没有规定。 c.每片主桁计算恒载强度
p = ( p1 + p 2 ) 2
Ω=
2H
1 (n − m − 1) d Ω′ = − 2 n −1 sin θ
2
斜杆:
1 m2d 1 Ω= 2 n − 1 sin θ
竖杆: 支座反力:
Ω=d
l Ω= 2
桥梁工程 (3)恒载作用下主桁杆件内力计算
N p = p∑ Ω
p 其中 ——均布恒载强度(每片主桁的); ∑ Ω ——杆件内力影响线面积的代数和。

48米下承式简支栓焊钢桁梁桥课程设计讲解

48米下承式简支栓焊钢桁梁桥课程设计讲解

现代钢桥课程设计学院:土木工程学院班级:1210姓名:罗勇平学号:1208121326指导教师:周智辉时间:2015年9月19日目录第一章设计说明 .............................................. 错误!未定义书签。

第二章主桁杆件内力计算 . (5)第三章主桁杆件截面设计与检算 (14)第四章节点设计与检算 (23)第一章 设计说明一、设计题目单线铁路下承式简支栓焊钢桁梁设计二、设计依据1. 设计规范铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角︒=973.53θ,809.0sin =θ,588.0cos =θ。

3. 钢材及基本容许应力杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。

钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。

4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接;人行道托架采用精制螺栓连接。

连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精制螺栓的杆径为22φ,孔径为mm d 23=。

5. 设计活载等级 标准中—活载。

6. 设计恒载主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=;高强度螺栓%3)(4326⨯++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327⨯++=p p p p 。

简支钢桁梁桥课程设计

简支钢桁梁桥课程设计

单线铁路下承式栓焊简支钢桁梁桥课程设计目录第一章设计资料 (1)第一节基本资料 (1)第二节设计内容设计内容 (1)第三节设计要求 (2)第二章主桁杆件内力计算 (3)第一节主力作用下主桁杆件内力计算 (3)第二节横向风力作用下的主桁杆件附加内力计算 (6)第三节制动力作用下的主桁杆件附加内力计算 (8)第四节疲劳内力计算 (9)第五节主桁杆件内力组合 (11)第三章主桁杆件截面设计 (13)第一节下弦杆截面设计 (13)第二节上弦杆截面设计 (15)第三节端斜杆截面设计 (16)第四节中间斜杆截面设计 (17)第五节吊杆截面设计 (19)第六节腹杆高强螺栓数量计算 (21)第四章弦杆拼接计算和下弦端节点设计 (22)第一节E2节点弦杆拼接计算 (22)第二节E0节点弦杆拼接计算 (23)第三节下弦端节点设计 (24)第五章挠度计算及预拱度设计 (25)第一节挠度计算 (25)第二节预拱度设计 (26)第六章桁架梁桥空间模型计算 (27)第一节建立空间详细模型 (27)第二节恒载竖向变形计算 (28)第三节恒载和活载内力和应力计算 (28)第四节自振特性计算 (29)第七章设计总结 (30)下弦端节点设计图 (32)单线铁路下承式栓焊简支钢桁梁桥课程设计 1第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。

2 结构轮廓尺寸:计算跨度L=86.8 m,钢梁分10个节间,节间长度d=8.68m,主桁高度H=11.935m,主桁中心距B=5.75m,纵梁中心距b=2.0m,纵联计算宽度B0=5.30m,采用明桥面、双侧人行道。

3 材料:主桁杆件材料Q345q,板厚≤45mm,高强度螺栓采用40B,精制螺栓采用BL3,支座铸件采用ZG35 II、辊轴采用35号锻钢。

4 活载等级:中-荷载。

5 恒载(1) 主桁计算桥面p1=10kN/m,桥面系p2=6.29kN/m,主桁架p3=14.51kN/m,联结系p4=2.74kN/m,检查设备p5=1.02kN/m,螺栓、螺母和垫圈p6=0.02(p2+p3+p4),焊缝p7=0.015(p2+p3+p4);(2) 纵梁、横梁计算纵梁(每线)p8=4.73kN/m(未包括桥面),横梁(每片)p9=2.10kN/m。

