博弈论经典模型全解析汇报(入门级)
博弈论的应用-浅析博弈论经典模型
浅析博弈论经典模型--囚徒困境模型及其启示一、博弈论概述博弈论又名“对策论”、“赛局理论”,属应用数学的一个分支,表示在多决策主体之间行为具有相互作用时,各主体根据所掌握信息及对自身能力的认知,做出有利于自己的决策的一种行为理论。
简单说来就是一些个人或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。
由于冲突、合作、竞争等行为是现实世界中常见的现象,因此很多领域都能应用博弈论,例如军事领域、经济领域、政治外交,解决诸如战术攻防、国际纠纷、定价定产、兼并收购、投标拍卖甚至动物进化等问题。
二、博弈论的基本原理从上述定义中可以看出,一个完整的博弈一般由以下几个要素组成:博弈的参加者,各博弈方各自选择的全部策略或行为的集合、博弈方的得益、结果、均衡等。
1、参与者指的是博弈中选择行动以最大化自己效用的决策主体(可以是个人,也可以是团体)。
2、行动是指参与人在博弈进程中轮到自己选择时所作的某个具体决策。
3、策略是指参与人选择行动的规则,即在博弈进程中,什么情况下选择什么行动的预先安排。
4、信息指的是参与人在博弈中所知道的关于自己以及其他参与人的行动、策略及其得益函数等知识。
5、得益是参与人在博弈结束后从博弈中获得的效用,一般是所有参与人的策略或行动的函数,这是每个参与人最关心的事情。
6、均衡是所有参与人的最优策略或行动的组合;均衡结果是指博弈结束后博弈分析者感兴趣的一些要素的集合,如在各参与人的均衡策略作用下,各参与人最终的行动或效用集合。
上述要素中,参与人、行动和结果统称为博弈规则,博弈分析的目的是使用博弈规则来决定均衡。
三、博弈的分类博弈的分类根据不同的标准也有不同的分类。
根据参与人的多少,博弈可以分为二人博弈和多人博弈。
根据参与人是否合作,博弈可以分为合作博弈和非合作博弈。
合作博弈和非合作博弈的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。
博弈论讲义详解
启示(qǐshì)
▪ 超级大国之间的核装备(zhuāngbèi)升级过 程难道与此有什么分别吗?双方都付出了 亿万美元的代价,为的是博取区区“100元” 的胜利。联合起来,意味着和平共处,它 是一个更有好处的解决方案。
▪ 其实竞争是个陷阱!敌对是永远没有真正 的胜利者!
精品文档
▪ 有一群动物在讨论如何使自己成为更好的 通才,展现(zhǎnxiàn)自己多才多艺的本事, 于是兔子开始学习鱼儿游泳,当然,鱼儿 也要学兔子跳跃,同样,飞鸟必须学习跑, 松鼠也得学习飞......一段时日之后,兔子不 但学不会游泳,连自己最拿手的"跑"也变慢 了;鱼儿忘了如何力争上游;鸟儿也失去 了在空中自由自在飞翔的乐趣
▪ 如果A不接受这个价格反而在第二轮博弈提 高到299两银子时,B仍然会购买此副字画。 两项比较,显然A会还价。
精品文档
后发优势
▪ 这个例子(lìzi)中的财主B先开价,破落贵 族A后还价,结果卖方A可以获得最大收益, 这正是一种后出价的“后发优势”。
精品文档
▪ 事实上,如果财主B懂得博许A讨价还价。
精品文档
倒推法原理(yuánlǐ)
▪ 先看第二轮的博弈,只要A的还价不超过 300两银子(yín zi),B都会选择接收还价条 件。
▪ 再看第一轮,A拒绝由B开出的任何低于 300两银子(yín zi)的价格!
精品文档
▪ 这是很显然的,比如B开价290两银子 购买字画,A在这一轮(yī lún)同意的话, 只能卖得290两;
当于出价数目的费用(fèi yong) ▪ 那么拍卖开始!
