排列组合二项式真题
2024全国高考真题数学汇编:排列、组合与二项式定理章节综合
2024全国高考真题数学汇编排列、组合与二项式定理章节综合一、单选题1.(2024全国高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2024北京高考真题)在 4x的展开式中,3x的系数为()A.6B.6 C.12D.12二、填空题3.(2024天津高考真题)在63333xx的展开式中,常数项为.4.(2024上海高考真题)在(1)nx 的二项展开式中,若各项系数和为32,则2x项的系数为.5.(2024全国高考真题)1013x的展开式中,各项系数中的最大值为.6.(2024全国高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于12的概率为.7.(2024全国高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.参考答案1.B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24 ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243.故选:B 2.A【分析】写出二项展开式,令432r,解出r 然后回代入二项展开式系数即可得解.【详解】 4x 的二项展开式为 442144C C1,0,1,2,3,4r rrr rr r T x xr,令432r,解得2r ,故所求即为 224C 16 .故选:A.3.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x的展开式的通项为63636216633C 3C ,0,1,,63rrr r r r r x T xr x,令 630r ,可得3r ,所以常数项为0363C 20 .故答案为:20.4.10【分析】令1x ,解出5n ,再利用二项式的展开式的通项合理赋值即可.【详解】令1x ,(11)32n ,即232n ,解得5n ,所以5(1)x 的展开式通项公式为515C rr r T x ,令52r -=,则3r ,32245C 10T x x .故答案为:10.5.5【分析】先设展开式中第1r 项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x,010r 且r Z ,设展开式中第1r 项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r,294334r r,即293344r ,又r Z ,故8r ,所以展开式中系数最大的项是第9项,且该项系数为28101C 53.故答案为:5.6.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b ,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120 种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b ,故2()3c a b ,故32()3c a b ,故323a b c a b ,若1c ,则5a b ,则 ,a b 为: 2,3,3,2,故有2种,若2c ,则17a b ,则 ,a b 为: 1,3,1,4,1,5,1,6,3,4,3,1,4,1,5,1,6,1,4,3,故有10种,当3c ,则39a b ,则 ,a b 为:1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, 2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c ,则511a b ,同理有16种,当5c ,则713a b ,同理有10种,当6c ,则915a b ,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为 22101656 ,故所求概率为56712015.故答案为:7157.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124 种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152******** .故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.。
排列组合与二项式定理(高考试题)
排列组合与二项式定理一、排列组合1.(2016年四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24 (B )48 (C )60 (D )72【答案】D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5,其他位置共有44A ,所以其中奇数的个数为44372A =,故选D. 2.(2015年四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B. 3. (2015年广东高考)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.4.(2014大纲全国,理5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种答案:C 解析:从6名男医生中选出2名有26C 种选法,从5名女医生中选出1名有15C 种选法,故共有216565C C 57521⨯⋅=⨯=⨯种选法,选C. 5.(2014福建,理10)用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ).A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)答案:A 解析:本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a +a 2+a 3+a 4+a 5种取法;第二步,取0或5个蓝球,有1+b 5种取法;第三步,取5个有区别的黑球,有(1+c )5种取法.所以共有(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5种取法.故选A.6.(2014辽宁,理6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ).A .144B .120C .72D .24答案:D 解析:插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为34A =24.故选D.7.(2014四川,理6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).A .192种B .216种C .240种D .288种答案:B 解析:(1)当最左端排甲的时候,排法的种数为55A ;(2)当最左端排乙的时候,排法种数为1444C A . 因此不同的排法的种数为514544A +C A =120+96=216.8.(2014重庆,理9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ).A .72B .120C .144D .168答案:B 解析:解决该问题分为两类:第一类分两步,先排歌舞类33A ,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有3333A 2A 72⋅=.第二类也分两步,先排歌舞类33A ,然后将剩余3个节目放入中间两空排法有122222C A A ,故不同的排法有32213222A A A C 48=,故共有120种不同排法,故选B. 9.(2014浙江,理14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案:60解析:不同的获奖情况分为两种,一是一人获两张奖券一人获一张奖券,共有2234C A =36种;二是有三人各获得一张奖券,共有34A =24种.因此不同的获奖情况有36+24=60种.10.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种.答案:36解析:产品A ,B 相邻时,不同的摆法有2424A A =48种.而A ,B 相邻,A ,C 也相邻时的摆法为A 在中间,C ,B 在A 的两侧,不同的摆法共有2323A A =12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).11.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279B [解析] (排除法)十个数排成不重复数字的三位数求解方法是:第一步,排百位数字,有9种方法(0不能作首位),第二步,排十位数字,有9种方法,第三步,排个位数字,有8种方法,根据乘法原理,共有9×9×8 = 648(个)没有重复数字的三位数.可以组成所有三位数的个数:9×10×10=900,所以可以组成有重复数字的三位数的个数是:900-648=252.12.(2013福建,理5) 满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( )A .14B .13C .12D .10B [解析] 当a =0时,2x +b =0,∴ x =-b 2,有序数对(0,b )有4个;当a ≠0时,Δ=4-4ab ≥0,∴ ab ≤1,有序数对(-1,b )有4个,(1,b )有3个,(2,b )有2个,综上共有4+4+3+2=13个,故选B.13.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种.14.(2013北京,理13) 将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.96 [解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.解析:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A 44=96.15.(2013浙江,理14) 将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).480 [解析一] 先在6个位置找3个位置,有C 36种情况,A ,B 均在C 的同侧,有CAB ,CBA ,ABC ,BAC ,而剩下D ,E ,F 有A 33种情况,故共有4C 36A 33=480种.解析二:本题考查对排列、组合概念的理解,排列数、组合数公式的运用,考查运算求解能力以及利用所学知识解决问题的能力.“小集团”处理,特殊元素优先,C 36C 12A 22A 33=480. 16.(2012·安徽卷)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4D [解析] 任意两个同学之间交换纪念品共要交换C 26=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.17.(2012·辽宁卷)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!C [解析] 本小题主要考查排列组合知识.解题的突破口为分清是分类还是分步,是排列还是组合问题.由已知,该问题是排列中捆绑法的应用,即先把三个家庭看作三个不同元素进行全排列,而后每个家庭内部进行全排列,即不同坐法种数为A 33·A 33·A 33·A 33=(3!)4.18.(2011北京,理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个.(用数字作答)【答案】14【解析】个数为42214-=.19.(2010山东,理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )(A )36种 (B )42种 (C)48种 (D )54种【答案】B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318C A =种,故编排方案共有241842+=种,故选B.20.