下承式简支钢桁梁1

下承式简支钢桁梁1

47
桥梁工程
王形和箱形杆件
48
桥梁工程
箱形杆件的构造
49
桥梁工程
箱形杆件
50
桥梁工程
箱形杆件
51
桥梁工程
第二节 主桁杆件内力计算 主讲内容:
(1)桁架桥杆件内力计算的基本原理 (2) 主力作用下主桁杆件内力计算;
(3)横向附加力作用下的主桁杆件内力计算;
(4)制动力作用下的主桁杆件内力计算; (5)主桁杆件计算内力的确定。
52
桥梁工程
1. 桁架桥杆件内力计算的基本原理
桁架空间结构
53
第九章 下承式简支桁架桥
桥梁工程
①将桥跨的空间桁架结构分成若干个平面桁架结构:主
桁、纵梁、横梁、平纵联、横向联结系和桥门架。
桁架分解成的平面结构
54
桥梁工程
②将平面桁架结构中各杆件的轴线所形成的图形作为计 算图式。
25
桥梁工程
桥面
26
桥梁工程 3.下承式栓焊简支钢桁梁荷载传递途径 ①竖向荷载:主要是列车竖向荷载,包括列车的动力荷载。
桥面
竖向荷载
纵梁
横梁
主桁节点
主桁杆件
支座
墩台。
②横向水平荷载:包括风力、列车横向摇摆力、曲线桥的离 心力。
横向水平荷载由平纵联承受,作用在上平纵联上的横向
水平力先传给桥门架,再由桥门架传到支座和墩台上去,下 平纵联直接通过支座传给墩台。
等。
30
桥梁工程
三角形腹杆体系
31
桥梁工程
上弦为折线腹杆体系
三角再分形腹杆体系
32
桥梁工程
米型腹杆体系
33
桥梁工程
N型腹杆体系

钢桁架桥计算书-毕业设计

钢桁架桥计算书-毕业设计

目录1.设计资料 (1)1。

1基本资料 (1)1。

2构件截面尺寸 (1)1。

3单元编号 (4)1.4荷载 (5)2。

内力计算 (7)2.1 .................................................... 荷载组合 72.2内力 (8)3.主桁杆件设计 (11)3.1验算内容 (11)3.2截面几何特征计算 (11)3。

3刚度验算 (14)3.4强度验算 (16)3.5疲劳强度验算 (16)3.6总体稳定验算 (17)3。

7局部稳定验算 (18)4.挠度及预拱度验算 (18)4.1挠度验算 (18)4.2预拱度 (19)5.节点应力验算 (19)5.1节点板撕破强度检算 (19)5.2节点板中心竖直截面的法向应力验算 (20)5。

3腹杆与弦杆间节点板水平截面的剪应力检算 (21)6。

课程设计心得 (22)1.设计资料1.1基本资料(1)设计规范《公路桥涵设计通用规范》(JTG D60—2004);《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);(2)工程概况该桥为48m下承式公路简支钢桁架梁桥,共8个节间,节间长度为6m,主桁高10m,主桁中心距为7.00m,纵梁中心距为3m,桥面布置2行车道,行车道宽度为7m。

(3)选用材料主桁杆件材料采用A3钢材.(4)活载等级采用公路I级荷载.1.2构件截面尺寸各构件截面对照图各构件截面尺寸统计情况见表1-1:表1—1 构件截面尺寸统计表1.3单元编号(1)主桁单元编号(2)桥面系单元编号(3)主桁纵向联结系单元编号(4)主桁横向联结系单元编号1.4 荷载(1) 钢桥自重按A3钢材程序自动添加。

