传热过程的计算
传热过程计算
7
二.总传热系数
T 冷 流 体
T Tw dQ1 i dSi (T Tw ) 1 i dSi
Q dQ2 dSm (Tw t w ) Tw t w b b dSm
15
4.4.3 总传热速率方程和平均温度差法 一.总传热速率方程
m1,t1
dQ KdS(T t )
Q
m2,T1 dS t2
T2
dQ Ktm dS
0 0
S
——总传热速率方程 传热计算的出发点和核心:
Q KStm
K—— 平均总传热系数 tm—— 平均温度差
Q KStm W1c p1 (T1 T2 ) W2c p 2 (t2 t1 )
①总传热系数Ko;
②管外对流传热系数αo增加一倍,总传热系 数有何变化? ③管内对流传热系数αi增加一倍,总传热系 数有何变化?
13
①总传热系数Ko 解:
1 1 Ko 1 16 0.0015 16 1 1 do b do 1 40 14.5 90 i d i d m o 100013 1 80.8W/ m 2 C 0.00123 0.00004 0.01111
Tw 热 体
tw
对流
导热
t w-t dQ3 o dSo (t w-t ) t 1 o dSo 对流
对于稳定传热
dQ dQ1 dQ2 dQ3
T Tw Tw t w tw t T t dQ 1 b 1 1 b 1 8 i dSi dSm o dSo i dSi dSm o dSo
传热学第十章传热过程和换热器计算
1
10.1 传热过程的分析和计算
传热过程:热量由壁面一侧的流体通过壁面传到另一侧流 体中去的过程。(两个流体通过壁面的换热过程。) 【传热过程是传热学中特指的概念】
传热方程式: Φ = K A Δt
式中:K为传热系数(总传热系数)。对于不同的传热过程,
K的计算公式不同。
25
(1)加大传热温差 tm
在冷、热流体进、出口温度相同的情况下,逆流的平均温 差最大,顺流的平均温差最小,因此从强化传热的角度出 发,换热器应当尽量布置成逆流。
(2)减小传热热阻 Rk
1)多布置换热面,增加总传热面积A,可降低总传热热阻, 加大传热量。
2)降低污垢热阻。
3)减小对流换热热阻Rh1、Rh2。如果两个热阻相差较大,应 抓住主要矛盾,设法减小其中最大的热阻。
Φ Ko Ao (t fi t fo )
说明: 也可以以内表面为基准。
ho
4
3. 带保温层的金属圆管传热 —— 临界热绝缘直径
圆管外敷保温层后:
Φ
1
l(t fi t fo ) 1 ln( di 2 )
1
hidi 2
di
ho (di 2 )
可见,保温层使得导热热阻增加,换热削弱;降低对流 换热热阻,使得换热增强,那么,综合效果到底是增强 还是削弱呢?
传热工程技术的两个方向:强化传热技术与削弱传热技术 (又称隔热保温技术)。
24
无论是强化传热还是削弱传热,一般都是从改变传热温差和 改变传热热阻两方面入手。
以换热器内的传热过程为例:
kAtm
tm 1
tm Rk
tm Rh1 R Rh2
kA
传热强化途径: (1)加大传热温差 tm; (2)减小传热热阻 Rk 。
食品工程原理—传热过程的计算
(3)当t1/t2<2,可用
tm
(t1
2
t2 )
(4)当t1=t2 tm t1=t2
返回
2. 错、折流时的tm
tm tm逆
f (P, R,流型)
R
热流体温降 冷流体温升
T1 t2
T2 t1
P
冷流体温升 两流体初温差
t2 T1
t1 t1
dQ1 dQ2 Tw
KdA
热 流
体
K——总传热系数,W/(m2·K)
冷 流 体
dQ3 dQ
tw
t
管外对流 导热 管内对流
套管换热器A-A截面
返回
• 管外对流 dQ1 1dA1(T Tw )
•
管壁热传导
dQ2
dAm
b
(Tw
tw
)
• 管内对流 dQ3 2dA2(tw-t)
定态传热 dQ dQ1 dQ2 dQ3
不计壁阻,可如按平壁计算的K值?
(1) 1不变, 2提高到104W/(m2·K) (2) 2不变, 1提高到80W/(m2·K) (3) 2不变, 1提高到500W/(m2·K)
计算上面各种情况下的K值?