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 288C. 216D. 96解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有32223342A C A A 432=种,其中男生甲站两端的有1442223232212=A A C A A ,符合条件的排法故共有288解析2:由题意有2221122222322323242A (C A )C C +A (C A )A 288⋅⋅⋅⋅⋅⋅⋅=,选B.21.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数字作答)解析:个位、十位和百位上的数字为3个偶数的有:901333143323=+C A C A C 种;个位、十位和百位上的数字为1个偶数2个奇数的有:23413332313143323=+C A C C C A C 种,所以共有32423490=+个.22.(2009浙江卷理)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).答案:336 【解析】对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,则共有2237C A 种,因此共有不同的站法种数是336种.23.(2009·宁夏、海南,12)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).解析:法一:先从7人中任取6人,共有C 67种不同的取法.再把6人分成两部分,每部分3人,共有C 36C 33A 22种分法.最后排在周六和周日两天,有A 22种排法,∴C 67×C 36C 33A 22×A 22=140种.法二:先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140种.答案:14024.(2010浙江,10)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有________种(用数字作答). 解析:上午测试安排有A 44种方法,下午测试分为:(1)若上午测试“台阶”的同学下午测试“握力”,其余三位同学有2种方法测试;(2)若上午测试“台阶”的同学下午不测试“握力”,则有C 13种方法选择,其余三位同学选1人测试“握力”有C 13种方法,其余两位只有一种方法,则共有C 13·C 13=9种, 因此测试方法共有A 44·(2+9)=264种.答案:264 25.(2009·辽宁,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A .70种B .80种C .100种D .140种解析:分恰有2名男医生和恰有1名男医生两类,从而组队方案共有:C 25×C 14+C 15×C 24=70种.答案:A26.(2013重庆,5)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:本题考查排列组合问题,意在考查考生的思维能力.直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C 33·C 14·C 15+C 34·C 13·C 15+C 35·C 13·C 14+C 24·C 25·C 13+C 23·C 25·C 14+C 23·C 24·C 15=590.答案:59027.(2012新课标全国,5)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种解析:先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C 12C 24=12种安排方案.答案:A二、二项式定理1、(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.2、(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 3、(2016年上海高考)在n x x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】1124、(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A5、(2016年天津高考)281()x x -的展开式中x 2的系数为__________.(用数字作答)【答案】56-6、(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10。
排列组合和二项式定理测试卷及答案(4套)(已上传)
排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
排列组合及二项式定理试题和答案
排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果()n x x x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是 A .6810C xB .5710C xxC .468C xD .6811C xx6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于 A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为 A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139(2),()()x a a x a x a x a a a a a a -=+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案二、填空题:19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答).22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分): 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案 DBCBBDCBABBADDBCBD提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
排列组合二项式定理定积分--专题卷---(全国通用)
排列组合、二项式定理一、排列组合1、某校选定甲、乙、丙、丁、戊共5名教师到3个边远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,则不同的选派方案共有( )A .27种 B. 30种 C. 33种 D.36种2、将4名大学生分配到A,B,C 三个不同的学校实习,每个学校至少分配一人.若甲要求不到A 学校,则不同的分配方案共有( )A.36种B.30种C.24种D.20种3、某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B. 120C. 144D. 1684、从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有一人的选派方法种树为 .(用数字作答)5、将编号为1,2,3,4的四个小球放入3个不同的盒子中,每个盒子里至少放1个,则恰有1个盒子有2个连号小球的所有不同放法有___________种.(用数字作答)二、二项式定理1、24(1)(1)x x x ++-展开式中2x 的系数为______ 2、若26()b ax x +的展开式中3x 项系数为20,则22a b +的最小值为( )A. 4B. 3C. 2D. 1 3、二项式61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为 4、设二项式()60a x a x ⎛⎫-≠ ⎪⎝⎭学科网的展开式中2x 的系数为A ,常数项为B ,若B=44,则a = 5、在二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于________(用数字作答); 6、()()52132x x --的展开式中,含x 次数最高的项的系数是_________(用数字作答).7、已知的展开5(12)x -式中所有项的系数和为m ,则21m x dx =⎰_________.8、已知0sin a xdx π=⎰,则二项式51a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为9、二项式66(ax+的展开式中5x 20a x x d =⎰ .三、定积分1、已知函数()f x 的部分图像如图所示,向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计1()0f x dx 的值约为( )A. 61100B. 39100B. C.10100 D.1171002、如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率为__________.参考答案:1、B2、C3、B4、445、18参考答案:1、32、C3、204、-35、12156、-647、ln28、-809、1 3【解析】61xx⎛⎫+⎪⎝⎭中的通项为61rr n rC xx-⎛⎫⎪⎝⎭,若为常数项,则3r=,366120rr n rC x Cx-⎛⎫==⎪⎝⎭.参考答案:1、D2、1 3。
排列组合二项式定理练习题
排列组合二项式定理练习题1.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是( ).A .24B .48C .72D .962.某校开设A 类选修课3门,B 类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有( ).A .30种B .35种C .42种D .48种3.某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( ).A .16种B .36种C .42种D .60种4.2013年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有( )A .1 440种B .1 360种C .1 282种D .1 128种5.二项式⎝ ⎛⎭⎪⎫2x -1x 6的展开式中的常数项是( ) A .20 B .-20 C .160 D .-1606.已知⎝ ⎛⎭⎪⎫x -a x 8展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( ).A .28B .38C .1或38D .1或287.设⎝ ⎛⎭⎪⎫5x -1x n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( ).A .-150B .150C .300D .-3008.广州亚运会火炬传递在A ,B ,C ,D ,E ,F 六个城市之间进行,以A 为起点,F 为终点,B 与C 必须接连传递,E 必须在D 的前面传递,且每个城市只经过一次,那么火炬传递的不同路线共有__________种9.在某次中外海上联合搜救演习中,参加演习的中方有4艘船、3架飞机;外方有5艘船、2架飞机.若从中、外两组中各选出2个单位(1架飞机或1艘船都可作为1个单位,所有的船只两两不同,所有的飞机两两不同),则选出的4个单位中恰有1架飞机的不同选法共有多少种?10.已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.(1)若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?11.已知a为如图所示的程序框图中输出的结果,求二项式(a x-1x)6的展开式中含x2项的系数.。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.…除以88的余数是()A.-1B.-87C.1D.87【答案】C【解析】根据题意,由于…=(1-90)10=8910=(88+1)10,展开式可知展开式的最后一项不能被88整除,可知答案为C.【考点】二项式定理点评:主要是考查了二项式定理的逆用,属于基础题。
