协整检验的临界值
协整检验方法
SH t 0 1SZZt t
转化成Leabharlann SH t 0 1SZZt 2T t
依次键入以下命令: GENR T=@TREND(1) 生成趋势变量 LS SH C SZZ T 在协整回归中加入趋势 此时再检查残差序列的平稳性,可以发现它已经变成不 含趋势和常数项的平稳序列,而且协整回归模型的拟合度 明显提高;图 5-5 、图 5-6 分别给出了两个协整回归模型的 残差序列图(需要指出的是,变量 T 也是一阶单整变量, 与 SH 、 SZZ 的单整阶数相同) 。
为了消除原始序列的非线性趋势,建立线性协整回归方 程,将原变量取成对数变量。表 5-3 列出了对数序列和对数 差分序列的单位根检验结果( EViews 5 ) ,检验结果表明, 在 5% 显著水平下,ly~I(1) ;在 1% 显著水平下,lx~I(1) ,两 个变量的单整阶数相同,符合协整性检验的要求。 关于表 5-3 中的单位根检验结果需要做些说明。 EViews 检验单位根时采用了以下三个检验方程:
1
2 .检验残差序列的平稳性时,可以在检验方程中加上常 数项和趋势项,即使用方程( 5-3 ) 、 ( 5-4 )进行检验,也 可以加在原始回归方程( 5-1 )中,但在两个方程中只能加 一次,不能重复加入。 3 .在检验残差序列的平稳性时,虽然检验统计量与 DF (或 ADF )检验中的相同,但是检验统计量的分布已不再 是 DF 或 ADF 分布,所以临界值也发生了变化,而且还与 回归方程中变量个数、样本容量和协整检验方程的不同有 关。麦金农( Mackinnon )给出了协整检验临界值的计算公 式, EViews 软件也可以直接输出 Mackinnon 临界值(或伴 随概率) 。 4. EG 检验也可以用于有多个解释变量的协整关系检验, 即第一步的回归方程( 5-1 )变成:
使用stata命令进行协整检验方法介绍
使用stata命令进行协整检验方法介绍标题:使用 Stata 命令进行协整检验方法介绍摘要:协整检验是时间序列分析中的常用方法,用于确定多个非平稳时间序列之间是否存在长期的稳定关系。
本文将介绍如何使用 Stata 命令进行协整检验,包括数据准备、模型设定、协整检验法的原理和实施步骤,以及对协整结果的解释和理解。
文章正文:一、绪论协整检验是时间序列分析中的重要方法,用于研究经济学和金融学中的长期均衡关系。
在实际应用中,我们常常会遇到非平稳的时间序列数据,而协整检验可以帮助我们判断这些非平稳序列之间是否存在稳定的长期关系。
本文将以 Stata 软件为例,介绍如何使用 Stata 命令进行协整检验。
二、数据准备在进行协整检验之前,需要确保所使用的时间序列数据是非平稳的。
常见的处理方法包括差分、对数化等。
Stata 提供了丰富的数据处理命令,如 "diff"、"log" 等,可以帮助我们将数据转化为非平稳序列。
三、模型设定在协整检验中,我们通常会使用向量自回归(VAR)模型。
在 Stata 中,可以使用 "var" 命令设定 VAR 模型。
该命令可以指定所需的滞后阶数和变量名称,例如:```statavar y x, lags(2)```其中,"var" 表示要进行 VAR 模型设定,"y" 和 "x" 是待检验的变量名称,"lags(2)" 表示设定滞后阶数为2。
四、协整检验法的原理和实施步骤协整检验法主要包括 Johansen 检验和 Engle-Granger 检验两种方法。
Johansen 检验适用于多个时间序列之间的协整检验,而 Engle-Granger 检验适用于两个时间序列之间的协整检验。
1. Johansen 检验Johansen 检验是一种基于协整向量估计的方法,用于判断多个时间序列之间是否存在协整关系。
协整检验
伪回归:如果一组非平稳时间序列之间不存在协整关系,则这一组变量构造的回归模型就是伪回归。
残差序列是一个非平稳序列的回归被称为伪回归,这样的一种回归有可能拟合优度、显著性水平等指标都很好,但是由于残差序列是一个非平稳序列,说明了这种回归关系不能够真实的反映因变量和解释变量之间存在的均衡关系,而仅仅是一种数字上的巧合而已。
伪回归的出现说明模型的设定出现了问题,有可能需要增加解释变量或者减少解释变量,抑或是把原方程进行差分,以使残差序列达到平稳。
伪回归是回归方程时间序列数据中涉及的一个概念。
该问题通俗来讲,就是:本来两个变量之间是不存在任何经济关系的,但是因为这两个时间序列数据表现出的变化趋势是一致的,所以,当你对其进行回归时候会得到一个很高的可决系数,让你误以为这一回归关系显著成立。
其实这一回归关系是错的,即伪回归。
要想避免伪回归,应首先对变量进行平稳性检验,接下联进行协整检验。
若变量之间存在协整关系,这一回归才算成立。
负相关negative correlation在回归与相关分析中,因变量值随自变量值的增大(减小)而减小(增大)的现象。
在这种情况下,表示相关程度的相关系数为负值。