强化传热——应提高小一侧流体的
返回
二、污垢热阻
1 K
1
1
R1
b
d1 dm
T TW 1/ 1 A1 TW t 1/ 2 A2
1 2 (T TW ) (TW t)
TW接近于T,即大(热阻小)侧Atm
T TW TW tW
1
传热过程的计算
必须着力减少控制步骤的热阻,才更易以达到强化传热的目的。 。
实际计算换热管热流量,可依据管壁内表面积或外表面积写出两个方程 内表面: 外表面: Ql=KlA1 (T-t) Q2=K2A2 (T-t) (6-116)
式中,K1、K2分别为以内、外表面积为基准的传热系数,明显两者是不相等的。 但有 K1A1=K2A2 如圆管的内、外直径分别用d1、d2表示,结合式子: K 可导出: K 1
即
Q KAt m
称为传热过程基本方程式
式中
t m
T t 1 T t 2 T t 1 ln T t 2
称为对数平均温差或对数平均推动力。
对数平均推动力
对数平均推动力恒小于算术平均推动力,特别是当换热器两端推动力相差悬 殊时,对数平均值要比算术平均值小得多。 当换热器一端两流体温差接近于零时,对数平均推动力将急剧减小。 对数平均推动力这一特性,对换热器的操作有着深刻的影响。 例如,当换热器两端温差有一个为零时,对数平均温差必为零。 这意味着传递相应的热流量,需要无限大的传热面。 但是,当两端温差相差不大时,如0.5<(T-t)1/(T-t)2<2时,对数平均推动 力可用算术平均推动力代替。
qm1CP1dT=q1dA1=dQ (热流体在微元体内放出的热量) 同样,对冷流体作类似假定,并以微元体内环隙空 间为控制体作热量衡算,可得到 qm2CP2dt=q2dA2=dQ (冷流体在微元体内吸收的热量)
2、传热速率方程式 热流密度q是反映具体传热过程速率 大小的特征量。从理论上讲,根据前面 导热或对流给热规律,热流密度q已可以 计算。但是,这种做法必须引入壁面温 度;而在实际计算时,壁温往往是未知 的。为实用方便,希望能够避开壁温, 直接根据冷、热流体的温度进行传热速 率的计算。 如图所示的套管换热器中,热量序 贯地由热流体传给管壁内侧、再由管壁 内侧传至外侧,最后由管壁外侧传给冷 流体(参见 P201 图 6-35 )。在定态条 件下,并忽略管壁内外表面积的差异, 则各环节的热流量相等,即
化工原理传热过程的计算讲义
恒温传热,流体的流动方向对其无影响 tm逆 tm并 T t
变温传热,逆流操作的平均温度差大于并流
tm逆 tm并
返回
② 流体流动方向对传热面积的影响
Q KStm
tm逆 tm并
S逆 S并
在传递等量的热量时,相同条件下,逆流所需的传热面积比并 流的小,也就是说明采用逆流操作可以节省换热器材料。
S dl
1 1 b d0 1 d0
K0 0 dm i di
返回
式中8 K0——以换热管的外表面为基准的总传热系数;
dm——换热管的对数平均直径。
dm
(d0
di ) / ln
d0 di
以内表面为基准: 1 1 di b di 1
Ki 0 d0 dm i
以壁表面为基准: 1 1 dm b 1 dm
dQ
T t 1
KdS
1 1 b 1
KdS 0dS0 dSm idSi
式中 K——总传热系数,W/(m2·K)。
返回
讨论7 : 1.当传热面为平面时,dS=dS0=dSi=dSm
1 1 b 1
K 0 i
2.以外表面为基准(dS=dS0):
1 1 b dS0 1 dS0
K0 0 dSm i dSi
返回
4.4.4 总传热速率方程的应用
1.传热面积的计算
S Q Ktm
2.实验测定总传热系数
3.换热器的操作型计算
对现有的换热器,判断其对指定的传热任务 是否适用,或预测在生产中某些参数变化对传热的 影响.