2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.30种B.24种C.12种D.6种【答案】B【解析】第一步:从4门课程中选1门相同有种选法;第二步:让甲从剩下的3门中再选1门,选法有种;第三步:再让乙从剩下的2门中选1门,选法有种,所以所求的选法有。
故选B。
【考点】分步乘法计数原理点评:分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……,做第n步有种不同的方法.那么完成这件事共有种不同的方法.3.如图,小圆圈表示网络的结点,结点之间的箭头表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现从结点A向结点G传递信息,信息可以分开沿不同的路线同时传递。
则单位时间内传递的最大信息量为()A.31B.6C.10D.14【答案】B【解析】信息传递,可有三条路线,每条路线上通过的信息量均为2 ,所以,单位时间内传递的最大信息量为6 ,选B。
【考点】本题主要考查阅读理解能力,分类讨论思想。
点评:简单题,看似复杂,实际上,关键是理解题意,看各条“路线”上,传递信息的最大值之和。
4.由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).【答案】48【解析】由题意先排个位,从1,5两个数中随便取一个有,然后再用剩余的四个数字排前面四个位置有,∴由分步原理可知由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个【考点】本题考查了排列组合的综合运用点评:熟练掌握排列组合的综合运用是解决此类问题的关键,属基础题5.设为奇数,则除以9的余数为.【答案】【解析】∵,∴除以9的余数为7【考点】本题考查了二项式定理的运用点评:对于余数问题一般是把式子拆开,然后利用二项式定理展开求余数,属基础题6.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有种.(用数学作答)【答案】50【解析】解:由题意知本题是一个分类计数问题,∵每项活动最多安排4人,∴可以有三种安排方法,即(4,2)(3,3)(2,4)当安排4,2时,需要选出4个人参加共有=15,当安排3,3,时,共有=20种结果,当安排2,4时,共有=15种结果,∴根据分类计数原理知共有15+20+15=50种结果,故答案为:50【考点】分类计数问题点评:本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.的展开式中,的系数是()A.B.C.297D.207【答案】D【解析】由题意可知,的系数即为【考点】本小题主要考查二项展开式的应用.点评:解决二项式问题一般离不开展开式的通项公式,要灵活应用.8.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1∕70”.根据这位负责人的话可以推断出参加面试的人数为()A.21B.35C.42D.70【答案】A【解析】设参加面试的人数为n,由题意可知,解得n=21.【考点】本小题主要考查排列组合在实际问题中的应用.点评:准确理解题意,准确计算是解决此类问题的关键.9.(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.【答案】(Ⅰ)10 (Ⅱ)【解析】(Ⅰ)…… 2分(舍去).………… 5分(Ⅱ) 展开式的第项是,,………… 10分故展开式中的常数项是.……… 12分10.甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做实验,并用回归分析方法分析求得相关系数r与残差平方和m如下表:则哪位同学的实验结果体现A、B两变量有更强的线性相关性()A、甲B、乙C、丙D、丁【答案】D【解析】解:在验证两个变量之间的线性相关关系中,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大,残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现A、B两变量有更强的线性相关性,故选D.11.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【答案】B【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有 =60种.故选B.12.平面上有相异10个点,每两点连线可确定的直线的条数是每三点为顶点所确定的三角形个数的,若无任意四点共线,则这10个点的连线中有且只有三点共线的直线的条数为__________条.【答案】3【解析】【考点】排列、组合及简单计数问题。
排列组合二项式定理综合测试卷(B卷)
演练篇 核心考点AB 卷 """""t""高二数学 2021年5月 T 于王"排"#合二&式()综合测试卷(B -)■河南省南乐县第一高级中学吉晓波D. 3医院了:果店一、选择题1 -已知 A ' = 100 A ',则'=( )。
A. 11 B. 12#. 13 D. 142. 满足条件C )>#6的正整数"的个数是( )。
A. 10B. 9#. 43. 小张从家出发去看望生病的同学,他需要先去 水果店买水果,然后 去花店买花,最后到达医院。
相关.........................的网格纸上,网格线是道........图1路,则小张所走路程最短的走法种数为!)。
A. 72B. 56#. 48 D. 404. 在一-次运动会上有四项比赛的冠军在甲、乙、丙3人中产生,那么不同的夺冠情况共有()种。
A. A )B. 43#. 34 D. #3/ 2 \ 65. (2' — 3;?"的展开式中'3的系数为( )。
#. 64D. —1286. 由0,1,2,5四个数组成没有重复数字的四位数中,能被5整除的个数是()$A. 24B. 12#. 10 D. 67. 从2名教师和5名学生中选出3人参加“我爱我的祖国”主题活动,要求入选的3人中至少有1名教师,则不同的选取方案数是( )$A. 20B. 25#. 30 D. 558. 将4张座位编号分别为1,2,3,4的电影票全部分给3人,每人至少1张$如果分给同一人的2张电影票具有连续的编号,那 么不同的分法数是!)$A. 24B. 18#. 12 D. 69.从6种不同的颜色中选出一些颜色给如图2所示的4个格子涂色,每个格子涂图2一种颜色,且相邻的两个格子颜色不同,则不同的涂色方法有()$A.360 种B.510 种#.630 种 D.750 种10.如图 3, *MON的边O8上有4个点A i 、A 2、A 3、A 4,ON 上有 3 个点 21、22、2,,则以 O 、A 1>A 2>A 3>A 4>21、22、23中的3个点为顶点的三角形的个数为()$A. 30B. 42#. 54 D. 5611. A 、2、C 、/4名学生报名参加学校的 甲、乙、丙、丁 4个社团,若学生A 不参加甲社团,2不参加乙社团,且4名学生每人报一个社团,每个社团也只能1人报名,则不同的 报名方法数为( )$A. 14B. 18#. 12 D. 412.为了提高命题质量,命题组指派5名 教师对数学卷的选择题、填空 题和解答题这3种题型进行改编,则每种题型至少指派1名教师的不同分派方法种数为( )$A. 90B.36#. 150D. 10813. 2020年春节期间新型冠状病毒肺炎疫情在湖北爆发,为了打赢疫情防控阻击战&某医院呼吸科要从3名男医生,2名女医生中选派3人到湖北省的A , 2, C 三地参加疫情防控工作,若这3人中至少有1名女医生&则选派方案有( )$A. 9 种B. 12 种#. 54 种D.72 种14.(2------2)(1 + "y )6 展开式中'23315中孝生皋捏化演练篇核心考点AB卷高二数学2021年5月项的系数为160,则a=!"$A.2B.4C-—22-—2215.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列种数为!"$A.A4A5B.A3A4A5C.C1A4A5 2.A2A4A516.若(2+a'"$(a(0)的展开式中各项的二项式系数之和为512,且第6项的系数最大,则a的取值范围为("$A.(—7,0)UC.+317.已知二项式(1+丄一2'),则展开式中常数项为!)$A.49B.—47C.—1 2.11)已知二项式(2'2+1)的展开式中二项式系数之和等于64,则展开式中常数项等于()A.240B.120C.48 2.361*.某校实行选科走班制度(语文、数学、英语为必选科目,此外学生需在物理、化学、生物、历史、地理、政治六科中任选三科),根据学生选科情况,该校计划利用三天请专家对九个学科分别进行学法指导,每天依次安排三节课,每节课一个学科,语文、数学、英语只排在第二节,物理、政治排在同一天,化学、地理排在同一天,生物、历史排在同一天,则不同的排课方案数为()$A.36B.48C.144 2.28820.包括甲、乙、丙3人的7名同学站成一排拍纪念照,其中丙站正中间,甲不站在乙的左边,且不与乙相邻,则不同的站法有()$A.240种B.252种C.264种 2.288种21.已知(3—')(2'—3)8"a$+a1('—1)+a2('—1)2+…+a g('—1)9,则a6"()$A.—1792B.1792C.—5376 2.537622.5名护士上班前将外衣放在护士站,下班后从护士站取外衣,由于灯光暗淡,只有2人拿到了自己的外衣,另外3人拿到别人外衣的情况有!)$A.60种B.40种C.20种 2.10种23.停车场划出一排9个停车位置,今有5辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有!)$A.A5种B.2A5A4种C.5A5种 2.6A5种24.从正方体的8个顶点中选取4个作为顶点,可得到四面体的个数为()$A.C;—12B.C;—8C.C4—6 2.C8—425.从装有$+1个不同小球的口袋中取出,个小球(0V,'$,,,$#N$),共有C,+1种取法$在这C,+1种取法中,可以分为两类:第一类是某指定的小球未被取到,共有C$・C,种取法;第二类是某指定的小球被取到,共有C1・C,1种取法。
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)
专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
最新排列组合二项式定理单元测试题(带答案)
最新排列组合二项式定理单元测试题(带答案)精品文档排列、组合、二项式定理与概率测试题(理)一、选择题1、2008年北京奥运会的会徽中,“中国印”的外边由四个色块构成,用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来,如果用三条线段将这四个色块连接起来,不同的连接方法共有()。
A。
8种B。
12种C。
16种D。
20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有()。
A.96种B.180种C.240种D.280种3、五种不同的商品在货架上排成一排,其中a、b两种必须排在一起,而c、d两种不能排在一起,则不同的选排方法共有()。
A.12种B.20种C.24种D.48种4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是()。
A。
10种B。
20种C。
30种D。
60种5、设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余。
记为a≡b(mod 2m)。
已知a=1+C12+C322+…+C,b≡a(mod 10),则b的值可以是()。
A。
2015B。
2011C。
2008D。
20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得分。
积分多的前两名可出线(积分相等则要比净胜球数或进球总数)。
赛完后一个队的积分可出现的不同情况种数为()。
A。
22种B。
23种C。
24种D。
25种7、令an为(1+x)^(n+1)的展开式中含x^n项的系数,则数列{an}的前n项和为()。
A。
n(n+3)/2B。
