(完整版)高一物理机械能守恒定律测试题(有答案)
高一物理机械能及其守恒定律练习及答案
高一物理---能量守恒定律1.假设列车从静止开始匀加速运动,经过500m的路程后,速度达到360km/h。
整个列车的质量为1.00×105kg,如果不计阻力,在匀加速阶段、牵引力的最大功率是A.4.67×106kW B.1.0×105kW C.1.0×108kW D.4.67×109kW2.在一种叫做“蹦极跳〞有的运动中,质量为m的游戏者系一根长为L、弹性优良的轻质柔软橡皮绳,从高处由静止开始下落1.5L时到达最低点。
若在下落过程中不计空气阻力,则以下说法正确的是A.速度先增大后减小B.加速度先减小后增大C.动能增加了mgL D.重力势能减少了mgL3.跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的是A空气阻力做正功B重力势能增加C动能增加D空气阻力做负功.4.一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中,A升降机的速度不断减小B升降机的加速度不断变大C先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功D到最低点时,升降机加速度的值一定大于重力加速度的值。
5.下列四个选项的图中,木块均在固定的斜面上运动,其中图A、B、C中的斜面是光滑的,图D中的斜面是粗糙的,图A、B中的F为木块所受的外力,方向如图中箭头所示,图A、B、D中的木块向下运动,图C中的木块向上运动,在这四个图所示的运动过程中机械能守恒的是6.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地。
若不计空气阻力,则A.垒球落地时瞬间速度的大小仅由初速度决定B.垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C .垒球在空中运动的水平位移仅由初速度决定D .垒球在空中运动的时间仅由击球点离地面的高度决定7.竖直上抛一球,球又落回原处,已知空气阻力的大小正比于球的速度。
机械能守恒定律(含答案)
9.质量为 的物体,从静止开始以 的加速度下落高度 的过程中()
A.物体的机械能守恒B.物体的机械能减少
C.物体的重力势能减少 D.物体克服阻力做
10.某同学身高 ,在运动会上参加跳高比赛,起跳后身体横着越过了 高度的横杆,据此可估算他起跳时竖直向上的速度大约为( 取 )
A. B. C. D.
15.如图所示,斜面倾角 ,小球从斜面上A点做平抛运动的初动能为6J,不计空气阻力,小球落在斜面上P点的动能为多少.
16.如图所示,小球用不可伸长的长度为 的轻绳悬于O点,小球A在最低点需获得多大的速度才能在竖直平面内做完整的圆周运动?
答案:
1、D 2、CD 3、ABD 4、D 5、C 6、BD 7、A 8、B
11.如图所示,轻弹簧的一端悬挂于O点,另一端与小球P相连接,将P提起使弹簧处于水
平位置且无形变,然后自由释放小球,让它自由摆下,在小球摆到最低点的过程中()
A.小球的机械能守恒
B.小球的动能增加
C.小球的机械能减小
D.不能确定小球的机械能是否守恒
12.一个质量为 的物体以 的加速度竖直向下加速运动,则在此物体下降 高度的过程中,物体的重力势能减小了_____,动能增加了______,机械能增加了_______.
13.如图所示,ABC是一段竖直平面内的光滑的 圆周长的圆形轨道,圆轨道的半径为R,O为圆心,OA水平,CD是一段光滑的水平轨道,一根长 粗细均匀的细杆开始时正好搁在圆轨道的两个端点上,现由静止开始,释放细杆,则此杆最后在水平轨道上滑行的速度为________.
14.一人在高出地面 处抛出一个质量为 的小球,不计空气阻力,小球落地时的速率为 ,则人抛球时对小球做的功为________.
(完整版)机械能守恒定律练习题及其答案
机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
高一物理机械能守恒定律单元测试卷(含答案解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )A .μ1=0.4,μ2=0.2B .物块B 的质量为4kgC .木板的长度至少为3mD .A 、B 间因摩擦而产生的热量为72J【答案】BC【解析】【分析】【详解】A .以物块为研究对象有 11ma mg μ=由图看出214m/s a =,可得10.4μ=将物块和木板看成一个整体,在两者速度一致共同减速时,有22M m a M m g μ+=+()()由图看出221m/s a =,可得20.1μ=选项A 错误;B .木板和物块达到共同速度之前的加速度,对木板有123()mg M m g Ma μμ-+=由图看出232m/s a =,解得4kg M =选项B 正确;C .由v -t 图看出物块和木板在1s 内的位移差为3m ,物块始终未滑离木板,故木板长度至少为3m ,选项C 正确;D .A 、B 的相对位移为s =3m ,因此摩擦产热为148J Q mgs μ==选项D 错误。
故选BC 。
2.质量是m的物体(可视为质点),从高为h,长为L的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v,则()A.到斜面底端时重力的瞬时功率为B.下滑过程中重力的平均功率为C.下滑过程中合力的平均功率为D.下滑过程中摩擦力的平均功率为【答案】AB【解析】试题分析:A、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:P=mgvcosα=mgv.故A正确.B、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B正确.C、物体做匀加速直线运动的加速度为:a=,则合力为:F合=ma=,合力做功为:W合=F合L=,则合力的平均功率为:.故C错误.D、根据动能定理得:mgh﹣W f=mv2,解得克服摩擦力做功为:W f=mgh﹣mv2,则摩擦力做功的平均功率为:=﹣.故D错误.考点:功率、平均功率和瞬时功率.3.如图所示,劲度系数k=40N/m的轻质弹簧放置在光滑的水平面上,左端固定在竖直墙上,物块A、B在水平向左的推力F=10N作用下,压迫弹簧处于静止状态,已知两物块不粘连,质量均为m=3kg。
(完整版)机械能守恒定律应用测试题题及答案