返回
Q Whcph (T1 T2 ) Wccpc (t2 t1) Q KStm Q, S , K ,Wh ,Wc ,T1,T2 , t1, t2 九个参数,三个方程
传热过程的计算
第四节 传热过程计算化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。
两者都是以换热器的热量衡算和传热速率方程为计算的基础。
应用前述的热传导速率方程和对流传热速率方程时,需要知道壁面的温度。
而实际上壁温常常是未知的,为了避开壁温,故引出间壁两侧流体间的总传热速率方程。
4—4—1 能量衡算对间壁式换热器做能量衡算,以小时为基准,因系统中无外功加入,且一般位能和动能项均可忽略,故实质上为焓衡算。
假设换热器绝热良好,热损失可以忽略时,则在单位时间内换热器中热流体放出的热量等于冷流体吸收的热量,即 , .、)()(1221c c c h h h H H W H H W Q -=-= (4—30)式中 Q —换热器的热负荷,kj/h 或W ;W -流体的质量流量,kg /h ;H -单位质量流体的焓,kJ /kg 。
下标c 、h 分别表示冷流体和热流体,下标1和2表示换热器的进口和出口。
式4-30即为换热器的热量衡算式,它是传热计算的基本方程式,通常可由该式计算换热器的传热量(又称热负荷)。
.若换热器中两流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式4-30可表示为Q )()(1221t t c W T T c W pc c ph h -=-= (4-31)式中 c p -流体的平均比热容,kJ /(kg ·℃);t —冷流体的温度,℃;T -热流体的温度,℃。
若换热器中的热流体有相变化,例如饱和蒸气冷凝时,式4-30可表示为Q )(12t t c W r W pc c h -== (4-32)式中 W h —饱和蒸气(即热流体)的冷凝速率,k 2/h ;r —饱和蒸气的冷凝潜热,kJ /kg 。
式4-32的应用条件是冷凝液在饱和温度下离开换热器。
若冷凝液的温度低于饱和温度时,则式4-32变为Q )()]([1221t t c W T T c r W pc c ph h -=-+= (4-33)式中 C ph -冷凝液的比热容,kJ /(kg ·℃);T s —冷凝液的饱和温度,℃。
《化工原理》传热计算
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000
则
K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100
则
1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷
化工原理.传热过程的计算
管内对流:
dQ2 b dAm (Tw tw )
dQ3 2dA2(tw-t)
对于稳态传热 dQ dQ1 dQ2 dQ3
总推动 力
dQ T Tw Tw tw tw t
T t
1
b
1
1b 1
1dA1 dAm 2dA2 1dA1 dAm 2dA2
总热阻
dQ T t 1
KdA
第五节 传热过程的计算
Q KAtm
Q — 传热速率,W K — 总传热系数,W /(m20C) A — 传热面积,m2 tm — 两流体间的平均温度差,0 C
一、热量衡算
t2 , h2
热流体 qm1, c p1
T1, H1
T2 , H 2
冷流体 qm2, cp2,t1, h1
无热损失:Q qm1H1 H 2 qm2 h2 h1
变形:
dQ dT
qm1 c p1=常数
dQ dt
qm2c p2=常数
d (T t) dT dt 常数 dQ dQ dQ
斜率=dt t1 t2
dQ
Q
由于dQ KtdA
d(t) t1 t2
KtdA
Q
分离变量并积分:
Q KA t1 t2 ln t1 t2
tm
t1 t2 ln t1
t2
讨论:(1)也适用于并流 (2)较大温差记为t1,较小温差记为t2 (3)当t1/t2<2,则可用算术平均值代替
tm (t1 t2 ) / 2
(4)当t1=t2,tm t1=t2
结论: (1) 就提高传热推动力而言,逆流优于并流。 当换热器的传热量Q及总传热系数K相同的条 件下,采用逆流操作,所需传热面积最小。
04.传热过程计算
过热蒸汽 冷流体
又如:过冷液体 → 沸腾→ 过热蒸气
Q WccpcLtcL Wcrc WccpcV tcV Q Whcphth
热流体 过冷液体
说明:① 换热过程中各流股热流量间关系; ② 各流股间相互制约,热量守恒。
4.4.2 总传热速率微分方程 和总 传热系数 1、间壁传热过程:
热量:热流体 对 流传热管内壁
注意: K 与 S 对应,选Si、Sm 或 S0
1 1 1 1b 1
K0dS0 KidSi KmdSm idSi dSm 0dS0
K的来源: 实验测定; 取生产实际的经验数据; 计算求得。
(1) K的计算 在实际生产中以外表面积So作为传热面积。
1 1b 1
K0dS0 idSi dSm 0dS0
用平均传热温差 tm代替(T t)
故稳态传热时,
(1) 恒温传热 两侧流体温度恒定:
tm T t 恒定
T t
(2) 变温传热 ① 一侧有温度变化
② 两侧流体均有温度变化
t1
T2
t2 T1
T1
t1
t2
T2
沿管长某截面取微元传热面积dS,
传热速率方程: dQ KtdS
热量衡算方程: dQ Whcp,hdT Wccp,cdt
KStm
t
对数平均温度差: tm
t1 t2 ln t1
t2
说明:
① 逆流: t1 T2 t1
t2 T1 t2
逆流
并流: t1 T1 t1
t2 T t2
②
t1
/ t2
பைடு நூலகம்2时,可近似取 tm
1 2
(t1
t2 )
③ 进、出口条件相同时, tm,逆 tm,并
4.4 传热过程的计算.
