带电粒子在磁场中的临界问题

合集下载

2024届物理一轮复习讲义专题强化十七 带电粒子在匀强磁场中的多解和临界问题含答案

2024届物理一轮复习讲义专题强化十七 带电粒子在匀强磁场中的多解和临界问题含答案

2024届物理一轮复习讲义专题强化十七带电粒子在匀强磁场中的多解和临界问题学习目标会分析带电粒子在匀强磁场中的多解问题和临界极值问题,提高思维分析综合能力。

考点一带电粒子在磁场中运动的多解问题造成多解问题的几种情况分析类型分析图例带电粒子电性不确定带电粒子可能带正电荷,也可能带负电荷,初速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解如带正电,其轨迹为a;如带负电,其轨迹为b磁场方向不确定只知道磁感应强度大小,而未具体指出磁感应强度方向,由于磁感应强度方向不确定而形成多解粒子带正电,若B垂直纸面向里,其轨迹为a,若B垂直纸面向外,其轨迹为b临界状态不唯一带电粒子飞越有界磁场时,可能穿过磁场飞出,也可能转过180°从入射界面一侧反向飞出,于是形成多解运动具有周期性带电粒子在部分是电场、部分是磁场空间运动时,运动往往具有周期性,因而形成多解例1 (多选)(2022·湖北卷) 在如图1所示的平面内,分界线SP将宽度为L的矩形区域分成两部分,一部分充满方向垂直于纸面向外的匀强磁场,另一部分充满方向垂直于纸面向里的匀强磁场,磁感应强度大小均为B,SP与磁场左右边界垂直。

离子源从S处射入速度大小不同的正离子,离子入射方向与磁场方向垂直且与SP 成30°角。

已知离子比荷为k ,不计重力。

若离子从P 点射出,设出射方向与入射方向的夹角为θ,则离子的入射速度和对应θ角的可能组合为( )图1A.13kBL ,0° B.12kBL ,0° C.kBL ,60° D.2kBL ,60°答案 BC解析 若离子通过下部分磁场直接到达P 点,如图甲所示,甲根据几何关系,有R =L ,q v B =m v 2R ,可得v =qBLm =kBL ,根据对称性可知出射速度与SP 成30°角向上,故出射方向与入射方向的夹角为θ=60°。

当粒子上下均经历一次时,如图乙所示,乙因为上下磁感应强度均为B ,则根据对称性有R =12L ,根据洛伦兹力提供向心力有q v B =m v 2R ,可得v =qBL 2m =12kBL ,此时出射方向与入射方向相同,即出射方向与入射方向的夹角为θ=0°。

带电粒子磁场中运动临界极限多解分类汇编(经典)

带电粒子磁场中运动临界极限多解分类汇编(经典)

带电粒子在磁场中运动的临界极值多解问题分类汇编一、基础题(圆周运动基本规律)1.四川卷如图所示,长方形abcd 长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T。

一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射入磁场区域A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在Oa边和ab边D.从aO边射入的粒子,出射点分布在ab边和be边2.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的匀速圆周运动,磁场方向竖直向下,且范围足够大,其俯视图如图所示,若小球运动到某点时,绳子突然断开,则关于绳子断开后,对小球可能的运动情况的判断错误的是()A.小球仍做逆时针方向的匀速圆周运动,但半径减小B.小球仍做逆时针方向的匀速圆周运动,半径不变C.小球做顺时针方向的匀速圆周运动,半径不变D.小球做顺时针方向的匀速圆周运动,半径减小3金属小球质量m带电-q,由长L的绝缘细线悬挂于图示匀强磁场中的O点,然后将小球拉到θ=600处由静止释放,小球沿圆弧运动到最低点时悬线上的张力恰好为0;求①磁场的磁感应强度B=?②小球住复摆动中悬线上的最大张力多少?二、临界、极值1、刚好穿出磁场边界的临界条件------轨迹与边界相切条形、矩形、三角形磁场临界4. (2010年宿州模拟)一质量为m、电荷量为q的带负电的粒子,从A点射入宽度为d、磁感应强度为B的匀强磁场中,MN、PQ为该磁场的边界线,磁感线垂直于纸面向里,如图所示.带电粒子射入时的初速度与PQ成45°角,且粒子恰好没有从MN射出.(不计粒子所受重力)(1)求该带电粒子的初速度大小;(2)求该带电粒子从PQ边界射出的出射点到A点的距离.6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁场强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁场以速度v 平行极板射入磁场,欲使粒子不打在极板上,则粒子入射速度v 应满足什么条件?7.如图所示,一足够长的矩形区域abcd 内充满磁感应强度为B ,方向垂直纸面向里的匀强磁场.现从矩形区域ad 边的中点O 处,垂直磁场射入一速度方向与ad 边夹角为30°,大小为v 0的带正电的粒子.已知粒子质量为m ,电荷量为q ,ad 边长为l ,重力影响不计.(1)试求粒子能从ab 边射出磁场的v 0的范围; (2)在满足粒子从ab 边射出磁场的条件下,粒子在磁场中运动的最长时间是多少?8、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.9、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。

(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。

解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。

由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。

粒子在磁场内运行轨迹对应圆心角为πα35=。

而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。

带电粒子在有界磁场中的临界问题

带电粒子在有界磁场中的临界问题

带电粒子在有界磁场中的临界问题示例文章篇一:哎呀,我的天呐!“带电粒子在有界磁场中的临界问题”,这听起来可真让人头疼!老师在课堂上讲的时候,我一开始简直是一头雾水。

就像我在玩拼图,怎么都找不到关键的那几块一样,我怎么也搞不懂这带电粒子在磁场里到底是咋回事。

我就问我同桌:“嘿,你能明白这带电粒子在有界磁场里的临界问题不?”我同桌皱着眉头说:“我也是糊里糊涂的,感觉就像走进了一个迷宫,找不到出口。

”老师在黑板上画来画去,又是电场线,又是磁场线的,可我看着那些线条,就好像看到了一堆乱麻,怎么也理不清楚。

我心里直嘀咕:“这带电粒子难道是有魔法吗?怎么这么难搞懂!”后来老师又举了个例子,说带电粒子就像在操场上乱跑的小朋友,而磁场就像是操场周围的围墙。

我就在想,那这围墙得什么样,小朋友才能刚好在里面或者刚好跑出去呢?下课后,我去找学习好的班长请教。

我着急地问:“班长,这带电粒子在有界磁场中的临界问题,到底咋解决呀?”班长耐心地说:“别着急,你先想想,如果这个小朋友跑得特别快,是不是就容易冲出去?如果跑得慢,是不是就一直在里面?带电粒子也一样呀。

”我好像有点明白了,又好像还是有点迷糊。

回到家,我又翻开书,看了一遍又一遍,做了几道练习题,可还是会出错。

我就纳闷了,这带电粒子在有界磁场中的临界问题怎么就这么难呢?难道我真的就学不会了?不,我才不信呢!我一定要把它搞明白!经过我不断地努力,不断地思考,不断地请教老师和同学,我终于对这个问题有了一些头绪。