精品文档
▪ 圈套是这样:开始你参加竞价是为了获得 利润,可是(kěshì)后来就变成了避免损失。
博弈论经典模型全解析汇报(入门级)
博弈论经典模型全解析(入门级)1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。
博弈论经典模型
博弈论经典模型经典的博弈模型来源于生活中的现象,很多都是来源于我们的日常生活,只要我们善于总结和发现我们也可以对发生在我们日常的现象进行归纳和总结。
下面是我对网上一些博弈论现象做一个总结:智猪博弈——搭好顺风车,借力成事;枪手博弈——对比关系及策略决定强弱;囚徒困境——个人理性与集体的非理性;斗鸡博弈——狭路相逢勇者未必胜;分蛋糕博弈——讨价还价的策略;以牙还牙——有一种智慧叫宽恕;鹰鸽博弈——路径依赖法则新解;蜈蚣博弈——从后往前的推理;猎鹿博弈——合作是硬道理;酒吧博弈——求同存异的智慧;鲇鱼效应——有竞争才有发展;重复博弈——冲突与合作方能共享;协和谬误——欲罢不能的错上加错;信息甄别——酒好不怕巷子深;人质困境——雪上加霜的囚徒困境;脏脸博弈——都是共同知识惹的祸;成本博弈——摆脱沉没成本羁绊的策略;手表定律——标准不同结论就不同;策略均衡——谁也不得罪。
1.智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈很长,一头有一踏板,另一头是饲料的出口和食槽。
猪每踩一下踏板,另一边就会有相当于10份的猪食进槽,但是踩踏板以后跑到食槽所需要付出的“劳动”,加起来要消耗相当于2份的猪食。
问题是踏板和食槽分置笼子的两端,如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
踩踏板的猪付出劳动跑到食槽的时候,坐享其成的另一头猪早已吃了不少。
“笼中猪”博弈的具体情况如下:如果两只猪同时踩踏板,同时跑向食槽,大猪吃进7份,得益5份,小猪吃进3份,实得1份;如果大猪踩踏板后跑向食槽,这时小猪抢先,吃进4份,实得4份,大猪吃进6份,付出2份,得益4份;如果大猪等待,小猪踩踏板,大猪先吃,吃进9份,得益9份,小猪吃进1份,但是付出了2份,实得-1份;如果双方都懒得动,所得都是0(做个博弈分析图表)。
利益分配格局决定两头猪的理性选择:小猪踩踏板只能吃到一份,不踩踏板反而能吃上4份。
聊聊四种经典的博弈论模型
聊聊四种经典的博弈论模型展开全文1、囚徒困境:为什么两个犯人都选择坐牢官差破获了一宗盗窃案,抓住了两名犯罪嫌疑人。
但在审讯过程中,被关在一处的二人始终矢口否认盗窃罪名,说东西不是我们偷的。
为了避免两人达成默契,结成攻守同盟,官差决定对他们进行单独审讯。
官差表示,如果两人中有一人坦白认罪,则可立即释放,另一个不认罪的人判5年徒刑;如果两人都坦白罪刑,则他们将各判2年徒刑。
但还有一种情况,那就是两个人都拒绝坦白,由于缺乏证据,他们只会以扰乱公共场合为名判处3个月拘役。
这就是两名罪犯面临的困境中,他们会做出怎样的选择呢?首先,他们互相之间都不清楚对方是否会坦白,其次,二人都希望将自己的刑期缩至最短。
如此考虑,最终,两名犯人都会选择坦白交代。
上面的案例就是博弈论所说的“囚徒困境”。
犯人们如果彼此合作,可为集体带来最佳利益(刑期最短);但当二人面对同样的情况且不知道对方如何选择时,在理性思考后,双方都会得出相同的结论(坦白交代),以便达到个人利益的最大化。
囚徒困境是博弈论的“非零和博弈”中具代表性的例子,反映的是个人的最佳选择并非是团体的最佳选择。
虽然困境本身只属模型性质,但现实中的价格竞争、环境保护等方面,也会频繁出现类似情况。
2、智猪博弈:赢的总是小猪猪圈里有大小两头猪,它们在同一个食槽里进食。
为了保持饲料的新鲜,在远离猪食槽的另一边有一个踏板,大猪或小猪跑过去,每按动一次踏板,投食口就会掉落10个单位的食物。
于是,在大猪和小猪每次进食前,就会形成这样一种局面:如果小猪跑去按踏板,大猪守在食槽边,则大猪小猪吃到的食物比是9:1;反之,如果大猪去按而小猪守在食槽边,则吃食比例是6:4。
如果二猪同时到食槽边,则吃食比是7:3。
这样一来,从纯收益的角度考虑,小猪就更愿意选择在食槽边等待食物落出,因为“等待优于行动”,而大猪只能被迫奔忙在踏板和食槽之间。
上述“智猪博弈”的案例是经济学家的假设论证模型,这个博弈的结果,用经济学视角看待,可以解释为:谁占有更多资源,谁就必须承担更多义务。
第1章博弈论基本模型
为什么学习?
从学习中获得心灵的提高,获得心灵的享受。
学习,其实就为自己创造一个美丽的心灵世界的过程。
有人说,我也没什么追求,就学一点实用知识就行,但问题是, 你没有那些“无用”的知识,你怎么驾驭哪些实用的知识呢? “世人只知有用之用,而不知无用只用”。
很多人30岁后就不再读书,到60岁还是30年前的思维;很多人 感慨“现在一读书就头痛”;农村现在不要为生存而挣扎了,那 做什么呢?“我不打牌又做什么呢?”