一、恒温差传热 两侧流体均发生相变,且温度不变,则冷 热流体温差处处相等,不随换热器位置而变的 情况。如间壁的一侧液体保持恒定的沸腾温度 t 下蒸发;而间壁的另一侧,饱和蒸汽在温度 T 下冷凝过程,此时传热面两侧的温度差保持 均一不变,称为恒温差传热。
t T t t m
4-86
二、变温差传热 变温差传热:是指传热温度随换热器位置而变 的情况。 当间壁传热过程中一侧或两侧的流体。沿 着传热壁面在不同位置点温度不同,因此传热 温度差也必随换热器位置而变化; 该过程可分为单侧变温和双侧变温两 种情况。
通常根据经验直接估计污垢热阻值,将 其考虑在K中,即
d1 1 1 b d1 1 d1 R1 R2 K 1 dm d2 2 d2
式中: R1、R2——传热面两侧的污垢热阻, m2· K/W。
4-82
为消除污垢热阻的影响,应定期清洗换热器。
4.4.2 热量衡算和传热速率方程间的关系
对于稳定传热:
dQ dQ1 dQ2 dQ3
T Tw Tw tw tw t dQ 1 b 1 1dA1 dAm 2 dA2 T t 1 b 1 1dA1 dAm 2 dA2
4-68
与
dQ KdA(T t )
T t dQ 1 KdA
查图→ 4-101
3)求平均传热温差
t m t m逆
4-102
平均温差校正系数 < 1,这是由于在列 管换热器内增设了折流挡板及采用多管程, 使得换热器内的冷、热流体在换热器内呈折 流或错流,导致实际平均传热温差恒低于纯 逆流时的平均传热温差 。
4.4.3. 传热平均温度差的计算
前已述及,在沿管长方向的不同部分,冷、 热流体温度差不同,本节讨论如何计算其平均 值 tm ; 就冷、热流体的相互流动方向而言,可以有 不同的流动型式,传热平均温差 tm 的计算方法 因流动型式而异。
化工原理传热过程的计算
K 700~1800
300~800 200~500 50~300
100~350 50~250 10~60
两流体 气体-气体 蒸气冷凝-气体 液体沸腾-液体 液体沸腾-气体 水蒸气冷凝-水 有机物冷凝-有机物 水蒸气冷凝-水沸腾 水蒸气冷凝-有机物沸腾
K 10~40 20~250 100~800 10~60 1500~4700 40~350 1500~4700 500~1200
Q ─ 热流体放出或冷流体吸收的热量,W; qm1,qm2 ─ 热冷流体的质量流量,kg/s; h1,h2 ─ 冷流体的进出口焓,J/kg; H1,H2 ─ 热流体的进出口焓, J/kg 。
1.无相变,且Cp可视为常数
热量衡算式:
Q qm1c p1 T1 T2 qm2cp2 t2 t1
式中: cp1,cp2 ── 热冷流体的比热容, J/(kg·℃) ; t1,t2 ── 冷流体的进出口温度, ℃ ; T1,T2 ── 热流体的进出口温度, ℃ 。
1 K
1
1
Rd1
b
Rd 2
1
2
当传热壁热阻很小,可忽略,且流体清洁,污
垢热阻液可忽略时,则:
11 1
K 1 2
(7)换热器中总传热系数的经验值
两流体 水-水 有机物-水
有机物粘度μ<0.5mPa·s μ=0.5~1.0mPa·s μ>1.0mPa·s
有机物-有机物 冷流体粘度μ<1.0mPa·s μ>1.0mPa·s
2.有相变时
2.1 饱和蒸汽冷凝:
Q qm1r qm2c p2 t2 t1
r ─热流体的汽化潜热,kJ/kg;
2.2 冷凝液出口温度T2低于饱和温度TS :
传热过程的计算
6.6 传热过程的计算工业上大量存在传热过程(我们指间壁式传热过程),他包括了流体与固体表面间的给热和固体内部的导热。
前面我们已经学过了导热和各种情况下的给热所遵循的规律,本节讨论传热过程的计算问题。
6.6.1 传热过程的数学描述在连续化的工业生产中,换热器内进行的大都是定态传热过程。
(1)热量衡算微分方程式如图为一套管式换热器,内管为传热管,传热管外径1d ,内径2d ,微元传热管外表面积d A 1,管外侧1α;内表面积d A 2,内侧2α,平均面积d A m ,壁面导热系数λ。
对微元体做热量衡算得 Q A q T c m p s d d d 11==-Q A q T c m p s d d d 22==-以上两式是在以下的假设前提下:① 热流体流量1s m 和比热1p c 沿传热面不变;② 热流体无相变化; ③ 换热器无热损失;④ 控制体两端面的热传导可以忽略。
(2)微元传热速率方程式如图所示套管换热器中,热量由热流体传给管壁内侧,再由管壁内侧传至外侧,最后由管壁外侧传给冷流体。