我发现只要抓住关键的几个点,比如粒子的速度、磁场的强度,还有粒子进入磁场的角度,就能慢慢找到解决问题的方法。

我想说,虽然这个问题曾经让我头疼不已,但是只要不放弃,努力去钻研,就一定能攻克它!学习就是这样,会遇到各种各样的难题,可只要我们坚持,就没有什么能难倒我们!示例文章篇二:哎呀,我是个小学生,这“带电粒子在有界磁场中的临界问题”听起来可真让人头疼啊!但老师既然讲了,我就努力去搞明白。

第53课时 匀强磁场中的临界极值和多解问题(题型研究课)

第53课时 匀强磁场中的临界极值和多解问题(题型研究课)

匀强磁场中的临界极值和多解问题(题型研究课)


2.(2016· 海南高考)如图,A、C 两点分别位于 x 轴和 y 轴上,∠OCA=30° ,OA 的长度为 L。在△OCA 区 域内有垂直于 xOy 平面向里的匀强磁场。 质量为 m、 电荷量为 q 的带正电粒子,以平行于 y 轴的方向从 OA 边射入磁场。已知粒子从某点射入时,恰好垂 直于 OC 边射出磁场,且粒子在磁场中运动的时间为 t0。不计重力。 (1)求磁场的磁感应强度的大小; (2)若粒子先后从两不同点以相同的速度射入磁场,恰好从 OC 边上 的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和; (3)若粒子从某点射入磁场后,其运动轨迹与 AC 边相切,且在磁场 5 内运动的时间为 t0,求粒子此次入射速度的大小。 3
匀强磁场中的临界极值和多解问题(题型研究课)


(2)设当 v0=v3 时,粒子恰好打不到荧光屏 上, 则这时粒子沿图中轨迹②从磁场的最高点 A 竖直向上射出磁场。由此可知,粒子在磁场中 的轨道半径 r3=R。又由洛伦兹力提供向心力, v32 得 qv3B=m ,解得 v3=1.5×106 m/s。由题意 r3 可知,当 v0>1.5× 106 m/s 时,粒子能打到荧光屏上。
匀强磁场中的临界极值和多解问题(题型研究课)


(1)根据边界条件,通过画动态图的方法,找出符合临界条 件的粒子轨迹。 (2)运用几何关系,求得粒子运动半径。 (3)根据洛伦兹力提供向心力建立方程。
匀强磁场中的临界极值和多解问题(题型研究课)


[集训冲关]
1.(多选)(2017· 常德月考)如图所示,宽为 d 的 有界匀强磁场的边界为 PP′、 QQ′。 一个 质量为 m、电荷量为 q 的微观粒子沿图示 方向以速度 v0 垂直射入磁场,磁感应强度 大小为 B,要使粒子不能从边界 QQ′射出,粒子的入射速度 v0 的最大值可能是下面给出的(粒子的重力不计) qBd A. m 2qBd C. 3m 2qBd B. m qBd D. 3m ( )

带电粒子在匀强磁场中的多解和临界问题

带电粒子在匀强磁场中的多解和临界问题
≤ 3L,为使粒子从 ab 边射出磁场区域,粒子的速度范围为2 33kBL≤v≤ 3kBL, 故 B、C 正确,A、D 错误。
的距离L;
解析 粒子在磁场中的运动轨迹如图所示,粒子
在MO边界射出点为N
由洛伦兹力提供向心力得 解得 R=mqBv②
qvB=mRv2①
由几何关系可知粒子在磁场中运动轨迹所对应的圆心角 α=60°③
则 O、N 间的距离 L=R=mqBv。④
答案
mv qB
mv qB
(2)粒子在磁场中的运动时间;
解析 设粒子在匀强磁场中做匀速圆周运动的周期
带电粒子在匀强磁场中的多解和临界问题
学习目标
会分析带电粒子在匀强磁场中的多解问题和临界极值问题, 提高思维分析综合能力。
目录
CONTENTS
01 研透核心考点 02 提升素养能力
1
研透核心考点
考点一 带电粒子在磁场中运动的多解问题
考点二 带电粒子在磁场中运动的临界极值问题
考点一 带电粒子在磁场中运动的多解问题
4qBL D. 5m
解析 若粒子恰好从 A 点射出磁场,则轨道半径为 r1=L2,由 qv1B=mvr112可得 v1=qBmr1=q2BmL;若粒子恰好从 B 点射出磁场,则轨道半径为 r2=L,由 qv2B =mvr222可得 v2=qmBL。为使粒子不能经过正方形的 AB 边,粒子的速度 v<v1= q2BmL或 v>v2=qmBL,故 A 正确。
有一个交点,故粒子偏转角只可能为 40°,运动时间 t=34600°°T=29πqmB,A 正确, C 错误;若粒子带正电,将做顺时针方向的匀速圆周运动,无论轨迹与 ON 有 几个交点,粒子回到 OM 直线时,由圆周运动的对称性,速度方向必与 OM 成

考点12:旋转圆法--带电粒子在磁场中运动的临界问题

考点12:旋转圆法--带电粒子在磁场中运动的临界问题

考点12:旋转圆法--带电粒子在磁场中运动的临界问题当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.另外,要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观,如图. ①适用条件a.速度大小一定,方向不同粒子源发射速度大小一定,方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若入射初速度为v 0,由q v 0B =m v 20R 得圆周运动半径为R =m v 0qB .b.轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点O 为圆心、半径R =m v 0qB 的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上. ②界定方法将半径为R =m v 0qB 的圆的圆心沿着“轨迹圆心圆”移动,从而探索出临界条件,这种方法称为“旋转圆法”.1.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.2.如图所示,在边长ab =1.5L 、bc =3L 的矩形区域内存在着垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O 处有一粒子源,可以垂直磁场向区域内各个方向发射速度大小相等的同种带电粒子.若沿Od 方向射入的粒子从磁场边界cd 离开磁场,该粒子在磁场中运动的时间为t 0,圆周运动半径为L ,不计粒子的重力和粒子间的相互作用.下列说法正确的是( )A.粒子带负电C.粒子的比荷为πBt 0D.粒子在磁场中运动的最长时间为2t 0 2.D[由题设条件作出以O 1为圆心的轨迹圆弧,如图所示,由左手定则可知该粒子带正电,选项A 错误;由图中几何关系可得sin θ=32L L =32,解得θ=π3,可得T =6t 0,选项B 错误;根据洛伦兹力公式和牛顿第二定律可得T =2πm qB ,解得m q =3t 0Bπ,选项C 错误;根据周期公式,粒子在磁场中运动时间t =mαqB ,在同一圆中,半径一定时,弦越长,其对应的圆心角α越大,则粒子在磁场中运动时间最长时的轨迹是以O 2为圆心的圆弧,如图所示,由图中几何关系可知α=2π3,解得t =2t 0,选项D 正确.]3.如图所示,平行边界MN 、PQ 间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B ,两边界间距为d ,MN 上有一粒子源A ,可在纸面内沿各个方向向磁场中射入质量均为m 、电荷量均为q 的带正电的粒子,粒子射入磁场的速度v =2qBd3m ,不计粒子的重力,则粒子能从PQ 边界射出的区域长度为( ) A .d B.23dC.233dD.32d答案 C解析 粒子在磁场中运动的半径R =m v qB =23d ,粒子从PQ 边射出的两个边界粒子的轨迹如图所示:由几何关系可知,从PQ 边射出粒子的区域长度为s =2⎝⎛⎭⎫23d 2-⎝⎛⎭⎫13d 2=233d ,C 项正确.4.如图所示,在0≤x ≤3a 的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在t =0时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在0°~90°范围内.其中,沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场右边界上P (3a ,3a )点离开磁场,不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为3aB .粒子的发射速度大小为4πa t 0C .带电粒子的比荷为4π3Bt答案 D解析 根据题意作出沿y 轴正方向发射的带电粒子在磁场中做圆周运动的运动轨迹如图所示, 圆心为O ′,根据几何关系,可知粒子做圆周运动的半径为r =2a ,故A 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3 ,运动时间t 0=2π3×2a v 0,解得:v 0=4πa3t 0,选项B 错误;沿y 轴正方向发射的粒子在磁场中运动的圆心角为2π3,对应运动时间为t 0,所以粒子运动的周期为T =3t 0,由Bq v 0=m ⎝⎛⎭⎫2πT 2r ,则q m =2π3Bt 0,故C 错误;在磁场中运动时间最长的粒子的运动轨迹如图所示,由几何知识得该粒子做圆周运动的圆心角为4π3,在磁场中的运动时间为2t 0,故D 正确.5.如图所示,半径为r 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场边界上A 点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k ,速度大小为2kBr 。