(2) 桥面板自重桥面板采用C55混凝土,厚度为250mm ,宽度为7m ,取容重3=25kN m γ。

假设桥面板不参与受力,将其视为恒载施加在纵梁上,两纵梁各自承担50%。

10.250725/43.75/q kN m kN m =⨯⨯=那么,每片纵梁承担21.875kN/m 的荷载。

下承式栓焊简支钢桁梁桥设计计算书解剖

下承式栓焊简支钢桁梁桥设计计算书解剖

仁爱学院下承式栓焊简支钢桁梁桥课程设计姓名:学号:班级:设计时间:目录第一章设计资料………………………………………………………………第一节基本资料…………………………………………………………第二节设计内容…………………………………………………………第三节设计要求…………………………………………………………第二章杆件内力计算…………………………………………………………第一节主力作用下主桁杆件内力计算…………………………………第二节横向风力作用下的主桁杆件附加内力计算……………………第三节制动力作用下的主桁杆件附加内力计算………………………第四节疲劳内力计算……………………………………………………第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计……………………………………………………第一节下弦杆截面设计…………………………………………………第二节上弦杆截面设计…………………………………………………第三节端斜杆截面设计…………………………………………………第四节中间斜杆截面设计………………………………………………第五节吊杆截面设计……………………………………………………第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计……………………………………第一节E2节点弦杆拼接计算……………………………………………第二节E0节点弦杆拼接计算……………………………………………第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。

2 桁架尺寸:计算跨度分别为L=48 m、64 m、80 m (按班级人数等分三组,按组序分别对应计算跨度),节间长度8 m,桁高11 m,主桁中心距5.75 m,纵梁中心距2.0 m,纵联计算宽度5.30 m,采用明桥面。

(完整版)钢桁梁课件

(完整版)钢桁梁课件
桁梁荷载传递途径 ①竖向荷载:主要是列车竖向荷载,包括列车的动 力荷载。
竖向荷载纵梁 横梁 主桁节点 主桁杆件 支座 墩台。
②横向水平荷载:包括风力、列车横向摇摆力、曲 线桥的离心力。
横向水平荷载由平纵联承受,作用在上平纵联上的 横向水平力先传给桥门架,再由桥门架传到支座和 墩台上去,下 平纵联直接通过支座传给墩台。
下承式简支桁架桥两主桁的中心矩考虑:
a.横向刚度:两主桁的中心矩与跨度之比; b.桥上净空要求(4.88m单线;8.88m双线)
❖ 列车提速后,为了增加桥梁的横向刚度,减少横向 振幅, 新的标准设计,两主梁的中心距,单线 6.4m;双线10.0m。

第二章 桥面系梁格构造与连接
组成:纵梁、横梁及纵梁之间的联结系组成 我国铁路下承式各种跨度的栓焊钢桁梁标准设计, 其桥 面系采用统一布置及统一尺寸(P245-246,图7-2-2— 7.2.3) (1)纵梁与横梁
由于不用鱼形板,连接处将产生很大的附加应力 ,疲劳破坏的危险增大,铁路桥中不允许采用这样 的构造。还应当注意在采用这类构造时,切口的地 方必须设圆口,以防发生裂缝。
(3)横梁与主桁的连接
纵、横梁等高时,将横梁下翼缘与主桁下弦中心平 齐(a)
不等高,应让纵梁下翼缘与主桁下弦中心平齐,使 主桁下平纵联的斜撑得以从纵梁下方通过,此时横梁 下翼缘降至下弦中心平面以下,下平纵联的水平节点 板要被横梁腹板隔开(b)
下承式简支桁架桥
❖ 主讲内容: (1) 概述(应用、组成、主要尺寸、分析原理) (2)桥面系梁格构造与连接 (3)节点构造 (4)联结系构造
第一章 概述
1. 下承式简支桁架桥应用
桁架桥同混凝土桥梁相比自重轻,跨越能力 大,结构形式合理,实用性强。

下承式栓焊简支钢桁梁桥设计计算书分解

下承式栓焊简支钢桁梁桥设计计算书分解

仁爱学院下承式栓焊简支钢桁梁桥课程设计姓名:学号:班级:设计时间:目录第一章设计资料………………………………………………………………第一节基本资料…………………………………………………………第二节设计内容…………………………………………………………第三节设计要求…………………………………………………………第二章杆件内力计算…………………………………………………………第一节主力作用下主桁杆件内力计算…………………………………第二节横向风力作用下的主桁杆件附加内力计算……………………第三节制动力作用下的主桁杆件附加内力计算………………………第四节疲劳内力计算……………………………………………………第五节主桁杆件内力组合………………………………………………第三章主桁杆件截面设计……………………………………………………第一节下弦杆截面设计…………………………………………………第二节上弦杆截面设计…………………………………………………第三节端斜杆截面设计…………………………………………………第四节中间斜杆截面设计………………………………………………第五节吊杆截面设计……………………………………………………第六节腹杆高强度螺栓计算……………………………………………第四章弦杆拼接计算和下弦端节点设计……………………………………第一节E2节点弦杆拼接计算……………………………………………第二节E0节点弦杆拼接计算……………………………………………第三节下弦端节点设计………………………………………………….. 下弦端节点设计图………………………………………………………………第一章设计资料第一节基本资料1 设计规范:铁路桥涵设计基本规范(TB10002.1-2005),铁路桥梁钢结构设计规范(TB10002.2-2005)。