对上述微元,我们可以得到33211321d d d d d d d A q A q A q Q Q Q Q m =======阻力推动力=++-=-=-=-22m 1122w m w w 11w d 1d d 1d 1d d 1A A b A t T A t t A b t T A T T αλααλα 令 2211d 1d d 1d 1A A b A A K m αλα++= 则 )(d d 1d t T A K A K tT Q -=-=)(d d t T K AQ q -==式中 K ——总传热系数,W/m 2·K 。
因为沿着流体流动方向(套管换热器沿管长)流体的温度是变化的,所以α值也是变化的。
但若取一定性温度,则α与传热面无关,可以认为是一常数,这样K 也为一常数。
对上式进行积分,可以得到m t KA Q ∆= (3)传热系数和热阻 ① K 的计算由前面的分析可知,传热过程的总热阻1/K 由各串联环节的热阻叠加而成,原则上减小任何环节的热阻都可提高传热系数,增大传热过程的速率。
第六章 传热-第六节-传热过程的计算
t W1 , T2
热流体
T
t 1, W 冷流体
2
W 1 C p 1 (T − T 2 ) = W 2 C p 2 ( t − t 1 ) T = W 2C p 2 W 1C p 1 ⎛ W 2C p 2 ⎞ t1 ⎟ t + ⎜ T2 − ⎜ W 1C p 1 ⎟ ⎝ ⎠
这就是传热计算的指导思想,以下的工作就是要解决
K和Δபைடு நூலகம் m !
西北大学化工原理课件 W2, t1 1、热量衡算的微分表达式 h1, cp2 右图为一定态逆流操 t+dt t W1,T1 作的套管换热器,以微元 H ,c T+dT T 1 p1 T2,H2 体内内管空间为控制体作 dA t2,h2 热量衡算,并假定:
T − Tw Tw − t w t w − t = = q= 1 1 δ
t T
α1
T − Tw = q ⋅ 1
三 式 相 加
λ
α2
α 2 tw α1 Tw
α1 δ Tw − t w = q ⋅ λ
tw − t = q ⋅ 1
⎛ 1 δ 1 ⎞ T − t = q⎜ ⎜α + λ + α ⎟ ⎟ 2 ⎠ ⎝ 1
金属壁两边温差很小,Tw ≈ tw,于是: 1 T − Tw α1 = 1 Tw − t (6 − 119)
α2
如果金属壁热阻不能忽略时, 从(6-119)式可看出:传 热面两侧温差之比等于两侧热阻之比、壁温Tw必接近于热阻 较小或给热系数较大一侧流体的温度。
西北大学化工原理课件
二、传热平均温差和传热基本方程式
西北大学化工原理课件
4、传热基本方程式
T1 − T 2 将 式 dT = ( d T − t) 和 ( T − t) − T − t) 1 ( 2 t 2 − t1 ( dt = d T − t) 带 入 式 A = ( T − t) − T − t) ( 1 2
传热基本方程及传热计算
第三节 传热基本方程及传热计算从传热基本方程 m t kA Q ∆= (4-11)或传热热阻传热推动力=∆=kA t Q m 1 (4-11a)可知,要强化传热过程主要应着眼于增加推动力和减少热阻,也就是设法增大m t∆或者增大传热面积A和传热系数K。
在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建立在上述基本方程的基础上的,传热计算则主要解决基本方程中的m t K A Q ∆,,,及有关量的计算。
传热基本方程是传热章中最主要的方程式。
一、传热速率Q的计算冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热量h Q ,必等于冷流体所吸收的热量c Q ,即c n Q Q =,称之热量衡算式。
1. 1. 无相变化时热负荷的计算 (1) (1) 比热法()()1221t t c m T T c m Q pc c ph h -=-=(4-12)式中 Q ——热负荷或传热速率,J.s -1或W ; c h m m ,——热、冷流体的质量流量,kg.s -1;ph pc cc ,——冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J.(kg.k )-1;21,T T ——热流体进、出口温度,K(°C ); 21,t t -冷流体的进出口温度,K(°C )。
(2)热焓法)(21I I m Q -= (4-13)式中 1I ——物料始态的焓,k J.kg -1; 2I ——物料终态的焓,k J.kg -1。
2.有相变化时热负荷计算Gr Q = (4-14)式中 G ——发生相变化流体的质量流量,kg.s -1;r ——液体汽化(或蒸汽冷凝)潜热,k J.kg -1。
注意:在热负荷计算时,必须分清有相变化还是无相变化,然后根据不同算式进行计算。
对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。