n(n+1)/2C。
n/2D。
(n+1)/28、若(x+1)^5=a+a1(x-1)+a2(x-1)^2+。
+a5(x-1)^5,则a=()。
A。
32B。
1C。
-1D。
数学选修2-3(排列组合二项式定理)练习题
数学选修2-3(排列组合二项式定理)练习题篇一:第十三章排列组合及二项式定理习题及答案第十三章排列组合二项式定理复习题及答案一、概念:分类加法计数原理分步乘法计数原理排列组合排列数公式Anm?n?n?1??n?2???n?m?1??mn!?n?m?!组合数公式Cmn?AnAmm?n!m!??n?m?!排列数性质:①Ann?n! ②0!?1组合数性质:①Cn0?1②Cnm?Cnn?m③Cnm?Cnm?1?Cnm?1 二、应用:1. 把3本书放到4个抽屉中,不同的放法有▁▁▁种. 答案:43=64 .2. 中国、美国、古巴、日本举行四国女排邀请赛,每个国家都有得冠亚军的可能,但冠军均不能并列,则得冠亚军的所有不同情况共有▁▁种.答案:А24=12.3. 某班有3名学生准备参加校运动会的百米、二百米、跳高、跳远四项比赛,如果每班每项限报1人,则这3名学生参赛的不同方法有▁▁▁种.答案:А34=244. 从1、3、5、10、20这五个数中任选两个相加,则可得不同的和数▁▁▁个.能得到不同的和▁▁个.答案:С25=10С5+С545+С5+С325+С5=3115. 有6个排球队,举行单循环比赛.则比赛的场数有▁▁.答案: С26=156. 有10个人两两碰杯,共碰杯▁▁▁次.答案: С210=45 .7. 用1元、2元、5元、10元人民币各一张,能组成不同的币值▁▁▁种.答案: С14+С24+С34+С44=158. 正十二边形共有▁▁▁条对角线.答案: С212-12=54减去12个顺次相连不成对角线.9.用1、2、3、4、5五个数可以组成不充许数字重复的自然数▁▁个.答案:А15+А25+А3+А545+А5=325 510.用1、2、3、4、5五个不同的数组成不许重复的三位数为▁▁.充许重复的三位数为▁答案:А3=6053=125 511.在三位正整数中0的个数共▁▁▁个.答案:分为三类:一类含两个零有100、200、···900共18个二类十位为0而个位不为0有9×9=81.如101、102、···109、201、202、···909三类十位不为0而个位为0的有9×9=81合计有18+81+81=18012.数72有多少个正约数?.其中正偶数有多少个?答案:72=23×32约数2r×3x其中2的指数有0、1、2、3四种取法,3的指数有0、1、2三种取法共有4×3=12种.偶约数2的指数有1、2、3三种取法共有3×3=9种13. 现有男学生8名,女学生2名,要从中选4人组成一个学习小组,必须有女学生选法种数是▁▁▁.答案:С123·С8+С22·С28=112+28=14014. 要从8名男医生和7名女医生中选5人组成一个医疗小组,如果医疗小组中男.女医生均不少于2人,则不同的选法种数是▁▁. 答案:С28·С37+С8·С327=215615.直线a∥b,a上有5个点,b上有4个点.以这9个点为顶点,可组成不同三角形个数▁▁▁个.答案:С25·С5+С5·С1124=70.16.除点O外,在∠AOB的边OA上另有5点,边OB上另有4点,以含点O在内的10个点为顶点,可以组成多少不同的三角形.答案:① С2310-С6-С5=90. OA中6取3. OB中5取3在一条直线上1433② С5·С+С5·С24+С5·С114=90 OA、OB有一个和两个点及O17. 在10名学生中有6名男学生,4名女学生,要从中选5名参加义务劳动,女学生至多有2名的选法有▁▁▁种.答案:С4·С6+С514·С46+С24·С6=186318.某校从8名教师中选派4名教师同时去4个边远地区支教?每地1人?,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有▁▁▁种. 答案:甲去则乙不去丙去有С25·А44甲不去则丙不去有С46·А44共有240+360=60019.安排7位工作人员在5月1日至5月7 日值班,其中甲乙二人都不安排在5月1日和2 日,不同的安排方法共有▁▁▁▁种.答案:甲乙两人不在1日和2日有А有А225种方法,其余5人在剩下的5天中安排一天有А5 共5·А5=240 520.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中确定一名幸运伙伴,有____种不同的结果.答案:28800分两类:①幸运之星在甲信箱中抽,先定幸运之星,再在两信箱中各定幸运伙伴有30?29?20?17400种结果②幸运之星在乙信箱中抽,同理有20?19?30?11400种结果.因此,共有不同结果17400?11400?28800种21. 某班级有一个7人小组,现任选其中3人相互调整座位,其余4人座位不变,则不同的调整方案的种数有()А. 35 B. 70С. 210D. 105答案:B. 从7人中选出3人有C73?35种情况,再对选出的3人调整座位有2种情况3有2C7?7022. 要从10名男生和5名女生中选出6人组成啦啦队,若男生选取同的选法种数▁▁▁种. 答案:男10名女5名С41023,剩余选女生,则不·С25=210023. 将5名实习生教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( ) А. 30种 B. 90种С. 180种D. 270种答案:分下列4步:① 三个班中桃一个班得一名教师有С3种② 5个教师中选一人进这个班有С5种③从剩下的4名教师中再选2人进第二个班有С4种④ 最后剩下的2名教师进第三个班有С2种由分步计数原理共有С3·С5·С11112224·С22=90种24. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不个,则该外商不同的投资方案有()А. 16种в.36种С.42种D.60种答案:分两类① 三个项目分别在三个城市内有А②三个项目分别在两个城市内有С2334种24·А 共有24+36=60种25.正六边形ABCDEF中,АС∥у轴,从六个顶点中任取三点,使这三点能确定一条形如y?ax?bx?c?a?0?的抛物线的概率是▁▁▁.2答案:由二次函数性质知三点可确定一条抛物线但两点连线不能与纵轴平行,故概率为C6?2?4C363?35对AC有上下左右4种抛物线不满足题意26. 从1、2、3┅100中,任选两个不同的数相乘,乘积(如两数相等仍按两个积计算)能被3整除的取法有▁▁▁种.答案:能被3整除的数33个,不能被3整除的数67个.则С133·С167+С233=2739 不能被3整除的数С2100-2739=27. 一个袋子装有红球与白球各5个,要从中取4个,取出的红球多于白球的取法有▁▁种.答案:С3·С15+С545·С5=5528. 用数字0、1、2┅9这10个数字可组成第一位数字是2或3或6的7位电话号码个答案:2开头106 个3开头106个6开头106个共3×1062229. 己知,a?{1,2,3},b?{3,4},r?{1,2,3,4},那么方程?x?a???y?b??r2共可表示▁▁▁个不同的圆.答案:3×2×4=2430. 十字路口来往的车辆共有▁▁种不同的行车路线.答案:A42?12每个路口有两种方法.31. 若m∈{?2,?1,0,1,2,3},n∈{?3,?2,?1,0,1,2},方程示中心在原点的双曲线,则最多可表示▁▁条不同的双曲线.答案:13.m??2n=1 、2两条m??1 n=1 .2 两条m?1 n=?3,?2,?1. 三条m?2时n三条m?3时n三条共13条32. 有一元币3张,5元币一张,10元币2张.,可以组成多少种不同的币值.答案:有一种币值时3+1+2=6种两种币值时1元、5元有1×3=3种1元、10元有3×2=6种5元、10元有2×1=2种三种币值时3×2×1=6种共6+3+6+2+6=23种.33. 直线Ax?By?0,若从0、1、2、3、5、7六个数字中每次取两个不同的数作为Α、B的值,则表示不同直线的条数为()Α.2条B. 12条C.22条D. 25条答案:C 取出的两个数中含有0时有两条直线.取出的两个数中不含0时有Α共Α2525x2m+y2n=1 表+2=22条.34. 设集合M={K|K?3 ,K?Z}. Ρ(x ,y)是坐标平面上的点,且x,y?M 则Ρ表示平面上▁▁个点.答案:25.M={?2,?1,0,1,2}横纵坐标均5种共5×5=25个35.有386、486、586型电脑各一台,甲、乙、丙、丁四名操作人员的技术等次不同,甲、乙会操作三种型号的电脑,丙不能操作586,而丁只会操作386,今从这四名操作人员中选3人分别去操作以上电脑,则不同的选派方法有()Α. 4种B. 6种C. 8种D. 12种答案:C有丁时586486386 无丁时586486386甲丙丁甲乙丙乙丙丁甲丙乙乙甲丁乙丙甲甲乙丁乙甲丙共4+4=8种36. 从一个3×4方格中的一个顶点Α到对角顶点B的最短路线有几条.答案:从Α到B的最短路线均需7步,包括横4纵3,则从7步中取4步或3步的组合.42则从Α到B的最短路线共有C7=C3=35条.若2×5方格为C7=C5 7737. 5人排成一排,甲不站在正中间的排法种数为()Α. 24B. 48 C. 96 D. 119答案:C甲不在正中有Α14. 其余4人任选Α44则Α14?Α44=96也可Α5-Α544=9638.7人站成一排,如果甲、乙两人必须不相邻,则不同的排法种数()Α. 1440B. 3600C. 4320 D. 4800 答案:Α77-2Α6=3600639. 一名老师和4名获奖同学排一排照相留念,若老师不排在两端,则不同的排法共▁▁种.答案:72 老师A3学生Α14414A3A4?7240. 5人排一排,如果Α必须站在B的左边(Α、B可以不相邻),则不同的排法有▁▁▁种.答案:Α44+Α3?Α3+Α1312?Α3+Α3=6033× × × × × Α BBBBΑ BBBΑ BBΑ B41. 5人排成一排,甲不站在左端,乙不站在右端,共有多少种不同的排法.答案:Α5-甲在左或乙在右2A4+多减的一个Α3=7842.有Α、B、C、D、E五人并排站在一排,如果Α、B必须相邻且B在Α的右边.不同的排法▁▁种答案:4Α3=24 ×××××3543ΑB????ΑB??篇二:选修2-3二项式定理练习题二项式定理练习题1、在(x?1)4的展开式中,x的系数为.(用数字作答).1??22、在?x? 的展开式中,的系数为.(用数字作答). x?4x??3、(x3?)7的展开式中x5的系数是.(用数字作答).4、在(2x?1)的展开式中,含x2的项的系数是(用数字作答). 561x?385、?x的展开式中的系数是________(用数字作答). x?6、已知(1?x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()5A.212 B.211C.210D.297、?x?2? 的展开式中,x2的系数等于.(用数字作答).8、在?2?x?的展开式中,x3的系数为55.(用数字作答).9、二项式(x?1)n(n?N?)的展开式中x2的系数为15,则n?()A.4 B.5C.6 D.73210、已知?的展开式中含x的项的系数为30,则a?()5A.B. C.6 D-625B.11、(x?x?y)的展开式中,xy的系数为()52(A)10(B)20 (C)30 (D)60篇三:选修2-3_排列、组合与二项式定理测试题选修2-3 排列、组合与二项式定理一、选择题:(本大题共10小题,每小题5分,共50分)1.若从集合P到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q到集合P可作的不同的映射共有()A.32个B.27个C.81个D.64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插入方法总数为()A.42B.36C.30D.123.全班48名学生坐成6排,每排8人,排法总数为P,排成前后两排,每排24人,排法总数为Q,则有()A.P>QB.P=QC.P D.不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有()种A.8 B.12C.16D.205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()A.CCC4124844B.3CCC4124844C.CCCA412484433D.C12C8C4A334446.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有()种A.350B.300C.65D.507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有()种重新站位的方法A.1680B.256C.360D.2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有()种不同的坐法A.7200 B.3600 C.2400 D.1200 9.在(1x?1x3)n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是()A. 462B. 330C.682 D.79210.在(1+ax)的展开式中,x项的系数是x项系数与x项系数的等比中项,则a的值为() A.73255B.53C.259D.253二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A、B、C三只小船,A船可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有_____________种。