2 桁架尺寸:计算跨度分别为L=48 m、64 m、80 m (按班级人数等分三组,按组序分别对应计算跨度),节间长度8 m,桁高11 m,主桁中心距5.75 m,纵梁中心距2.0 m,纵联计算宽度5.30 m,采用明桥面。

钢桥设计课件之钢桁架桥、连续钢桁架桥的主桁架、联结系、桥面系、制动联结系的受力、构造及设计方法,主桁杆件的内力计算、截面设计、节点设计

钢桥设计课件之钢桁架桥、连续钢桁架桥的主桁架、联结系、桥面系、制动联结系的受力、构造及设计方法,主桁杆件的内力计算、截面设计、节点设计

5.1钢桁架桥 联结系
• 纵向联结系 横向联结系 联系主桁架,整体成为几何图形稳定的空间结构
5.1钢桁架桥 联结系
• 纵向联结系 • 主桁架的上、下弦杆平面内:上平纵联与下平纵联 • 作用 承受作用于主桁架、桥面系、桥面和列车上的横向 风力 承受列车摇摆力及曲线桥上的离心力 纵向联结系横向支撑弦杆,减少弦杆在主桁平面外 的计算长度
5.4 主桁杆件内力计算
由桁架各个平面系统间的共同作用和节点的刚 性连接的影响
• • • • 平纵联和主桁弦杆的共同作用 桥面系和主弦杆的共同作用 横向框架效应 节点刚性次应力
5.4 主桁杆件内力计算 5.4.1 主力作用下主桁杆件内力步骤
• • • • • • 简化为各杆件轴线所形成的平面铰接桁架 荷载包括恒载和活载 开始计算前,估计桥跨结构的恒载 计算出恒载和活载内力后进行截面设计 然后计算桁架桥的实际恒载 如实际恒载与估计恒载相差较大,按实际恒载计算 杆件内力重新进行设计
5.1钢桁架桥 联结系
• 横向联结系 桥跨结构的横向平面内 中间横联 桥跨结构中部 端横联 桥跨结构端部 (桥门架 下承式钢桁架桥中) • 设在主桁架的竖杆平面内,中间斜杆平Hale Waihona Puke 内 5.1钢桁架桥 联结系
• 中间横联的作用
增加钢桁架桥的抗扭刚度, 调节两片主桁或两片纵向联结系的受力不均匀性 • 理论和试验表明,桥面架或端横联受力比中间横联 大
5.4 主桁杆件内力计算 5.4.2 横向附加力作用下主桁杆件内力计算
• 铁路钢桁架桥,横向附加力 横向风力 列车摇摆力 对弯道桥、还要考虑离心力
• 公路钢桁架桥,横向附加力 只考虑横向风力
5.4 主桁杆件内力计算 5.4.2 横向附加力作用下主桁杆件内力计算

48米下承式简支栓焊钢桁梁桥课程设计

48米下承式简支栓焊钢桁梁桥课程设计

现代钢桥课程设计学院:土木工程学院班级:1210姓名:罗勇平学号:1208121326指导教师:周智辉时间:2015年9月19日目录第一章设计说明...................... 错误!未定义书签。

第二章主桁杆件内力计算. (5)第三章主桁杆件截面设计与检算 (14)第四章节点设计与检算 (23)第一章 设计说明一、设计题目单线铁路下承式简支栓焊钢桁梁设计二、设计依据1. 设计规范铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角︒=973.53θ,809.0sin =θ,588.0cos =θ。