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。

带电粒子在磁场中的运动三个临界四种磁场讲座

带电粒子在磁场中的运动三个临界四种磁场讲座

如图所示,宽为d的有界匀强磁场的上下边界为MN、
PQ,左右足够长,磁感应强度为B.一个质量为m、电
荷量为q的带电粒子(重力忽略不计),沿着与PQ成
45°的方向以速度v0射入该磁场.要使该粒子不能
从上边界MN射出磁场,求粒子入射速度的最大值。
AB

【例3】 如图,长为L间距为d的水平两极板间,有垂直 于纸面向里的匀强磁场,磁感强度为B,两板不带电,现 有质量为m,电量为q的带正电粒子(重力不计),从左侧 两极板的中心处以不同速率v水平射入,欲使粒子不打 在板上,求粒子速率v应满足什么条件.
P 图3 三、带电粒子在圆 形磁场中的运动
24
一、带电粒子在单边界磁场中的运动
θ
θ
二、带电粒子在双边界磁场中的运动
三、带电粒子在长方形界磁场中的运动

36. (18分)如图,在xOy坐标平面内,第I和第IV象 限中分布着平行于x轴的匀强电场,第IV象限的长方 形OPQH区域内还分布着垂直坐标平面的、大小可以任 意调节的匀强磁场.一质子从y轴上的a点射人场区, 然后垂直x轴通过b点,最后从y轴上的c点离开场区. 已知:质子质量为m、带电量为q,射入场区时的速率 为v0,通过b点时的速率为 (1) 在图中标出电场和磁场的方向; (2) 求:电场强度的大小以及c到 坐标原点的距离oc
四种磁场
A O V θ B
V d B 30 V0
O
r1 l +q V
V l
P
S 图1 一、带电粒子在半 无界磁场中的运动 O B
一、在长足够大的长方 图5 形磁场中的运动
二、带电粒子在正方 图6 形磁场中的运动
L A OM O, NFra bibliotek三、带电粒子在环状 磁场中的运动

带电粒子在磁场中的临界问题

带电粒子在磁场中的临界问题

eBd v 3eBd
2m
m
矩形边界磁场区域 ----------临界问题
vB
o
◆带电粒子在矩形磁场区域中的运动
圆心
在过
入射
vB
点跟
d
c
速度 方向
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
【例题1】如图所示,一束电子(电量为e)以速度 V垂直射入磁感应强度为B、宽度为d的匀强磁
场,穿透磁场时的速度与电子原来的入射方向
的夹角为300.求: (1)电子的质量 m
B ev
(2)电子在磁场中的运动时间t
θ
v
m qBd 2v
t 30 T d
360 12v
θ
d
平行直线边界磁场区域 ----------临界问题
垂直
θv
B
的直
线上
①a 速度较小时粒子作部分b 圆周
运动后从原边界飞出;②速度
在某一范围内从侧面边界飞;
③速度较大量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
三角形边界磁场区域 ----------临界问题
v1
◆带电粒子在三角形磁场区域中的运动
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
边极板间中点处垂直磁感线以速度v水平射入磁场,欲使
粒子不打在极板上,可采用的办法是: A B
A.使粒子的速度v<BqL/4m;
B.使粒子的速度v>5BqL/4m; C.使粒子的速度v>BqL/m; D.使粒子速度BqL/4m<v<5BqL/4m。

用动态圆巧解带电粒子在磁场中运动的临界问题

用动态圆巧解带电粒子在磁场中运动的临界问题

用动态圆巧解带电粒子在磁场中运动的临界问题作者:吴苗军来源:《中学教学参考·理科版》2018年第05期[摘要]带电粒子在匀强磁场中的运动问题是高考常考问题,而其中的临界问题更是难点。

如果能够将轨迹圆进行缩放、平移、旋转,这样就可以化动为静,让动态的运动轨迹呈现出来,就能消除学生解决问题上的思维、方法障碍,突破解决带电粒子在匀强磁场中运动问题的难点。

[关键词]旋转圆;缩放圆;平移圆;临界问题[中图分类号] G633.7 [文献标识码] A [文章编号] 1674-6058(2018)14-0060-02带电粒子在匀强磁场中的运动问题是高考常考问题,而其中的临界问题更是难点。

处理带电粒子在匀强磁场中的运动问题时,需要画出带电粒子的运动轨迹,找到其圆心,然后再找出几何关系。

当带电粒子以一定的速度射入匀强磁场时,带电粒子在洛伦兹力作用下做匀速圆周运动,带电粒子的轨迹都是圆或圆弧,如果带电粒子的速度大小或者磁感应强度大小变化,那么圆的半径也将随之改变。

如果能够将轨迹圆进行缩放、平移、旋转,就可以化动为静,让动态的运动轨迹呈现出来,就能消除学生解决问题的思维、方法障碍,突破带电粒子在匀强磁场中运动的临界问题分析解答这个难点。

接下来通过三道例题说明动态圆的运用。

一、缩放圆【例1】在真空中有宽度为d、磁感应强度为B的匀强磁场,其方向如图1,带电粒子(质量为m,带电量为-q)以与CD成θ角的速度v0垂直射入匀强磁场中。

要使带电粒子能从EF射出,那么初速度v0满足什么条件?EF上有粒子射出的范围是多少?分析:如图2甲所示,当入射速度比较小时,带电粒子在磁场中运动一段圆弧之后从同一侧射出。

由粒子在磁场中运动的轨迹圆的半径公式可得:带电粒子的速率越大,其轨道半径也就越大,即当带电粒子入射速度不断变大时,其运动的轨迹圆不断变大,直到其轨迹与右边界相切,这时带电粒子恰好不能从右侧射出,当带电粒子的速率大于这个临界值时便从右侧射出,根据缩放圆的特点可以画出带电粒子的临界轨迹,再根据几何知识计算速度的临界值。

带电粒子在有界电场、磁场中临界问题(可自主编辑word)

带电粒子在有界电场、磁场中临界问题(可自主编辑word)