当要考虑热损失时,则有:损Q Q Q c h +=通常在保温良好的换热器中可取h Q Q )(损%5~2=三、平均温度差m t ∆的计算在间壁式换热器中,m t ∆的计算可分为以下几种类型:1. 1.两侧均为恒温下的传热两侧流体分别为蒸汽冷凝和液体沸腾时,温度不变,则:m t ∆=T-t =常数 2. 2.一侧恒温一侧变温下的传热 可推得计算式为:()()21212121ln ln t t t t t T t T t T t T t m ∆∆∆-∆=-----=∆ (4-15)式中m t ∆为进出口处传热温度差的对数平均值,温差大的一端为1t ∆,温差小的一端为2t ∆,从而使上式中分子分母均为正值。
传热过程的计算
传热过程的计算
理论和实验可以证明,单位时间内通过换热器传热面上 传递的热量Q (即传热速率)与传热面积以及冷、热流体间的 平均温度差Δtm成正比,用数学式表示为
传热过程的计算
式(4-55)称为总传热速率方程或传热基本 方程,它是换热器传热计算的重要根据,无论是核 算换热器的生产能力或是根据传热任务设计和选用 换热器,都要用到传热基本方程。其中总传热系数 K、传热平均温度差Δtm和传热面积A是传热过程中 的三要素。式中1/KA称为传热总热阻,表示传热速 率等于传热推动力与传热总热阻之比。
传热过程的计算
(三)总传热系数K值的计算
1.
K 值计算公式推导
以冷、热两种流体在列管换热器内间壁换热为例,推导总 传热系数K值的计算式。如图4-16所示,设热流体在管内流动, T1=T2=T(如蒸气冷凝),冷流体在管外流动且t1=t2=t(如液体沸 腾),即两流体为间壁恒温传热。热流体一侧的壁面温度为Tw, 冷流体一侧的壁面温度为tw,Ai、Ao和Am分别为内、外侧和管壁 的平均传热面积,αi、αo分别为管内、外流体的对流传热系数, λ为管壁的导热系数,b为壁厚。
式中 Q——
kJ/h或kW
(4-52)
qm——流体的质量流量,kg/h; H——单位质量流体的焓,kJ/kg。
传热过程的计算
图4-15 热量衡算图
传热过程的计算
若换热器中两流体无相变化,且流体的比热取为平均温度下的比热时,
用比热法得到的热负荷计算公式为
Q=qmhcph(T1-T2)=qmccpc(t2-t1) 式中 cp——流体的平均定压比热,kJ/(kg·℃) T——热流体的温度, ℃;
传热过程的计算
图4-16 流体与壁间的对流传热
传热过程的计算
1 总传热速率方程如图所示,以冷热两流体通过圆管的间壁进行换热为例,热流体走管内,温度为T,冷流体走管外温度为t,管壁两侧温度分别为TW和tw,壁厚为,b,其热导率为λ,内外两侧流体与固体壁面间的表面传热系数分别为αi和α0。
根据牛顿冷却定律及傅立叶定律分别列出对流传热及导热的速率方程:对于管内侧:对于管壁导热:对于管外侧:即故有令(4.6.1)则(4.1.1)该式称为总传热速率方程。
A为传热面积,可以是内外或平均面积,K与A是相对应的。
2 热流量衡算热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:(热流体放出的热流量)=(冷流体吸收的热流量)在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。
(1)无相变化传热过程式中Q----冷流体吸收或热流体放出的热流量,W;mh,mc-----热、冷流体的质量流量,kg/s;Cph,Cpc------热、冷流体的比定压热容,k J/(kg·K);T1,t1 ------热、冷流体的进口温度,K;T2,t2------热、冷流体的出口温度,K。
(2)有相变化传热过程两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程式中r,r1,r2--------物流相变热,J/kg;D,D1,D2--------相变物流量,kg/s。
对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。
3 传热系数和传热面积(1)传热系数K和传热面积A的计算传热系数K是表示换热设备性能的极为重要的参数,是进行传热计算的依据。
K的大小取决于流体的物性、传热过程的操作条件及换热器的类型等,K值通常可以由实验测定,或取生产实际的经验数据,也可以通过分析计算求得。
传热系数K可利用式(4.6.1)进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 传热过程的计算化工生产中广泛采用间壁换热方法进行热量的传递。
间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。
