人教版七年级数学第二章课后习题与答案

合集下载

完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)

完整版人教版七年级上册数学第二章 整式的加减含答案(含解析)

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.1-a-2ab是二次三项式B.-a 2b 2c与2ca 2b 2是同类项C.是多项式 D. πa 2的系数是π2、一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1B.x+1C.x﹣3D.x+33、下列运算正确的是()A. B. C. D.4、多项式3x3﹣2x2﹣15的次数为()A.2B.3C.4D.55、下列说法正确的是()A.单项式的系数是-5,次数是2B.单项式a的系数为1,次数是0 C. 是二次单项式 D.单项式-ab的系数为-,次数是26、若﹣x2y n与3yx2是同类项,则n的值是()A.﹣1B.3C.1D.27、下列计算正确的是()A.2x+3y=5xyB.x 2•x 3=x 6C.(a 3)2=a 6D.(ab)3=ab 38、下列计算正确的是()A.2x+3y=5xyB.5a 2﹣3a 2=2C.(﹣7)÷ =﹣7D.(﹣2)﹣(﹣3)=19、去括号后结果错误的是()A.2(a+2b)=2a+4bB.3(2m﹣n)=6m﹣3nC.﹣[c﹣(a﹣b)]=﹣c ﹣a+bD.﹣(x﹣y+z)=﹣x+y﹣z10、在一张某月的日历上,任意圈出同一列上的三个数的和不可能是( )A.14B.33C.51D.2711、在﹣3x,6﹣a=2,4ab2, 0,,,>,x中,是代数式的共有()A.7个B.6个C.5个D.4个12、下列说法中正确的是( )A.若,则B.若,则C. 的系数是D.若,则13、下列叙述①单项式- 的系数是- ,次数是3次;②用一个平面去截一个圆锥,截面的形状可能是一个三角形;③在数轴上,点A、B分别表示有理数a、b,若a >b,则A到原点的距离比B到原点的距离大;④从八边形的一个顶点出发,最多可以画五条对角线;⑤六棱柱有八个面,18条棱.其中正确的有()A.2个B.3个C.4个D.5个14、下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子(x+2)0有意义的x的取值范围是x≠0D.若分式的值等于0,则a=±115、下列结论正确的是()A.2 ﹣1=﹣2B.单项式﹣x 2的系数是﹣1C.使式子有意义的x的取值范围是x<2D.若分式的值等于0,则a=﹣1二、填空题(共10题,共计30分)16、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.17、写出一个单项式,使它的系数是,次数是,________.18、某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为________.19、若5x3y n和﹣x m y2是同类项,则3m﹣7n=________.20、观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52请用上述规律计算:1+3+5+…+2003+2005=________.21、﹣πa2b的系数是________,次数是________.22、单项式﹣πa3bc的次数是________,系数是________.23、若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是________.24、已知a、b、c是△ABC的三边,化简|a﹣b﹣c|+|b+c﹣a|+|c+a+b|得________.25、有理数,,在数轴上的位置如图所示,试化简________.三、解答题(共6题,共计25分)26、下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.27、已知A=3x2-ax+6x-2,B=-3x2+4ax-7,若A+B的值不含x项,求a的值.28、先化简,再求值:已知,求代数式2xy2-[6x-4(2x-1)-2xy2]+9的值。

人教版 七年级数学 上册 第二章 2.1整式 (有答案)有答案

人教版 七年级数学 上册 第二章 2.1整式 (有答案)有答案

12.1 整式【基础知识梳理】1、代数式的有关概念代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。

说明:代数式书写时需注意:(1)数与字母、字母与字母相乘时乘号省略不写,数字要写在字母前面,如12ab ;数字因数是1或-1时,“1”省略不写,如-mn ;(2)带分数与字母相乘时要化成假分数,如:ab 211要写成ab 23的形式;(3)除号要改写成分数线,如:a ÷b 要写成b a ;(4)书写单位时要把代数式用括号括起来,如(12ab +2R )平方米。

代数式的系数:在代数式中,每一项字母前的数字因数叫做这一项的系数。

2、整式的有关概念(1)单项式的定义:都是数与字母的积的代数式叫做单项式.说明:判断一个代数式是不是单项式,主要是根据代数式中数字和字母间是否都是乘法运算关系.如yx 就不是一个单项式,因为2y 与x 之间是除法运算.但是,12ab 是单项式,因为12是一个数.a 是一个单项式,因为ab 以看作是a ·b 特别地,单独的一个数或单独的一个字母也都是单项式,如-3,0,12,x ,x2等都是单项式(2)单项式次数:一个单项式中,所有字母的指数和叫做这个单项式的次数. 说明:单项式的次数,是指这个单项式中将所有字母指数相加得到的和.如单项式3x 2、2xy 、x 2y 、12x 的次数分别是2、2、3、1.特别地,单独的一个数字,如3,-9等,可以当做0次单项式来看待.(3)单项式的系数:单项式中的数字因数即为单项式的系数.说明:在单项式中,系数只与数字因数有关;次数只与字母有关.如x 3yz 4的系数是1,次数为3+1+4=8.(4)多项式的定义:几个单项式的和叫做多项式.说明:多项式是由几个单项式相加得到的,如多项式x2+2x-1是由单项式x2,2x和-1相加而得到的(5)多项式的次数:一个多项式中,次数最高的项的次数叫做这个多项式的次数.说明:在确定多项式的次数时,应先计算出多项式的每一项的次数,然后再确定多项式的次数,即取次数最大的项的次数作为该多项式的次数.如,多项式x3-x2y2+x中,单项式x3的次数是3,单项式-x2y2的次数是4,单项式x的次数是1,所以多项式x3-x2y2+x 的次数是4.(6)多项式的项数:一个多项式中有几个单项式就有几项.每一个单项式就是一项。