九、带电粒子在有界电场、磁场中临界问题带电粒子在有界电场、磁场中的临界问题是带电粒子在电磁场中运动问题的难点与易错点,分析解答此类问题的关键在于正确找出临界点,具体方法:分析带电粒子在电场、磁场中运动轨迹与电场、磁场边界的关系。

1.带电粒子在有界电场中的临界问题典例1 (多选)如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两极板不带电,由于重力作用,微粒能落到下极板的正中央。

已知微粒质量m=4×10-5 kg,电荷量q=+1×10-8 C,则下列说法正确的是( )A.微粒的入射速度v 0=10 m/sB.电容器上极板接电源正极时微粒有可能从平行板电容器的右边射出电场C.电源电压为180 V 时,微粒可能从平行板电容器的右边射出电场D.电源电压为100 V 时,微粒可能从平行板电容器的右边射出电场答案 AC 开关S 闭合前,两极板不带电,微粒落到下极板的正中央,由d 2=12gt 2,L2=v 0t,得v 0=10 m/s,A 正确;电容器上极板接电源正极时,微粒的加速度更大,竖直方向运动时间更短,水平位移将更小,还将打在下极板,B 错误;设微粒恰好从平行板右边缘下侧飞出时的加速度为a,微粒所受电场力竖直向上,则d 2=12at 2,L=v 0t,mg-Uqd =ma,得U=120 V,同理微粒在平行板右边缘上侧飞出时,可得U=200 V,所以平行板上板带负电,电源电压为120 V≤U≤200 V 时微粒可以从平行板电容器的右边射出电场,C 正确,D 错误。

反思总结本题中当微粒与电场右侧上、下边界相切是解题的临界点,由此可以找出电压的变化范围。

2.带电粒子在有界磁场中的临界问题典例2(多选)如图所示,一粒子发射源P位于足够长绝缘板AB的上方d处,能够在纸面内向各个方向发射速率为v、比荷为k的带正电的粒子,空间存在垂直纸面的匀强磁场,不考虑粒子间的相互作用和粒子重力。

洛伦兹力问题及解题策略知识讲解

洛伦兹力问题及解题策略知识讲解

解:(1)由左手定则可知,正
粒子在匀强磁场中应向 P 点
上方偏,轨迹如右图
(2)由 r=
mv qB

r=0.2
m
由T=
2πm qB
得T=0.126 s.
例3. 如图所示,一束电荷量为e的电子以垂直于磁场方向(磁感应强度为B)并 垂直于磁场边界的速度v射入宽度为d的磁场中,穿出磁场时速度方向和原来 射入方向的夹角为θ=30°.求电子穿越磁场轨迹的半径和运动的时间.
1、作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定 圆心,从而确定其运动轨迹。
2、作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上 两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。
3、①圆周上任意两点连线的中垂线过圆心 ②圆周上两条切线夹角的平分线过圆心 ③过切点作切线的垂线过圆心
v0
s
v
vy
例8.如图所示,空间分布着如图所示的匀强电场E(宽度为L)和匀强磁场B(两 部分磁场区域的磁感应强度大小相等,方向相反),一带电粒子电量为q,质量 为m(不计重力),从A点由静止释放,经电场加速后进入磁场穿过中间磁场进 入右边磁场后能按某一路径而返回A点,重复前述过程。求中间磁场的宽度d和 粒子的运动周期。
祝同学们学习快乐!
练习1.电子质量为m电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B 的匀强磁场中,最后落在x轴上的P点,如图所示,求: (1)的op长度; (2)电子由O点射入到落在P点所需的时间t.
【解析】带电粒子在匀强磁场中做匀速圆周运动,应根据已知条件首先确定 圆心的位置,画出运动轨迹.所求距离应和半径R相联系,所求时间应和粒子 转动的圆心角θ、周期T相联系.