相关程度用相关系数r表示,-1≤r<1,r的绝对值越大,表示变量之间的相关程度越高,r为负数时,表示一个变量的增加可能引起另一个变量的减少,此时,叫做负相关。
统计学中常用相关系数r来表示两变量之间的相关关系。
r的值介于-1与1之间,r为正时是正相关,反映当x增加(减少)时,y随之相应增加(减少);呈正相关的两个变量之间的相关系数一定为正值,这个正值越大说明正相关的程度越高。
当这个正值为1时就是完全正相关的情形,如点子排为一条直线,为完全正相关。
正相关虽然意思明确,其实是个模糊的概念,不可以量化,只是定性说法。
如果有明确的关系,例如y=2x,这叫y与x成正比,如果只是大体上,x、y的变化方向一样,例如x上升,y也上升或者x下降,y也下降,那么,这叫正相关。
eg协整检验步骤
eg协整检验步骤
一、单整检骤
(一)样本分析
在正式进行单整检验之前,需要先要对样本数据进行简单的分析,确
定样本的平均值、方差、极差等统计量。
(二)计算残差
将观测值与样本平均值相减,得到残差,残差为空,则表明样本位单
整的。
(三)绘制箱型图
通过箱线图或线图,观察残差是否服从正态分布或拉普拉斯分布,残
差正太分布,表明样本数据是单整的。
(四)计算均整检验
计算均整检骤的自由度和t检验值,从而得出p值,查表得出临界值,如果p值小于临界值,则表明样本数据服从单整分布。
二、EG协整检验
(一)确定模型
在进行EG协整检验之前,首先要确定模型,如Unrestricted Error Correction Model(UECM)、Restricted Error Correction Model(REC)等。
(二)根据模型建立数学模型
建立以变量的差分序列为变量的数学模型,有的时候还会增加有关的趋势项和季节性变量,以便更准确的表示实际情况。
(三)数据分析
分析数据,确定模型参数,然后根据模型参数计算模型的t检验值和p值,然后查表得出临界值,根据检验结果确定样本是否满足EG协整关系。
(四)进行残差检验
最后,根据协整模型计算的残差。
学习:协整理论以及协整检验
然而,如果Z与W,X与Y间分别存在长期均衡关系:
Zt 0 1Wt v1t
X t 0 1Yt v2t
则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它 们的任意线性组合也是稳定的。例如
vt v1t v2t Zt 0 0 1Wt X t 1Yt
2、长期均衡
•
经济理论指出,某些经济变量间确实存在着长期均衡关
系,这种均衡关系意味着经济系统不存在破坏均衡的内在 机制,如果变量在某时期受到干扰后偏离其长期均衡点, 则均衡机制将会在下一期进行调整以使其重新回到均衡状 态。 假设X与Y间的长期“均衡关系”由式描述
Yt 0 1 X t t
协整检验
协整与误差修正模型
一、长期均衡与协整分析 二、协整检验—EG检验 三、协整检验—JJ检验 四、误差修正模型
一、长期均衡与协整分析 Equilibrium and Cointegration
1、问题的提出
• 经典回归模型( classical regression model )是建立在 平稳数据变量基础上的,对于非平稳变量,不能使用经典 回归模型,否则会出现虚假回归等诸多问题。 • 由于许多经济变量是非平稳的,这就给经典的回归分析方 法带来了很大限制。 • 但是,如果变量之间有着长期的稳定关系,即它们之间是 协整的(cointegration),则是可以使用经典回归模型方 法建立回归模型的。 • 例如,中国居民人均消费水平与人均 GDP 变量的例子 , 从 经济理论上说,人均 GDP 决定着居民人均消费水平,它们 之间有着长期的稳定关系,即它们之间是协整的。
该均衡关系意味着:给定X的一个值,Y相应的均衡值也随 之确定为0+1X。
协整检验方法
协整检验协整性的检验方法主要有两个: (一) EG 两步法以两个变量y 和x 为例。
在检验协整性之前,首先要对变量的单整性进行检验,只有当两个变量的单整阶数相同时,才可能存在协整关系。
不妨设y 和x 都是一阶单整序列,即y 、x 均)1(~I ,则EG 两步法的具体检验步骤为:第一步:利用最小二乘法估计模型:t t t x y εββ++=10 (5-1) 并计算相应的残差序列:)ˆˆ(10tt t x y e ββ+-= 第二步:检验残差序列的平稳性,可以使用的检验方程有: t mi i t i t t e e e εγδ+∆+=∆∑=--11(5-2) t m i i t i t t e e e εγδα+∆++=∆∑=--11(5-3)t mi i t i t t e e t e εγδβα+∆+++=∆∑=--11(5-4)如果经过DF 检验(或ADF 检验)拒绝了原假设0:0=δH ,残差序列是平稳序列,则意味着y 和x 存在着协整关系,称模型(5-1)为协整回归方程;如果接受了存在单位根的原假设,则残差序列是非平稳的,y 和x 之间不可能存在协整关系,模型(5-1)是虚假回归方程。