(汇总)人教版七年级上册数学第二章 整式的加减含答案

(汇总)人教版七年级上册数学第二章 整式的加减含答案

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、将自然数按以下规律排列,则2016所在的位置()第1列第2列第3列第4列…第1行 1 2 9 10第2行 4 3 8 11第3行 5 6 7 12第4行16 15 14 13第5行17 ……A.第45行第10列B.第10行第45列C.第44行第10列D.第10行第44列2、下列说法正确的是A.单项式的系数0,次数是2B.单项式的系数,次数是5 C. ,,5是多项式的项 D. 是二次二项式3、下列关于单项式的说法中,正确的是()A.系数是3,次数是2B.系数是﹣,次数是2C.系数是,次数是3 D.系数是﹣,次数是34、若和的差为单项式,则值为()A.4B.-4C.-2D.25、下列各式中运算正确的是()A. B. C. D.6、下列概念表述正确的是()A.单项式系数是1,次数是4B.单项式的系数是,次数是6 C.多项式是五次三项式 D. 是三次二项式7、下列运算结果等于a6的是()A.a 3+a 3B.a 2·a 3C.(-a 3) 2D.a 12÷a 28、下列各式计算中,正确的是()A.2a+2=4aB.﹣2x 2+4x 2=2x 2C.x+x=x 2D.2a+3b=5ab9、下列运算正确的是()A.2a﹣a=2B.a 3·a 2=a 6C.a 3÷a=a 2D.(2a 2)3=6a 510、下列运算正确的是()A.2x+3y=5xyB.5x 2•x 3=5x 5C.4x 8÷2x 2=2x 4D.(﹣x 3)2=x 511、下列运算中,正确的是()A.x 3+x 3=x 6B.x 3•x 9=x 27C.(x 2)3=x 5D.x÷x 2=x ﹣112、若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.513、下列运算正确的是()A.2a﹣a=1B.a+a=2a 2C.a•a=a 2D.(﹣a)2=﹣a 214、下面不是同类项的是( ).A.-2与B.2m与2C. -2a 2b与a 2bD.-x 2y 2与x 2y 215、下列说法正确的是( )A. 的系数是B.单项式的系数为,次数为C.次数为次 D. 的系数为二、填空题(共10题,共计30分)16、若4x2m y m+n与﹣3x6y2是同类项,则m+n=________.17、实数在数轴上的位置如图所示,化简的结果为________.18、( 1 )单项式的系数为________,次数是________;( 2 )多项式-xy3+2x2y4-3是________次________项式.19、若和是同类项,那么的值是________.20、单项式3x m+2n y8与-2x2y3m+4n的和仍是单项式,则m+n= ________ .21、如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第6行的最后一个数是________ ,第n行的最后一个数是________ ;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则168的位置是________ .22、若与是同类项,则m=________、n=________.23、单项式-是________次单项式,系数为________.24、如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线,,过点(1,0)作x轴的垂线交于点A1,过点A1作y轴的垂线交于点A 2,过点A2作x轴的垂线交于点A3,过点A3作y轴的垂线交于点A 4,…依次进行下去,则点A2015的坐标为________25、把式子改写成省略括号的和的形式:________.三、解答题(共6题,共计25分)26、已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.27、单项式x2y m与多项式x2y2+ x3y4+ 的次数相同,求m的值.28、三角形的第一边长为3a+2b,第二边比第一边长a-b,第三边比第二边短2a,求这个三角形的周长.29、单项式﹣2x4y m﹣1与5x n﹣1y2的和是一个单项式,求m﹣2n的值.30、先化简,再求值:(2a2﹣b)﹣(a2﹣4b)﹣(b+c),其中a=,b=,c=1.参考答案一、单选题(共15题,共计45分)1、B2、D4、C5、D6、D7、C8、B9、C10、B11、D12、C13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共6题,共计25分)26、27、29、30、。

七年级数学上册《第二章 整式》练习题附带答案-人教版

七年级数学上册《第二章 整式》练习题附带答案-人教版

七年级数学上册《第二章整式》练习题附带答案-人教版一、选择题1.一个篮球的单价为a元,一个足球的单价为b元(b>a).小明买6个篮球和2个足球,小刚买5个篮球和3个足球,则小明比小刚少花( )A.(a﹣b)元B.(b﹣a)元C.(a﹣5b)元D.(5b﹣a)元2.当x=1时,代数式2x+5的值为( )A.3B.5C.7D.-23.圆柱底面半径为3 cm,高为2 cm,则它的体积为( )A.97π cm2B.18π cm2C.3π cm2D.18π2 cm24.整式x2-3x的值是4,则3x2-9x+8的值是( )A.20B.4C.16D.-45.单项式-ab2c3的系数和次数分别是 ( )A.-1、5B.-1、6C.1、5D.1、66.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④3×102x2y是5次单项式.其中正确的是( )A.①B.②C.③D.④7.下列叙述中,错误的是( )A.-a的系数是-1,次数是1B.单项式ab2c3的系数是1,次数是5C.2x-3是一次二项式D.3x2+xy-8是二次三项式8.把多项式5x2y3﹣2x4y2+7+3x5y按x的降幂排列后,第三项是()A.5x2y3B.﹣2x4y2C.7D.3x5y9.一组按规律排列的多项式:a +b ,a 2﹣b 3,a 3+b 5,a 4﹣b 7,…其中第10个式子是( )A.a 10+b 19B.a 10﹣b 19C.a 10﹣b 17D.a 10﹣b 2110.下列说法正确的是( )A.单项式-x 23的系数是-3B.单项式2π2ab 3的指数是7 C.多项式x 3y -2x 2+3是四次三项式D.多项式x 3y -2x 2+3的项分别为x 3y ,2x 2,3二、填空题11.与3x-y 的和是8的代数式是________.12.若a-2b=3,则9-2a+4b 的值为_______.13.单项式﹣56x 2y 的系数是 ,次数是 . 14.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .15.已知多项式a 2b |m|﹣2ab +b 9﹣2m +3为5次多项式,则m = .16.如图所示,是一个运算程序示意图,若第一次输入k 的值为125,则第2 022次输出的结果是______.三、解答题17.学校多功能报告厅共有20排座位,其中第一排有a 个座位,后面每排比前一排多2个座位.(1)用式子表示最后一排的座位数.(2)若最后一排有60个座位,则第一排有多少个座位?18.已知a -b=-3,求代数式(a -b)2-2(a -b)+3的值.19.王佳在抄写单项式时,不小心把字母y,z的指数用墨水污染了,他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?20.已知多项式-5πx2a+1y2-14x3y3+x4y3.①求多项式各项的系数和次数;②若多项式的次数是7,求a的值.21.若关于x的多项式x3+(2m+1)x2+(2-3n)x-1中不含二次项和一次项,求m,n的值.22.观察下列一串单项式的特点:xy,-2x2y,4x3y,-8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?23.用棋子摆成的“T”字形图如图所示:(1)填写表:图形序号①②③④…⑩每个图案中棋子个5 8 …数(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)参考答案1.B2.C.3.B4.A5.B6.C7.B8.A9.B10.C11.答案为:-3x +y +8;12.答案为:3.13.答案为:﹣56;3. 14.答案为:π.15.答案为:3或2.16.答案为:5.17.解:(1)最后一排的座位数(单位:个)为a +2×19=a +38.(2)由题意,得a +38=60,解得a=22.若最后一排有60个座位,则第一排有22个座位.18.答案为:1819.解:由题意知,x 的指数是1,则y ,z 的指数的和是4.当y 的指数是1时,z 的指数是3;当y 的指数是2时,z 的指数是2;当y 的指数是3时,z 的指数是1.所以这个单项式是-xyz 3或-xy 2z 2或-xy 3z.20.解:①-5πx 2a +1y 2的系数是-5π,次数是2a +3;-14x 3y 3的系数是-14,次数是6;x 4y 3的系数是13,次数是5. ②2 21.解:∵不含二次项和一次项∴2m +1=0,2-3n=0解得m=-12,n=23. 22.解:(1)∵当n=1时,xy ,当n=2时,-2x 2y ,当n=3时,4x 3y当n=4时,-8x 4y ,当n=5时,16x 5y∴第9个单项式是29-1x 9y ,即256x 9y.(2)该单项式为(-2)n -1x n y ,它的系数是(-2)n -1,次数是n +1.23.解:(1)11 14 32;(2)第n 个“T ”字形图案共有棋子(3n +2)个.(3)当n =20时,3n +2=3×20+2=62(个).即第20个“T ”字形图案共有棋子62个.(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T ”字形图案中,棋子的总个数为67×10=670(个).。

