全基因组关联分析在畜禽上的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全基因组关联分析在畜禽上的应用

摘要:随着数量遗传学、分子生物学以及计算机水平的高速发展,出现了数量遗传学与分子遗传学的结合,动物育种中也不断出现新的方法,全基因组关联分析(GWAS)以及全基因组选择(GS)。本文主要介绍了GWAS及其在几种畜禽上的应用和问题。

关键字:GWAS,牛,猪,鸡,应用

对畜禽实施标记辅助选择可提高遗传进展,但是我们首先需要找到影响畜禽重要性状的主效基因。候选基因分析和标记QTL连锁分析策略使我们对一些基因的功能和作用方式有所了解,也找到了一些主效基因。但是生物基因组中有庞大的基因数目,很多控制畜禽经济性状的基因还无法分离和鉴定,这就需要一种全新的研究手段,最好能无偏地覆盖所有基因,并能高通量检测和适应不断更新的物种基因组序列。20世纪80年代后期90年代初期,随着数量遗传学理论研究的不断深入、分子生物学的飞跃发展、计算机水平的日新月异,开始出现数量遗传学与分子遗传学结合研究的热潮,发展为现在的分子数量遗传学。动物育种中也在传统育种方法的基础上不断提出新的方法:全基因组关联分析(Genome-Wide Association Studies,GWAS)以及全基因组选择。

GWAS就可以解决以上问题,GWAS是一种对全基因组范围内的常见遗传变异:单核苷酸多态性(Single nucleotide polymorphism,SNP)和拷贝数变异(Copy number variation,CNV)进行总体关联分析的方法,其核心思想是利用全基因组范围的连锁不平衡来确定影响复杂性状或数量性状的基因[1]。

GWAS目前主要是应用在人类的复杂疾病上,2005年,自从《Science》杂志上首次报道了Klein等利用Affymetrix100K的基因芯片对年龄相关性视网膜黄斑变性进行GWAS的结果之后,一大批有关复杂疾病的GWAS报道不断出现。已经陆续报导和公布了视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分裂症、风湿性关节炎等几十种疾病全基因组关联研究的结果[2]。

在中国农业大学图书馆SCI数据中输入GWAS的相关词,并分析其检索结果。如表1。虽然这个数据并不是很全面,但是也反映了GWAS的迅速发展。

是什么原因导致GWAS发展这么快速呢?主要原因可以归结于以下3个方面:首先是基础研究的支撑,基因组计划的完成和SNP数据库的建立为GWAS 的开展奠定了基础;第二是技术上的成熟,如高通量SNP芯片检测的发展;第三是统计方法的发展,GWAS因样本量大、数据庞杂,同时还需克服群体混杂、选择偏倚、多重比较等带来的假阳性问题,需要有正确严谨的统计分析方法解决[1]。

表1中国农业大学SCI数据库中每年发表的关于GWAS的数目

除了对人类复杂疾病和人类数量性状方面应用GWAS。随着不同基因组测序的相继完成以及高通量测序技术平台的搭建,GWAS也开始在畜禽疾病性状和数量性状方面发挥重要的作用。

GWAS在畜禽中的应用起步较晚,并主要集中在对重要经济性状的研究中。与人类不同,当前的畜禽品种在长期的人工选择驯化过程中,其有效群体含量较人类小,群体的连锁不平衡水平较高,往往造成单体型块的出现。因此,在畜禽中开展GWAS所需标记数量适中,目前商业化的动物SNP芯片密度一般在50K-60K左右,如果在品种内进行GWAS研究,50K的芯片基因就能满足定位要求,品种间的分析可能需要更高密度的SNP[3]。

1.在畜禽上的应用现状

自从GWAS在畜禽上应用以来,研究人员一直致力于影响复杂性状的标记及主效基因的挖掘。目前已有多个具有较强统计显著性的SNPs及区域被发现。下面介绍一下GWAS在牛,猪和鸡上的应用。