2022届高考物理一轮复习 专题八 带电粒子在磁场中运动的临界和多解问题学案 新人教版

2022届高考物理一轮复习 专题八 带电粒子在磁场中运动的临界和多解问题学案 新人教版

专题八带电粒子在磁场中运动的临界和多解问题考点一带电粒子在磁场中运动的临界极值问题多维探究解决带电粒子在磁场中的临界极值问题的关键(1)以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,运用动态思维,寻找临界点,确定临界状态,由磁场边界和题设条件画好轨迹、定好圆心,建立几何关系.(2)寻找临界点常用的结论:①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长.③当速度v变化时,圆心角越大,运动时间越长.题型1|求运动时间的极值例1 [2020·全国卷Ⅰ,18]一匀强磁场的磁感应强度大小为B,方向垂直于纸面向外,其边界如图中虚线所示,ab̂为半圆,ac、bd与直径ab共线,ac间的距离等于半圆的半径.一束质量为m、电荷量为q(q>0)的粒子,在纸面内从c点垂直于ac射入磁场,这些粒子具有各种速率.不计粒子之间的相互作用.在磁场中运动时间最长的粒子,其运动时间为( )A.7πm6qB B.5πm4qBC.4πm3qBD.3πm2qB题型2|求磁感应强度的极值例2 [2020·全国卷Ⅲ,18]真空中有一匀强磁场,磁场边界为两个半径分别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示.一速率为v的电子从圆心沿半径方向进入磁场.已知电子质量为m,电荷量为e,忽略重力.为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )A.3mv2ae B.mvaeC.3mv4ae D.3mv5ae题型3 |求运动速度的极值例3 如图所示,在直角三角形abc区域(含边界)内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ac=L.一个粒子源在a点将质量为m、电荷量为q的带正电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是( )A.qBL2m B.√3qBL6mC.√3qBL4mD.qBL6m题型4|带电粒子通过磁场时的最大偏角例4 如图所示,半径R=10 cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切,磁感强度B=0.33 T,方向垂直纸面向里.在O处有一放射源S,可沿纸面向各方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.6×10-27 kg,电荷量q=3.2×10-19 C,则该α粒子通过磁场空间的最大偏转角为( ) A.30° B.45°C.60° D.90°题型5|求区域的长度范围例5 如图所示,在荧光屏MN上方分布了水平方向的匀强磁场,磁感应强度的大小B=0.1 T、方向与纸面垂直.距离荧光屏h=16 cm处有一粒子源S,以速度v=1×106=1×108C/kg的带正电粒子,不计粒子的重m/s不断地在纸面内向各个方向发射比荷qm力.则粒子打在荧光屏范围的长度为( )A.12 cm B.16 cmC.20 cm D.24 cm练1 [最小边界]如图所示,一带电质点质量为m,电荷量为q,以平行于x轴的速度v从y轴上的a 点射入图中第一象限所示的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v射出,可在适当的地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径.(重力忽略不计)练2 [2020·全国卷Ⅱ,24] 如图,在0≤x≤h,-∞<y<+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变.一质量为m、电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m;,粒子将通过虚线所示边界上的一点离开磁场.求粒子(2)如果磁感应强度大小为B m2在该点的运动方向与x轴正方向的夹角及该点到x轴的距离.题后反思解决临界极值问题的方法技巧(1)数学方法和物理方法的结合:如利用“矢量图”“边界条件”等求临界值,利用“三角函数”“不等式的性质”“二次方程的判别式”等求极值.(2)一个“解题流程”突破临界问题考点二带电粒子在匀强磁场中的运动的多解问题多维探究题型1|带电性质不确定例6 如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界.现有质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从边界NN ′射出,则粒子入射速率v 的最大值可能是多少?题型2|磁场方向不确定例7 (多选)一质量为m ,电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )A. 4qB mB. 3qB mC. 2qB mD. qBm题型3|临界状态不唯一例8 匀强磁场区域由一个半径为R的半圆和一个长为2R、宽为R的矩形组成,磁场2的方向如图所示.一束质量为m、电荷量为+q的粒子(粒子间的相互作用和重力均不计)以速度v从边界AN的中点P垂直于AN和磁场方向射入磁场中.(1)当磁感应强度为多大时,粒子恰好从A点射出?(2)对应于粒子可能射出的各段磁场边界,磁感应强度应满足什么条件?题型4|带电粒子的周期性运动形成多解解决带电粒子在磁场中的周期性运动与多解问题,关键是对运动过程进行准确分析,找出周期性运动的规律,并用数学通式表达多解性.分析运动过程要注意两点:(1)注意磁场大小或方向的变化引起粒子运动轨迹的变化.(2)注意粒子的运动方向改变而使粒子的运动具有周期性和对称性.例9 [2021·广东韶关调研]如图所示,在无限长的竖直边界AC和DE间,上、下方分别充满方向垂直于平面ADEC向外的匀强磁场,上方磁场区域的磁感应强度大小为B0,OF为上、下方磁场的水平分界线.质量为m、所带电荷量为+q的粒子从AC边界上与O 点相距为a 的P 点垂直于AC 边界射入上方磁场区域,经OF 上的Q 点第一次进入下方磁场区域,Q 点与O 点的距离为3a .不考虑粒子重力.(1)求粒子射入时的速度大小;(2)若下方区域的磁感应强度B =3B 0,粒子最终垂直于DE 边界飞出,求边界DE 与AC 间距离的可能值.练3 (多选)如图所示,两方向相反、磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 理想分开,三角形内磁场垂直纸面向里,三角形顶点A 处有一质子源,能沿∠BAC 的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C点,质子比荷q m =k ,则质子的速度可能为( )A.2BkLB. BkL 2C. 3BkL 2D. BkL8练4 如图所示,在平面直角坐标系xOy 的第一象限y ≤a 范围内,存在垂直纸面向里磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 且带负电的粒子从坐标原点O 以速度大小为v 0=2qBa m沿不同方向射入磁场,不计粒子的重力,下列说法正确的是( )A .若粒子初速度沿y 轴正方向,则粒子在磁场中的运动时间为πm 3qBB .若粒子初速度沿y 轴正方向,则粒子在磁场中的运动时间为2πm 3qBC.粒子在磁场中运动的最长时间为πm3qBD.粒子在磁场中运动的最长时间为2πm3qB思维拓展“几何圆”模型在磁场临界极值问题中的应用模型1 “放缩圆”模型的应用如图所示(图中只画出粒子带正电的情景),速度v越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP′上为定点,圆心位于PP′直线上,将半径放缩作轨迹例1 (多选)如图所示,正方形abcd区域内有垂直于纸面向里的匀强磁场,O点是cd边的中点.若一个带正电的粒子(重力忽略不计)从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法正确的是( )A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab边射出磁场,它在磁场中经历的时间可能是t0t0 C.若该带电粒子从bc边射出磁场,它在磁场中经历的时间可能是32t0 D.若该带电粒子从cd边射出磁场,它在磁场中经历的时间一定是53模型2 “旋转圆”模型的应用粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v0,则轨迹半径为R=mv0.