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。

如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。

(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。

3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典习题(含答案解析)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.考点:列代数式.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- C解析:C【分析】 本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.【详解】由已知得:矩形面积为2ab ,空白圆形半径为a ,故圆形面积为2a π,则阴影部分的面积为22ab a π-.故选:C .【点睛】本题考查几何图形阴影面积的求法,涉及矩形面积公式以及圆形面积公式运用,求解不规则图形面积时通常利用割补法.8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则,,a b c 的值分别为( )1111211464115101051331151161a b c A .1,6,15a b c === B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c === B 解析:B【分析】由数字排列规律可得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和,据此解答即可.【详解】解:根据图形得:除去每行两端的数字外,每个数字都等于上一行的左右两个数字之和, 所以156a =+=,51015,101020b c =+==+=.故选:B .【点睛】本题以“杨辉三角”为载体,主要考查了与整式有关的数字类规律探索,找准规律是关键. 9.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- C解析:C【分析】 根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x 2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x 2-2x+1)=3x-2-x 2+2x-1=253x x -+-.故选:C .【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键. 11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0,解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B 解析:B【分析】根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.14.下列说法:①在数轴上表示a -的点一定在原点的左边;②有理数a 的倒数是1a ;③一个数的相反数一定小于或等于这个数;④如果a b >,那么22a b >;⑤235x y 的次数是2;⑥有理数可以分为整数、正分数、负分数和0;⑦27m ba -与2abm 是同类项.其中正确的个数为( )A .1个B .2个C .3个D .4个A解析:A【分析】根据字母可以表示任意数可判断①,根据特殊例子0没有倒数可判断②,根据负数的相反数可判断③,根据特殊例子a=1,b=-2,可判断④,根据单项式次数的定义可判断⑤,根据有理数的分类判断⑥,根据同类项的概念判断⑦.【详解】字母可以表示任意数,当a <0时,-a >0,故①错误;0没有倒数,故②错误;负数的相反数是正数,正数大于负数,故③错误;若a=1,b=-2,a b >,但是22a b <,故④错误; 235x y 的次数是3,故⑤错误; 0属于整数,故⑥这种分类不正确;27m ba -与2abm 是同类项,⑦正确,故选A.【点睛】本题考查有理数和代数式的相关概念,熟记这类知识点是解题的关键.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n 个“上”字需用______枚棋子. (4n+2)【分析】先数出前三个上字各所需棋子数然后规律即可解答【详解】解:∵第一个上字需用6枚棋子第二个上字需用10枚棋子第三个上字需用14枚棋子∴依次多4个∴第n 个上字需用(4n+2)枚棋子故答解析:(4n+2).【分析】先数出前三个“上”字各所需棋子数,然后规律即可解答.【详解】解:∵第一个“上”字需用6枚棋子,第二个“上”字需用10枚棋子,第三个“上”字需用14枚棋子,∴依次多4个∴第n 个“上”字需用(4n+2)枚棋子.故答案为:(4n+2).【点睛】本题主要考查了图形的变化规律,观察出哪些部分发生了变化、是按照什么规律变化的是解答本题的关键.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-( =11002101⨯ =50101. 3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案.【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌,A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7.【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.5.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为_____千米/时3b【分析】顺流速度静水速度(静水速度逆流速度)依此列出代数式计算即可求解【详解】解:依题意有(千米时)故顺流速度为千米时故答案为:【点睛】本题主要考查了整式加减的应用整式的加减步骤及注意问题:1整解析:3b【分析】顺流速度=静水速度+(静水速度-逆流速度),依此列出代数式+++--计算即可求解.()[()(2)]a b a b a b【详解】解:依题意有+++--a b a b a b()[()(2)]=+++-+a b a b a b[2]=+++-+2a b a b a b=(千米/时).3b故顺流速度为3b千米/时.故答案为:3b.【点睛】本题主要考查了整式加减的应用,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.6.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.7.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a,b的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab分子用ab表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子解析:ab-aa b+=ab×aa b+【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a,b,分子用a,b表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积.设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.8.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.9.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.10.图中阴影部分的面积为______. 【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积进行计算即可【详解】解:【点睛】本题考查圆的面积计算公式熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积解析:21π4R【分析】图中阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积,进行计算即可.【详解】解:2221=()224R R S R πππ-=阴影 【点睛】本题考查圆的面积计算公式,熟记公式并根据题意找出阴影部分面积为半径为R 的半圆面积减去直径为R 的圆的面积是解题关键.11.请根据给出的x ,-2,y 2组成一个单项式和一个多项式________________-2xy2;-2x+y2;【分析】根据单项式的定义和多项式的定义即可得出答案单项式的定义:数或字母的积组成的式子叫做单项式单独的一个数或字母也是单项式几个单项式的和叫做多项式每个单项式叫做多项式的项解析:-2xy 2;-2x+y 2;【分析】根据单项式的定义和多项式的定义即可得出答案.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.【详解】由x 、-2、y 2组成一个单项式,这个单项式可以为-2xy 2,由x 、-2、y 2组成一个二项式,这个二次项式可以为-2x+y 2.故答案为:-2xy 2;-2x+y 2;【点睛】此题考查单项式,多项式,解题关键在于掌握其定义.1.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --, 当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.2.当0.2x =-时,求代数式22235735x x x x -+-+-的值。