六 机械能守恒定律应用1 班级 姓名 学号一、选择题(每小题中至少有一个选项是正确的)1.若不计空气的阻力,以下实例中运动物体机械能守恒的是 ( )A .物体沿斜面匀速下滑B .物体做竖直上抛运动C .物体做自由落体运动D .用细绳拴着小球,一端为圆心,使小球在竖直平面内做圆周运动2.设质量m=1.0kg 的物体从倾角为300,高2.0m 的光滑斜面由静止开始下滑,那么当它滑到斜面中点时刻所具有的机械能是(取地面为参考平面) ( )A 、零B 、20焦耳C 、40焦耳D 、10焦耳3.如图所示,物体在斜面上受到平行于斜面向下拉力F 作用,沿斜面向下运动,已知拉力F 大小恰好等于物体所受的摩擦力,则物体在运动过程中, ( )A 、作匀速运动;B 、作匀加速运动;C 、机械能保持不变;D 、机械能减小。
4.如图2所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是 ( )A .重力势能和动能之和总保持不变B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变5.一个人站在阳台上,以相同的速率v 0分别把三个球竖直向上抛出、竖直向下抛出、水平抛出,不计空气阻力,则三个球落地时的速率: ( )A 、上抛球最大B 、下抛球最大C 、平抛球最大D 、三个球一样大6.图中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的切线是水平的.一质点自A 点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小和刚滑过B 点时的加速度大小分别为 ( )A .0,gB .g ,gC .2g ,gD .2g ,2g7.如图所示,一根长为l 1的橡皮条和一根长为l 2的绳子(l 1<l 2)悬于同一点,橡皮条的另一端系一A 球,绳子的另一端系一B 球,两球质量相等,现从悬线水平位置(绳拉直,橡皮条保持原长)将两球由静止释放,当两球摆至最低点时,橡皮条的长度与绳子长度相等,此时两球速度的大小为 ( )A .B 球速度较大 B .A 球速度较大C .两球速度相等D .不能确定8.如图所示,从H 高处以v 平抛一小球,不计空气阻力,当小球距地面高度为h 时,其动能恰好等于其势能,则 ( )A .h=2HB .h <2HC .h >2H D .无法确定 *9.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有: ( )图2 FA .人对小球做的功是221mvB .人对小球做的功是mgh mv -221C .小球落地时的机械能是221mvD .小球落地时的机械能是mgh mv -221 *10.质量相同的小球A 和B 分别悬挂在长为L 和2L 的不伸长绳上。
高考物理《机械能守恒定律》真题练习含答案
高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
机械能守恒定律练习题及答案
高一物理周练(机械能守恒定律)班级_________ 姓名_________ 学号_________ 得分_________一、选择题(每题6分,共36分)1、下列说法正确的是:()A、物体机械能守恒时,一定只受重力和弹力的作用。
B、物体处于平衡状态时机械能一定守恒。
C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。
D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
2、从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能相等D.所具有的机械能不等3、一个原长为L的轻质弹簧竖直悬挂着。
今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。
在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是()A、减少的重力势能大于增加的弹性势能B、减少的重力势能等于增加的弹性势能C、减少的重力势能小于增加的弹性势能D、系统的机械能增加4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为()A、mghB、mgHC、mg(H+h)D、mg(H-h)5、某人用手将1kg物体由静止向上提起1m, 这时物体的速度为2m/s, 则下列说法正确的是()A.手对物体做功12JB.合外力做功2JC.合外力做功12JD.物体克服重力做功10J6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是()A.子弹克服阻力做的功与木块获得的动能相等B.阻力对子弹做的功与子弹动能的减少相等C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功二、填空题(每题8分,共24分)7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为____________。
(完整版)机械能守恒定律练习题含答案
(完整版)机械能守恒定律练习题含答案机械能守恒定律练习题一、选择题(每题6分,共36分)1、下列说法正确的是:(选CD)A、物体机械能守恒时,一定只受重力和弹力的作用。
(是只有重力和弹力做功)B、物体处于平衡状态时机械能一定守恒。
(吊车匀速提高物体)C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。
(受到一对平衡力)D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C)A.所具有的重力势能相等(质量不等)B.所具有的动能相等C.所具有的机械能相等(初始时刻机械能相等)D.所具有的机械能不等3、一个原长为L的轻质弹簧竖直悬挂着。
今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。
在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A)A、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0)B、减少的重力势能等于增加的弹性势能C、减少的重力势能小于增加的弹性势能D、系统的机械能增加(动能不变,势能减小)4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到地面前的瞬间的机械能应为(选B)A、mghB、mgHC、mg(H+h)D、mg(H-h)6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块,并留在其中,下列说法正确的是(选BD)A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能)B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力)C.子弹克服阻力做的功与子弹对木块做的功相等D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能)二、填空题(每题8分,共24分)7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。