排列组合二项式定理综合测试(含详细解答)
排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。
排列组合二项式
排列组合二项式(2012.5.26)1. (13)(6)nx n N n +∈其中且≥的展开式中56x x 与的系数相等,则n= A .6 B .7 C .8 D .92.在622⎛⎫- ⎝的二项展开式中,2x 的系数为 A .154-B .154 C .38-D .383.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过4的平行四边形的个数为m ,则mn=A .415B .13 C .25 D .234.(6(42)xx--(x ∈R )展开式中的常数项是 A .-20 B .-15 C .15 D .205.51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为(A )—40 (B )—20 (C )20 (D )406.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 A .4种 B .10种 C .18种 D .20种 7.(1+2x )3的展开式中,x 2的系数等于 A .80 B .40 C .20D .10 8.设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠ 的集合S 为 (A )57 (B )56 (C )49 (D )89.设2121221021)1(xa x a x a a x ++++=- ,则a a 1011+= . 10.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。
(用数字作答) 11.设二项式()6(a>0)的展开式中X 的系数为A,常数项为B ,若B=4A ,则a 的值是 。
12.若62(x x-展开式的常数项为60,则常数a 的值为 .13. 72x x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数是 (用数字作答) 14.18x ⎛- ⎝的展开式中含15x 的项的系数为 (结果用数值表示) 15.给n 个自上而下相连的正方形着黑色或白色。
排列组合二项式及随机变量部分试题精选精练
排列组合二项式及随机变量部分试题精选精练一、选择填空题1.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( )A .1127B . 1124C . 1627D . 9242.某铁路货运站对6列货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有3.若等比数列{}n a 的第5项是二项式613x ⎫⎪⎭展开式的常数项,则37a a = .4.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺丝,第一阶段,首先随意拧一个螺丝,接着拧它对角线上(距离它最远的,下同)螺丝,再随意拧第三个螺丝,第四个也拧它对角线上螺丝,第五个和第六个以此类推,但每个螺丝都不要拧死;第二阶段,将每个螺丝拧死,但不能连续拧相邻的2个螺丝。
则不同的固定方式有________.5.设三位数10010n a b c =++,若以,,{1,2,3,4}a b c ∈为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .12种B .24种C .28种D .36种6.设随机变量ξ服从正态分布(3,4)N ,若(23)(2)P a P a ξξ<-=>+,则a =( ) A .3 B .53 C .5 D .737.在区间()2,0内任取两个数b a ,,则使方程0)2(222=+-+b x a x 的两个根分别作为椭圆与双曲线的离心率的概率为( )A .81B .8π C .16π D .1618.反复抛掷一枚质地均匀的骰子,每一次抛掷后都记录下朝上一面的点数,当记录有三个不同点数时即停止抛掷,则抛掷五次后恰好停止抛掷的不同记录结果总数是( )A .360种B .840种C .600种D .1680种9.若)2n x(n 为正偶数)的展开式中第5项的二项式系数最大,则第5项是 .10.如图所示的几何体是由一个正三棱锥 P -ABC 与正三棱柱 ABC -A 1B 1C 1 组合而成,现用3种不同颜色对这个几何体的表面染色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的染色方案共有( )A .24种B .18种C .16种D .12种11.已知11(1a dx -=⎰,则61()2a x x π⎡⎤--⎢⎥⎣⎦展开式中的常数项为 。
排列组合、二项式定理典型题(含答案)
排列、组合、二项式定理典型题一、选择题(共24题)1.(北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A )36个 (B )24个 (C )18个(D )6个解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有33A 种方法(2)3个数字中有一个是奇数,有1333C A ,故共有33A +1333C A =24种方法,故选B2.(福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有3374A A -=186种,选B.3.(湖北卷)在24(x -的展开式中,x 的幂的指数是整数的项共有 A .3项 B .4项 C .5项 D .6项解:72424312424rr rr rr T C x C x --r +=(=(-1),当r =0,3,6,9,12,15,18,21,24时,x 的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C4.(湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种B.36种C.42种D.60种解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有123436C A ⋅=种方案,二是在三个城市各投资1个项目,有3424A =种方案,共计有60种方案,选D.5.(湖南卷)若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 A .-2 B . 22 C. 34 D . 2解析:5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 6.(湖南卷)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24解析:先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.(江苏卷)10)31(x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6 【思路点拨】本题主要考查二项式展开通项公式的有关知识.【正确解答】1031⎪⎭⎫ ⎝⎛-x x的展开式通项为31010102121011()()33r r r r r r C C x x ---=,因此含x 的正整数次幂的项共有2项.选B【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别. 8.(江西卷)在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( )A.23008B.-23008C.23009D.-23009 解:设(x)2006=a 0x 2006+a 1x 2005+…+a 2005x +a 2006则当x时,有a 0)2006+a 1)2005+…+a 2005)+a 2006=0 (1) 当x时,有a 0)2006-a 1)2005+…-a 2005)+a 2006=23009 (2) (1)-(2)有a 1)2005+…+a 200523009÷2=-23008,故选B9.(江西卷)在2nx ⎫⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3B.6C.9D.12解:n 3rrn rr r r 2r 1nn r rn 2T C 2C x x n 3r 02C 60⨯⎧⎨⎩--+=()=-==,由r r n n 3r 02C 60⎧⎨⎩-==解得n =6故选B10.(辽宁卷)1234566666C C C C C ++++的值为( )A.61 B.62C.63 D.64解:原式=62262-=,选B11.(全国卷I )设集合{}1,2,3,4,5I =。
高考数学专题:排列、组合与二项式定理问题练习试题、答案
高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。
排列组合二项式定理测试题汇编
1.3 二项式定理 (1)班级. 姓名1.(2 x3 1 ) 7 的展开式中常数项是()xA.14B. — 14C.42D. — 422.若3n C n13n 1 C32 3n 2 ( 1)n 1 C n n 1 3 ( 1)n 512, 则 nA.7B.8C.9D.103.( 2 3 3)100 的展开式中,无理数项的个数是()A. 84 B . 85 C .86 D.874. C101 C102 C103 C1010的值为()A. 1025 B .1024 C . 1023 D . 10225.( x 3 y)n展开式中第 5 项的二项式系数与第 12 项的二项式系数相等,展开式共有()A.15 项B.16 项C.17 项D.18 项1 n6. 3x2 的展开式中含有常数项,则正整数n 的最小值为()2x 3A. 4 B .5 C . 6 D . 1157. 1 2x的第六项的系数是8.若在(1ax) 5的展开式中x3的系数是—80,则a=9. 已知axx 29的展开式中, x3的系数为9,求常数 a 的值.4n1的第 5 项的二项式系数与第 3 项的二项式系数的比是 14:3,求展开式中的常数项 .10. 若x3x 21. 3 二项式定理 (2)班级 .姓名1. (1 x) 7 展开式中,系数最大的项是()A .第 3项B .第4项 C.第 5项D . 第4项或第 5项n2. x3已 知展 开 式 中 , 各 项 系 数 的 和 与 其 各 项 二 项 式 系 数 的 和 之 比 为 64 , 则 n 等 于3x()A . 4B .5C .6D .71n3. 在x 的展开式中,如果第32 项的系数与第72 项的系数相等,则展开式的中间一项可用组合数表示为x()A. C10452B. C10352C. C10252D. C102514.若多项式x2 x10 a0 a1 ( x 1) a9 ( x 1)9 a10( x 1)10 ,则 a9A . 9B .10C .-9D .-10 ()5. (1 x) 10 a0 a1 x a2 x 2 a10 x 10,则 a1 a3 a5 a7 a9A. 512 B . 1024 C . 1024 D.512 ()6. 若 2 x 10 a a x a x2 a x10,则 a0 a2 a4 a10 _____________0 1 2 10n7. x31 展开式中,只有第 6 项的系数最大,展开式中的常数项是________x28.求( 2x-1 )5的展开式中( 1)各项系数之和;( 2)各项的二项式系数之和;( 3)偶数项的二项式系数之和;(4)各项系数的绝对值之和;(5)奇次项系数之和9. 求1x1x 2 1 x31x 15展开式中含x3的系数。