人教版数学七年级上册 第2章 2.1---2.2.同步练习含答案

人教版数学七年级上册 第2章 2.1---2.2.同步练习含答案

2.1整式一.选择题1.单项式的系数和次数分别为()A.,3B.﹣1,3C.﹣1,2D.,22.下列单项式中,次数为3的是()A.B.mn C.3a2D.3.已知(a﹣1)x2y a+1是关于x、y的五次单项式,则这个单项式的系数是()A.1B.2C.3D.04.代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值()A.与x,y有关B.与x有关C.与y有关D.与x,y无关5.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣xy2的系数是﹣1D.﹣2ab2是二次单项式6.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.的系数次数分别为()A.,7B.,6C.,8D.5π,68.下列判断中正确的是()A.单项式的系数是﹣2B.单项式的次数是1C.多项式2x2﹣3x2y2﹣y的次数是2D.多项式1+2ab+ab2是三次三项式9.对于式子:,,,3x2+5x﹣2,abc,0,,m,下列说法正确的是()A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式10.下列语句中错误的是()A.数字2017是单项式B.单项式﹣a的系数与次数都是1C.是二次单项式D.﹣的系数是﹣二.填空题11.3xy﹣π2y+1是次多项式.12.单项式的系数和次数分别是.13.已知多项式(a﹣4)x3﹣x b+x﹣1是关于x的二次三项式,则ab=.14.关于x的多项式(a﹣4)x a﹣x2+x﹣a+1(a为正整数)是二次三项式,则a=.15.已知一列按规律排列的代数式:a2,3a4,5a6,7a8,…,则第9个代数式是.三.解答题16.若关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,求m ﹣n的值.17.下列代数式分别有n项,每一项的系数分别是什么?﹣2x﹣3y,﹣4a2﹣4ab+b2,.18.指出下列各式的系数:﹣x2,a3b,,(﹣2)3a3,.19.观察下列单项式:﹣2x,22x2,﹣23x3,24x4,…,﹣219x19,你能写出第n个单项式吗?并写出第2013个单项式为解决这个问题,我们不妨从系数和次数两个方面入手进行探究,从中发现规律,经过归纳,猜想出结论.(1)系数规律有两条:①系数的符号规律是;②系数的绝对值规律是.(2)次数的规律是.(3)根据上面的规律,猜想出第n个单项式.(4)求第2013个单项式.参考答案与试题解析一.选择题1.【解答】解:单项式的系数是﹣,次数为3,故选:A.2.【解答】解:A、﹣次数为3,故此选项正确;B、mn次数为2,故此选项错误;C、3a2次数为2,故此选项错误;D、﹣ab2c次数为4,故此选项错误;故选:A.3.【解答】解:由题意得:a+1+2=5,解得:a=2,则这个单项式的系数是a﹣1=1,故选:A.4.【解答】解:4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3=(4+3﹣7)x3+(﹣3+3)x3y+(8﹣8)x2y=0.故代数式4x3﹣3x3y+8x2y+3x3+3x3y﹣8x2y﹣7x3的值与x,y无关.故选:D.5.【解答】解:A、2x2﹣3xy﹣1是二次三项式,正确,不合题意;B、﹣x+1不是单项式,正确,不合题意;C、﹣xy2的系数是﹣1,正确,不合题意;D、﹣2ab2是三次单项式,故此选项错误,符合题意.故选:D.6.【解答】解:在代数式π(单项式),x2+(分式),x+xy(多项式),3x2+nx+4(多项式),﹣x(单项式),3(单项式),5xy(单项式),(分式)中,整式共有6个,故选:B.7.【解答】解:的系数为,次数为6,故选:B.8.【解答】解:A、单项式的系数是﹣,故此选项错误;B、单项式,没有次数,故此选项错误;C、多项式2x2﹣3x2y2﹣y的次数是4,故此选项错误;,D、多项式1+2ab+ab2是三次三项式,正确;故选:D.9.【解答】解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式,,abc,0,m;2个多项式为:,3x2+5x﹣2.故选:C.10.【解答】解:A、单独的一个数字也是单项式,故A正确;B、单项式﹣a的系数应是﹣1,次数是1,故B错误;C、xy的次数是2,符合单项式的定义,故C正确;D、﹣的系数是﹣,故D正确.故选:B.二.填空题(共5小题)11.【解答】解:多项式3xy﹣π2y+1是二次多项式.故答案为:二.12.【解答】解:单项式的系数是﹣,次数是6,故答案为:,6.13.【解答】解:由题意得:a﹣4=0,b=2,解得:a=4,b=2,则ab=8,故答案为:8.14.【解答】解:由题意得:a﹣4=0,解得:a=4,当a=2时,原式=﹣3x2+x﹣1,符合题意,故答案为:4或2.15.【解答】解:系数的规律为:1、3、5、7……、2n﹣1,次数的规律为:2、4、6、8……、2n,∴第9个代数式为:17a18,故答案为:17a18.三.解答题(共4小题)16.【解答】解:∵关于x,y的多项式3x2﹣nx m y﹣x是一个三次三项式,且最高次项的系数是﹣3,∴m+1=3,﹣n=﹣3,解得:n=3,m=2,故m﹣n=2﹣3=﹣1.17.【解答】解:﹣2x﹣3y有两项:﹣2x,﹣3y;两项的系数分别是﹣2,﹣3;﹣4a2﹣4ab+b2有三项:﹣4a2,﹣4ab,b2;三项的系数分别是﹣4,﹣4,1;有三项:﹣x2y,2x,﹣3y;三项的系数分别是﹣,2,﹣3.18.【解答】解:单项式﹣x2,a3b,,(﹣2)3a3,的系数分别是:﹣1,1,,﹣8,.19.【解答】解:(1)∵第一个单项式是﹣2x=(﹣1)1×21x1;第二个单项式是22x2=(﹣1)2×22x2;第三个单项式是﹣23x3=(﹣1)3×23x3;…;∴第n个单项式是(﹣1)n×2n x n.∴①系数符号的规律是(﹣1)n;②系数的绝对值规律是2n.故答案为:(﹣1)n;2n.(2)∵由(1)知第n个单项式是=(﹣1)n×2n x n,∴次数的规律是:第n 个为n 次;(3)由(12.2《整式的加减》姓名: 班级: 等级:一.选择题(每小题4分,共32分) 题号 选项1.下列算式正确的是( ) A.B.2222a a a -=--C. 3243a a a =+D.a a a =-222.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.-3的次数是0D.25xyz 是三次单项式 3.下列判断中正确的是( )A.3a 2bc 与bca 2不是同类项 B.52nm 不是整式C.单项式-x 3y 2的系数是-1D.3x 2-y +5xy 2是二次三项式 4.下列说法中正确的是( )A.x 的系数是0B.22与42不是同类项C.y 的次数是0D.25xyz 是三次单项式5.如果单项式-x a+1y 3与y b x 2是同类项,那么a,b 的值分别为( ) A.a=2,b=3 B.a=1,b=2 C.a=1,b=3D.a=2,b=26.若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是( ) A.三次多项式 B.四次多项式 C.七次多项式 D.四次七项式 7.当x 分别取2和-2时,多项式x 5+2x 3-5的值( ) A.互为相反数 B.互为倒数 C.相等 D.异号不等8.有一列式子,按一定规律排列成3a ,﹣9a 2,27a 3,﹣81a 4,243a 5,….当n 为正整数时,第n 个式子为( )A .3n a nB .(﹣1)n 3n a nC .(﹣1)n+13n a nD .﹣3n ﹣1a n二.填空题(每小题4分,共32分) 9.计算:﹣a ﹣(﹣a+2a )= .10.a 3b 2c 的系数是 ,次数是 ;11.一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是 。

完整版人教版七年级上册数学第二章 整式的加减含答案

完整版人教版七年级上册数学第二章 整式的加减含答案

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列运算中,结果正确的是()A.a 4+a 4=a 4B.(﹣2a 2)3=﹣6a 6C.a 8÷a 2=a 4D.a 3•a 2=a 52、古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…,第n个三角数记为an ,则an﹣1+an=()A. B. C. D.3、若单项式2x2y a+b与3x a﹣b y4是同类项,则a,b的值分别是()A.a=3,b=1B.a=﹣3,b=1C.a=3,b=﹣1D.a=﹣3,b=﹣14、下列运算中,正确的是( )A. B. C. D.5、的系数是()A.-2B.C.D.26、单项式的系数和次数分别是()A. ,4B. ,4C. ,5D. ,37、用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A.52B.50C.48D.468、下列说法:①若n为任意有理数,则-n2+2总是负数:②一个有理教不是整数就是分数:③若ab>0,a+b<0,则a<0,b<0;④-3x2y,6都是单项式:⑤若干个有理数相乘,积的符号由负因数的个数确定:⑧若a<0,则|a|=-a。