化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。
两者都是以换热器的热量衡算和传热速率方程为计算基础。
4-5-1 热量衡算流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即:Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。
若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。
若换热器中的热流体有相变化,例如饱和蒸气冷凝,则()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。
式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。
若冷凝液的温度低于饱和温度时,则式(4-61)变为()[]()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。
4-5-2 总传热速率微分方程图4-20为一逆流操作的套管换热器的微元管段d L ,该管段的内、外表面积及平均传热面积分别为d S i 、d S o 和d S m 。
热流依次经过热流体、管壁和冷流体这三个环节,在稳定传热的情况下,通过各环节的传热速率应相等,即oWm W W i W \S t t S b t T S T T Q d 1d d 1d 21αλα-=-=-=(4-63)式中 t W 、T W ——分别为冷热流体侧的壁温,℃; α1、α2——分别为传热管壁内、外侧流体的对 流传热系数,W/(m 2·℃); λ——管壁材料的导热系数,W/(m ·℃); b ——管壁厚度,m ;S i ,S o ,S m ——换热器管内表面积、外表面积和内、外表面平均面积,m 2。
图4-20 微元管段上的传热式(4-63)可改写为总阻力总推动力=++-=om i S S b S t T Q d 1d d 1d 21αλα (4-64)式中i S d 11α、m S d 1λ、oS d 12α——分别为各传热环节的热阻,℃/W 。
由上式我们再次看到,串联过程的推动力与阻力具有加和性。
令 o m i S S b S S K d 1d d 1d 121αλα++= (4-65)则式4-65化为d Q =K d S (T -t ) (4-66) 上式即为总传热速率方程的微分表达式。
式中 d S ——微元管段的传热面积,m 2;K ——定义在d S 上的总传热系数,W/(m 2·℃)。
式4-66表明总传热系数在数值上等于单位温度差下的总传热通量,它表示了冷、热流体进行传热的一种能力,总传热系数的倒数1/K 代表间壁两侧流体传热的总热阻。
4-5-3 总传热系数K一、总传热系数K 的计算表达式总传热系数必须和所选择的传热面积相对应,选择的传热面积不同,总传热系数的数值也不同。
1.传热面为平壁 此时d S o =d S i =d S m ,则由式4-65得到21111αλα++=b K (4-67)2.传热面为圆筒壁 此时,d S o 与d S i 及d S m 三者不相等,由式4-65得21d d d d d d 1S S S S b S S K m i αλα++= (4-68)显然,K 的大小与d S 取值有关,d S 值一般取外表面积d S o 值,则K 值称为以外表面积为基准的总传热系数。
式4-68化为211d d d d 1αλα++=m o i o o S S b S S K / (4-69)或 2111αλα++=m o i o o d bd d d K / (4-70)式中 d i ,d o ,d m ——管内径、管外径和管内、外径的平均直径,m 。
同理可得o i m i i d d d bd K 2111αλα++= (4-70a )o m i m m d d b d d K 211αλα++= (4-70b )式中 K i 、K m ——基于管内表面积和管平均表面积的总传热系数。
3.污垢热阻(又称污垢系数)换热器的实际操作中,传热表面上常有污垢积存,对传热产生附加热阻,使总传热系数降低。
由于污垢层的厚度及其导热系数难以测量,因此通常选用污垢热阻的经验值作为计算K 值的依据。
若管壁内、外侧表面上的污垢热阻分别用R si 及R so 表示,则式4-70变为 2111αλα++++=so m o i o si i o o R d bd d d R d d K (4-71)式中 R si ,R so ——分别为管内和管外的污垢热阻,又称污垢系数,m 2·℃/W 。
二、总传热系数K 的范围在设计换热器时,常需预知总传热系数K 值,此时往往先要作一估计。