高一物理机械能守恒定律试题答案及解析
高一物理机械能守恒定律试题答案及解析1.质量为m的小球,从离桌面H高处由静止下落直至落地.已知桌面离地高度为h,如图所示.若以桌面为零势能参考平面,那么小球落地时的重力势能及小球整个下落过程中重力做的功分别为(地球表面的重力加速度为g)A.– mgh,mg(H – h)B.– mgh,mg(H+h)C.mgh,mg(H – h)D.mgh,mg(H+h)【答案】B=mgh中,h为物体相对零势能点的高度,【解析】分析:解决本题需要掌握:重力势能表达式Ep因此重力势能大小和零势能点的选取有关;而重力做功和零势能的选取无关,只与物体的初末位置有关.=-mgh,解答:解:以桌面为零势能参考平面,地面离零势能点的高度为-h,物体重力势能为:Ep物体下落的高度差为(h+H),所以重力做功为:W=mg(h+H),故ACD错误,B正确.故选B.点评:本题比较简单,直接考查了重力势能和重力做功大小的计算,正确理解公式中物理量的含义是正确应用公式的前提.=10m/s,随后以P=6´104 W的额定功率沿平直公2.质量为5´103 kg的汽车在t=0时刻速度v路继续前进,经72s达到最大速度,设汽车受恒定阻力,其大小为2.5´103N。
求:;(1)汽车的最大速度vm(2)汽车在72s内经过的路程s。
【答案】(1)24m/s(2)1252m【解析】:(1)当达到最大速度时,P==Fv=fvm,vm==m/s=24m/s(2)从开始到72s时刻依据动能定理得:Pt-fs=mvm2-mv02,解得:s==1252m。
3.滑雪运动员从山上加速滑下过程中,下列表述正确的是A.重力做负功,动能增加B.重力做正功,动能减少C.重力势能增加,动能增加D.重力势能减少,动能增加【答案】D【解析】滑雪运动员从山上加速滑下过程中,运动的方向向下,重力的方向向下,所以重力做正功,重力势能减少;运动员做加速运动,速度增大,动能增大.所以选项D正确,选项ABC错误.故选:D4.如图所示,电梯质量为M,地板上放置一质量为m的物体,钢索拉电梯由静止开始向上加速运动,当上升高度为H时,速度达到v,则()A .地板对物体的支持力做的功等于mv 2B .地板对物体的支持力做的功等于mgHC .钢索的拉力做的功等于Mv 2+MgHD .合力对电梯M 做的功等于Mv 2【答案】D【解析】电梯由静止开始向上做加速运动,设加速度的大小为a ,由速度和位移的关系式可得,v 2=2aH ,所以:,对电梯由牛顿第二定律可得:F N -mg=ma ,F N =mg+m ,地板对物体的支持力做的功为:W=F N H=(mg+ma )H=mgH+mv 2,故AB 错误;对于整体由牛顿第二定律可得:F-(M+m )g=(M+m )a ,所以钢索的拉力为:F=(M+m )g+(M+m )a ,钢索的拉力做的功等于:W′=FH=(M+m )gH+(M+m )v 2,故C 错误;根据动能定理可得,合力对电梯M 做的功等于电梯的动能的变化即为Mv 2,故D 正确.故选D . 【考点】牛顿第二定律; 动能定理5. A 、B 两物体的质量之比m A :m B =2:1,它们以相同的初速度v 0在水平面上做匀减速直线运动,直到停止,其速度图象如图所示.那么,A 、B 两物体所受摩擦阻力之比f A :f B 与A 、B 两物体克服摩擦阻力做的功之比W A :W B 分别为( )A. f A :f B =2:1B. f A :f B =4:1C. W A :W B =2:1D. W A :W B =1:4 【答案】BC【解析】根据速度时间图象的斜率等于加速度,可知:A 、B 两个物体的加速度大小之比,由牛顿第二定律可知:物体所受的摩擦力大小 f=ma ,所以摩擦力之比为:f A :f B =4:1;由动能定理,摩擦力对物体的功:W=0-mv 02;由于AB 的初速度大小相同,m A :m B =2:1,所以两物体克服摩擦阻力做的功之比:W A :W B =2:1,故AD 错误,BC 正确.故选BC 。
高一物理机械能守恒测试题及答案
一、单项选择题(每题只有一个选项是正确的,每题4分,共24分) 1. 物体在下列运动过程中,机械能守恒的是: A .直升飞机载物匀速上升 B .起重机匀速下放物体C .物体沿光滑斜面加速下滑D .电梯载物匀加速上升2.在同一高度将质量相等的三个小球以大小相同的速度分别竖直上抛,竖直下抛,水平抛出,不计空气阻力。
从抛出到落地过程中,三球: A .运动时间相同 B .落地时的速度相同C .落地时重力的功率相同D .落地时的动能相同3. 关于功率的概念,下面的说法中正确的是 A 功率是描述力对物体做功多少的物理量 B 由P =W/t ,可知,W 越大,功率越大C 由P =FV 可知,力越大,速度越大,则功率越大D 某个力对物体做功越快,它的功率就一定大4.甲、乙二物体在同一地点分别从4h 与h 的高处开始作自由落体运动,若甲的质量是乙的4倍,则下述说法中正确的是A .甲、乙二物体落地时速度相等B .落地时甲的速度是乙的2倍C .甲、乙二物体同时落地D .甲在空中运动时间是乙的4倍5.在距地面h 高处,以初速度v 0沿水平方向抛出一个物体,若忽略空气阻力,它运动的轨迹如图4-37所示,那么 A .物体在c 点比在a 点的机械能大 B .物体在a 点比在c 点的动能大C .物体在a 、b 、c 三点的机械能相等D .物体在a 、b 、c 三点的动能相等6、一物体由H 高处自由落下,当物体的动能等于势能时,物体运动的时间为 (A)g H 2 (B)g H (C)g 2H (D)Hg二、多项选择题(每题有两个或两个以上选项正确,每小题6分,共24分)7.甲、乙两个质量相同的物体,用大小相等的力F 分别拉两个物体在水平面上从静止开始移动相同的距离s 。