如图所qB示带电粒子在磁场中做匀速圆周运动的圆心在以入射点、速度例2 如图所示,匀强磁场垂直于纸面,磁感应强度大小为B,一群比荷为qm大小为v的离子以一定发散角α由原点O出射,y轴正好平分该发散角,离子束偏转为( )后打在x轴上长度为L的区域MN内,则cosα2A .1-BqL 4mvB .12-BqL 4mvC .1-BqL 2mvD .1-BqLmv专题八 带电粒子在磁场中运动的临界和多解问题考点突破例1 解析:如图所示,设某一粒子从磁场圆弧ab̂上的e 点射出磁场,粒子在磁场中转过的圆心角为π+θ=π+2α,由于所有粒子在磁场中运动周期相同,粒子在磁场中做匀速圆周运动时,运动轨迹对应的圆心角越大,则运动时间越长.由几何关系可知,α最大时,ce 恰好与圆弧ab ̂相切,此时sin α=eO cO =12,可得α=π6,θ=2α=π3,设粒子在磁场中做匀速圆周运动的周期为T ,粒子在磁场中运动的最长时间t =T 2+T 6,又T =2πm qB ,解得t =4πm 3qB,故选C.答案:C例2 解析:为使该电子的运动被限制在图中实线圆围成的区域内,且磁感应强度最小,由qvB =mv 2r可知,电子在匀强磁场中的轨迹半径r =mv eB,当r 最大时,B 最小,故临界情况为电子轨迹与有界磁场外边界相切,如图所示,由几何关系知a 2+r 2=(3a-r )2,解得r =43a ,联立可得最小的磁感应强度B =3mv4ae,选项C 正确.答案:C例3 解析:由分析知,粒子沿着ab 边入射且运动轨迹与bc 边相切时满足题意,粒子运动轨迹如图所示.由几何关系知,粒子运动轨迹半径r =ab =12L ,则粒子速度的最大值v =2πr T =qBL 2m,A 正确. 答案:A例4 解析:放射源发射的α粒子的速率一定,则它在匀强磁场中的轨道半径为定值,即r =mv qB =6.6×10−27×3.2×1063.2×10−19×0.33m =0.2 m =20 cmα粒子在圆形磁场区的圆弧长度越大,其偏转角度也越大,而最长圆弧是两端点在圆形磁场区的直径上,又r =2R ,则此圆弧所对的圆心角为60°,也就是α粒子在此圆形磁场区的最大偏转角为60°.轨迹如图所示.选项C 正确.答案:C例5 解析:如图所示,粒子在磁场中做圆周运动的半径为R =mv qB =10 cm ,若粒子打在荧光屏的左侧,当弦长等于直径时,打在荧光屏的最左侧,由几何关系有x 1=√(2R )2−h 2=12 cm ;粒子的运动轨迹与荧光屏右侧相切时,打在荧光屏的最右侧,由几何关系有x 2=√R 2−(h −R )2=8 cm.根据数学知识可知打在荧光屏上的范围长度为x =x 1+x 2=12 cm +8 cm =20 cm ,选项C 正确.答案:C 练1解析:由于已知初速度与末速度的方向,可得偏向角φ=π2.设粒子由M 点进入磁场,由于φ=2β,可沿粒子偏转方向β=π4来补弦MN ,如图所示.由“切线、弦”可得圆心O 1,从而画轨迹弧MN .显然M 、N 为磁场边界上两点,而磁场又仅分布在一圆形区域内.欲使磁场面积最小,则弦MN 应为磁场边界所在圆的直径(图中虚线图),即得2r =MN .由几何知识,在Rt△MO 1O 2中可知R =√2r ,又因为R =mv qB,所以,这圆形磁场区域的最小半径 =√22R =√2mv 2qB . 答案:√2mv 2qB练2 解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有qv 0B =m v 02 R ①由此可得R =mv 0qB② 粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =mv 0qh④(2)若磁感应强度大小为B m 2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′=2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥则α=π6⑦由几何关系可得,P 点与x 轴的距离为y =2h (1-cos α)⑧联立⑦⑧式得y =(2-√3)h ⑨答案:见解析 例6解析:题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷,所以分情况讨论.若带电粒子带正电荷,则轨迹是图中与NN ′相切的14圆弧,轨迹半径R =mv Bq又d =R -R ·sin 45°解得v =(2+√2)Bqd m若带电粒子带负电荷,则轨迹是图中与NN ′相切的34圆弧,轨迹半径R ′=mv ′Bq 又d =R ′+R ′sin 45°解得v ′=(2−√2)Bqd m答案:(2+√2)Bqd m (q 为正电荷) 或(2-√2)Bqd m(q 为负电荷) 例7 解析:依题中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知4Bqv =m v 2R ,得v =4BqR m .此种情况下,负电荷运动的角速度为ω=v R =4Bq m ;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqv =m v 2R ,v =2BqR m ,此种情况下,负电荷运动的角速度为ω=v R =2Bq m.故AC 正确.答案:AC例8 解析:(1)由左手定则判定,粒子向左偏转,只能从PA 、AC 和CD 三段边界射出,如图所示.当粒子从A 点射出时,运动半径r 1=R 2.由qvB 1=mv 2r 1 得B 1=2mv qR. (2)当粒子从C 点射出时,由勾股定理得:(R -r 2)2+(R 2)2=r 22,解得r 2=58R 由qvB 2=mv 2r 2,得B 2=8mv 5qR据粒子在磁场中运动半径随磁场减弱而增大,可以判断:当B >2mv qR 时,粒子从PA 段射出;当8mv 5qR <B <2mv qR时,粒子从AC 段射出; 当B <8mv 5qR 时,粒子从CD 段射出.答案:(1)2mv qR(2)见解析例9 解析:(1)粒子在OF 上方的运动轨迹如图甲所示, 设粒子做圆周运动的半径为R ,由几何关系得R 2-(R -a )2=(3a )2,解得R =5a由牛顿第二定律得qvB 0=m v 2R解得v =5aqB 0m.(2)当B =3B 0时,粒子的运动轨迹如图乙所示,粒子在OF 下方的运动半径为r =53a .设粒子的速度方向再次与射入磁场时的速度方向一致时的位置为P 1,则P 与P 1的连线一定与OF 平行,根据几何关系知PP 1=4a若粒子最终垂直于DE 边界飞出,则边界DE 与AC 间的距离为L =nPP 1=4na (n =1,2,3,…).答案:(1)5aqB 0m(2)4na (n =1,2,3,…)练3 解析:因质子带正电,且经过C 点,其可能的轨迹如图所示,所有圆弧所对圆心角均为60°,所以质子运行半径r =L n (n =1,2,3…),由洛伦兹力提供向心力得Bqv =m v 2r ,即v =Bqr m =Bk ·L n(n =1,2,3…),选项B 、D 正确. 答案:BD 练4解析:本题考查带电粒子在平行边界磁场中运动的临界问题.粒子运动的速度为v 0=2qBa m ,则粒子运动的轨迹半径为r =mv 0qB =2a ,若粒子初速度沿y 轴正方向,由几何关系知粒子在磁场中运动偏转的角度为30°,则运动时间为t 1=30°360°T =112×2πr v 0=πm 6qB ,选项A 、B 错误;当轨迹与磁场上边界相切时,粒子在磁场中运动的时间最长,由几何关系可知,此时粒子在磁场中偏转的角度为120°,时间为t m =120°360°T =2πm 3qB,故选D. 答案:D 思维拓展 典例1解析:由题意可知带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t 0.随粒子速度逐渐增大,轨迹由①→②→③→④依次渐变,由图可以知道粒子在四个边射出时,射出范围分别为OG 、FE 、DC 、BA 之间,不可能从四个顶点射出,所以A 项正确;当粒子从O 点沿纸面垂直于cd 边射入正方形内,轨迹恰好为半个圆周,即时间t 0刚好为半周期,从ab 边射出的粒子所用时间小于半周期t 0,从bc 边射出的粒子所用时间小于23T =4t 03,所有从cd 边射出的粒子圆心角都是300°,所用时间为5T 6=5t 03,故B 、C 项错误,A 、D 项正确.答案:AD典例2 解析:根据洛伦兹力提供向心力,有qvB =m v 2R ,得R =mvqB,离子通过M 、N 点的轨迹如图所示,由几何关系知MN =ON -OM ,过M 点两圆圆心与原点连线与x 轴夹角为α2,圆心在x 轴上的圆在O 点时的速度沿y 轴正方向,由几何关系可知L =2R -2R cos α2,解得cos α2=1-BqL 2mv,故选项C 正确.答案:C。