总传热系数K 值主要受流体的性质、传热的操作条件及换热器类型的影响。
K 的变化范围也较大。
表4-5中列有几种常见换热情况下的总传热系数。
表4-5 常见列管换热器传热情况下的总传热系数K冷 流 体热 流 体K/(W ·m -2·℃-1)水 水 水 水 水 有机溶剂 水水 气体 有机溶剂 轻油 重油 有机溶剂 水蒸气冷凝850~1700 17~280 280~850 340~910 60~280 115~340 1420~4250气体 水 水沸腾 轻油沸腾水蒸气冷凝 低沸点烃类冷凝 水蒸气冷凝 水蒸气冷凝30~300 455~1140 2000~4250 455~1020三、提高总传热系数的途径传热过程的总热阻K 1是由各串联环节的热阻叠加而成,原则上减小任何环节的热阻都可提高传热系数。
但是,当各环节的热阻相差较大时,总热阻的数值将主要由其中的最大热阻所决定。
此时强化传热的关键在于提高该环节的传热系数。
例如,当管壁热阻和污垢热阻均可忽略时,式4-71可简化为 21111αα+=K若α1>>α2,则K 1≈21α,欲要提高K 值,关键在于提高对流传热系数较小一侧的α2。
若污垢热阻为控制因素,则必须设法减慢污垢形成速率或及时清除污垢。
【例4-7】 热空气在冷却管管外流过,α2=90W/(m 2·℃),冷却水在管内流过,α1=1000W/(m 2·℃)。
冷却管外径d o =16mm ,壁厚b =1.5mm ,管壁的λ=40W/(m ·℃)。
试求:①总传热系数K o ;②管外对流传热系数α2增加一倍,总传热系数有何变化? ③管内对流传热系数α1增加一倍,总传热系数有何变化? 解:①由式4-70可知 21111αλα++⋅=m o i o od d b d d K9015.1416400015.01316100011++=8.8001111.000004.000123.01=++=W/(m 2·℃)可见管壁热阻很小,通常可以忽略不计。
②()C m W/4147902100123012 ⋅=⨯+=..K o传热系数增加了82.4%。
③()C m W/385011110131610002112 ⋅=+⨯=..K o传热系数只增加了6%,说明要提高K 值,应提高较小的α2值。
4-5-4 传热推动力和总传热速率方程随着传热过程的进行,换热器各截面上冷热流体的温差(T -t )是不同的,因此若以Δt 表示整个传热面积的平均推动力,且K 为常量,则式4-66积分式为Q=KS Δt (4-72)上式称为总传热速率方程。
下面讨论不同情况下传热平均推动力的计算和总传热速率方程的表达式。
一、恒温传热换热器的间壁两侧流体均有相变化时,例如蒸发器中,饱和蒸气和沸腾液体间的传热就是恒温传热,此时,冷、热流体的温度均不沿管长变化,即Δt =T -t ,流体的流动方向对Δt 也无影响。
式4-72变为Q=KS (T -t )=KS Δt (4-73) 二、变温传热变温传热时,若两流体的相互流向不同,则对温度差的影响也不相同,故应予以分别讨论。
1.逆流和并流在换热器中,两流体若以相反的方向流动,称为逆流;若以相同的方向流动称为并流,如图4-21所示。
由图可见,温度差沿管长发生变化,故需求出平均温度差。
下面以逆流为例,推导计算平均温度差的通式。
由换热器的热量衡算微分式知d Q =-W h c ph d T =W c c pc d t (4-74)图4-21 变温传热时的温度差变化 图4-22 逆流时平均温度差的推导(a )逆流(b )并流在稳定连续传热情况下,W h 、W c 为常量,且认为c ph 、c pc 是常数,则 phh c W Q T d d =pcc c W Q td d =显然Q -T 和Q -t 都是直线关系,因此T -t =Δt 与Q 也呈直线关系,如图4-22所示。
由图4-22可以看出,Q -Δt 的直线斜率为 ()Qt t Qt 12d d ∆∆∆-=将式(4-66)代入上式可得 ()Q t t t S K t 12d d ∆∆∆∆-=式中K 为常量,积分上式,有()⎰⎰-=21012d d 1t t s S Q t t t t K ∆∆∆∆∆∆ 得 S Q t t t t K 1212ln 1∆∆∆∆-=mt KS t t t t KSQ ∆∆∆∆∆=-=1212ln (4-75)该式是传热计算的基本方程式。
Δt m 称为对数平均温度差,即1212ln t t t t t m ∆∆∆∆∆-=(4-76) 对并流情况,可导出同样公式。
在实际计算中一般取Δt 大者为Δt 2,小者为Δt 1。
当Δt 2/Δt 1<2时,可用算术平均温度差(Δt 2+Δt 1)/2代替Δt m 。
在换热器中,只有一种流体有温度变化时其并流和逆流时的平均温度差是相同的。