其中错误的有( )A.4个B.3个C.2个D.1个9、下列式子中,化简结果正确的是()A.﹣|﹣5|=5B.|﹣5|=5C.|﹣0.5|=﹣D.+(﹣)=10、下列计算正确的是()A.﹣a 2b+ba 2=0B.x 2+2x 2=3x 4C.2m+3n=5mnD.3(a+b)=3a+b11、下面计算正确是()A. x3+4 x3=5 x6B. a2• a3=a6C.(﹣2 x3)4=16 x12 D.(x+2 y)(x﹣2 y)=x2﹣2 y212、下列运算正确的是()A.(﹣a2b3)2=a4b6B. a3• a5=a15C.(﹣a2)3=﹣a5D.3 a2﹣2 a2=113、下列说法正确的是()A.若|a|=﹣a,则a<0B.若a<0,ab<0,则b>0C.式子3xy 2﹣4x 3y+12是七次三项式D.若a=b,m是有理数,则14、若2a3x b y+5与5a2-4y b2x是同类项,则()A. B. C. D.15、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、当x=2017时,代数式(x﹣1)(3x+2)﹣3x(x+3)+10x的值为________.17、项式:a,﹣2a2, 4a3,﹣8a4,…根据你发现的规律,第7个式子是________,第n个式子是________.18、若3a3b n c2﹣5a m b4c2所得的差是单项式,则这个单项式为________19、单项式的系数是________,多项式是________次多项式。

人教版七年级上册数学第二章 整式的加减含答案

人教版七年级上册数学第二章 整式的加减含答案

人教版七年级上册数学第二章整式的加减含答案一、单选题(共15题,共计45分)1、下列选项的各式,计算正确的是()A. B. C. D.2、如图所示,如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A5比图A2多出“树枝”()A.28B.56C.60D.1243、下列计算中,正确的是()A. B. C. D.4、下列运算正确的是( )A.a+a= a 2B.a 6÷a 3=a 2C.(a+b) 2=a 2+b 2D.(a b 3) 2= a2 b 65、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a、b、c的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为()A.2a+2b+4cB.2a+4b+6cC.4a+6b+6cD.4a+4b+8c6、下列运算正确的是()A.2x+3y=5xyB.4x-2x=2x 2C.-a 2+a 2=0D.8a 2b-5a 2b=3a 27、下列计算,正确的是()A.a 2﹣a=aB.a 2•a 3=a 6C.a 9÷a 3=a 3D.(a 3)2=a 68、下列运算正确的是()A. B.C. D.9、下列说法正确的是( )A.2x 2-3xy-1的常数项是1B.0不是单项式C.3ab-2a+1的次数是3 D. ab 2的系数是,次数是310、下列去括号或添括号:①3a2﹣6a﹣4ab+1=3a2﹣[6a﹣(4ab﹣1)]②2a﹣2(﹣3x+2y﹣1)=2a+6x﹣4y+2③a2﹣5a﹣ab+3=(a2﹣ab)﹣(5a+3)④3ab﹣[5ab2﹣(2a2b﹣2)﹣a2b2]=3ab﹣5ab2+2a2b﹣2+a2b2其中正确的有()个A.1B.2C.3D.411、在-( )=-x2+3x-2的括号里应填的代数式是( )A.x 2-3x-2B.x 2+3x-2C.x 2-3x+2D.x 2+3x+212、下列运算正确的是()A.2xy﹣y=2xB.2x 2+3x 3=5x 5C.4+2ab=6abD.5ab 2﹣5b2a=013、下列计算正确的是()A.b 3÷b 3=bB.b 3•b 3=b 6C.a 2+a 2=2a 4D.(a 3)3=a 614、将正整数按如下图所示的规律排列,若用有序数对(m , n)表示从上到下第m行,和该行从左到右第n个数,如(4,2)表示整数8,则(8,4)表示的整数是()A.31B.32C.33D.4115、如图,已知,点A(0,0)、B(4 ,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为________.17、若关于x的两个多项式2x3﹣8x2+x﹣1与3x3+2mx2﹣5x+3的和为三次三项式,则m的值为________.18、将一些相同的“○”按如图所示的规律依次摆放,观察每个“稻草人”中的“○”的个数,则第20个“稻草人”中有________个“○”.19、将多项式按x的降幂排列为________.20、计算(a2b)3=________.(﹣a2)3+(﹣a3)2=________.3x3•(﹣2x2)=________;(________ )2=a4b2;(________)2n﹣1=22n+3.21、计算的结果等于________.22、﹣的系数是________.23、观察下面的一列单项式:2x,﹣4x2, 8x3,﹣16x4,…根据你发现的规律,第7个单项式为________;第n个单项式为________.24、单项式的次数为________.25、若x5a+2b+1y2与5x6y3a﹣2b﹣1是同类项,则a=________,b=________.三、解答题(共6题,共计25分)26、已知a , b为常数,且三个单项式4xy2, axy b, -5xy相加得到的和仍然是单项式。

人教版七年级数学第二章课后习题与答案

人教版七年级数学第二章课后习题与答案

人教版七年级数学第二章课后习题与答案习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣;降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时;t 小时行驶多少千米?一本英汉词典的销售是65元;n 本英汉字典的售价是多少?(6)苹果每千克p 元;买10千克以上按9折优惠;买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t ;65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。

行驶速度分别是x 千米/时和y 千米/时;3小时后两车相距多少千米?(6)某种苹果的售价是每千克x 元;用面值是50元的人民币购买6千克;应找回会多少钱? 解:(1) a-3; (2) 2x+10 ; (3)y -x 31; (4) 7x 32- ;(5)y x 33-; (6)50-6x;P60 3.填表整数-15ab 224a b5yx 32 43x 2-42242a b b a +-系数次数项数解:整数-15ab 224a b5yx 32 43x 2- 42242a b b a +-系数-15453次数2 43 3 4项数33p60 4.设教室里座位的行数是m ;用式子表示:(1)教室里每行的座位数比行数多6;教室里总共有多少座位? (2)教室里座位的行数是每行座位的32;教室里总共有多少座位? 解:(1) m (m+6):; (2)223m 。