说明: 1.在检验方程中加上差分的滞后项是为了消除误差项的自相关性,检验也相应称为AEG 检验;其中滞后阶数一般用SIC 或AIC 准则确定,EViews 5中增加了根据SC 等准则自动确定滞后阶数的功能。
2.检验残差序列的平稳性时,可以在检验方程中加上常数项和趋势项,即使用方程(5-3)、(5-4)进行检验,也可以加在原始回归方程(5-1)中,但在两个方程中只能加一次,不能重复加入。
3.在检验残差序列的平稳性时,虽然检验统计量与DF (或ADF )检验中的相同,但是检验统计量的分布已不再是DF 或ADF 分布,所以临界值也发生了变化,而且还与回归方程中变量个数、样本容量和协整检验方程的不同有关。
麦金农(Mackinnon )给出了协整检验临界值的计算公式,EViews 软件也可以直接输出Mackinnon 临界值(或伴随概率)。
协整检验实验报告(3篇)
第1篇一、实验目的1. 了解协整检验的基本原理和方法;2. 学会运用协整检验分析变量之间的长期稳定关系;3. 培养数据处理和分析能力。
二、实验背景协整检验是计量经济学中一种重要的检验方法,主要用于检验两个或多个非平稳时间序列变量之间是否存在长期稳定的均衡关系。
协整检验通常应用于金融、经济、工程等领域,以分析变量之间的相互作用和影响。
三、实验内容1. 数据来源:选取我国2000年至2020年的GDP、消费、投资和进出口数据,分别记为GDP、CONSUME、INVEST和IMPORT。
2. 数据处理:首先,对原始数据进行对数变换,以消除数据中的异方差性。
然后,利用EViews软件对对数变换后的数据进行单位根检验,以判断变量是否为非平稳时间序列。
3. 协整检验:运用EViews软件对GDP、CONSUME、INVEST和IMPORT进行协整检验,以判断变量之间是否存在长期稳定的均衡关系。
4. 脉冲响应函数和方差分解:若协整检验结果显示变量之间存在长期稳定的均衡关系,则进一步运用EViews软件进行脉冲响应函数和方差分解分析,以揭示变量之间的动态影响和贡献程度。
四、实验步骤1. 数据准备:将GDP、CONSUME、INVEST和IMPORT数据导入EViews软件。
2. 单位根检验:对GDP、CONSUME、INVEST和IMPORT进行单位根检验,判断变量是否为非平稳时间序列。
3. 协整检验:运用EViews软件对GDP、CONSUME、INVEST和IMPORT进行协整检验,包括Engle-Granger检验和Pedroni检验。
4. 脉冲响应函数和方差分解:若协整检验结果显示变量之间存在长期稳定的均衡关系,则进行脉冲响应函数和方差分解分析。
五、实验结果与分析1. 单位根检验结果:根据ADF检验结果,GDP、CONSUME、INVEST和IMPORT均存在单位根,说明这些变量都是非平稳时间序列。
2. 协整检验结果:根据Engle-Granger检验和Pedroni检验结果,GDP、CONSUME、INVEST和IMPORT之间存在长期稳定的均衡关系。
常用的协整检验方法(一)
常用的协整检验方法(一)常用的协整检验方法协整检验在时间序列分析中扮演着重要的角色,它用于检测多个非平稳时间序列之间是否存在长期的关系。
本文将介绍几种常用的协整检验方法,以帮助读者更好地理解和运用这些方法。
1. 单位根检验单位根检验是协整检验的基础,常用的方法有ADF(Augmented Dickey-Fuller)检验和PP(Phillips-Perron)检验。
它们都可以用来判断一个时间序列是否是平稳的。
•ADF检验:基本思想是通过引入滞后差分来构建一个扩展的Dickey-Fuller统计量,然后进行假设检验。
•PP检验:是对ADF检验的改进,它考虑了残差自相关的情况,减少了误检的可能性。
2. Johansen检验Johansen检验是用来检验时间序列之间是否存在协整关系的方法,它基于向量自回归(VAR)模型。
Johansen检验的原假设是存在r个协整关系,其中r是一个确定的非负整数。
Johansen检验有两个主要统计量:Trace统计量和Eigenvalue统计量。
通过比较这两个统计量和对应的临界值,可以判断时间序列之间是否存在协整关系以及协整关系的个数。
3. Engle-Granger检验Engle-Granger检验是一种基于OLS回归的协整检验方法。
它首先通过引入滞后差分将非平稳时间序列转化为平稳序列,然后利用最小二乘法建立回归模型,检验残差是否平稳。
Engle-Granger检验分为两个步骤:回归阶数的确定和残差的平稳性检验。
在回归阶数的确定中,可以采用信息准则(如AIC、BIC)来选择最佳的阶数。
在残差的平稳性检验中,可以使用ADF检验或PP 检验来判断。
4. 可视化方法除了以上的统计方法,还可以运用可视化方法来辅助协整检验。
常用的可视化方法包括散点图、路径图和回归图等。
散点图可以用来观察两个时间序列之间的关系,如果它们呈现出一种趋势性的关系,可能存在协整关系。
路径图可以展示多个时间序列之间的协整关系,有助于形象地理解协整关系的存在和特征。
协整检验eviews