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题

带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化.(2)轨迹圆圆心——共线如图所示(图中只画出粒子带正电的情景),速度v 0越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP ′上.2.方法界定以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1] 如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是( )A.若该带电粒子从ab 边射出,它经历的时间可能为t 0B.若该带电粒子从bc 边射出,它经历的时间可能为5t 03C.若该带电粒子从cd 边射出,它经历的时间为5t 03D.若该带电粒子从ad 边射出,它经历的时间可能为2t 03[解析] 作出从ab 边射出的轨迹①、从bc 边射出的轨迹②、从cd 边射出的轨迹③和从ad 边射出的轨迹④.由带正电的粒子从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t 0.由图可知,从ab 边射出经历的时间一定不大于5t 06;从bc 边射出经历的时间一定不大于4t 03;从cd 边射出经历的时间一定是5t 03;从ad 边射出经历的时间一定不大于t 03,C 正确.[答案] C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB.如图所示.(2)轨迹圆圆心——共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上. 2.方法界定 将一半径为R =mv 0qB的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”. [典例2] 如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T.磁场内有一块平面感光板ab ,板面与磁场方向平行.在距ab 为l =16 cm 处,有一个点状的α粒子放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s.已知α粒子的比荷q m=5.0×107C/kg ,现只考虑在纸面内运动的α粒子,求ab 板上被α粒子打中区域的长度.[解题指导] 过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可. [解析] α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径,有qvB =m v 2R由此得R =mv qB代入数值得R =10 cm ,可见2R >l >R因朝不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在下图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点.为确定P 1点的位置,可作平行于ab的直线cd ,cd 到ab 的距离为R ,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为P 1.即:NP 1=R 2-(l -R )2=8 cm再考虑N 的右侧.任何α粒子在运动中离S 的距离不可能超过2R ,在N 点右侧取一点P 2,取SP =20 cm ,此即右侧能打到的最远点由图中几何关系得NP 2=(2R )2-l 2=12 cm 所求长度为P 1P 2=NP 1+NP 2 代入数值得P 1P 2=20 cm. [答案] 20 cm突破 带电粒子在磁场中运动的多解问题考向1 带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3] 如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是磁场左右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从右边界NN ′射出,求粒子入射速率的最大值为多少?[解题指导] 由于粒子电性不确定,所以分成正、负粒子讨论,不从NN ′射出的临界条件是轨迹与NN ′相切.[解析] 题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN ′相切的14圆弧,则轨道半径R =mv Bq又d =R -R2解得v =(2+2)Bqdm.若q 为负电荷,轨迹是如图所示的下方与NN ′相切的34圆弧,则轨道半径R ′=mv ′Bq又d =R ′+R ′2解得v ′=(2-2)Bqdm[答案](2+2)Bqd m (q 为正电荷)或(2-2)Bqdm(q 为负电荷)考向2 磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解.[典例4] (多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重力)( )A.4qB mB.3qBmC.2qBmD.qB m[解析] 根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知4Bqv =m v 2R ,得v =4BqR m ,此种情况下,负电荷运动的角速度为ω=v R =4Bqm ;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqv =m v 2R ,v =2BqRm,此种情况下,负电荷运动的角速度为ω=v R =2Bqm,应选A 、C. [答案] AC考向3 临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图所示.[典例5] (多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v <Bql 4mB.使粒子的速度v >5Bql4mC.使粒子的速度v >Bql mD.使粒子的速度v 满足Bql 4m <v <5Bql 4m[解析] 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎪⎫r 1-l 22+l 2,又因r 1=mv 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=mv 2Bq ,解得v 2=Bql4m,故A 、B 正确.[答案] AB考向4 带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6] 如图所示,在x 轴上方有一匀强磁场,磁感应强度为B ;x 轴下方有一匀强电场,电场强度为E .屏MN 与y 轴平行且相距L .一质量m 、电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间? [解题指导] 解答本题可分“两步走”: (1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r 和L 的关系.[解析] (1)在电场中,电子从A →O ,动能增加eEs =12mv 2在磁场中,电子偏转,半径为r =mv 0eB据题意,有(2n +1)r =L所以s =eL 2B 22Em (2n +1)2(n =0,1,2,3,…).(2)在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的运动时间t =(2n +1)2s a +T 4+n T 2,其中a =Ee m ,T =2πm eB整理后得t =BL E +(2n +1)πm2eB(n =0,1,2,3,…).[答案] (1)s =eL 2B 22Em (2n +1)2(n =0,1,2,3,…) (2)BL E +(2n +1)πm2eB(n =0,1,2,3,…) 专项精练1.[放缩法的应用]如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的粒子,恰好从e 点射出,则( )A.如果粒子的速度增大为原来的两倍,将从d 点射出B.如果粒子的速度增大为原来的三倍,将从f 点射出C.如果粒子的速度不变,磁场的磁感应强度变为原来的两倍,也将从d 点射出D.只改变粒子的速度使其分别从e 、d 、f 点射出时,从e 点射出所用时间最短答案:A 解析:作出示意图如图所示,根据几何关系可以看出,当粒子从d 点射出时,轨道半径增大为原来的两倍,由半径公式R =mvqB可知,速度也增大为原来的两倍,选项A 正确,显然选项C 错误;当粒子的速度增大为原来的四倍时,才会从f 点射出,选项B 错误;粒子的周期公式T =2πmqB,可见粒子的周期与速度无关,在磁场中的运动时间取决于其轨迹圆弧所对应的圆心角,所以从e 、d 射出时所用时间相等,从f 点射出时所用时间最短,故D 错误.2.[旋转法的应用]如图所示,在真空中坐标xOy 平面的x >0区域内,有磁感应强度B =1.0×10-2T 的匀强磁场,方向与xOy 平面垂直,在x 轴上的P (10,0)点,有一放射源,在xOy 平面内向各个方向发射速率v =104m/s 的带正电的粒子,粒子的质量为m =1.6×10-25kg ,电荷量为q =1.6×10-18C ,求带电粒子能打到y 轴上的范围.答案:-10~10 3 cm 解析:带电粒子在磁场中运动时由牛顿第二定律得:qvB =m v 2R解得:R =mv qB=0.1 m =10 cm如图所示,当带电粒子打到y 轴上方向的A 点与P 连线正好为其圆轨迹的直径时,A 点即为粒子能打到y 轴上方的最高点.因OP =10 cm ,AP =2R =20 cm则OA =AP 2-OP 2=10 3 cm当带电粒子的圆轨迹正好与y 轴下方相切于B 点时,若圆心再向左偏,则粒子就会从纵轴离开磁场,所以B 点即为粒子能打到y 轴下方的最低点,易得OB =R =10 cm ,综上所述,带电粒子能打到y 轴上的范围为-10~10 3 cm.3.[带电粒子在磁场中运动的临界问题]如图所示,在平面直角坐标系xOy 的第四象限有垂直纸面向里的匀强磁场,一质量为m =5.0×10-8kg 、电荷量为q =1.0×10-6C 的带正电粒子从静止开始经U 0=10 V 的电压加速后,从P 点沿图示方向进入磁场,已知OP =30 cm(粒子重力不计,sin 37°=0.6,cos 37°=0.8).(1)求带电粒子到达P 点时速度v 的大小;(2)若磁感应强度B =2.0 T ,粒子从x 轴上的Q 点离开磁场,求OQ 的距离; (3)若粒子不能进入x 轴上方,求磁感应强度B ′满足的条件. 答案:(1)20 m/s (2)0.90 m (3)B ′>5.33 T解析:(1)对带电粒子的加速过程,由动能定理有qU 0=12mv 2代入数据得:v =20 m/s.(2)带电粒子仅在洛伦兹力作用下做匀速圆周运动,有qvB =mv 2R得R =mv qB代入数据得:R =0.50 m 而OPcos 53°=0.50 m故圆心一定在x 轴上,轨迹如图甲所示 由几何关系可知:OQ =R +R sin 53° 故OQ =0.90 m.甲乙(3)带电粒子恰不从x 轴射出(如图乙所示),由几何关系得:OP >R ′+R ′cos 53° ① R ′=mv qB ′②由①②并代入数据得:B ′>163T≈5.33 T(取“≥”同样正确). 4.[带电粒子在磁场中运动的多解问题]如图甲所示,M 、N 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央各有一个小孔O 、O ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.甲 乙有一群正离子在t =0时垂直于M 板从小孔O 射入磁场.已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值. 答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)解析:(1)正离子射入磁场,由洛伦兹力提供向心力,即qv 0B 0=mv 2r①做匀速圆周运动的周期T 0=2πrv 0②联立两式得磁感应强度B 0=2πmqT 0.③(2)要使正离子从O ′孔垂直于N 板射出磁场,两板之间正离子只运动一个周期即T 0时,v 0的方向应如图所示,有r =d4④当在两板之间正离子共运动n 个周期,即nT 0时,有- 11 - r =d 4n(n =1,2,3,…)⑤ 联立①③⑤求解,得正离子的速度的可能值为v 0=qB 0r m =πd 2nT 0(n =1,2,3,…).。

匀强磁场中同源带电粒子临界问题求法

匀强磁场中同源带电粒子临界问题求法

匀强磁场中同源带电粒子临界问题的求法从同一离子源射出的带电粒子,在有边界的匀强磁场中的运动问题,能考查学生利用物理知识和数学知识解决临界问题的能力,这类问题对学生的能力要求较高。

物理中的临界问题一直是学生解题的难点。

解决这类问题的关键是要画出解题示意图,但往往由于有界磁场限制了思路而不能准确画出带电粒子的运动轨迹。

如果把有界磁场扩大为无界磁场来,采用旋转法和收缩法,从探索中找出临界条件,使问题迎刃而解,下面举例说明。

一、旋转法解决同源异向等速带电粒子在磁场中的临界问题例1. 如图1所示,磁感应强度为b的匀强磁场垂直于纸面向里,pq为该磁场的右侧边界线,磁场中有一点o,o点到pq的距离为r。