如图4-37所示,甲在光滑面上,乙在粗糙面上,则力F 对甲、乙做功,和甲、乙两物体获得的动能,下面说法中正确的是图4-37A 力F 对甲、乙两个物体做的功一样多B 力对甲做功多C 甲、乙两个物体获得的动能相同D 甲物体获得的动能比乙大 8、关于重力做功,下面说法中正确的是A 重力做负功,可以说物体克服重力做功B 重力做正功,物体的重力势能一定减少C 重力做负功,物体的重力势能一定增加D 重力做正功,物体的重力势能一定增加9、某人在离地h 高的平台上抛出一个质量为m 的小球,小球落地前瞬间的速度大小为V ,不计空气阻力和人的高度,则A .人对小球做功221mV B .人对小球做功mgh mV -221C .小球落地的机械能为mgh mV +221 D .小球落地的机械能为221mV10、从地面竖直向上抛出一小球,不计空气阻力,则小球两次经过离地h 高的某点时,小球具有相同的:A .速度;B 加速度;C .动能;D .机械能三、填空与实验题(每小题6分,共18分)11、质量是5kg 的物体,从足够高处自由落下,经过2s 重力对物体做功的平均功率是____W ,瞬时功率是____W .(g 取10m /s 2)12.如图4-38所示,质量为2kg 的物体从高度为h =0.8m 的光滑斜面顶端A 处开始下滑。
高中物理机械能守恒定律100题(带答案)
一、选择题1.有一质量m=2kg 的带电小球沿光滑绝缘的水平面只在电场力的作用下,以初速度v 0=2m/s 在x 0=7m 处开始向x 轴负方向运动。
电势能E P 随位置x 的变化关系如图所示,则小球的运动范围和最大速度分别为( )A. 运动范围x≥0B. 运动范围x≥1mC. 最大速度v m =2m/sD. 最大速度v m =3m/s 【答案】BC 【解析】试题分析:根据动能定理可得W 电=0−12mv 02=−4J ,故电势能增大4J ,因在开始时电势能为零,故电势能最大增大4J ,故运动范围在x≥1m ,故A 错误,B 正确;由图可知,电势能最大减小4J ,故动能最大增大4J ,根据动能定理可得W =12mv 2−12mv 02;解得v=2√2m/s ,故C 正确,D 错误;故选:BC 考点:动能定理;电势能.2.如图所示,竖直平面内光滑圆弧轨道半径为R ,等边三角形ABC 的边长为L ,顶点C 恰好位于圆周最低点,CD 是AB 边的中垂线.在A 、B 两顶点上放置一对等量异种电荷.现把质量为m 带电荷量为+Q 的小球由圆弧的最高点M 处静止释放,到最低点C 时速度为v 0.不计+Q 对原电场的影响,取无穷远处为零电势,静电力常量为k ,则( )A. 小球在圆弧轨道上运动过程机械能守恒B. C 点电势比D 点电势高C. M 点电势为(mv 02﹣2mgR )D. 小球对轨道最低点C 处的压力大小为mg+m +2k【答案】C 【解析】试题分析:此题属于电场力与重力场的复合场,根据机械能守恒和功能关系即可进行判断.解:A、小球在圆弧轨道上运动重力做功,电场力也做功,不满足机械能守恒适用条件,故A错误;B、CD处于AB两电荷的等势能面上,且两点的电势都为零,故B错误;C、M点的电势等于==,故C正确;D、小球对轨道最低点C处时,电场力为k,故对轨道的压力为mg+m+k,故D错误;故选:C【点评】此题的难度在于计算小球到最低点时的电场力的大小,难度不大.3.如图,平行板电容器两极板的间距为d,极板与水平面成45°角,上极板带正电。
(完整word)高一物理机械能守恒定律练习题及答案
机械能守恒定律计算题(基础练习)班别:姓名:1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2)图5-1-82.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,:求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?图5-3-13.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.Fmg图5-2-5h 1h 2图5-4-45.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?图5-3-27.如图5-4-2使一小球沿半径为R的圆形轨道从最低点B上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A?8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C点抛出时的速度(g取10m/s2).图5-4-2R V0图5-4-89.如图5-5-1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的图5-5-1 最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?10.如图5-5-2长l=80cm的细绳上端固定,下端系一个质量m=100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.图5-5-1111.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍?12.“验证机械能守恒定律”的实验采用重物自由下落的方法.(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是. (3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .2AB20CD22图5-8-9答案1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2【解析】利用w =Fs cos a 求力F 的功时,要注意其中的s 必须是力F 作用的质点的位移.可以利用等效方法求功,要分析清楚哪些力所做的功具有等效关系.物体受到两个力的作用:拉力F '和重力mg ,由牛顿第二定律得ma mg F =-'所以=+='ma mg F 10×10+10×2=120N则力2F F '==60N 物体从静止开始运动,3s 内的位移为221at s ==21×2×32=9m解法一: 力F 作用的质点为绳的端点,而在物体发生9m 的位移的过程中,绳的端点的位移为s /=2s =18m ,所以,力F 做的功为=='=s F s F W 260×18=1080J解法二 :本题还可用等效法求力F 的功.由于滑轮和绳的质量及摩擦均不计,所以拉力F 做的功和拉力F’对物体做的功相等. 即='=='s F W W F F 120×9=1080J2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,问:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2的加速度作匀加速直线运动,这一过程能维持多长时间?