四.协整检验的相关应用一.基本思想及注意要点、适用条件1.基本思想尽管一些变量是非平稳的而且是同阶单整的(比如,同为I(1)与I(2)),但有时如果我们对它们之间的关系进行长期观察,会发现它们之间是存在着某种内在的联系的,即它们之间从长期看存在着稳定的均衡关系。
比如,两个醉汉,同时从某一个平行的地点出发,尽管如果你单独观察某一个醉汉,会发现它们的走路并无明显的规律可循,而且,随着时间的延长,有偏离其走路均值的幅度越来越大的特点(非平稳),但如果你事前在他们腰间拴一条绳子,而且他们波动的趋势恰好相反,那么,你会发现,从长期来看,他们所走过路,是相对具有某种稳定的关系的,我们通常称这种观察到的现象为所谓的协整关系。
也可想一下“一条绳子上拴两个蚂蚱”。
2.注意要点(1)协整一定是针对于同阶单整的,即两个或多个变量之间一定是同样一个I(n)过程,即大家都必须是经相同阶的差分后才会平稳。
直观的,如果将平稳时间序列数据看作是“正常人”,非平稳时间序列数据看作是“醉汉”,那么,只有“醉汉”之间才可能存在协整关系,而且只有“醉”的程度是一样的,才可能存在协整关系。
故要利用协整技术,前提条件就是先判断,你的变量序列是不是“醉汉”。
拴一条绳子在两个“醉汉”之间,在数学上可类比于线性组合。
(2)如果存在协整关系,那么表明你在假定模型的时候,认为两个或多个变量之间的关系不是单向的。
协整只表明所观察的两个或几个变量之间长期可能存在某种稳定的相对关系,但通常并不能一定认为二者就具有因果关系,这也是为何实证当中,一般是将协整与所谓的格兰杰因果检验同时运用的原因(3)从上面的比如可知,即使两个变量之间存在协整关系,而且也检验出存在因果关系,但这种因果关系的方向通常并不确定,而且由于协整都是基于原始变量非平稳的,因而,此前的“仪器”一般是失效的,故通常不要试图对协整的分析结果进行乘数等解析。
比如,一般不能说x变化多少引起y变化多少。
非平稳经济变量与协
01
02
其方差远远大于正常t分布的方差,它的分布是发散的(图13.1),可见拒绝β1=0的概率非常大。而按照设定条件,理应有β1=0,但由于变量的非平稳性使得假设检验结果与真实情况相背离。这样的回归就是虚假回归。 这一实例说明:经典计量经济学的模型检验方法有时是存在漏洞的。
单位根检验注意事项:
根据前面对该形式分析,当yt非平稳,其DF分布与AR(1)相似,因此可采用类似AR(1)情形的DF检验。 因式中含Dyt的滞后项,所以此时的单位根检验称为增项DF检验或ADF检验。 作ADF检验应注意事项: ①滞后项个数k的选择准则:一要充分大,以消除vt的自相关;二要尽量小,以保持更大的自由度。 ②检验用临界值与AR(1)时一样。 实际中的时间序列一般不是AR(1)形式,所以ADF检验是最常用的单位根检验法。 例1(P332)
4.实例中的DW分布
因为数据生成系统的真实性,建立模型
5.虚假回归原因分析
第二节 单位根检验
DF统计量分布特征
此近似模型与前面讨论的自回归模型形式完全一样,因此,β的DF分布也可看作是一样的。以下就根据DF分布来检验yt的非平稳性,即单位根检验。
二、单位根检验
DF检验也可用另一种形式表达:
此,DF检验用临界值不能用于协整检验。协整检验临界值可从麦金农提供的临界值表(附表6)中查到。
01
麦金农协整检验临界值计算公式为
02
该公式以T为自变量,可以计算出任何样本容量所对应的临界值。Cp还与检验水平p,所含时间序列个数N,协整回归式中是否有位移项、趋势项等因素有关。
03
例题讲解:例13.2,例13.3,例13.4(P339-340)
对于非平稳且相互独立的xt和yt进行线性回归并计算DW,根据菲利普斯的研究:DW为右偏态分布,且当样本容量趋于无穷大时,DW分布趋于0(图13.2)。而当两个时间序列相关时,DW近似服从以2为均值的正态分布,当样本容量趋于无穷大时,DW收敛于一个非0值。可见,DW的值可用来作为区别真假回归的一个办法。
15.协整检验
16.协整检验一、方法介绍基本思路:20世纪80年代,Engle 和Granger 等人提出了协整(Co-integration )的概念,指出两个或多个非平稳(non-stationary )的时间序列的线性组合可能是平稳的或是较低阶单整1的。
有些时间序列,虽然它们自身非平稳,但其线性组合却是平稳的。
非平稳时间序列的线性组合如果平稳,则这种组合反映了变量之间长期稳定的比例关系,称为协整关系。
协整关系表达的是两个线性增长量的稳定的动态均衡关系,更是多个线性增长的经济量相互影响及自身演化的动态均衡关系。
协整分析是在时间序列的向量自回归分析的基础上发展起来的空间结构与时间动态相结合的建模方法与理论分析方法。
理论模型:如果时间序列nt t t Y Y Y ,,,⋅⋅⋅21都是d 阶单整,即)(d I ,存在一个向量)(21n αααα,,,⋅⋅⋅=使得)(b d I Y t -'~α,这里)(21nt t t t Y Y Y Y ,,,⋅⋅⋅=,0≥≥b d 。