齐 田忌策略:
上马 ∨
中马 ∨
下马 ∨
田
上马
中马
下马
结 果:
田忌将军每次输掉三千金
谋士孙膑 策略:
结 果:
齐
上马
中马
下马
∨
∧
∧
田
下马
上马
中马
田忌将军胜二负一赢一千金
博弈论的创立与发展
2、博弈论的发展阶段 第一阶段:萌芽期(20世纪40年代前)。利益冲突的研究是分散和初
步的、带有很大程度的随意性。 孙子兵法:古诺(Cournot,1883)—古诺的“双寡头垄断”模型;艾
专业学习:谋职、谋生(身无长物、何以生存)。 事理学习:明白事理、懂得分析生活中的很多问题。(崔琦:
明白这个世界是一个什么样子,这很重要)。一个人,其实只 要懂得了加减乘除四则运算,就可以挣到钱买房买车,在物质 世界中生活的很好。但这只是像一个盲人一样在生活,“春天 来了,但我却看不到” 。(明明德) 人生学习:充实人生、提高人生的境界、把学习融入人的生活 中。人不是做事和挣钱的工具,而是宇宙中的有血有肉的生灵, 需要提高生活的趣味,享受趣味化的人生,这就需要学习。一 个人,不会欣赏《二泉映月》,不会感受过禅宗的静谧,从来 也不思考什么是天行健,好像也是在生活。看看很多人下班后 在做什么?打牌、或者歌厅洗脚房等,当衣食住行解决了之后, 就不知怎么过了,只有赌博和玩乐,却找不到真正的趣味。 (身体在成长、心灵也在成长吗?)(新民) 仰望星空
博弈论究竟讲什么?一文读懂11种经典博弈论模型
博弈论究竟讲什么?一文读懂11种经典博弈论模型先说一个小故事:美国第34任总统艾森豪威尔,在他年轻的时候,有一次吃过晚饭后他跟家人一起玩纸牌,一连六盘,他拿到的都是最坏的牌。
于是他变得不高兴起来,嘴里开始不停地埋怨。
他的母亲停了下来,对他说道:“如果你要继续玩下去,就不要埋怨手中的牌怎么样。
不管怎样的牌发到手中,你都得拿着。
你唯一能做的就是尽你所能,打好手里的每一张牌,求得最好的结果。
”在城主的上一篇文章中,谈到了德鲁克在《创新与企业家精神》中提到的几种竞争战略,制定战略的过程是决策的过程,推进战略落地则是执行的过程。
无论是决策还是执行,其本质都是一次次博弈的组合。
那么,究竟什么是博弈?大到国与国之间的制衡,小到一个人的一生,博弈都是无处不在,无论是商业竞争中,还是日常工作中,生活中,甚至子女教育,两性爱情。
因为每个人都在时时刻刻想着与他人竞争,每时每刻都把自己放在局中人的位置上。
这就是俗话说的“人生如戏,戏如人生”,充分运用游戏规则,做好自己人生的演员,就是博弈思维能力的体现。
专门研究相互依赖、相互影响的人群,其理性决策行为及这些决策的均衡结果的理论,就是博弈论。
博弈是有技巧的,博弈论的主体则是规定的若干博弈模型,通俗的说就是人们常说的“套路”。
但博弈论是严肃的科学,如果有人非要像剥洋葱一样地剥开博弈思维,看看各种博弈技巧的核心是什么,那么他将会看到两个字——理性。
从博弈论衍生出来的博弈思维,体现了人的理性思维,也就是说我们的任何结果均是采取某种决策和行动的结果。
这体现了博弈思维奉行的“因果论”,正所谓“种瓜得瓜,种豆得豆”。
想要得到理想的结果,除了依靠我们的理性分析,采取正确的决策,并付诸行动外,别无他法。
正因为博弈思维是一种理性思维,所以冲动是魔鬼,更是博弈思维的大敌。
这里,我们要认清“理性”的几个误区。
1.理性的人一定是自利的,但世界上又有多少纯粹的“大公无私”呢?2.理性和道德不是一回事,在追求的自利的同时,产生出来的利他才有可能持久。
博弈论-入门
人接受了这五十万,其中的一个人说:“自己没有钱
,父母苦了一辈子了,临老了生病没钱医治,为了父
母,放弃了爱情吧。”
男人接着开出了第三个价格“500万!”
现场更静了,男人的第一个动作都是看身边的女
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有
点呆住了,一个女孩子站起来说:“如果一个男人肯
去年七八月间,陈某儿子与赖某离婚;同年9月17日,陈某也 与王某办理了事实婚姻的离婚手续。仅仅四天后,陈某就与原 儿媳赖某登记结婚。结婚当天,他就向高新区公安分局户籍管 理部门申请办理儿媳、孙女的户籍迁移,欲将她们的户口迁到 上王村。工作人员将陈某的申请材料退了回来,口头告知他说 ,要迁户口,需先取得所在村委会的同意,并开具证明。
博弈 game—— “下棋”、“玩牌”,赌博和其他许 多智力游戏在内的对抗性游戏、对抗性体育竞 赛。博弈就是策略性的互动决策,通俗的说就 基于交叉效应的有意识的行为互动 交叉效应 参与人意识到交叉效应
博弈论,英文为Game theory,是研究相互依 赖、相互影响的决策主体的理性决策行为以及 这些决策的均衡结果的理论。
以利交者,利尽则散!以色交者,色衰则疏! 以貌交者,久之则腻!唯有以心交者,方能永恒!