【解析】(1) 当汽车达到最大速度时,加速度a=0,此时mg f F μ== ① m Fv P = ②由①、②解得s m mgPv m /12==μ (2) 汽车作匀加速运动,故F 牵-μmg =ma ,解得F 牵=7.5×103N 设汽车刚达到额定功率时的速度为v ,则P = F 牵·v ,得v =8m/s 设汽车作匀加速运动的时间为t ,则v =at图5-1-8图5-3-1得t =16s3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求:①5s 内拉力的平均功率②5s 末拉力的瞬时功率(g 取10m/s 2)【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma 解得 =a 2m/s 2 5s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功 W =FS =24×25=600J 5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率 P =Fv =Fat =24×2×5=240W4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G ==αsin αμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故Fmg图5-2-5h 1h 2图5-4-4ShS S h =+=21μ【点拨】 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W 外=0,所以mgR -umgS -W AB =0 即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【点拨】如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功.6. 如图5-4-4所示,两个底面积都是S 的圆桶,用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功?【解析】取水平地面为零势能的参考平面,阀门关闭时两桶内液体的重力势能为:2)(2)(22111hsh h sh E P ρρ+= )(212221h h gs +=ρ 阀门打开,两边液面相平时,两桶内液体的重力势能总和为图5-3-2221)(21212h h g h h s E P +⋅⋅+=ρ由于重力做功等于重力势能的减少,所以在此过程中重力对液体做功 22121)(41h h gs E E W P P G -=-=ρ 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 【错解】如图5-4-2所示,根据机械能守恒,小球在圆形轨道最高点A 时的势能等于它在圆形轨道最低点B 时的动能(以B 点作为零势能位置),所以为2212B mv R mg =⋅ 从而得gR v B 2=【错因】小球到达最高点A 时的速度v A 不能为零,否则小球早在到达A 点之前就离开了圆形轨道.要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足Rv m N mg AA 2=+式中,N A 为圆形轨道对小球的弹力.上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供.当N A =0时, v A 最小,v A =gR .这就是说,要使小球到大A 点,则应使小球在A 点具有速度v A gR ≥【正解】以小球为研究对象.小球在轨道最高点时,受重力和轨道给的弹力. 小球在圆形轨道最高点A 时满足方程Rv m N mg AA 2=+ (1)根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程2221221B A mv R mg mv =+ (2) 解(1),(2)方程组得图5-4-2A B N mRgR v +=5 当N A =0时,v B 为最小,v B =gR 5.所以在B 点应使小球至少具有v B =gR 5的速度,才能使小球到达圆形轨道的最高点A.8.如图5-4-8所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R =0.4m ,一小球停放在光滑水平轨道上,现给小球一个v 0=5m/s 的初速度,求:小球从C 点抛出时的速度(g 取10m/s 2).【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221Cmv R mgh mv += 解得 =C v 3m/s9.如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列图5-5-1RV 0 图5-4-8HABR图5-5-11mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.10.如图5-5-2长l =80cm 的细绳上端固定,下端系一个质量m =100g 的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s 2.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k=∆.机械能守恒定律还可以表达为0=∆+∆k p E E即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=-在最低点时绳对小球的拉力大小NN mg mg mg lv mmg T 2101.022)60cos 1(202=⨯⨯==-+=+= 通过以上各例题,总结应用机械能守恒定律解决问题的基本方法.11.质量为m 的小球,沿光滑环形轨道由静止滑下(如图5-5-11所示),滑下时的高度足够大.则小球在最低点时对环的压力跟小球在最高点时对环的压力之差是小球重力的多少倍? 【解析】以小球和地球为研究对象,系统机械能守恒,即221Amv mgH = ………………………① R mg mv mgH B 2212+=…………② 小球做变速圆周运动时,向心力由轨道弹力和重力的合力提供 在最高点A :Rv m mg F A A2=-…………③在最高点B : Rv m mg F B B 2=+………④由①③解得: RH mg mg F A2+=由②④解得:)52(-=RH mg FBmg F F B A 6=-6=-∴mgF F BA .(1)用公式mv 2/2=mgh 时,对纸带上起点的要求是 ,为此目的,所选择的纸带一、二两点间距应接近 .(2)若实验中所用的重锤质量M = 1kg ,打点纸带如图5-8-8所示,打点时间间隔为0.02s ,则记录B 点时,重锤的速度v B = ,重锤动能E KB = .从开始下落起至B 点,重锤的重力势能减少量是 ,因此可得结论是 .(3)根据纸带算出相关各点速度V ,量出下落距离h ,则以2v 2为纵轴,以h 为横轴画出的图线应是图5-8-9中的 .【解析】(1)初速度为0, 2mm.(2)0.59m/s, 0.174J, 0.176J, 在实验误差允许的范围内机械能守恒. (3)C.。