则称序列nt t t Y Y Y ,,,⋅⋅⋅21是),(b d 阶协整,记为),(b d CI Y t ~,α为协整向量。
一般情况下,协整检验有EG 两步法与JJ 的多变量极大似然法。
步骤一:为检验序列t Y 和t X 的),(b d CI 阶协整关系。
首先对每个变量进行单位根检验,得出每个变量均为)(d I 序列,然后选取变量t Y 对t X 进行OLS 回归,即有协整回归方程:1 如果一个非平稳时间序列经过差分变换变成平稳的,称其为单整过程,经过一次差分变换的称为一阶单整,记为I(1),n 次差分变换的称为n 阶单整,记为I(n)。
t t t X Y εβα++= (1)式中用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为:t t X Y βαεˆˆˆ--= (2)步骤二:对(1)式中的残差项t ε进行单位根检验,一般采用ADF 检验。
第六章 Johanson协整检验与VEC模型
即:至多有r个协整关系
协整方程的形式 与单变量时间序列可能出现非零均值、包含确定性趋势
或随机趋势一样,协整方程也可以包含截距和确定性趋势。 可能会出现如下情况(Johansen,1995):
(1) 序列(1式) 没有确定趋势,协整方程没有截距:
Πyt1 HX t αβyt1
(2) 序列没有确定趋势,协整方程有截距项 0:
① 常数或线性趋势项不应包括在Exogenous Series 的编辑框中。对于VEC模型的常数和趋势说明应定义在 Cointegration栏中。
② 在VEC模型中滞后间隔的说明指一阶差分的滞 后。例如,滞后说明“1 2” VEC模型右侧将包括变量的 一阶差分项的两阶滞后。为了估计没有一阶差分项的 VEC模型,指定滞后的形式为:“0 0”。
接上例:Var预测.wfl 考察中国GDP,宏观消费cons与基本建设投资inves的VECM建模分析
Step1:由前面讨论发现价格调整后的对数变量lngp,lncp,lnip三者之间 存在协整关系,建立相应的VECM
一般来说,在有关VECM设定中的选择 应该与前面协整检验中的选择保存一致
验证所得协整关系的平稳性
VEC模型估计的输出包括两部分。第一部分显示了 第一步从Johansen过程所得到的结果。如果不强加约束, EViews将会用系统默认的能可以识别所有的协整关系的 正规化方法。系统默认的正规化表述为:将VEC模型中
前 r 个变量作为剩余 k r 个变量的函数,其中 r 表示协整
关系数,k 是VEC模型中内生变量的个数。
Johanson协整检验:Var预测.wfl 考察中国GDP,宏观消费cons与基本建设投资inves的协整关系
Step1:数据处理----价格调整后的对数数据记为lngp,lncp,lnip—VAR01
本科计量第七版习题参考答案
第六章动态经济模型:自回归模型和分布滞后模型6.1 (1)错。
(2)对。
(3)错。
估计量既不是无偏的,又不是一致的。
(4)对。
(5)错。
将产生一致估计量,但是在小样本情况下,得到的估计量是有偏的。
(6)对。
6.2对于科克模型和适应预期模型,应用OLS法不仅得不到无偏估计量,而且也得不到一致估计量。
但是,部分调整模型不同,用OLS法直接估计部分调整模型,将产生一致估计值,虽然估计值通常是有偏的(在小样本情况下)。
6.3科克方法简单地假定解释变量的各滞后值的系数(有时称为权数)按几何级数递减,即:Yt=α+βXt÷β λ Xt-ι ÷β λ2χt.2 +...+ ut其中O<λ<l0这实际上是假设无限滞后分布,由于0<入<1, X的逐次滞后值对Y的影响是逐渐递减的。
而阿尔蒙方法的基本假设是,如果Y依赖于X的现期值和若干期滞后值, 则权数由一个多项式分布给出。
由于这个原因,阿尔蒙滞后也称为多项式分布滞后。
即在分布滞后模型工=α + β0X t + B1X—+∙∙∙ ++ %中,假定:βi =tz0 +tz1z + a2i2 H ------ F a p i p其中P为多项式的阶数。
也就是用一个P阶多项式来拟合分布滞后,该多项式曲线通过滞后分布的所有点。
6.4(1)估计的Y值是非随机变量X1和X2的线性函数,与扰动项v无关。
(2)与利维顿方法相比,本方法造成多重共线性的风险要小一些。
6.5(1)M∣= aγxγ2+ βλγλY t-∕3lχl(l-χ2)Y l.l+ β2γ2R t-β2r2(1 -∕1)R t.l ÷(2 - ∕l—χ2)μt-∖-(1-∕ι )(1-Yι)M t_2÷[u t—(2 —∕1-χ2)〃1 ÷(I -∕ι )(1-Yz )u t-21 其中&)是a、为和72的函数。
(2)第(1)问中得到的模型高度参数非线性,它的参数需采用非线性回归技术来估计。
协整检验
(***)
一定是I(0)序列。 由于vt象(**)式中的t一样,也是Z、X、Y、W 四个变量的线性组合,由此(***)式也成为该四变量的 另一稳定线性组合。 (1, -0,-1,-2,-3)是对应于(**)式的协整 向量,(1,-0-0,-1,1,-1)是对应于(***)式的协 整向量。