1.1在牛上的应用

GWAS在畜禽上应用的较多的是在奶牛上。包括奶牛的健康性状、产奶性状、繁殖性状、生产寿命性状、体型性状、功能性状等都有报道。

对于奶牛的产奶性状上,Bastiaansen等使用Bovine SNP50芯片。对荷兰、苏格兰、瑞典和爱尔兰等国家共计1 933头荷斯坦牛进行了产奶量和脂蛋比性状GWAS研究,共发现了36个影响产奶量的SNP标记[1]。Jiang[4]等基于来自14个父系半同胞家系的2093头中国荷斯坦母牛女儿设计试验群体进行了5个产奶

性状的GWAS,采用Bovine SNP50芯片,传递不平衡检验方法(Transmission disequilibrium test,TDT)和基于回归分析的混合模型方法(Mixed model based regression analysis,MMRA),共检测到105个显著SNP标记与某个或多个产奶性状显著相关。齐超等基于中国荷斯坦牛女儿设计资源群体,采用Illumina公司Bovine 50K微珠芯片对产奶性状进行了全基因组关联分析(GWAS),利用传递不平衡(L1-TDT)和回归分析2种统计分析方法共同检测到35个显著SNPs位点。后来齐超[5]等旨在基于该GWAS结果进一步对产奶性状基因进行鉴定及功能注释。基于牛基因组序列草图,采用生物信息学和比较基因组学方法进行显著SNPs 位置候选基因筛查和功能预测。分析发现。12个SNPs位点位于基因内部,23个位于基因侧翼.最终鉴定到28个位置候选基因,并确定了其物理位置、基因类型及潜在功能。基因功能可归纳为6种类型:调节机体营养成分代谢和平衡、细胞骨架或基质成分、调节细胞增殖和周期及凋亡、参与细胞信号转导和盐离子通道构成、具有激酶活性、参与mRNA转录调控或翻译调控。该研究为进一步鉴定中国荷斯坦牛产奶性状主效基因及功能验证打下了基础。

1.2在家禽上的应用

在家禽上应用相比在猪和牛上的还比较少。Liu[6]等利用Illumina 60k鸡SNP 芯片对385只白来航和361只矮小型褐壳蛋鸡纯系分别进行蛋品质和产蛋性状的GWAS研究,利用Fisher合并P值法对两个群体的关联分析结果进行整合分析,发现8个显著关联SNP。Xie[7]等以杏花鸡×隐性白羽洛克鸡全同胞资源群3代共554个个体样本为实验材料,采用Illumina 60K鸡SNP芯片进行基因分型,对鸡肉质、屠体及生长性状进行了GWAS研究,发现1号染色体 1.5 Mb KPNA3-FOXO1A的区间内有5个SNP对鸡22-42天和生长有最高的显著效应。Gu[8]等以法国明星肉鸡和丝羽乌骨鸡为亲本建立的F2资源群体为材料,对体重性状进行了全基因组关联分析研究,发现26个显著关联位点,其中1个位于18号染色体,2个位于1号染色体,23个位于4号染色体,共涉及10个不同的SNP,并发现影响后期体重效应最大的SNP位于LDB2基因内含子中。张磊[3]研究利用60K SNP基因分型芯片对来自50个公鸡家系的728只北京油鸡纯系公鸡个体进行了基因型检测,采用全基因组关联分析方法,对影响部分免疫性状的染色体片段或基因进行定位研究,采用单标记的线性回归模型,对9个免疫性状进行了全基因组关联分析,共检测到33个达5%基因组水平显著关联的SNP。在显著位点中,8个SNP与胸腺重、16个与脾脏重达到基因组水平显著关联,并在这些位点附近找到JAK1、QK I、PDLIM7等候选基因,部分SNP位于已报道QTL 内;9个与血清IgG水平达到基因组水平显著关联,并在附近找到CD1b、B-G、IL4I1、GNB2L1、BMA1等候选基因,其中5个集中分布在16号染色体260kb

相关文档
最新文档