高中机械能守恒试题及答案
高中机械能守恒试题及答案一、选择题1. 机械能守恒定律适用于以下哪种情况?A. 只有重力做功B. 只有电场力做功C. 只有摩擦力做功D. 只有弹簧弹力做功2. 一个物体从静止开始自由下落,其机械能守恒吗?A. 是B. 不是3. 一个物体在水平面上以恒定速度运动,其机械能守恒吗?A. 是B. 不是二、填空题4. 当一个物体只受到_______作用时,机械能守恒。
5. 一个物体在竖直方向上做自由落体运动,其重力势能_______,动能_______。
三、简答题6. 解释为什么在没有外力作用的情况下,一个物体的机械能是守恒的。
四、计算题7. 一个质量为2kg的物体从5米高处自由下落,忽略空气阻力,求物体落地时的速度。
答案一、选择题1. 答案:A. 只有重力做功2. 答案:A. 是3. 答案:B. 不是二、填空题4. 答案:保守力5. 答案:减小,增大三、简答题6. 解释:在没有外力作用的情况下,物体的机械能守恒是因为机械能是物体内部能量的总和,包括动能和势能。
当没有外力作用时,物体内部的能量不会增加或减少,只会在动能和势能之间转换,因此总的机械能保持不变。
四、计算题7. 解答:首先,我们可以使用势能转化为动能的原理来解决这个问题。
物体的势能为 \( PE = mgh \),其中 \( m \) 是质量,\( g \) 是重力加速度(取9.8 m/s²),\( h \) 是高度。
将给定的值代入公式,我们得到:\[ PE = 2 \times 9.8 \times 5 = 98 \text{ J} \]由于机械能守恒,势能转化为动能,动能 \( KE \) 可以用 \( KE =\frac{1}{2}mv^2 \) 来表示。
设 \( v \) 为落地时的速度,我们有:\[ 98 = \frac{1}{2} \times 2 \times v^2 \]\[ v^2 = \frac{98}{1} \]\[ v = \sqrt{98} \approx 9.9 \text{ m/s} \]结束语:机械能守恒定律是物理学中一个基本的守恒定律,它在解决物理问题时非常有用。
机械能守恒定律练习题(含答案)全文编辑修改
精选全文完整版可编辑修改机械能守恒定律复习测试题1.在如图所示的实验中,小球每次从光滑斜面的左端A自由滑下,每次都能到达右端与A等高的B点.关于其原因,下列说法中正确的是()A.是因为小球总是记得自己的高度B.是因为小球在运动过程中,始终保持能量守恒C.是因为小球在运动过程中,始终保持势能守恒D.是因为小球在运动过程中,始终保持动能守恒2.下面的物体中,只具有动能的是(),只具有势能的是(),既具有动能又具有势能的是().(以地面为参考平面)A.停在地面上的汽车B.在空中飞行的飞机C.被起重机吊在空中静止的货物D.压缩的弹簧E.正在水平铁轨上行驶的火车3.在伽利略的理想斜面实验中,小球停下来的高度为h1与它出发时的高度h2相同,我们把这一事实说成是“有某一量守恒”,下列说法正确的是()A.小球在运动的过程中速度是守恒的B.小球在运动的过程中高度是守恒的C.小球在运动的过程中动能是守恒的D.小球在运动的过程中能量是守恒的4.质量是2kg的物体,受到24N竖直向上的拉力,由静止开始运动,经过F5s;求:①5s内拉力的平均功率②5s末拉力的瞬时功率(g取10m/s2)mg5.如图所示,光滑的水平轨道与光滑半圆弧轨道相切.圆轨道半径R=0.4m,一小球停放在光滑水平轨道上,现给小球一个v0=5m/s的初速度,求:小球从C点抛出时的速度(g取10m/s2).RV0A B6.如图,长l=80cm的细绳上端固定,下端系一个质量m=100g的小球.将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放.不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2.机械能守恒参考答案1、B 解析:小球在运动过程中守恒的“东西”是能量.2、答案:E CD B3.D4.【解析】物体受力情况如图5-2-5所示,其中F 为拉力,mg 为重力由牛顿第二定律有F -mg=ma解得 =a 2m/s 25s 内物体的位移221at s ==2.5m 所以5s 内拉力对物体做的功W =FS =24×25=600J5s 内拉力的平均功率为5600==t W P =120W 5s 末拉力的瞬时功率P =Fv =Fat =24×2×5=240W5.【解析】由于轨道光滑,只有重力做功,小球运动时机械能守恒.即 22021221C mv R mgh mv += 解得=C v 3m/s 6.【解析】小球运动过程中,重力势能的变化量)60cos 1(0--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k =∆.机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv 整理得)60cos 1(202-=mg l v m 又在最低点时,有lv m mg T 2=- 在最低点时绳对小球的拉力大小图5-2-5N N mg mg mg lv mmg T 2101.022)60cos 1(202=⨯⨯==-+=+=。
(完整版)机械能守恒定律测试题及答案
(完整版)机械能守恒定律测试题及答案机械能守恒定律测试题一、选择题(每题4分,共40分)1.下列说法正确的是()A .如果物体(或系统)所受到的合外力为零,则机械能一定守恒B .如果合外力对物体(或系统)做功为零,则机械能一定守恒C .物体沿固定光滑曲面自由下滑过程中,不计空气阻力,机械能一定守恒D .做匀加速运动的物体,其机械能可能守恒2.如图所示,木板OA 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓慢抬高到A '端,直到当木板转到与水平面成α角时停止转动.这时物体受到一个微小的干扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中()A .支持力对物体做的总功为mgLsin αB .摩擦力对物体做的总功为零C .木板对物体做的总功为零D .木板对物体做的总功为正功3、设一卫星在离地面高h 处绕地球做匀速圆周运动,其动能为1K E ,重力势能为1P E 。
与该卫星等质量的另一卫星在离地面高2h 处绕地球做匀速圆周运动,其动能为2K E ,重力势能为2P E 。