理性
每个参与人均以获取最大支付为目标 理性内涵:对自己利益完全了解并能完美计算出何种
行动可最大化其利益 理性不意味着:
参与人自私 着眼于短期利益 与其他参与人有相同价值体系
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
2
田忌策略:
结 果:
谋士孙膑 策略: 结 果:
博弈论模型简介
博弈论的基本概念
(二)博弈的组成要素
• • •
•
一个博弈一般由以下几个要素组成,包括:参与 人、行动、信息、策略、得益、结果、均衡等。 1、参与人指的是博弈中选择行动以最大化自己 效用的决策主体; 2、行动是指参与人在博弈进程中轮到自己选择 时所作的某个具体决策; 3、策略是指参与人选择行动的规则,即在博弈 进程中,什么情况下选择什么行动的预先安排;
案例模型构建
要素
4)效用函数:参与人i的效用函数不但受其自身的行动影响, 还取决于对方的行动选择,U=(U1,U2,U3)为参与人 的效用函数组合。参与人1,即地方政府的效用U1主要取 决于集体建设用地交易过程中取得的收益.参与人2和3的 效用U2和U3也主要取决于三方面因素:一是集体建设用 地交易过程中取得的收益R;二是集体建设用地地下交易 的风险成本CR,即违反法律受到惩罚的风险;三是交易成 本CT。
案例-地方政府的战略选择
其二,建立集体建设用地公开流转市场,地方政府获得级差地租Ⅱ 和部分级差地租Ⅰ。(略)
博弈论在旅游学的应用
1.旅游企业之间博弈
张亚明、陈亮(2008) 以博弈论为视角分析网络经济下旅游企业 间的“竞—合”模式,通过运用博弈论对旅游企业间的合作竞争 策略进行了分析,进而确定对合作和竞争策略的选择以及实施次 序的活动运作战略。
案例-地下市场交易下的三方博弈分析
集体建设用地地下市场交易的动力来源
1
2
由于现行征地制度不 健全,造成农村集体组 织的权益受到侵害,农 民集体组织为了获取比 征地补偿更高的收益或 者说规避土地征收带收 的“产权侵害”问题,就 私下进行了集体建设用 地的各种流转
由于现行的征地上市 交易模式手续多、周期 长、成本高,往往出现 用地企业拿到土地时已 经错失投资良机的情况 ,而通过地下市场交易 获得土地的成本低,周 期短,成为用地企业获 取土地的一个捷径 。
博弈论模型总结
博弈论模型总结博弈论五⼤模型Bash博弈模型有⼀堆数量为n的⽯头,双⽅轮流每次从堆中取⾄少1个⽯头最多m个⽯头,谁先取完谁赢。
设存在整数k和r使⽅程n=k*(m+1)+r成⽴,当r==0时先⼿必败,否则先⼿必赢。
结论:n%(m+1) == 0, 先⼿必败Wythoff博弈模型有两堆数量分别为x、y(x <= y)的⽯头,每次可以从⼀堆中取⾄少⼀个⽯头或者从两堆中取同等数量的⽯头,谁先取完谁赢。
结论:x == floor( (sqrt(5)+1)/2 )*(y-x), 满⾜等式时先⼿必败Nim博弈模型有任意m堆、数量任意的⽯头,每次只能从⼀堆中获取⾄少1个⽯头,谁先取完谁赢设⽯头堆Di,Di的异或和k = D1D2...^Di,当且仅当k == 0时先⼿必败,否则先⼿必赢结论:D1D2...^Di == 0, 先⼿必败Fibonacci博弈模型有⼀堆数量为n的⽯头,双⽅轮流从⽯头堆⾥取k[i]个⽯头(1≤k[i]≤2*k[i-1]),先取完的⼈获胜当且仅当n不是斐波那契数时,先⼿必胜,否则先⼿必败结论:Fib(n) == false, 先⼿必胜SG函数定义: P点:必败点,换⽽⾔之,就是谁处于此位置,则在双⽅操作正确的情况下必败。
______ N点:必胜点,处于此情况下,双⽅操作均正确的情况下必胜。
定义:设mex{S}为集合S中第⼀个不存在的正整数定义:设sg(x)为x状态的sg值,sg(x)=mex{S},其中S为x的后继状态的sg值的集合当sg(x) == 0时,没有获胜局⾯,此时处于P点性质:1、所有终结点的sg值都为0,即sg(0) == 0______2、⽆论在N点如何操作,都⾄少存在⼀种情况进⼊P点______3、⽆论如何,P节点的后继节点⼀定是N节点______4、⽆论如何只能进⼊N点的点⼀定是P点题解:假设只有⼀堆数量为n的⽯⼦定义sg(x)函数为当前⽯⼦数量的sg函数,每次只能取Fib[]数列的数sg[0] = 0, Fib[] = {1,2,3,5...}当x == 1时,可以取Fib[1]个⽯⼦,剩余0个⽯⼦,sg[1] = mex{sg[0]} = mex{0} = 1;当x == 2时,可以取Fib[2]、Fib[1]个⽯⼦,剩余1、0个⽯⼦sg[2] = mex{sg[1],sg[0]} = mex{0,1} = 2;当x == 3时,可以取Fib[3]、Fib[2]、Fib[1]个⽯⼦,剩余2、1、0个⽯⼦,sg[3] = mex{sg[2],sg[1],sg[0]} = mex{2,1,0} = 3;当x == 4时,可以取Fib[3]、Fib[2]、Fib[1]个⽯⼦,剩余3、2、1个⽯⼦,sg[4] = mex{sg[3],sg[2],sg[1]} = mex{3,2,1} = 0;......