高三数学排列组合与二项式定理试题答案及解析
高三数学排列组合与二项式定理试题答案及解析1.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.48【答案】D【解析】方法一:第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有23=8(种)选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6(个)不同的三位数.由分步乘法计数原理知共可得到8×6=48(个)不同的三位数.方法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步乘法计数原理,共可得到6×4×2=48(个)不同的三位数.2.设、、为整数,若和被除得余数相同,则称和对模同余,记.若,且,则的值可以为()A.B.C.D.【答案】A【解析】,因此除的余数为,即,因此的值可以为,故选A.【考点】1.二项式定理;2.数的整除性3.5名志愿者到3个不同的地方参加义务植树,则每个地方至少有一名志愿者的方案共有____种.【答案】150【解析】将5名志愿者分到3个不同的地方参加义务植树,且每个地方至少有一名志愿者,则分配至3地的人数模式只有“1、1、3”与“1、2、2”这两种模式.设这3地分别为甲、乙、丙.(1)当分配的人数模式是“1、1、3”时,即甲、乙、丙3地中有一地是3个人,其他两地都只有1人,则共有(种).即先从三地中选一地是分配3个人的,再从5名志愿者中选三人派到该地.剩余2人再分配至其余两地.(2) 当分配的人数模式是“1、2、2”时,即甲、乙、丙3地中有一地是1个人,其他两地都有2人,则共有(种).即先从三地中选一地是只分配1个人的,再从5名志愿者中选1人派到该地.剩余4人再选出2人分配至其余两地中的某地,那剩余2人即是最后一地所得.综上所述,共有60+90=150种方案.【考点】排列与组合4.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依次类推,则(1)按网络运作顺序第n行第一个数字(如第2行第一个数字为2,第3行第一个数字为4,…)是;(2)第63行从左至右的第4个数应是.【答案】(1)。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。
【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。
2.设,则的值为【答案】-2.【解析】根据题意,由于,则令x=-1,则可知等式左边为-2,故可知=-2,因此答案为-2.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
3.已知二项式的展开式中第四项为常数项,则等于A.9B.6C.5D.3【答案】C【解析】根据题意,由于二项式的展开式中第四项为常数项,那么其通项公式为,故答案为5,选C.【考点】二项式定理点评:主要是考查了二项式定理中展开式的通项公式的运用,属于基础题。
4.已知,则 .【答案】66【解析】根据题意,由于,故可知,故可知答案为66.【考点】组合数公式点评:主要是考查了组合数性质的运用,属于基础题。
5.已知离散型随机变量的分布列如下表.若,,则,.【答案】【解析】由分布列性质可得,【考点】分布列期望方差点评:在分布列中各概率之和为1,借助于分布列结合期望方差公式可计算这两个量6.已知()能被整除,则实数的值为【答案】【解析】根据题意,由于,根据二项式定理展开式可知,那么由于()能被整除,且被11除的余数为2,那么可知2+a能被11整除,可知a==9,故答案为9.【考点】二项式定理的运用点评:主要是考查了二项式定理来解决整除问题的运用,属于基础题。
7. ( -)6的二项展开式中的常数项为_____.(用数字作答)【答案】-160【解析】由二项式定理得通项得,,取得常数项。
故选D。
【考点】二项式定理点评:在两项式定理中,通项是最重要的知识点,解决此类题目,必然用到它。
8. 4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有A.36种B.72种C.81种D.144种【答案】D【解析】由题意可知4人选择了4条线路中的3条,不同的游览情况共有种【考点】排列组合点评:求解本题按照先分组后分配的思路求解9.已知,则二项式展开式中的系数为_________.【答案】10【解析】,展开的通项为,令,系数为【考点】定积分与二项式定理点评:定积分,其中,二项式的展开式第项是10.若N,且则()A.81B.16C. 8D.1【答案】A【解析】根据题意,由于,可知n=4,那么当x=-1时可知等式左边为 ,那么右边表示的为81,故答案为81,选A 【考点】二项式定理点评:主要是考查了二项式定理以及系数和的求解,属于基础题。
排列组合二项式定理练习1(含答案)
一、选择题1.由太原去北京如果一天之内火车有4个班次,汽车有17个班次,飞机有6个班次,那么,每天由太原去北京有( )种不同的方法.A 4B 17C 27D 4082. 某班有男生26人,女生20人,若要选男、女生各1人作为学生代表参加学校伙食管理委员会,共有( )种选法.A 520B 26C 20D 46 3. 6个朋友聚会,每两人握手一次,一共握手( )次. A 30 B 20 C 15 D 64. 从5名学生中,选出2名学生, 担任两项不同的工作,有( )种不同的选法 A 40 B 20 C 7 D 25. 如果7名学生排成一列照集体照,有两名学生必须要相邻,那么共有( )种不同的排法. A 360 B 720 C 1440 D 28806. (1-x )9的二项式展开式中第4项的系数是( ) A -84B -126C 84D 1267. 二项式(x -3y )5的展开式中,第4项的二项式系数为( ) A .-3240 B .3240 C .-10 D .10 8. 二项式(3x -2y )6的展开式中,各项的系数之和为( ) A .-1B .1C .-64D .649. 满足等式65181717C C C m =+的m 的值为( )A .6B .12C .5D .6或1210. 平面内有12个点,其中任意3点都不在同一条直线上,以任意3点为顶点画三角形,则可画出的三角形 ( ) 个A .36B .219C .220D .1320 二、判断题:1.计算05C的值为0.()2.用数字1,2,3可以组成27个三位数. ()3. 6个朋友每两人互通一次电话,一共需要通15次电话.()4.从5名学生中,选出2名学生去参加一个调查会,有20种不同的选法. ( ) .5. 5个人争夺3项比赛冠军,每项比赛无并列冠军,冠军得主共有35种情况.()6.抛掷一枚硬币,会出现正面向上或反面向上两种结果,现将一枚硬币抛3次可能出现的结果共有6种.()7. 5支球队进行单循环足球比赛的分组情况,属于组合.()8. 平面上有7个不同的点,其中任何3点不在同一直线上.如果任取3点作为三角形顶点,那么一共可作37C个三角形. ()9.二项式(x-3y)5的展开式中,第4项的二项式系数为-10.()10.将3个球放入2个不同的盒子中,每个盒子至少一个球,共有12种放法. ()三、填空题1.有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有______种不同的报名方法.2.某商场有4个门,一人从一门进,从另一门出,则不同的进出走法有______种.3.2Pn=30,则n=_____.4.5名男生和3名女生站成一排,女生不相邻且不站在排头的站法有_______种.5.二项式52xx⎛⎫-⎪⎝⎭的展开式中第5项的系数为_______.三、解答1. 10件产品中有2件次品,从中任意抽取2件产品进行检查.问(1)一共有多少种不同的抽取方法?(2)抽取的2件产品中,恰有一件是次品的不同抽取方法有多少种?(3)抽取的2件产品中,至少有一件是次品的不同抽取方法有多少种?2. 求10+的二项展开式的常数项. 一、选择题1. C 【解析】由太原去北京共有三类方案.第一类是乘火车,有4种方法;第二类是乘汽车,有17种方法;第三类是乘飞机,有6种方法.并且,每一种方法都能够完成这件事(从太原去北京).所以每天从太原去北京的方法共有417627++=(种).故选C2. A 【解析】这件事可以分成两个步骤完成: 第一步:从26名男生中选出1人,有126k =种选法; 第二步:从20名女生中选出1人,有220k =种选法. 由分步计数原理有2620520N =⨯=(种). 即共有520种选法.故选A3. C 【解析】握手无先后,所以是组合问题, 一共握手2665C 1521⨯==⨯.次. 故选C 4. B 【解析】不同的选法共有25P 5420=⨯=(种).故选B5. C 【解析】分成两步来排队.第一步,将这两个人的顺序排好;第二步,将这两个人作为一个总体,与剩下的5名学生一起排队.2626P P 216543211440⋅=⨯⨯⨯⨯⨯⨯⨯=(种).故选C6. A 【解析】∵T 4=T 3+1=39C (-x )3=-84x 3, ∴系数为-84,故选A .7.D 【解析】第4项的二项式系数为35C =10,故选D .8. B 【解析】 二项式(3x -2y )6中令x =y =1,可得各项的系数之和为1,故选B .9. D 【解析 】 由组合数的性质公式,得656171718C C C +=,所以61818C C m =故,m =6或m =12. 故选D .10.C 【解析】因任意3点都不在同一条直线上,故从12个点中任取3点可组成一个三角形,所以可画出的三角形的个数为312C =220,故选C . 二、判断题:1.【解析】规定0C n =1.故本题×.2.【解析】个位、十位、百位,每一个数位都有3种选择,故共可以组成3×3×3=27个三位数. . 故本题√.3.【解析】每两人互通一次电话是有先后顺序的,所以是排列问题, 一共通26P 6530=⨯=次电话. 故本题×.4. 解析】从5名学生中,选出2名学生去参加一个调查会,选出2名学生后完成的任务是一样的.所以这是一个组合问题.共有2554C 1021⨯==⨯种不同的选法. 故本题×. 5.【解析】每一项比赛冠军得主都有5种可能,故冠军得主共有35种情况. 故本题√.6. 【解析】现将一枚硬币抛3次,每一次都有两种情况.故共有2×2×2=8种情况. 故本题×.7.【解析】本题√.8.【解析】任取三点画三角形,是无顺序的,属于组合问题.本题√. 9.【解析】第4项的二项式系数为35C =10. 故本题×.10.【解析】将3个球放入2个不同的盒子中,每个盒子至少一个球,所以一定有一个盒子放2个球.故先将球分成两组,再把球放入盒子中,故共有2232C P 6=种不同的放法. 故本题×.三、填空题1.【解析】34=81(种).2.【解析】 由分步计数原理可知,不同的走法有N =4×3=12(种).3.【解析】∵2P n =30∴n (n -1)=30,即n 2-n -30=0, ∴(n -6)(n +5)=0,由此可得n =6或n =-5(舍去),∴n =6.4.【解析】用插空法,先排男生有55P 种排法,再从男生之间的4个空中排入3名女生有34P 种排法.∴共有5354P P =2880(种)排法.5.【解析】T 5=T 4+1=444433552C =(2)C =80x x x x --⎛⎫-- ⎪⎝⎭,∴第5项的系数为80 三、解答1.【解析】(1)不同的抽取方法的总数为从10件产品中取出件的组合数210109C 4521⨯==⨯.(2)分成两步来完成.第一本从2件次品中抽出1件,第二步从8件正品中抽出的1件.由分步计数原理知,恰有1件次品的不同抽取方法的种数为1128C C 2816⋅=⨯=.(3)从任意抽取不同的2件产品的抽取方法总数中,减去2件全是正品的抽取方法种数,就是至少有一件是次品的不同抽取方法种数.