p60 5.三个植树队;第一队植数x 棵;第二队植的树比第一队植树的2倍少25棵;第三队植的树比第一队植树的一半多42颗;当x 为下列各值时;求三个队共植树多少棵. (1)x=100; (2) x=240 解:三队共植树)(1727422252棵+=++-+x x x x (1) 367棵;(2) 857棵;P 60 6.一块三角尺的形状和尺寸如图所示;如果圆孔的半径是r ;三角尺的厚度是h ;这块三角尺的体积v 是多少?若a=6 cm ;r=0.5 cm ;h=0.2 cm.求V 的植(π取3) 解: v=22245.3;r a 21cm V h h =-πp60 7.一种商品每件成本a 元;按成本增加22%定出价格;每件销售多少元?后来因库存积压减价;按原价的85%出售;现售价多少元?每件还能盈利多少元?解:a+0.22a;(a+0.22a)×0.85;(a+0.22a)×0.85-ap61 8.设n表示人员一个整数;利用含n的式子表示:(1)任意一个数的偶数;(2)任意一个数的奇数.解:(1)2n (2)2n+1p61 9. 3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场);总的比赛场数是多少?4个队呢?5个队呢?n各队呢?解:3;6;10;21n)(np61 10.观察下图并填表;梯形个数 1 2 3 4 5 6 ...... n图形周长5a 8a 11a 14a解:17a;20a;23a;...;(3n+2)aP61 11;如图所示;由一些点组成形如三角形的图形;每条“边”(包括两个顶点)有n(n>1);当n=5;7;11时;S是多少?解:S=3n-3;当n=5;7;11时;S=12;18;30习题 2.2p71 1.计算:(1)2x-10.3x; (2) 3x-x-5x;(3) -b+0.6b-2.6b; (4) m-2n+m-2n;解:(1)2x-10.3x= -8.3x (2) 3x-x-5x=-3x(3) -b+0.6b-2.6b= -3b (4) m-2n+m-2n=2m-22np71 2;计算:(1) 2(4x-0.5); (2)-3(1-x 61); (3) -x+(2x-2)-(3x+5); (4) ).a 3()2a 2(a 32222a a a -+--+ 解:(1) 2(4x-0.5)= 8x-1 (2)-3(1-x 61)=321-x (3)-x+(2x-2)-(3x+5)=-2x-7; (4) ).a 3()2a 2(a 32222a a a -+--+=a 5a 2+p71 3.计算:(1)(5a+4c+7b )+(5c-3b-6a); (2)(8xy-)xy 8()y x 2222+--+y x (3) );21(4)321-x 2(22+--+x x x (4)]2)34(7[x 322x x x ----; 解(1)(5a+4c+7b )+(5c-3b-6a)= -a+4b+9c(2)(8xy-)xy 8()y x 2222+--+y x = -2222x y + (3) )21(4)321-x 2(22+--+x x x = 25x 62--x (4)]2)34(7[x 322x x x ----= 5x 2-3x-3P71 4.先化简下式;再求值:)245(45x -22x x x +-+++)(; 其中x=-2.解:化简得:2x +9x+1 代入x=-2得;-13p71;5.(1)列式表示比a 的5倍大4的数与比a 的2倍小3的数;计算这两个数的和;(2)列式表示比x 的7倍大3的数与比x 的-2倍小5的数;计算这两个数的差.解:(1)5a +4;2a -3;7a +1; (2)7x +3;-2x -5;9x +8.p 71;6.某村小麦种植面积是a 公顷;水稻种植面积是小麦种植面积的3倍;玉米种植面积比小麦种植面积的少5公顷。

2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级上册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 下列数中,3的相反数是()A. 3B. 3C. 0D. (3)答案:B2. 如果a表示一个数,那么a表示()A. a的倒数B. a的相反数C. a的绝对值D. a的平方答案:B3. 下列各数中,有理数是()A. √1B. √2C. πD. 1.2答案:D4. 已知|a|=5,那么a的值为()A. 5B. 5C. ±5D. 0答案:C5. 下列各数中,属于正数的是()A. 3B. 0C. 2D. 2答案:C6. 下列各数中,最小的数是()A. 1B. 0C. 1D. 2答案:D7. 如果a、b互为相反数,那么a+b的值为()A. 0B. aC. bD. a答案:A8. 下列各数中,既是有理数又是无理数的是()A. 1.2B. √3C. 0D. 3答案:C9. 下列各数中,无限不循环小数是()A. 0.333…B. 0.121212…C. πD. 1.414答案:C10. 下列各数中,不是2的倍数的是()A. 2B. 4C. 6D. 7答案:D二、判断题:1. 任何数乘以0都等于0。

()答案:√2. 两个负数相乘,积为正数。

()答案:√3. 0是正数和负数的分界点。

()答案:√4. 互为相反数的两个数,它们的绝对值相等。

()答案:√5. 互为倒数的是两个不同的数。

()答案:×(例如1和1)6. 任何数除以0都有意义。

()7. 无理数是无限不循环小数。

()答案:√8. 两个正数相加,和一定大于其中任何一个加数。

()答案:√9. 两个负数相加,和一定小于其中任何一个加数。

()答案:√10. 任何数乘以1都等于它本身。

()答案:√试题部分一、选择题:1. 下列哪个数是负数?()A. 3B. 0C. 5D. (3)2. 下列哪个数是正整数?()A. 2B. 1.5C. 0D. 33. 下列哪个数是分数?()A. 2B. 3.14D. 0.3334. 下列哪个数是自然数?()A. 1B. 3.5C. 1/3D. 55. 有理数中,绝对值最小的数是()A. 0B. 1C. 1D. 26. 下列哪个数的相反数是它本身?()A. 0B. 1C. 1D. 27. 下列哪个数的倒数是它本身?()A. 0B. 1C. 1D. 28. 若a、b为有理数,且a < b,则下列哪个选项一定成立?()A. a > bB. a b < 0C. a + b > 0D. a/b > 19. 下列哪个选项表示3的相反数?()A. (3)B. 3C. 3D. 1/310. 下列哪个选项表示2的立方?()A. 2^3B. 2^2C. 3^2D. 2^4二、判断题:1. 任何两个负数相乘,结果是正数。

(人教版)上海七年级数学上册第二章《整式的加减》经典习题(答案解析)

(人教版)上海七年级数学上册第二章《整式的加减》经典习题(答案解析)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.某养殖场2018年年底的生猪出栏价格是每千克a 元.受市场影响,2019年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( ) A .(1-15%)(1+20%)a 元 B .(1-15%)20%a 元C .(1+15%)(1-20%)a元 D .(1+20%)15%a 元A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1-15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1-15%)(1+20%)a 元. 故选:A . 【点睛】本题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A 【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案. 【详解】由题意得:5x 2+4x−1−(3x 2+9x), =5x 2+4x−1−3x 2−9x , =2x 2−5x−1. 故答案选A.本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算. 4.若 3x m y 3 与﹣2x 2y n 是同类项,则( ) A .m=1,n=1 B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B 【分析】根据同类项是字母相同且相同字母的指数也相,可得答案. 【详解】33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的. 【点睛】本题考查了同类项,利用了同类项的定义.5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( ) A .1 B .2C .3D .4D解析:D 【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可. 【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.7.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3D解析:D 【分析】先将多项式合并同类型,由不含x 的二次项可列 【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项, ∴6+2m=0, 解得m =﹣3, 故选:D . 【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断. 【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下: 496 497 498 499 500 501 502 503 504 505 506507508509510511512513故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 10.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .11.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.12.下列各对单项式中,属于同类项的是( ) A .ab -与4abc B .213x y 与212xy C .0与3-D .3与a C解析:C 【分析】根据同类项的定义逐个判断即可. 【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项; D .3与a 不是同类项. 故选C . 【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可. 【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5, 故选:A . 【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 14.下列说法错误的是( ) A .23-2x y 的系数是32-B .数字0也是单项式C .-x π是二次单项式D .23xy π的系数是23πC 解析:C 【分析】根据单项式的有关定义逐个进行判断即可. 【详解】A. 23-2x y 的系数是32-,故不符合题意;B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D.23xy π的系数是23π,故不符合题意. 故选C . 【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( ) A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D 【解析】 【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数. 【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数. 故选D.此题考查多项式,解题关键在于掌握其定义.1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6 【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.4.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x 的二次三项式其中二次项是x2一次项是-x 常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12 631 【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论. 【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…, 即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点. 第20个图形共有4+2×3+3×3+…+19×3+20×3 =4+3×(2+3+…+19+20) =4+3×209 =4+627 =631(个). 故答案为:12;631. 【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 6.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n个式子为2n-1a n,∴第8个式子为:27a8=128a8,故答案为:128a8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.7.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a1=12,a2=111-2=2,a3=11-2=﹣1,a4=11=1--12(),a5=111-2=2,a6=11-2=﹣1…观察发现,3次一个循环,∴2019÷3=673,∴a2019=a3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=,故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.10.仅当b =______,c =______时,325x y 与23b c x y 是同类项。