当x == n时,若sg[n] != 0,先⼿必胜对于多堆⽯⼦,类⽐Nim游戏:sg[n]sg[m]sg[k] == 0, 先⼿必败#include<iostream>#include<vector>#include<map>#include<set>#include<algorithm>#include<cmath>#include<string>#include<string.h>#include<queue>using namespace std;#define fi first#define se second#define mp make_pair#define pb push_back#define rep(i, a, b) for(int i=(a); i<(b); i++)#define sz(a) (int)a.size()#define de(a) cout<<#a<<" = "<<a<<endl #define dd(a) cout<<#a<<" = "<<a<<" "#define be begin#define en endtypedef long long ll;typedef pair<int, int> pii;typedef vector<int> vi;const int N = 1005;vi f;void fib(){f.pb(1), f.pb(1);for(int i = 1;f[i] < N;i++){f.pb(f[i]+f[i-1]);}f.erase(f.begin());}int sg[N];void SG(){vi::iterator it;sg[0] = 0;for(int i = 1;i < N;i++){set<int> q;for(it = f.begin();it != f.end() && *it <= i;it++){ q.insert( sg[i-(*it)] );}set<int>::iterator sit = q.begin();int t = 0;for(;sit != q.end();sit++){if(t < *sit) {break;}elset = *sit+1;}sg[i] = t;}}int main(){std::ios::sync_with_stdio(false);std::cin.tie(0);fib();SG();int m,n,p;while(cin >> m >> n >> p){if(m == 0) break;if((sg[m]^sg[n]^sg[p]) == 0) cout << "Nacci" << endl; else cout << "Fibo" << endl;}return 0;}。
博弈论最全完整ppt-讲解
导论
二、博弈论与诺贝尔经济学奖获得者
1994年诺贝尔经济学奖获得者
美国人约翰-海萨尼(John C. Harsanyi) 和美国人 约翰-纳什(John F. Nash Jr.)以及德国人莱因 哈德-泽尔腾(Reinhard Selten)
获奖理由:在非合作博弈的均衡分析理论方面做 出了开创性的贡献,对博弈论和经济学产生了重 大影响 。
如果一个博弈在所有各种对局下全体参与人之得 益总和总是保持为一个常数,这个博弈就叫常和 博弈;
相反,如果一个博弈在所有各种对局下全体参与 人之得益总和不总是保持为一个常数,这个博弈 就叫非常和博弈。
常和博弈也是利益对抗程度最高的博弈。 非常和(变和)博弈蕴含双赢或多赢。
导论
四、主要参考文献
课程主要内容
第一章 完全信息静态博弈 第二章 完全信息动态博弈 第三章 不完全信息静态博弈 第四章 不完全信息动态博弈 第五章 委托-代理理论 第六章 逆向选择与信号传递
第一章 完全信息静态博弈
博弈论的基本概念及战略式表述 纳什均衡
纳什均衡应用举例 混合战略纳什均衡 纳什均衡的存在性与多重性
第一节 博弈论的基本概念
与战略式表述
博弈论的基本概念与战略式表述
博弈论(game theory)是研究决策主体的行为发生直 接相互作用时候的决策以及这种决策的均衡问题。
博弈的战略式表述:G={N,(Si)iN,(Ui)iN} 有三个基本要素: (1)参与人(players)iN={1,2,…,n} ; (2)战略(strategies),siSi(战略空间); (3)支付(payoffs),ui=ui(s-i,si)。
Because We Had a Flat Tire”
《博弈论入门》
黑暗中的舞者
1. 慕尼黑协定 2. 贝叶斯均衡:三步转换 3. 当所有人都拥有私人信息时 4. 委员会和陪审团的投票 5. 信号传递 6. 说谎及说谎者的信息
实用文档
1. 慕尼黑协定
实用文档
实用文档
实用文档
60%
40%
实用文档
2. 贝叶斯均衡:三步转换
1. 在一个不完全信息博弈中,这个参与者 是谁?
二手车市场Vs相亲大会
分手or悔婚
法律保障? 钻石戒指? 甜言蜜语?
实用文档
5.3 信号传递的实例
三类商品:
搜索产品 体验商品 信任商品
如何广告才能分离优劣?
实用文档
资本市场
Ross(1977):在一定条件下,企业的负债水平 越高,企业的盈利能力越强。
不同企业的破产可能
好企业
若估价50,出价40最优吗? 出价60时的期望收益:
0.6*(100-60)+0.4*0.5*(10060)=32 若估价100,出价60最优吗?
40: 0.6*0.5*(100-40)+0.4*0=18 50: 0.6*(100-50)+0.4*0=30 70: 0.6*(100-70实)用+文0档.4隐*(藏1你00的-7出0)价=30
参与者所拥有的私人信息成为参与者的类型 所有类型的集合成为类型空间 不同类型对应不同的收益
2. 确定每个参与者的类型,引入“自然” 3. 定义策略集。策略和自然,哪个先?
实用文档
狂野西部枪战
1875年某个非同寻常的一天,警长马歇 尔﹒怀特﹒厄普去维持秩序,突然一个 陌生人拉住他的手,好像要开枪……
实用文档
若委员不知道哪个政策更好 …… (投票,弃权?)