et
的单整性的检验方法仍然是DF检验或者ADF检验。
由于协整回归中已含有截距项,则检验模型中无需 再用截距项。如使用模型1
et et 1 i et i t
i 1 p
进行检验时,拒绝零假设H0:=0,意味着误差项et是 平稳序列,从而说明X与Y间是协整的。 需要注意是,这里的DF或ADF检验是针对协整回 归计算出的误差项 et 而非真正的非均衡误差t进行的。 而OLS法采用了残差最小平方和原理,因此估计量 是向下偏倚的,这样将导致拒绝零假设的机会比实际 情形大。 于是对et平稳性检验的DF与ADF临界值应该比正常 的DF与ADF临界值还要小。
式Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差
(disequilibrium error),它是变量X与Y的一个线性组合:
t Yt 0 1 X t
(*)
因此,如果Yt=0+1Xt+t式所示的X与Y间的长期均 衡关系正确的话,(*)式表述的非均衡误差应是一平稳时 间序列,并且具有零期望值,即是具有0均值的I(0)序列。 从这里已看到,非稳定的时间序列,它们的线性组合也可 能成为平稳的。 例如:假设Yt=0+1Xt+t式中的X与Y是I(1)序列,如果 该式所表述的它们间的长期均衡关系成立的话,则意味着由 非均衡误差(*)式给出的线性组合是I(0)序列。这时我们称 变量X与Y是协整的(cointegrated)。
VAR模型(2)
8.3 V AR 模型中协整向量的估计与检验8.3.1 V AR 模型中协整向量的估计此估计方法由Johansen 提出。
假定条件是,u t ~ IID (0, Ω)。
实际中这个条件比较容易满足。
当u t 中存在自相关时,只要在V AR 模型中适当增加内生变量的滞后阶数,就能达到u t 非自相关的要求。
此估计方法为极大似然估计法。
给定V AR 模型 Y t = ∏1 Y t -1 + ∏2 Y t -1 + … + ∏k Y t -k + ΦD t + u t , u t ~ IID (0, Ω) (8.60) 其中Y t 是N ⨯1阶列向量。
D t 表示d ⨯1阶确定项向量(d 表示确定性变量个数)。
用来描述常数项μ、时间趋势项t 、季节虚拟变量(如果需要)和其他一些有必要设置的虚拟变量。
Φ 是确定性变量D t 的N ⨯ d 阶系数矩阵。
其中每一行对应V AR 模型中的一个方程。
上式的向量误差修正模型形式(推导过程见8.1.6节)是∆Y t = ∏ Y t -1 + Γ1 ∆Y t -1 + Γ2 ∆Y t -2 + … + Γk -1 ∆Y t - (k -1) + ΦD t + u t (8.61)其中 Γj =∑+=kj i i 1∏, j = 1, 2, …, k -1,∏ = Γ0 - I =∑=ki i 1∏- I = ∏1 + ∏2 + … + ∏k - I ,正确地估计协整参数矩阵 β 的秩r 非常重要。
若r 被正确估计,则所有误差修正项都是平稳的。
那么模型 (8.61) 中的所有项都是平稳的。
参数估计量具有一致性。
任何高估或低估r 值都会给参数估计与推断带来错误。
当低估r 值时,将导致把余下的误差修正项并入模型的随机误差项U t 。
而高估r 值将会把非协整向量带入协整参数矩阵中。
N ⨯1阶的 ∏ Y t -k 将由I(0) 项(协整向量与变量的积)和I(1)项(非协整向量与变量的积)混合而成,从而导致回归参数估计量及其相应统计量的非正态性分布。
检测临界值的计算公式
检测临界值的计算公式
在统计学中,临界值的计算通常与Z值相关,其计算公式为Z=(X-μ)/σ,其中X为样本均值,μ为总体均值,σ为总体标准差。
然而,确定否定域临界值的方法不止一种。
在单边形式下,拒绝域W={样本x: 检验统计量>临界值λ},临界值是根据检验水平α来确定的。
对于单变情形,应该找λ满足sup{参数∈Θ_0}P(检验统计量>临界值λ)=α。
这个式子表示,原假设为真的情况下,样本落在拒绝域的概率,也就是犯第一类错误的概率,控制犯第一类错误的概率不超过α。
此外,双边形式下的否定域临界值的确定则有不同的计算方法。
具体而言,对于双边情况,λ1<λ2,sup P(检验统计量<临界值λ1)=α/2,sup P(检验统计量>临界值λ2)=α/2。
这样的临界值,否定域的检验水平不超过α。
另一种确定否定域的方法是P值。
以上内容仅供参考,如果需要更准确的信息,建议查阅统计学相关书籍或咨询统计学专家。
多变量协整检验的Engel-Granger临界值——C(a)检验
协整检验的临界值ADF, 多变量, 临界值, 检验在多变量协整检验中,采用检验残差平稳性的方法进行协整检验,其中ADF的临界值不能采用Eviews提供的临界值,而必须采用Engle and Granger提供的临界值,现上传协整检验的临界值,也许对大家有帮助。
可根据表中的仿真模拟数据及相应的公式,计算出任意变量个数和样本容量的协整检验的临界值。