即22108C C 452817-=-=. 2.【解析】 由于101022110101C ()C m mmmm m m T x x x---+==(),故1002m m--=2.解得m =5. 所以二项式展开式中第6项是常数项,为51010987625254321C ⨯⨯⨯⨯==⨯⨯⨯⨯.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合二项式1.(2016高考新课标2理数)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9 2.(2016年高考四川理数)设i 为虚数单位,则6()x i +的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 43.(2016年高考四川理数)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )724.(2016高考新课标3理数)定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个5.(2016高考新课标1卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13 (B )12 (C )23 (D )346.(2016高考新课标3理数)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同 (D )平均气温高于20C ︒的月份有5个7.(2016高考山东理数)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56 (B )60 (C )120 (D )1408.(2016高考新课标2理数)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n9.(2016年高考北京理数)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多10.(2016东北三省三校一模,理8)数学活动小组由12名同学组成,现将12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案的种数为( )A .33341296433C C C A A B .333412963C C C C .33331296444C C C A D .333312964C C C 11.(2016河北衡水中学高三一调,理5)某校高三理科实验班有5名同学报名参加甲,乙,丙三所高校的自主招生考试,没人限报一所高校,若这三所高校中每个学校都至少有1名同学报考,那么这5名同学不同的报考方法种数共有( ) A .144种 B .150种 C .196种 D .256种12.(2016河北唐山一模,理4)()62x y -的展开式中,42x y 的系数为( )(A )15 (B )-15 (C )60 (D )-6013.(2016江西省赣中南五校第一次考试,理8)不等式组2204x y -≤≤⎧⎨≤≤⎩表示的点集记为M ,不等式组220x y y x -+≥⎧⎨≥⎩表示的点集记为N ,在M 中任取一点P ,则P ∈N 的概率为A .732 B .932C .916D .71614.(2016年高考北京理数)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)15.(2016高考新课标1卷)5(2x 的展开式中,x 3的系数是 .(用数字填写答案)16.(2016高考天津理数)281()x x-的展开式中x 2的系数为__________.(用数字作答)17.(2016高考山东理数)若(ax 2)5的展开式中x 5的系数是—80,则实数a=_______. 18.(2016高考江苏卷)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 19.(2016年高考四川理数)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .20.(2016高考新课标2理数)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .21.(2016高考江苏卷)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________________.22.(2016高考山东理数)在[1,1]上随机地取一个数k ,则事件“直线y=kx 与圆22(5)9xy 相交”发生的概率为 .23.(2016高考上海理数)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).24.(2016高考上海理数)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________.25.(2016高考江苏卷)(1)求3467–47C C 的值; (2)设m ,n ∈N *,n ≥m ,求证:(m+1)C mm +(m+2)+1C m m +(m+3)+2C m m +…+n –1C m n +(n+1)C m n =(m+1)+2+2C m n .26.(2016高考新课标1卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?27.(2016高考新课标2理数)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数 0 1234≥5保费0.85a a1.25a 1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数 0 1 2 3 4 ≥5概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.28.(2016年高考四川理数)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨)、一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.29.(2016年高考北京理数)A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);(1)试估计C班的学生人数;(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,,表8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1格中数据的平均数记为0μ ,试判断0μ和1μ的大小,(结论不要求证明)30.(2016高考山东理数)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (I )“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和为X 的分布列和数学期望EX .31.(2016高考天津理数)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(Ⅰ)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (Ⅱ)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.32.(2016高考新课标3理数)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32ii y==∑,7140.17i i i t y ==∑,721()0.55ii y y =-=∑,≈2.646.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a b =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt =-.33.(2016年云南省第一次高中复习统一检测,理18)某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.(Ⅰ)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率()P A ;(Ⅱ)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.参考答案1.B 【解析】试题分析:由题意,小明从街道的E 处出发到F 处最短有24C 条路,再从F 处到G 处最短共有13C 条路,则小明到老年公寓可以选择的最短路径条数为214318C C ⋅=条,故选B .考点: 计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的. 2.A 【解析】试题分析:二项式6()x i +展开的通项616r r rr T C xi -+=,令64r -=,得2r =,则展开式中含4x 的项为2424615C x i x =-,故选A .考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r r r C i x -,即含4x 的项为46444615C i x x -=-.3.D 【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中之一,其他位置共有随便排共44A 种可能,所以其中奇数的个数为44372A =,故选D . 考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..4.C【解析】试题分析:由题意,得必有10a=,81a=,则具体的排法列表如下:考点:计数原理的应用.【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.5.B【解析】试题分析:如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟根据几何概型,所求概率10101402P +==.故选B . 考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等. 6.D 【解析】试题分析:由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D . 考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B . 7.D 【解析】试题分析:由频率分布直方图知,自习时间不少于22.5小时为后三组,有200(0.160.080.04) 2.5140⨯++⨯=(人),选D .考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 8.C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4mnπ=.选C . 考点: 几何概型.【名师点睛】求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解. 9.C 【解析】试题分析:若乙盒中放入的是红球,则须保证抽到的两个均是红球;若乙盒中放入的是黑球,则须保证抽到的两个球是一红一黑,且红球放入甲盒;若丙盒中放入的是红球,则须保证抽到的两个球是一红一黑:且黑球放入甲盒;若丙盒中放入的是黑球,则须保证抽到的两个球都是黑球;A :由于抽到的两个球是红球和黑球的次数是奇数还是偶数无法确定,故无法判定乙盒和丙盒中异色球的大小关系,而抽到两个红球的次数与抽到两个黑球的次数应是相等的,故选C .考点:概率统计分析.【名师点睛】本题将小球与概率知识结合,创新味十足,是能力立意的好题.如果所求事件对应的基本事件有多种可能,那么一般我们通过逐一列举计数,再求概率,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏.另外注意对立事件概率公式的应用. 10.B【解析】将12名同学平均分成四组,共有333129644C C C A ,分别研究四个不同课题,共有33341296444C C C A A ⨯,从四组中每组选出一名组长,共有43,共计33344333129641296443C C C A C C C A ⨯⨯=种,故选B . 