3. 钢材及基本容许应力杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。

钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。

4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接;人行道托架采用精制螺栓连接。

连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精制螺栓的杆径为22φ,孔径为mm d 23=。

5. 设计活载等级 标准中—活载。

6. 设计恒载主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=;高强度螺栓%3)(4326⨯++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327⨯++=p p p p 。

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁2

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁2

桥梁工程
横向风力对桥面系、桥面和火车与主桁的重叠
桥梁工程 ③横向风力的计算 a. 横向风力等于风荷载强度和受风面积的乘积。 W 按照 b.风荷载强度 W 计算或选取:桥上无车时, 《铁路桥梁钢结构设计规范》(TB10002.2-2005)规定计 算,单位为Pa;当桥上有车时,风荷载强度按 W 的80% 计算,并不得大于1250Pa。由于弦杆在列车荷载下所受内 力相当大,对弦杆内力最不利的组合一般都是桥上有车时 的情况,所以在计算弦杆内力时所用的风荷载强度可按桥 上有车时计。在标准设计中,风荷载强度按下列规定:桥 W2 = 2200Pa。 W1 = 1250Pa ;桥上无车时, 上有车时, c. 风力强度 桥上有车时平行弦下承式桁架桥上、下平纵联所受的 风力强度(单位长度上的横向风力)计算:
I 2 / l2 M2 = M • ∑I /l
桥梁工程 特别说明: (1)制动力或牵引力的大小,按列车竖向静活载重量(相 应于主力作用下求各该杆件内力时的活载)的10%计算。 但当与离心力或列车竖向动力作用同时计算时,其值按竖 向静活载的7%计算; (2)双线桥应采用一线的制动力或牵引力;三线或三线 以上的桥应采用两线的制动力或牵引力,按此计算的制动 力或牵引力不考虑双线竖向活载进行折减的规定。制动力 或牵引力作用在轨顶以上2m处;采用特种活载时,不计 算制动力或牵引力。
桥梁工程
5 制动力作用下的主桁杆件内力计算
列车在桥上行驶时因制动或加速而产生制动力或牵引 力,它们是纵向水平力。 制动力经由纵梁传给四根附加的短斜杆(为传递制动力 而加设的杆件,称制动撑杆)经
O 及 O′ 点由平纵联斜杆
传至主桁节点,最后由下弦杆传给固定支座。因此,每片 主桁的下弦杆将承受附加制动力(随制动力方向的不同, 其值可为拉力或压力)。其主桁节点的标注和制动力的传 递及弦杆内力见下图所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代钢桥课程设计学院:土木工程学院班级:1210姓名:罗勇平学号:1208121326指导教师:周智辉时间:2015年9月19日目录第一章设计说明 .............................................. 错误!未定义书签。

第二章主桁杆件内力计算 . (5)第三章主桁杆件截面设计与检算 (14)第四章节点设计与检算 (23)第一章 设计说明一、设计题目单线铁路下承式简支栓焊钢桁梁设计二、设计依据1. 设计规范铁道部《铁路桥涵设计基本规范》(TB10002.1-2005) 铁道部《铁路桥梁钢结构设计规范》(TB10002.2-2005) 2. 结构基本尺寸计算跨度L=48m ;桥跨全长L=49.10m ;节间长度d=8.00m ;主桁节间数n=6;主桁中心距B=5.75m ;平纵联宽度B 0=5.30m ;主桁高度H=11.00m ;纵梁高度h=1.45m ;纵梁中心距b=2.00m ;主桁斜角倾角︒=973.53θ,809.0sin =θ,588.0cos =θ。

3. 钢材及基本容许应力杆件及构件用Q370qD ;高强度螺栓用20MnTiB 钢;精制螺栓用BL3;螺母及垫圈用45号优质碳素钢;铸件用ZG25Ⅱ;辊轴用锻钢35。

钢材的基本容许应力参照《铁路桥梁钢结构设计规范》。

4. 结构的连接方式及连接尺寸 连接方式:桁梁杆件及构件采用工厂焊接,工地高强度螺栓连接;人行道托架采用精制螺栓连接。

连接尺寸:焊缝的最小焊脚尺寸参照《桥规》;高强度螺栓和精制螺栓的杆径为22φ,孔径为mm d 23=。

5. 设计活载等级 标准中—活载。

6. 设计恒载主桁m kN p /70.123=;联结系m kN p /80.24=;桥面系m kN p /50.62=;高强度螺栓%3)(4326⨯++=p p p p ;检查设备m kN p /00.15=;桥面m kN p /00.101=;焊缝%5.1)(4327⨯++=p p p p 。