博弈论的几个经典模型
诺贝尔奖的公共选择学派的领导者布坎南,1995年获得诺贝尔
奖的理性主义学派的领袖卢卡斯
(Lukas),其理论与博
弈论都有着较深的联系。现在博弈论正渗透到各门社会科学,
更重要的是它正深刻地改变着人们的思
• 汪贤裕、肖玉明编著,博弈论及其应用,科学出版社,2008 年2月
第四章 博弈论的几个经典模型
讲授人 谭建国
引言
博弈论又被称为对策论(Game Theory),按照2005年因对博 弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法, 博弈论就是研究互动决策的理论。所谓互动决策,即各行动方 (即局中人[player])的决策是相互影响的,每个人在决策的时 候必须将他人的决策纳入自己的决策考虑之中,当然也需要把 别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情 形进行决策,选择最有利于自己的战略(strategy)。
博弈论的几个经典模型
引言
你的选择必须考虑其他人的选择,而其他人的选择也考虑 你的选择。你的结果——博弈论称之为支付,不仅取决于你的 行动选择——博弈论称之为策略选择,同时取决于他人的策略 选择。你和这群人构成一个博弈(game)。
上述博弈是一个叫张翼成的中国人在1997年提出的一个博 弈 论 模 型 , 被 称 之 为 少 数 者 博 弈 或 少 数 派 博 弈 ( Minority Game)。
协调互动合作互动协调互动是指一个参与人获得的支付依赖于其他参与人是否选择了相同行动如左行右行博弈如果两个相对而行的参与人选择不同的方向行进那么他们会相碰而选择相同方向则可以顺利通合作互动是指既存在协调又存在冲突的博弈协调是因为两个参与同时改变行动可以变得更好冲突是因为尽管其他参与人承诺行动也不一定有利于该参与人支付的增加前者可能引起无效率后者则意意味着无效率状态会成为均衡猎鹿类型协调博弈由策略不确定性所引起的均衡结果依赖于参与人之间的行为预期博弈支付与策略风险
博弈论最全完整-讲解
“乘客侧前轮”看起来是一个合乎逻辑的选择。 但真正起作用的是你的朋友是否使用同样的
逻辑,或者认为这一选择同样显然。并且是 否你认为这一选择是否对他同样显然;反之, 是否她认为这一选择对你同样显然。……以 此类推。 也就是说,需要的是对这样的情况下该选什 么的预期的收敛。这一使得参与者能够成功 合作的共同预期的策略被称为焦点。心有灵 犀一点通。
例3:为什么教授如此苛刻?
问题是,一个好心肠的教授如何维持如 此铁石心肠的承诺?
他必须找到某种使拒绝变得强硬和可信 的方法。
拿行政程序或者学校政策来做挡箭牌 在课程开始时做出明确和严格的宣布 通过几次严打来获得“冷面杀手”的声
誉
导论
博弈均衡与一般均衡 博弈论与诺贝尔经济学奖获得者
博弈论的基本概念与类型 主要参考文献
即使决策或行动有先后,但只要局中人 在决策时都还不知道对手的决策或者行 动是什么,也算是静态博弈
完全信息博弈与不完全信息博弈
(games of complete information and games of incomplete information)
按照大家是否清楚对局情况下每个 局中人的得益。
“各种对局情况下每个人的得益是 多少” 是所有局中人的共同知识 (common knowledge)。
据“共同知识”的掌握分为完全信 息与不完全信息博弈。
完美信息博弈与不完美信息博弈
(games with perfect information and games with imperfect information)
了解自己行动的限制和约束,然后以精心策划的方式 选择自己的行为,按照自己的标准做到最好。 • 博弈论对理性的行为又从新的角度赋予其新的含义— —与其他同样具有理性的决策者进行相互作用。 • 博弈论是关于相互作用情况下的理性行为的科学。
博弈论的几个经典模型PPT课件
模型三、独立私人价值下的一级密 封拍卖/不完全信息静态博弈
N
高成本
低成本
A
默许
阻挠
A
默许
阻挠
B
B
B
B
进入 不进入 进入 不进入 进入 不进入 进入 不进入
(50,40)(300,0)(0,-10)(300,0)(100,30)(400,0)(140,-10)(400,0)
*贝叶斯纳什均衡
模型二、囚徒困境/非合作博弈
有两个小偷A和B联合犯事、私入民宅被 警察抓住。警方将两人分别置于不同的两个 房间内进行审讯,对每一个犯罪嫌疑人,警 方给出的政策是:如果一个犯罪嫌疑人坦白 了罪行,交出了赃物,于是证据确凿,两人 都被判有罪。如果另一个犯罪嫌疑人也作了 坦白,则两人各被判刑8年;如果另一个犯罪 嫌人没有坦白而是抵赖,则以妨碍公务罪(因 已有证据表明其有罪)再加刑2年,而坦白者 有功被减刑8年,立即释放。如果两人都抵赖, 则警方因证据不足不能判两人的偷窃罪,但 可以私入民宅的罪名将两人各判入狱1年。
为个人)他自己的最好策略,还是采用(作为集 体的一员)他们共同的最好策略?前者导致均衡 策略(坦白,坦白),支付为(-8,-8);后者的最 好策略是(抵赖,抵赖),支付为(-1,-1)。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
四,杀鸡给猴看。其实猴子是没有思维的,它们 有一定的群体意识,但没有社会意识,人们关 于它们的故事其实是说人自己的。我们这里也 讲一个猴子的故事……。
经典博弈模型
按 大猪
等
小猪
按
等
5,1
4,4
9,-1
0,0
收益:(大猪,小猪)
大猪按,小猪选择等待 例:大企业进行新产品旳研究开发及市场旳
开拓,而小企业则选择模仿及跟随;大股东与 小股东对企业经营旳监督选择等
经典模型三:情侣博弈
一对年青旳情侣,男孩喜欢足球赛,女 孩喜欢欣赏音乐会。某一天,同步有一 场尤其主要旳足球赛和一场女孩期待已 久旳音乐会。假如一起去看足球赛,则 男孩收益2,女孩1;一起去欣赏音乐会, 则女孩收益2,男孩收益1。不然,收益 均为0。请问:看足球赛还是欣赏音乐 会?