附表7 协整检验临界值表N 模型形式αφ∞s.e.φ1 φ21 无常数项,无趋势项0.01 -2.5658 -0.0023 -1.96 -10.040.05 -1.9393 -0.0008 -0.398 00.1 -1.6156 -0.0007 -0.181 01 常数项,无趋势项0.01 -3.4336 -0.0024 -5.999 -29.250.05 -2.8621 -0.0011 -2.738 -8.360.1 -2.5671 -0.0009 -1.438 -4.481 常数项,趋势项0.01 -3.9638 -0.0019 -8.353 -47.440.05 -3.4126 -0.0012 -4.039 -17.830.1 -3.1279 -0.0009 -2.418 -7.58 2 常数项,无趋势项0.01 -3.9001 -0.0022 -10.534 -30.030.05 -3.3377 -0.0012 -5.967 -8.980.1 -3.0462 -0.0009 -4.069 -5.73 2 常数项,趋势项0.01 -4.3266 -0.0022 -15.531 -34.030.05 -3.7809 -0.0013 -9.421 -15.060.1 -3.4959 -0.0009 -7.203 -4.01 3 常数项,无趋势项0.01 -4.2981 -0.0023 -13.79 -46.370.05 -3.7429 -0.0012 -8.352 -13.410.1 -3.4518 -0.001 -6.241 -2.79 3 常数项,无趋势项0.01 -4.6676 -0.0022 -18.492 -49.350.05 -4.1193 -0.0011 -12.024 -13.130.1 -3.8344 -0.0009 -9.188 -4.85 4 常数项,无趋势项0.01 -4.6493 -0.0023 -17.188 -59.20.05 -4.1 -0.0012 -10.745 -21.570.1 -3.811 -0.0009 -8.317 -5.19 4 常数项,趋势项0.01 -4.9695 -0.0021 -22.504 -50.220.05 -4.4294 -0.0012 -14.501 -19.540.1 -4.1474 -0.001 -11.165 -9.88 5 常数项,无趋势项0.01 -4.9587 -0.0026 -22.14 -37.290.05 -4.4185 -0.0013 -13.641 -21.160.1 -4.1327 -0.0009 -10.638 -5.48 5 常数项,趋势项0.01 -5.2497 -0.0024 -26.606 -49.560.05 -4.7154 -0.0013 -17.432 -16.50.1 -4.4345 -0.001 -13.654 -5.77 6常数项,无趋势项0.01 -5.24 -0.0029 -26.278 -41.650.05 -4.7048 -0.0018 -17.12 -11.170.1 -4.4242 -0.001 -13.347 0 6常数项,趋势项0.01 -5.5127 -0.0033 -30.735 -52.5 0.05 -4.9767 -0.0017 -20.883 -9.050.1-4.6999-0.0011-16.4451)临界值计算公式是1212()C T T αφφφ--∞=++,其中T 表示样本容量 2)N 表示协整回归公式中所含变量个数,α是显著性水平。
15.协整检验
16.协整检验一、方法介绍基本思路:20世纪80年代,Engle 和Granger 等人提出了协整(Co-integration )的概念,指出两个或多个非平稳(non-stationary )的时间序列的线性组合可能是平稳的或是较低阶单整1的。
有些时间序列,虽然它们自身非平稳,但其线性组合却是平稳的。
非平稳时间序列的线性组合如果平稳,则这种组合反映了变量之间长期稳定的比例关系,称为协整关系。
协整关系表达的是两个线性增长量的稳定的动态均衡关系,更是多个线性增长的经济量相互影响及自身演化的动态均衡关系。
协整分析是在时间序列的向量自回归分析的基础上发展起来的空间结构与时间动态相结合的建模方法与理论分析方法。
理论模型:如果时间序列nt t t Y Y Y ,,,⋅⋅⋅21都是d 阶单整,即)(d I ,存在一个向量)(21n αααα,,,⋅⋅⋅=使得)(b d I Y t -'~α,这里)(21nt t t t Y Y Y Y ,,,⋅⋅⋅=,0≥≥b d 。
则称序列nt t t Y Y Y ,,,⋅⋅⋅21是),(b d 阶协整,记为),(b d CI Y t ~,α为协整向量。
一般情况下,协整检验有EG 两步法与JJ 的多变量极大似然法。
步骤一:为检验序列t Y 和t X 的),(b d CI 阶协整关系。