计算主桁恒载时,按桥面全宽恒载7654321p p p p p p p p ++++++=。

三、设计内容1. 确定主桁型式及主要参数;2. 主桁杆件内力计算(全部),并将结果汇制于2号图上;3. 交汇于E 2、A 3节点(要求是两个大节点)的所有杆件截面设计与检算;4. 主桁下弦E2节点设计与检算;5. 绘制主桁E2节点图(3号图)。

四、设计内容1. 设计说明书1份;2. 2、3号图各一张。

五、要求1. 计算书条理清楚、语句通顺、计算正确;2. 结构图按制图要求比例恰当、粗细线条明确、尺寸标注清楚、投影关系无误。

第二章 主桁杆件内力计算说明:计算图式采用平面铰接桁架,主力(包括恒载和活载)作用在主桁平面内。

一、影响线二、恒载计算:据第一章所提供的资料,每片主桁所承受的恒载内力:()995.165.07654321=++++++⨯=p p p p p p p p近似地采用p=17kN/m. 三、活载计算:静活载取换算均布活载k ,由所求杆件内力的影响线最大纵坐标位置α值和加载长度L 查表求得。

弦杆E 0E 2:α=1/6,L=48m ,由内插法求得k=50.20(kN/m)(一片主桁,下同)弦杆E 2E 2':α=1/2,L=48m ,k=47.25(kN/m)弦杆A 1A 3:α=1/3,L=48m ,k=48.10(kN/m) 端斜杆E 0A 1:α=1/6,L=48m ,k=50.20(kN/m) 斜杆E 2A 3:α'=1/6,L'=19.2m ,k=60.19(kN/m)α=1/6,L=28.8m ,k=55.06(kN/m)斜杆A 1E 2:α'=1/6,L'=38.4m ,k=52.09(kN/m)α=1/6,L=9.6m ,k=73.63(kN/m)吊杆A 1E 1:α=1/2,L=16m ,k=59.70(kN/m) 吊杆A 3E 3:α=1/2,L=16m ,k=59.70(kN/m)四、恒载内力和活载内力:采用响线面积法求恒载内力和活载内力。

1. 弦杆E 0E 2:影响线最大纵距:606061.01148408y 21=⨯⨯==LH l l 影响线面积:()m y L 5455.14606060.0485.05.0=⨯⨯=⋅=Ω 恒载内力:()kN p N P 27.2475455.1417=⨯=Ω= 静活载内力:()kN k N k 18.7305455.1420.50=⨯=Ω= 动力系数:3182.14840281402811=++=++=+L μ ()2569.01818.7303182.12727.2471=⨯=+=k p N N a μ其余各杆的a 值计算结果见2号图上所示,其中最大的max a 为: ()()2729.025.473182.11711max =⨯=+=+=kk pN pN N a μμ活载发展均衡系数:()()0027.12569.02729.0611611max =-+=-+=a a η 弦杆E 0E 2的总内力为(计算静强度时的最大内力):()()kN N N N k p I 35.1212 18.7303182.10027.127.2471=⨯⨯+=++=μη计算疲劳时,应采用动力运营系数,2045.14840181401811=++=++=+L f μ,且不考虑活载发展均衡系数,计算疲劳时的最大内力为:()()kN N N N k f p 1126.8118.7302045.127.2471max =⨯+=++=μ2. 弦杆E 2E 2':影响线最大纵距:090909.111482424y 21=⨯⨯==LH l l 影响线面积:()m y L 1818.26090909.1485.05.0=⨯⨯=⋅=Ω 恒载内力:()kN p N P 09.4451818.2617=⨯=Ω= 静活载内力:()kN k N k 09.12371818.2625.47=⨯=Ω= 动力系数:3182.14840281402811=++=++=+L μ ()2729.00909.12373182.10909.4451=⨯=+=k p N N a μ活载发展均衡系数:()()0000.12729.02729.0611611max =-+=-+=a a η 总内力:()()kN N N N k p I 79.2075 09.12373182.10000.109.4451=⨯⨯+=++=μη动力运营系数: 2045.14840181401811=++=++=+L f μ 则计算疲劳时的最大内力为:()()kN N N N k f p 22.1935 09.12372045.109.4451max =⨯+=++=μ3. 弦杆A 1A 3:影响线最大纵距:969697.011483216y 21-=⨯⨯-=-=LH l l 影响线面积:()m y L 2727.23969697.0485.05.0-=⨯⨯-=⋅=Ω 恒载内力:()kN p N P 64.3952727.2317-=⨯-=Ω= 静活载内力:()kN k N k 42.11192727.2310.48-=⨯-=Ω= 动力系数: 3182.14840281402811=++=++=+L μ()2681.04182.11193182.16364.3951=⨯=+=kpN N a μ活载发展均衡系数:()()0008.12681.02729.0611611max =-+=-+=a a η 总内力:()()kN N N N k p I 41.1872 42.11193182.10008.164.3951-=⨯⨯--=++=μη上弦杆为受压构件,不需要考虑疲劳时的内力。