11.B【解析】若有两所高校各有2名同学报考,一所高校有1名同学报考,有22353322C C A A ⋅⋅种报考方法;若有两所高校各有1名同学报考,一所高校有3名同学报考,有31352322C C A A ⋅⋅种报考方法,所以总共有2231335352332222150C C C C A A A A ⋅⋅⋅+⋅=种报考方法,故选B . 12.C【解析】因为()62x y -展开式的通项公式为616(2)rrrr r T C xy -+=-,所以42x y 的系数为226(2)60C -=,故选C .13.B【解析】列出相应的区域如下所示:区域M 是正方形区域,区域N 是阴影区域,()292212=-+=⎰-dx x x s 阴影,所以P ∈N 的概率为932;故选B . 14.60. 【解析】试题分析:根据二项展开的通项公式16(2)rrrr T C x +=-可知,2x 的系数为226(2)60C -=,故填:60. 考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r rn rn r b aC T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析. 15.10 【解析】试题分析:5(2x 的展开式通项为555255C (2)2C r rrr rr x x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=. 考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数. 16.56- 【解析】试题分析:展开式通项为281631881()()(1)r r r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-.考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n≥r);第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解. 17.-2 【解析】试题分析:因为5102552155()r rrr r rr T C ax C a x ---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=-考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.18.5.6【解析】点数小于10的基本事件共有30种,所以所求概率为305.366= 考点:古典概型概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.江苏对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.19.32【解析】试题分析:同时抛掷两枚质地均匀的硬币,可能的结果有(正正),(正反),(反正),(反反),所以在1次试验中成功次数ξ的取值为0,1,2,其中111(0),(1),(2),424P P P ξξξ======在1次试验中成功的概率为113(1)424P ξ≥=+=, 所以在2次试验中成功次数X 的概率为12313(1)448P X C ==⨯⨯=,239(2)()416P X ===,393128162EX =⨯+⨯=考点:离散型随机变量的均值【名师点睛】本题考查随机变量的均值(期望),根据期望公式,首先求出随机变量的所有可能取值12,,,n x x x ,再求得对应的概率(1,2,,)i P i n =,则均值为1ni i i x P =∑.20.1和3 【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式. 21.0.1 【解析】试题分析:这组数据的平均数为1(4.7 4.8 5.1 5.4 5.5) 5.15++++=,2222221(4.7 5.1)(4.8 5.1)(5.1 5.1)(5.4 5.1)(5.5 5.1)0.15S ⎡⎤∴=-+-+-+-+-=⎣⎦.故答案应填:0.1, 考点:方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力. 22.34【解析】试题分析:直线y=kx 与圆22(5)9xy 相交,需要满足圆心到直线的距离小于半径,即d 3=<,解得33k 44-<<,而[1,1]k,所以所求概率P=33224=.考点:1.直线与圆的位置关系;2.几何概型.【名师点睛】本题是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,几何概型概率的计算问题,涉及圆心距的计算,与弦长相关的问题,往往要关注“圆的特征直角三角形”,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 23.1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76. 考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 24.112 【解析】 试题分析:因为二项式所有项的二项系数之和为n2,所以n2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解.本题能较好地考查考生的思维能力、基本计算能力等. 25.(1)0(2)详见解析 【解析】试题分析:(1)根据组合数公式化简求值(2)设置(1)目的指向应用组合数性质解决问题,而组合数性质不仅有课本上的111m m m k k k C C C ++++= ,而且可由(1)归纳出的11(1)(m 1),(,1,,)m m k k k C C k m m n +++=+=+;单纯从命题角度看,可视为关于n 的等式,可结合数学归纳法求证;从求和角度看,左边式子可看做展开式11(1)(1)(2)(1)(1)(1)(1)m m n n m x m x n x n x +-++++++⋅⋅⋅⋅⋅+++++中含m x 项的系数,再利用错位相减求和得含m x 项的系数 ,从而达到化简求证的目的试题解析:解:(1)3467654765474740.3214321C C ⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(k 1)(m 1)]!m m k k k k k k C m m C k m m n m k m m +++⋅++==+=+=++-++-+又因为122112,m m m k k k C C C +++++++=所以2221(1)(1)(),k m 1,m+2,n.m m m k k k k C m C C +++++=+-=+,因此12122222222232432122(1)(2)(3)(n 1)(1)[(2)(3)(n 1)](1)(1)[()()()](1)m m m mm m m nm m m mm m m n m m m m m m m m m m m m n n m n m C m C m C C m C m C m C C m Cm CCCCCCm C +++++++++++++++++++++++++++=+++++++=+++-+-+-=+考点:组合数及其性质【名师点睛】本题从性质上考查组合数性质,从方法上考查利用数学归纳法解决与自然数有关命题,从思想上考查运用算两次解决二项式有关模型.组合数性质不仅有课本上介绍的111m m m k k k C C C ++++=、=m k mk k C C -,更有11k k n n kC nC --=,现在又有11(1)(m 1),(,1,,)m m k k k C C k m m n +++=+=+,这些性质不需记忆,但需会推导,更需会应用.26.(Ⅰ)见解析(Ⅱ)19(Ⅲ)19n = 【解析】试题分析:(Ⅰ)先确定X 的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(Ⅱ)通过频率大小进行比较;(Ⅲ)分别求出n=9,n=20的期望,根据19=n 时所需费用的期望值小于20=n 时所需费用的期望值,应选19=n .试题解析:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ; 16.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ;04.02.02.0)22(=⨯==X P .所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=.可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n . 考点:概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题. 27.(Ⅰ)0.55;(Ⅱ);(Ⅲ)1.23. 【解析】试题分析:(Ⅰ)根据互斥事件的概率公式求一续保人本年度的保费高于基本保费的概率;(Ⅱ)一续保人本年度的保费高于基本保费,当且仅当一年内出险次数大于3,由条件概率公式求解;(Ⅲ)记续保人本年度的保费为X ,求X 的分布列,再根据期望公式求解. 试题解析:(Ⅰ)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故()0.20.20.10.050.55.P A =+++=(Ⅱ)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故()0.10.050.15.P B =+=又()()P AB P B =,故()()0.153(|).()()0.5511P AB P B P B A P A P A ==== 因此所求概率为3.11(Ⅲ)记续保人本年度的保费为X ,则X 的分布列为X 0.85a a 1.25a 1.5a 1.75a 2aP0.30 0.15 0.200.20 0.100.050.850.300.051.23EX a a=⨯=因此续保人本年度的平均保费与基本保费的比值为1.23 考点: 条件概率,随机变量的分布列、期望. 【名师点睛】条件概率的求法:(1)定义法:先求P (A )和P (AB ),再由P (B|A )=P ABP A,求P (B|A );(2)基本事件法:当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数n (AB ),得P (B|A )=n AB n A.求离散型随机变量均值的步骤:(1)理解随机变量X 的意义,写出X 可能取得的全部值;(2)求X 的每个值的概率;(3)写出X 的分布列;(4)由均值定义求出E (X ). 28.(Ⅰ)0.30a ;(Ⅱ)36000;(Ⅲ)2.9. 【解析】试题分析:(Ⅰ)由高×组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a 的值;(Ⅱ)利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本总数=频数,计算所求人数;(Ⅲ)将前6组的频率之和与前5组的频率之和进行比较,得出2.5≤x<3,再进行计算.试题解析:(Ⅰ)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04, 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30. (Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(Ⅲ)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85, 而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85, 所以2.5≤x<3.由0.3×(x –2.5)=0.85–0.73, 解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准. 考点:频率分布直方图.【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。