则下列关系式中正确的是()A .1K E >2K EB .1P E >2P EC .2211P K P K E E E E +=+D .11K PE E +< 22K P E E +4.质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为g 54,在物体下落h 的过程中,下列说法正确的是() A .物体动能增加了mgh 54 B .物体的机械能减少了mgh 54 C .物体克服阻力所做的功为mgh 51 D .物体的重力势能减少了mgh5.如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为() A .mgL μB .2mgL μC .2mgLμ D .gL m M )(+μ6.如图所示,一轻弹簧左端固定在长木板2m 的左端,右端与小木块1m 连接,且1m 、2m 及 2m 与地面之间接触面光滑,开始时1m 和2m 均静止,现同时对1m 、2m 施加等大反向的水平恒力1F 和2F ,从两物体开始运动以后的整个过程中,对1m 、2m 和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),正确的说法是()A .由于1F 、2F 等大反向,故系统机械能守恒B .由于1F 、2F 分别对1m 、2m 做正功,故系统动能不断增加C .由于1F 、2F 分别对1m 、2m 做正功,故系统机械能不断增加D .当弹簧弹力大小与1F 、2F 大小相等时,1m 、2m 的动能最大7.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B 点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m ,A 、B 两点间的水平距离为L .在滑雪者经过AB 段的过程中,摩擦力所做的功()A .大于mgL μB .小于mgL μC .等于mgL μD .以上三种情况都有可能8.嫦娥一号奔月旅程的最关键时刻是实施首次“刹车”减速.如图所示,在接近月球时,嫦娥一号将要利用自身的火箭发动机点火减速,以被月球引力俘获进入绕月轨道.这次减速只有一次机会,如果不能减速到一定程度,嫦娥一号将一去不回头离开月球和地球,漫游在更加遥远的深空;如果过分减速,嫦娥一号则可能直接撞击月球表面.该报道的图示如下.则下列说法正确的是()A .实施首次“刹车”的过程,将使得嫦娥一号损失的动能转化为势能,转化时机械能守恒.B .嫦娥一号被月球引力俘获后进入绕月轨道,并逐步由椭圆轨道变轨到圆轨道.C .嫦娥一号如果不能减速到一定程度,月球对它的引力将会做负功.D .嫦娥一号如果过分减速,月球对它的引力将做正功,撞击月球表面时的速度将很大9、如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体A 、B 的质量都为m 。
高一物理机械能守恒试题答案及解析
高一物理机械能守恒试题答案及解析1.如图所示滑轮光滑轻质,阻力不计,M1=2kg, M2="1kg" M1离地高度为H=0.5m。
M1与M2从静止开始释放,M1由静止下落了0.3m时的速度为A.m/s B.3m/s C.2m/s D.1m/s【答案】A【解析】对系统运用机械能守恒定律得,.代入数据解得,故A正确。
【考点】考查了机械能守恒定律的应用2.如图,把一个质量为m的小球用细线悬挂起来,就成为一个摆,细线长为L(小球的半径忽略),最大偏角为θ,忽略空气阻力,重力加速度为g,求小球运动到最低点O时细线对小球的拉力。
【答案】【解析】偏角θ处到最低点竖直高度差是:此过程,根据机械能守恒定律知:所以有:在最低点O,由合外力提供向心力,有:则得:解得:【考点】向心力;机械能守恒定律.3.下列运动的物体中,机械能守恒的是()A.加速上升的运载火箭B.被匀速吊起的集装箱C.光滑曲面上自由运动的物体D.在粗糙水平面上运动的物体【答案】C【解析】试题解析:由于机械能守恒的条件是只有重力与弹力做功,或有其他的力做功,但这些力所做的功为零。
故A中由于火箭受到了推力的作用才会加速上升,B中集装箱也受到了拉力的作用才会匀速上升,它们都是由于外力对物体做了功而使机械能增加,故A、B错误;D中粗糙的水平面对运动的物体做了负功,故D的机械能会减小,也错误;C中物体虽然在曲面上运动,但曲面是光滑的,物体不受摩擦力的作用,且物体在曲面上运动时受到的弹力与物体的运动方向总是垂直,不做功,所以它的机械能是守恒的,C正确。
【考点】机械能守恒的条件。
4.下列几种运动中遵守机械能守恒定律的是A.雨点匀速下落B.自由落体运动C.汽车刹车时的运动D.木块沿斜面匀速下滑【答案】B【解析】雨点匀速下落,除了重力有阻力做功,机械能不守恒,选项A错误;自由落体运动运动,只有重力做功,机械能守恒,选项B正确;汽车刹车,阻力做负功,机械能减少,选项C错误;木块匀速下滑,有阻力做负功,机械能减少,故选项D错误。
高一物理机械能守恒定律检测题(Word版 含答案)
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
机械能守恒定律习题(含答案)
图 2 图3 《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2D .gh 332图1图46、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( ) A .FL sin θ B .mgL cos θ C .mgL (1-cos θ) D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mgh B .物体的机械能减少了54mgh C .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若实验中所用重锤质量m=1kg,打点纸带如图6所示,打点时间间隔为0.02s,则记录B点时,重锤的速度 =,重锤动能 =.从开始下落起至B点,重锤的重力势能减少量是,因此可以得出的结论是.
(3)即使在实验操作规范,数据测量及数据处理很准确的前提下,该实验求得的ΔEP也一定略ΔEK(填大于或小于),这是实验存在系统误差的必然结果,该系统误差产生的主要原因是。
机械能守恒定律单元测试
一、选择题(10×4分=48分,本大题中每个小题中有一个或多个选项正确)
1、下列关于做功的说法中正确的是( )
A.物体没有做功,则物体就没有能量 B.重力对物体做功,物体的重力势能一定减少
C.滑动摩擦力只能做负功 D.重力对物体做功,物体的重力势能可能增加
2.如图1所示,一物体以一定的速度沿水平面由A点滑到B点,摩擦力做功W1;若该物体从A′沿两斜面滑到B′,摩擦力做的总功为W2,已知物体与各接触面的动摩擦因数均相同,则( )
①物体A刚离开时地面时弹簧的长度?