足球 男
音乐
女孩
足球
音乐
2,1
0,0
0,0
1,2
收益:(男,女)
为了能做自己喜欢旳事,男孩和女孩怎 样做?
例:供给链上旳合作关系
经典模型四:斗鸡博弈
在美国,某些飞车党党徒为了表达勇敢, 一般由两个人分别驾驶两辆车急速对撞。 因怕死而让道旳一方被称为小鸡,在飞 车党内备受歧视;而不让道旳一方在飞 车党内备受推崇。
假如两人都不让道,不死即残,收益为w;假如让道,受大家讥笑,收益为-10; 假如不让道,受大家尊敬,收益为+10。 让道还是不让道?
党徒1
党徒2
让
撞
让 -10,-10 -10,+10
撞 +10,-10 -w,-w
收益:(党徒1,党徒2)
作为党徒之一,是撞还是让?
经典模型五:鸽?鹰?
苏联和美国是冷战时代旳两个超级大国, 长久处于对抗状态。两国各有妥协(鸽) 和强硬(鹰)两种路线。其收益如下:
偷 小偷
不偷
守卫
睡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论经典模型全解析(入门级)1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
企业在信息化过程中需要与咨询企业、软件供应商打交道的。
在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。
在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。
2. 智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是7∶3;小猪先到槽边,收益比是6∶4。
那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。
实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪也行动的话,小猪可得到1个单位的纯收益(吃到3个单位食品的同时也耗费2个单位的成本,以下纯收益计算相同),而小猪等待的话,则可以获得4个单位的纯收益,等待优于行动;在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。
在小企业经营中,学会如何“搭便车”是一个精明的职业经理人最为基本的素质。
在某些时候,如果能够注意等待,让其他大的企业首先开发市场,是一种明智的选择。
这时候有所不为才能有所为!高明的管理者善于利用各种有利的条件来为自己服务。
“搭便车”实际上是提供给职业经理人面对每一项花费的另一种选择,对它的留意和研究可以给企业节省很多不必要的费用,从而使企业的管理和发展走上一个新的台阶。
这种现象在经济生活中十分常见,却很少为小企业的经理人所熟识。
3. 枪手博弈有三个枪手,第一个枪手A的命中率是80%,B是60%,C是40%。
他们同时举枪瞄准、同时射击另两个人中的一个,要尽可能消灭对手,每个人一次机会,一颗子弹,目标是努力使自己活下来。
谁活下来的可能性最大?如果你认为枪法最准的A胜出,那么你就错了。
我们来看,如果你是A,你毫无疑问的会瞄准对你威胁最大的B,而B也会瞄准对他威胁最大的A,而C则也可能瞄准A,那么三个人存活的概率都是多少呢?A = 100% - 60% - (1-60%)* 40% = 24%B = 100% - 80% = 20% (因为命中率为80%的A在瞄准他)C = 100% (因为没有人瞄准他)原来,枪法最不准的C竟然活了下来。
那么,换一种玩法呢?如果三个人轮流开枪,谁会生存下来?如果A先开枪的话,A还是会先打B,如果B被打死了,则下一个开枪的就是C,那么此时A生存的概率为60%,而C依然是100%(他开过枪后A没有子弹了,游戏结束);如果打不死B,则下一轮在B开枪的时候一定会全力回击,A的生存率为40%,不管是否打死A,第三轮AB的命运都掌握在C的手里了。
那么,如果游戏规则规定必须由C先开枪,如果你是C怎么才能让自己活下来呢?答案是胡乱开一枪,只要不针对AB任何一人即可。
当C开枪完毕,AB还是会陷入互相攻击的困境。
插播1——警察与小偷令人沮丧的博弈结局。
警察和小偷各只有一个机会去巡查或者偷盗A地或B地。
A地的价值大于B地,那么警察应该为了保护价值大而一直保护A地吗。
博弈论认为当然不是,警察的合理策略应当是有倾向于A以一定概率的随机巡查。
这个概率就是:p=A地价值/AB地总价值。
这种情况下才能使小偷最大得手几率降至最低。
但是很不幸的是,此时的小偷谋求的是,最小得手几率的最大化。
也就是说,警察的最优策略将把小偷的最差策略改良!这个便是冯·诺伊曼提出的“最小最大定律”。
我们必须再一次感谢这个不完美的世界,因为现实之中,类似的现象,对于一方仍然可以设法找到对手致命的规律性行动(当然必须考虑到对方是不是一个更加老练的猎手,故意放出的诱饵)。