人教版七年级上数学第二章整式的加减课后习题含答案

人教版七年级上数学第二章整式的加减课后习题含答案

七年级上册 第二章习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣,降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时,t 小时行驶多少千米?一本英汉词典的销售是65元,n 本英汉字典的售价是多少?(6)苹果每千克p 元,买10千克以上按9折优惠,买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t,65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。

行驶速度分别是x 千米/时和y 千米/时,3小时后两车相距多少千米? (6)某种苹果的售价是每千克x 元,用面值是50元的人民币购买6千克,应找回会多少钱? 解:(1) a-3; (2) 2x+10 ; (3)y -x 31; (4) 7x 32- ; (5)y x 33-; (6)50-6x;整数-15ab 224a b5yx 32 43x 2-42242a b b a +-系数次数项数解:整数-15ab 224a b5yx 32 43x 2- 42242a b b a +-系数-15453次数 2 4 3 3 4项数33p60 4.设教室里座位的行数是m ,用式子表示:(1)教室里每行的座位数比行数多6,教室里总共有多少座位? (2)教室里座位的行数是每行座位的32,教室里总共有多少座位? 解:(1) m (m+6):; (2)223m 。

p60 5.三个植树队,第一队植数x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42颗,当x 为下列各值时,求三个队共植树多少棵. (1)x=100; (2) x=240 解:三队共植树)(1727422252棵+=++-+x x x x (1) 367棵;(2) 857棵;P 60 6.一块三角尺的形状和尺寸如图所示,如果圆孔的半径是r ,三角尺的厚度是h ,这块三角尺的体积v 是多少?若a=6 cm,r=0.5 cm ,h=0.2 cm.求V 的植(π取3) 解: v=22245.3;r a 21cm V h h =-πp60 7.一种商品每件成本a 元,按成本增加22%定出价格,每件销售多少元?后来因库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解: a+0.22a,(a+0.22a)×0.85,(a+0.22a)×0.85-ap61 8.设n 表示人员一个整数,利用含n 的式子表示: (1) 任意一个数的偶数; (2)任意一个数的奇数. 解:(1)2n (2)2n+1p61 9. 3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n 各队呢? 解: 3,6,10,21n )(-np61 10.观察下图并填表; 梯形个数 1 2 3 4 5 6 ...... n 图形周长5a8a11a14a解:17a, 20a, 23a,..., (3n+2)aP61 11,如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n (n>1),当n=5,7,11时,S 是多少?解:S=3n-3,当n=5,7,11时,S=12,18,30习题 2.2p71 1.计算:(1)2x-10.3x; (2) 3x-x-5x; (3) -b+0.6b-2.6b; (4) m-2n +m-2n ; 解:(1)2x-10.3x= -8.3x (2) 3x-x-5x=-3x (3) -b+0.6b-2.6b= -3b (4) m-2n +m-2n =2m-22np71 2,计算:(1) 2(4x-0.5); (2)-3(1-x 61); (3) -x+(2x-2)-(3x+5); (4) ).a 3()2a 2(a 32222a a a -+--+ 解:(1) 2(4x-0.5)= 8x-1 (2)-3(1-x 1)=31-x(3)-x+(2x-2)-(3x+5)=-2x-7; (4) ).a 3()2a 2(a 32222a a a -+--+=a 5a 2+p71 3.计算:(1)(5a+4c+7b )+(5c-3b-6a); (2)(8xy-)xy 8()y x 2222+--+y x (3) );21(4)321-x 2(22+--+x x x (4)]2)34(7[x 322x x x ----; 解(1)(5a+4c+7b )+(5c-3b-6a)= -a+4b+9c(2)(8xy-)xy 8()y x 2222+--+y x = -2222x y + (3) )21(4)321-x 2(22+--+x x x = 25x 62--x (4)]2)34(7[x 322x x x ----= 5x 2-3x-3P71 4.先化简下式,再求值:)245(45x -22x x x +-+++)(, 其中x=-2.解:化简得:2x +9x+1 代入x=-2得,-13p71,5.(1)列式表示比a 的5倍大4的数与比a 的2倍小3的数,计算这两个数的和; (2)列式表示比x 的7倍大3的数与比x 的-2倍小5的数,计算这两个数的差. 解:(1)5a +4,2a -3,7a +1; (2)7x +3,-2x -5,9x +8.p 71,6.某村小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积的少5公顷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册 第二章习题 2.1P59 1.列式表示: (1)m 的15倍;(2)n 的151; (3)x 的31的6倍;(4)每件a 元的上衣,降低20%的售价是多少元?(5)一辆汽车的行驶速度是65千米/时,t 小时行驶多少千米?一本英汉词典的销售是65元,n 本英汉字典的售价是多少?(6)苹果每千克p 元,买10千克以上按9折优惠,买15千克应支付多少元? 解:(1)15m; (2)n 151; (3) 2x; (4) 0.8a; (5) 65t,65n; (6) 13.5p .P60 2.列式表示: (1)比a 小3的数;(2)x 的2倍与10的和; (3)x 的三分之二减y 的差; (4)比x 的三分之二小7的数;(5)甲乙两车同时、同地、同向出发。

行驶速度分别是x 千米/时和y 千米/时,3小时后两车相距多少千米?(6)某种苹果的售价是每千克x 元,用面值是50元的人民币购买6千克,应找回会多少钱? 解:(1) a-3; (2) 2x+10 ; (3)y -x 31; (4) 7x 32- ; (5)y x 33-; (6)50-6x;解:整数-15ab 224a b5yx 32 43x 2- 42242a b b a +-系数-15453次数 2 4 3 3 4项数33p60 4.设教室里座位的行数是m ,用式子表示:(1)教室里每行的座位数比行数多6,教室里总共有多少座位? (2)教室里座位的行数是每行座位的32,教室里总共有多少座位? 解:(1) m (m+6):; (2)223m 。