②弹簧B端上升L时,物体A的重力势能?
16、如图9所示,mA=4kg,mB=1kg,A与桌面间的动摩擦因数
μ=0.2,B与地面间的距离s=0.8m,A、B间绳子足够长,A、B原来静止,求:
(1)B落到地面时的速度为多大;
(2)B落地后,A在桌面上能继续滑行多远才能静止下来。
C.重物的机械能不变
D.重物的机械能减少
二、填空题与实验题(25分)
13、把质量为3.0kg的石块,从高30m的某处,以 的速度向斜上方抛出, ,不计空气阻力,石块落地时的速率是;若石块在运动过程中克服空气阻力做了73.5J的功,石块落地时的速率又为。
14.验证机械能守恒定律的实验采用重物自由下落的方法:
18.一种氢气燃料的汽车,质量为 =2.0×103kg,发动机的额定输出功率为80kW,行驶在平直公路上时所受阻力恒为车重的0.1倍。若汽车从静止开始先匀加速启动,加速度的大小为 =1.0m/s2。达到额定输出功率后,汽车保持功率不变又加速行驶了800m,直到获得最大速度后才匀速行驶。试求:
4.一质量为m的小球,用长为l的轻绳悬挂O点,小球在水平拉力F作用下,从平衡位置P点很缓慢地移动到Q点,如图3所示,则力F所做的功为 ( )
A.mglcosθ
B.mgl(1-cosθ)
C.Flsinθ
D.Flθ
5.质量为m的汽车,其发动机额定功率为P.当它开上一个倾角为θ的斜坡时,受到的摩擦阻力为车重力的k倍,则车的最大速度为 ( )
(4)根据纸带算出相关各点的速度υ,量出下落的距离h,则以 为纵轴,以h为横轴画出的图线应是下7所示图中的 ()
四、解答题(7+9+9+10=35分,写出必要的演算过程、解题步骤及重要关系式,并得出结果)
15.如图8,物体A的质量为m,置于水平地面上,其上表面竖直固定着一根轻弹簧,弹簧原长为L0,劲度系数为k,现将弹簧上端缓慢向上拉起一段距离L,使物体A离开地面,求:
A、F1:F2=1:3B、F1:F2= 4:1
C、W1:W2=1:1 D、W1:W2=1:3
12如图所示,一轻弹簧固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速地释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点的过程中( )
A.重物的重力势能减少
B.重物的重力势能增大
A.等于零,对人不做功; B.水平向左,对人做负功;
C.水平向右,对人做正功; D.沿斜面向上,对人作正功.
8.在离地面高为A处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为V,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( )
A.mgh mV2 mv02B. mV2 mv02-mgh
6.一物体静止在升降机的地板上,在升降机匀加速上升的过程中,地板对物体的支持力所做的功等于 ( )
A.物体克服重力所做的功
B.物体动能的增加量
C.物体动能增加量与重力势能增加量之和
D.物体动能增加量与重力势能增加量之差
7.如图5所示,人站在电动扶梯的水平台阶上,与扶梯一起沿斜面加速上升.在这个过程中,人脚所受的静摩擦力 ( )
C.mgh+ mv02 mV2D.mgh+ mV2 mv02
9.质量为m的物体,从静止开始以2g的加速度竖直向下运动的位移为h,空气阻力忽略不计,下列说法正确的是()
A.物体的重力势能减少mgh B.物体的重力势能减少2mgh
C.物体的动能增加2mgh D.物体的机械能保持不变
10.水平传送带匀速运动,速度大小为v,现将一小工件放到传送带上。设工件初速为零,当它在传送带上滑动一段距离后速度达到v而与传送带保持相对静止。设工件质量为m,它与传送带间的滑动摩擦系数为 μ,则在工件相对传送带滑动的过程中 ( )
A.滑摩擦力对工件做的功为mv2/2 B.工件的机械能增量为mv2/2
C.工件相对于传送带滑动的路程大小为v2/2μg D.传送带对工件做功为零
11、在平直的公路上,汽车由静止开始做匀加速运动,当速度达到Vm,立即关闭发动机而滑行直到停止,v-t图线如图,汽车的牵引大小为F1,摩擦力大小为F2,全过程中,牵引力做功为W1,克服摩擦力做功为W2,则( )
A.W1=W2B.W1>W2
C.W1<W2D.不能确定W1、W2大小关系
3.如图2,分别用力F1、F2、F3将质量为m的物体由静止沿同一光滑斜面以相同的加速度从斜面底端拉到斜面的顶端,在此过程中,F1、F2、F3做功的功率大小关系是()
图2
A.P1=P2=P3B.P1>P2=P3C.P3>P2>P1D.P1>P2>P3
(g取10m/s2)
17.如图10所示,一个滑块质量为2kg,从斜面上A点由静止下滑,经过BC平面又冲上另一斜面到达最高点D。已知AB=100cm,CD=60cm,∠α=30°,∠β=37°,(g取10m/s2)试求:
1滑块在A和D点所具有的重力势能是多少?(以BC面为零势面)
⑵若AB、CD均光滑,而只有BC面粗糙,BC=28cm且BC面上各处粗糙程度相同,则滑块最终停在BC面上什么位置?