现从点o以同一速率将相同的带负电粒子向纸面内各个不同的方向射出,它们均做半径为r的匀速圆周运动,求带电粒子打在边界pq 上的范围。

(粒子的重力不计)分析:带电粒子的运动受到磁场右侧边界的限制,打在pq上的范围不易确定。

我们可以假设磁场没有边界pq,不同方向的带电粒子在磁场中做匀速圆周运动的半径r是相同的,先作出一个半径为r的圆,然后利用旋转法即让这个半径为r的圆绕o旋转一周,作出所有带电粒子运动轨迹的范围,带电粒子能运动到的范围是以o 点为圆心,2r为半径的大圆(虚线),如图2所示。

如果有边界线pq,从图上就可以得到带电粒子打在边界线pq上的范围。

需要注意的是打到边界线上的最上边的点是大圆(虚线)与pq的交点,打到最下面的点是小圆与pq的切点。

实际上由于带电粒子都带负电,它们在纸面内都是做顺时针方向的匀速圆周运动,边界线右侧没有磁场,粒子穿出pq线后已飞离磁场,边界右边的轨迹不可能存在,因此打到边界上的范围并不对称。

解:如图3所示, p点在以o1为圆心的圆上,过o点作pq的垂线om,在直角三角形omp中,∠opm=30°,则粒子能到达边界线最下面的点的轨迹圆是以o2为圆心的圆,该圆正好与边界线pq相切,n为切点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G
F
E
R2
R1
v1
o2
o1
D
答案:要粒子能从AC间离开磁场,粒子速率应满足 3(2 3)aqB v 3aqB
m
m
粒子从距A点 (2 3 3)a ~ 3a的 间射出EG
D.粒子在磁场中运动的轨迹长度与时间的比值与θ无关
ACD
M
P
θ v0
O
N
Q
【习题】
1、如图所示.长为L的水平极板间,有垂直纸面向内的
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
边极板间中点处垂直磁感线以速度v水平射入磁场,欲
使粒子不打在极板上,可采用的办法是:
A.使粒子的速度v<BqL/4m; B.使粒子的速度v>5BqL/4m; C.使粒子的速度v>BqL/m;
O2
A
B r2
D.使粒子速度BqL/4m<v<5BqL/4m。 r2
v
O1
+q v
拓展:一大群这种带电粒子沿平行于板的方向从各个 位置以速度v从金属板的左端射入板间,为了使这些正
电荷都不从板间穿出,这些带电粒子的速度需满足什
垂直
θv
B
的直
线上
①a 速度较小时粒子作部分b 圆周
运动后从原边界飞出;②速度
在某一范围内从侧面边界飞;
③速度较大时粒子作部分圆周
运动从另一侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
【例题4】 .如图所示,一足够长的矩形区域abcd内充满 方向垂直纸面向里的、磁感应强度为B的匀强磁场, 在ad边中点O方向垂直磁场射入一速度方向跟ad边夹 角θ=300 、大小为v0的带电粒子,已知粒子质量为m、 电量为q,ab边足够长,ad边长为L,粒子的重力不 计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。 ⑵.如果带电粒子不受上述v0大小范围的限制,求粒子 在磁场中运动的最长时间。
d r(1 cos )
C
EB
. v θO

B
D
F
qvB m v2 r
v eBr eB d
m m (1 cos )
思考:求电子在磁场中运动的 最长时间是多长?
t 2 2 2m 2( )m
2 eB
eB
【例题3】 .如图所示,相互平行的直线M、N、P、Q间 存在垂直于纸面的匀强磁场。某带负电粒子由O点垂直 于磁场方向射入,已知粒子速率一定,射入时速度方 向与OM间夹角的范围为0<θ<90º,不计粒子的重力, 则: A.θ越大,粒子在磁场中运动的时间可能越短 B.θ越大,粒子在磁场中运动的路径一定越长 C.θ越大,粒子在磁场中运动轨迹的圆心到MN的距离一 定越小
.a L s b
◆带电粒子在三角形磁场区域中的运动
【例题6】 .如图所示,在边长为2a的等边三角形△ABC 内存在垂直纸面向里磁感应强度为B的匀强磁场,有一
带电量为q、质量为m的粒子从距A点 3a 的D点垂直于
AB方向进入磁场。若粒子能从AC间离开磁场,求粒 子速率应满足什么条件及粒子从AC间什么范围内射出?
①速度较小时,作半圆运动后 从原边界飞出;②速度增加为 某临界值时,粒子作部分圆周 运动其轨迹与另一边界相切; ③速度较大时粒子作部分圆周 运动后从另一边界飞出
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
么条件?
5d
+v
+v
+v
+v
B
M
d
N
带电粒子沿逆时针方向做半径相同的匀速圆周运动,如果从 下板进入场区的带电粒子不从板间穿出,则这些正电荷就都 不从板间穿出.
eBd v 3eBd
2m
m
◆带电粒子在矩形磁场区域中的运动
圆心
在过
入射
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
B
e
v0
d
B
变化2:若初速度向下与边界成 α = 60 0,则初速度有什么要求?
变化3:若初速度向上与边界成 α = 60 0,则初速度有什么要求?
◆带电粒子在平行直线边界磁场区域中的运动
QP
P
Q
Q
B
v
v
v
S
圆心在磁场原边界上
S
S
圆心在过入射点跟边 圆心在过入射点跟速
界垂直的直线上
度方向垂直的直线上
【例题1】如图所示,一束电子(电量为e)以速度 V垂直射入磁感应强度为B、宽度为d的匀强磁
场,穿透磁场时的速度与电子原来的入射方向
的夹角为300.求: (1)电子的质量 m
B ev
(2)电子在磁场中的运动时间t
θ
v
m qBd 2v
t 30 T d
360 12v
θ
d
变化1:在上题中若电子的电量e,质量m,磁感 应强度B及宽度d已知,若要求电子不从右边界穿 出,则初速度V0有什么要求?
量变积累到一定程度发生质变,出现临界状态.
【例题2】在真空中宽d的区域内有匀强磁场B,质量
为m,电量为e,速率为v的电子从边界CD外侧垂
直射入磁场,入射方向与CD夹角θ,为了使电子能
从磁场的另一侧边界EF射出,v应满足的条件是:
A.v>eBd/m(1+sinθ) B.v>eBd/m(1+cosθ) C.v> eBd/msinθ D.v< eBd/mcosθ
a
b
O
V0
d
c
2θ 2θ
θ
V0
【例题5】 .如图,真空室内存 在匀强磁场,磁场方向垂直于纸 面向里,磁感应强度的大小 B=0.60T,磁场内有一块平面感 光板ab,板面与磁场方向平行,在 距ab的距离L=16cm处,有一个 点状的放射源S,它向各个方向发 射α粒子,α粒子的速度都是 v=4.8x106 m/s,已知α粒子的电 荷与质量之比q/m=5.0x107C/kg 现只考虑在图纸平面中运动的α 粒子,求ab上被α粒子打中的区 域的长度.
相关文档
最新文档