而保持自己的行动的无序性,则有可能成为欺骗策略的武器,这倒似张三丰所言道的:无招胜有招。
4. 斗鸡博弈两只斗鸡在决斗的时候,无论选择进或退都是一个难题,因为纳什均衡已经给出了一胜一败的最优策略。
在很多较量下,死拼将是得不偿失的,因为很可能给第三者机会。
因此,两个已经在战场的强势力很可能自觉的遵循纳什均衡,当一方攻击时,另一方暂退。
虽然可能某方暂时受损,但较之于两败俱伤是好得多的。
不过,要维持这一状况,必须保证下一次先期受损的一方发动攻势的时候,另一方同样的后退。
于是这样的攻击性行为开始变得“仪式化”,没有人真正流血。
这只不过是两个巨头玩弄的游戏,目的是警告后来者,想进来,那么也得陪我们一起玩,可是你玩的起么?这正是百事的广告,即使暗含挑衅也最多只到“敢为中国红”这样的地步的原因。
插播2——协和谬误欧洲ZF在大量投资协和飞机后,终于不能自拔。
即使前景黯淡,也撑着面子投下去,非要走头无路才放弃。
而这时投入的成本已经全打水漂了。
如果,发现不能继续的时候,就果敢放手,损失会小得多。
可是他们会、能这么做么?壮士断腕,是何等的壮烈,却也是何等的艰难!沉没成本很可能会延续人们无畏的坚持。
已经沉没的本该放弃,可惜大部分有赌徒式的心理,相信阿基米德的杠杆终将启动。
可惜他们在爬到足够撬动杠杆的支点之前,已经窒息了。
协和谬误,倒是给了人们半途而废的理由,会不会有人担心它的滥觞会左右一些本该坚持的目标?的确有这个可能,但是应该相信人们足够理智,完全可以比较沉没成本、机会成本与未来收益的关系。
看清了的,必定会坦然地走出协和谬误。
5. 蜈蚣博弈一场颠前倒后的博弈。
蜈蚣博弈的机理是以最终的结果倒退至开始。
这是一个睿智的策略,因果相报,把握好因缘,自有好结果。
它的另一个好处,就是使得未来的计划明晰化,是你不再徘徊。
只可惜,很多时候,碌碌无为的我们并没有看透迷局的眼睛。
我们黑色的眼睛只习惯于黑夜。
蜈蚣博弈也有一个致命的悖论,仍旧是个人利益和集体利益的冲突,因为最后一次的背叛收益始终优于合作。
可悲的是,这一次背叛将由于人性的理智,穿越时光隧道,回到原始的地点:人们将从开始就拒绝合作。
还是感谢我们这个不完美的世界吧,事实上人们很少这样做。
当然合作到最后的也很少,这意味着,倒推法只在中间阶段突然发生了作用,只不过谁也不能预测,中间一步在哪里。
在那里,我们只有冀望信任、道德、良知等等。
6. 分蛋糕博弈两个小孩怎么分蛋糕?经典的故事,经典的解答:一个分,一个选。
现实多如此,权利的合理分配将有效促进公平与效率。
经营权与所有权的分置的确使得经济更加活力。
不过分蛋糕的进阶模型却强调了讨价还价的策略,分蛋糕不是一次性的,而是多回合的,而且出现成本:蛋糕在融化。
时间称本的加入,将使得分配变得复杂化。
双方如果不能及时达成交易,不仅集体的收益将减量,而且个体的收益也将减少。
在此情况下,利用时间称本以及威胁、承诺将对其中一方极其有利。
顾客可能迫于情势,必须尽快结束谈判,这时卖方却不慌不忙,故意拖延,顾客一方将不得不在价格上作出妥协。
顾客一方当然也有策略,它的策略就是货比三家,要求承诺或威胁。
这个前提是买方市场的存在。
顾客还应当保护自己讨价还价的能力,这就是顾客有权投诉商家。
7. 鹰鸽博弈这个博弈很多人等同于斗鸡博弈。
不过,斗鸡是两个兼具侵略性的个体,鹰鸽却是两个不同群体的博弈,一个和平,一个侵略。
在只有鸽子一个苞谷场里,突然加入的鹰将大大获益,并吸引同伴加入。
但结果不是鹰将鸽逐出苞谷场,而是一定比例共存,因为鹰群增加一只鹰的边际收益趋零时(鹰群发生内斗),均衡将到来。
由此产生了ESS进化上的稳定策略,也就是说一旦均衡形成,偏离的运动会受到自然选择的打击。
也就是鹰群饱满后,再试图加入的鹰将会被鹰群排挤。
进化上的稳定均衡最大的好处莫过于保持稳定。
但问题在于形成强势的路径依赖,也就是胜出的不一定是最好的。
因为最好的会被当作出头鸟干掉,这是个体的失败,集团的胜利以及集体的止步不前。
8. 脏脸博弈恍然大悟的博弈。
三个人在屋子里,不许说话。
美女进来说:你们当中至少一个人脸是脏的。
三人环看,没有反应。
美女又说:你们知道吗?三人再看,顿悟,脸都红了。
为什么?因为美女后一句废话点破天机,三个人都知道脏脸的存在,而且推测知道对方也知道了脏脸的存在(因为另两人脸没红,说明他们看到脏脸了),而且知道对方知道自己已经想到上一步……循环开始,知识开始共同化,真相大白:三个人都是脏脸,所有人都脸红了。
这就是共同知识的作用,它的作用显得有点可怕的强大。
几乎是一招无影腿,杀人不见血。
在台面上的博弈之前,私下的算计已经置对手于死地。
不过,很可能对方也预料到这一点,早也想到这一点,同时杀来。
终于,形成双死局面。
当然,现实虽然存在类似现象,不过共同知识更大的作用在于减少交易成本。