4. 端斜杆E 0A 1:影响线最大纵距:030414.11148408y 21-=⨯⨯-=-=LH l l 影响线面积:()m y L 7299.24030414.1485.05.0-=⨯⨯-=⋅=Ω 恒载内力:()kN p N P 4091.4207299.2417-=⨯-=Ω= 静活载内力:()kN k N k 4433.12417299.2420.50-=⨯-=Ω= 动力系数:3182.14840281402811=++=++=+L μ ()2569.04433.12413182.14091.4201=⨯=+=k p N N a μ活载发展均衡系数:()()0027.12569.02729.0611611max =-+=-+=a a η 总内力:()()kN N N N k p I 22.2061 4433.12413182.10027.141.4201-=⨯⨯--=++=μη端斜杆为压弯构件,不需要考虑疲劳时的内力。

5. 斜杆E 2A 3:由于该杆件的影响线具有正、负面积,必须分别进行计算。

正影响线最大纵距:412166.0481697.53sin 1sin 1y 2=⨯︒='⋅='L l θ 正影响线面积:()()()m y l l 9568.3412166.01620.35.05.021=⨯+⨯=''+'=Ω' 负影响线最大纵距:618249.0482497.53sin 1sin 1y 2-=⨯︒=⋅-=L l θ 负影响线面积:()()()m y l l 9028.8618249.02480.45.05.021-=⨯+⨯-=+=Ω 正、负影响线面积之代数和: ()m 9460.4-=Ω+Ω'=Ω∑ 恒载内力:()kN p N P 08.849460.417-=⨯-=Ω=∑ 活载内力也按影响线正、负面积分别计算。

•正面积部分: 静活载内力:()kN k N k17.2389568.319.60=⨯=Ω'=' 动力系数:4730.120.1940281402811=++=++='+L μ 恒载内力与活载内力之比:()2397.01725.2384730.10818.841-=⨯-=''+='k p N N a μ活载发展均衡系数:()()0854.12397.02729.0611611max =++='-+='a a η 正面积部分的总内力:()()kN N N N kp I 17.296 17.2384730.10854.108.841=⨯⨯+-=''+'+='μη动力运营系数: 3041.120.1940181401811=++=++='+L f μ 则计算疲劳时的最大内力为:()()kN N N N k f p 51.226 17.2383041.108.841max =⨯+-=''++='μ•负面积部分:静活载内力:()kN k N k 20.4909028.806.55-=⨯-=Ω= 动力系数:4070.180.2840281402811=++=++=+L μ ()1219.020.4904070.10818.841=⨯=+=k p N N a μ活载发展均衡系数:()()0252.11219.02729.0611611max =-+=-+=a a η 负面积部分的总内力:()()kN N N N k p I 14.791 20.4904070.10252.108.841-=⨯⨯--=++=μη动力运营系数: 2616.180.2840181401811=++=++=+L f μ 则计算疲劳时的最大内力为:()()kN N N N k f p 53.702 20.4902616.108.841max -=⨯--=++=μ6. 斜杆A 1E 2:由于该杆件的影响线具有正、负面积,必须分别进行计算。

相关文档
最新文档