p60 5.三个植树队,第一队植数x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42颗,当x 为下列各值时,求三个队共植树多少棵. (1)x=100; (2) x=240 解:三队共植树)(1727422252棵+=++-+x x x x (1) 367棵;(2) 857棵;P 60 6.一块三角尺的形状和尺寸如图所示,如果圆孔的半径是r ,三角尺的厚度是h ,这块三角尺的体积v 是多少?若a=6 cm,r=0.5 cm ,h=0.2 cm.求V 的植(π取3) 解: v=22245.3;r a 21cm V h h =-πp60 7.一种商品每件成本a 元,按成本增加22%定出价格,每件销售多少元?后来因库存积压减价,按原价的85%出售,现售价多少元?每件还能盈利多少元?解:a+0.22a,(a+0.22a)×0.85,(a+0.22a)×0.85-ap61 8.设n表示人员一个整数,利用含n的式子表示:(1)任意一个数的偶数;(2)任意一个数的奇数.解:(1)2n (2)2n+1p61 9. 3个球队进行单循环比赛(参加比赛的每一个队都与其他所有的队各赛一场),总的比赛场数是多少?4个队呢?5个队呢?n各队呢?解:3,6,10,21n)(np61 10.观察下图并填表;梯形个数 1 2 3 4 5 6 ...... n图形周长5a 8a 11a 14a解:17a, 20a, 23a,..., (3n+2)aP61 11,如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1),当n=5,7,11时,S是多少?解:S=3n-3,当n=5,7,11时,S=12,18,30习题 2.2p71 1.计算:(1)2x-10.3x; (2) 3x-x-5x;(3) -b+0.6b-2.6b; (4) m-2n+m-2n;解:(1)2x-10.3x= -8.3x (2) 3x-x-5x=-3x(3) -b+0.6b-2.6b= -3b (4) m-2n+m-2n=2m-22np71 2,计算:(1) 2(4x-0.5); (2)-3(1-x 61); (3) -x+(2x-2)-(3x+5); (4) ).a 3()2a 2(a 32222a a a -+--+ 解:(1) 2(4x-0.5)= 8x-1 (2)-3(1-x 61)=321-x (3)-x+(2x-2)-(3x+5)=-2x-7; (4) ).a 3()2a 2(a 32222a a a -+--+=a 5a 2+p71 3.计算:(1)(5a+4c+7b )+(5c-3b-6a); (2)(8xy-)xy 8()y x 2222+--+y x (3) );21(4)321-x 2(22+--+x x x (4)]2)34(7[x 322x x x ----; 解(1)(5a+4c+7b )+(5c-3b-6a)= -a+4b+9c(2)(8xy-)xy 8()y x 2222+--+y x = -2222x y + (3) )21(4)321-x 2(22+--+x x x = 25x 62--x (4)]2)34(7[x 322x x x ----= 5x 2-3x-3P71 4.先化简下式,再求值:)245(45x -22x x x +-+++)(, 其中x=-2.解:化简得:2x +9x+1 代入x=-2得,-13p71,5.(1)列式表示比a 的5倍大4的数与比a 的2倍小3的数,计算这两个数的和;(2)列式表示比x 的7倍大3的数与比x 的-2倍小5的数,计算这两个数的差.解:(1)5a +4,2a -3,7a +1; (2)7x +3,-2x -5,9x +8.p71,6.某村小麦种植面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积的少5公顷。

列式表示水稻种植面积、玉米种值面积,并计算水稻种植面积比玉米种植面积大多少?解:3a,a-5,2a+5p71, 7.窗户的形状如图所示,其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长是a cm,计算:(1)窗户的面积;(2)窗框的总长.解:(1)()222a282aa4ππ+=+;(2) 6a+πa=(6+π)a;p71,8.某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度为a千米每小时,水流速度为y千米每小时.轮船共航行多少千米?解:3(a+y)+1.5(a-y)=4.5a+1.5y.p72,9.(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位是 ;(2)列式表示上面的两位数与10的乘积 ;(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:P72, 10. 10个棱长为a的正方体摆放成如图的形状,这个图形的表面积是多少?解:362a复习题2 复习巩固p76 ,1.用式子表示:(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付50元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第2次降价又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m,小李跑了a 米,(a >45000),平均每天小李和小张各跑了多少米?平均每天小李比小张多跑多少米? 解:p76,2.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数和次数,是多项式的指出项和次数:-21 a ²b,7n 42m ,x ²+y ²-1,x,3x ²-y+3xy ³+4x -1,32t ³,3π,2x-y.解:p76,3.计算:(1);3x 22y x y - (2)10225.0y y +;(3(5)7ab-ab b a ab b 73387a 322222--+++; (6) 3.553x 22223y y x y y x +-++--(5)8ab 2+4; (6)x 2.P76,4.计算(1))103(10a 433233b b a b b +-+-)(; (2)()()2222435x 4xy y x xy y ---; (3))]3(2)25([52222a a a a a a ---+-; (4)15+3(1-a )-(1-a-a 2)+(1-a+a 2-a 3); (5)()()ab b a ab b 253a 422+-+-; (6)()()14234622+-+--m m m m ; (7)()()22283412a 5a a a +---+;解:(1)22334b a b a -; (2)22x xy y -; (3)a 4a 2-;(4)18-3a+232a a - (5)-a 2b-ab ; (6)8m 2-8m-2; (7)-3a 2+34a-13; (8)x 23x 29--P77,5.(1).体校里男生人数占学生总数的60%,女生人数是a 人,学生总数有多少人?(2)体校里男生人数是x 人,女生人数是y 人,教练人数和学生人数的比是1:10,教练人数是多少人?解:(1)x 25; (2)10yx ;p77,6.甲地的海拨高度为h 米,乙地比甲地高20米,丙地比甲地低30米,列式表示乙丙两地的海拨高度,并算出这两地的高度差。

解:(h+20)米,(h-30)米,(h+20)-(h-30)=50,即两地高度差是50米。

p77,7.长方形的长是2x cm ,宽是4cm 。

梯形的上底长是x cm ,下底长是上底长是的三倍,高是5cm 。

哪个图形的面积大?大多少?解:梯形的面积大,大2x cm 2P77.8.某公园计划砌一个形状如图(1)的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方法,确定哪一种方案砌各圆形水池的周边需要的材料多?(提示:比较两种方案中各圆形池周长的和.)解:2πr ×-(2πr+2π×2r +2π×3r+2π6r)=0p77.9.礼堂第一排有a 个座位,后面每排都比前一排多一个座位.第2排有多少个座位?第3排呢?用m 表示第n 排的座位数,m 是多少?当a=20,n=19时,计算m 的值。

解:a+1.a+2.m=a+(n-1),m=20+(19-1)=38p77.10. 用式子表示十位上的数是a,个位数上的数是b 的两位数,再把这个两位数的十位数上的数与个位数的数交换位置,计算所得数与原数的和.这个数能被11整除吗?解;11a+11b=11(a+b),这个数能被11整除。

P77.11.一个四边形的周长是48cm ,已知第一条边长是acm ,第二条比第一条边的2倍长3cm ,第三条边等于第一、二条边长的和。

(1)写出表示第四条边长的式子;(2)当a=3cm或a=7cm时,还能得到四边形吗?这时的图形是什么形状?解:(1)第四条边长=48-a-(2a+3)-[a+(2a+3)]=42-6a(2) 当a=3时,四条边的边长分别是3,9,12,24,这实际上已经不是四边形了,因为3+9+12=24.当a=7时,四条边的长分别是7,17,24,0,显然不是四边形.p77.12.把(a+b)和(x+y)各看成一项,对下列各式合并同类项:(1)4(a+b)+2(a+b)-(a+b);(2)3(x-y)2-7(x+y)+8(x-y)2+6(x+y).解:(1)5a+5b;(2)11(x+y)2-(x+y);P77, 13.三角形三个内角的和等于180゜,已知三角形的第一个内角等于第二个内角的三倍,而第三个内角比第二个内角大15゜,每个内角的度数是多少?解:33゜,99゜,48゜。

相关文档
最新文档