首先对每个变量进行单位根检验,得出每个变量均为)(d I 序列,然后选取变量t Y 对t X 进行OLS 回归,即有协整回归方程:1 如果一个非平稳时间序列经过差分变换变成平稳的,称其为单整过程,经过一次差分变换的称为一阶单整,记为I(1),n 次差分变换的称为n 阶单整,记为I(n)。
t t t X Y εβα++= (1)式中用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为:t t X Y βαεˆˆˆ--= (2)步骤二:对(1)式中的残差项t ε进行单位根检验,一般采用ADF 检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q EDQueen’s Economics Department Working Paper No.1227 Critical Values for Cointegration TestsJames G.MacKinnonQueen’s UniversityDepartment of EconomicsQueen’s University94University AvenueKingston,Ontario,CanadaK7L3N61-2010Critical Values for Cointegration TestsJames G.MacKinnonDepartment of EconomicsQueen’s UniversityKingston,Ontario,CanadaK7L3N6jgm@econ.queensu.cahttp://www.econ.queensu.ca/faculty/mackinnon/AbstractThis paper provides tables of critical values for some popular tests of cointegration and unit roots.Although these tables are necessarily based on computer simulations,they are much more accurate than those previously available.The results of the simulation experiments are summarized by means of response surface regressions in which critical values depend on the sample size.From these regressions,asymptotic critical values can be read offdirectly,and critical values for anyfinite sample size can easily be computed with a hand calculator.Added in2010version:A new appendix contains additional results that are more accurate and cover more cases than the ones in the original paper.January1990Reissued January2010with additional resultsThis paper originally appeared as University of California San Diego Discussion Paper90-4, which is apparently no longer available on the web.It was written while I was visiting UCSD in the fall of1989and early1990and supported,in part,by grants from the Social Sciences and Humanities Research Council of Canada.I am grateful to all of the econometricians at UCSD for providing a hospitable research environment and to Rob Engle and the late Clive Granger for comments on an earlier version.ForwardI spent the academic year of1989-1990on sabbatical at the University of California San Diego.Since Robert Engle and Clive Granger were there permanently,and David Hendry,Søren Johansen,and Timo Ter¨a svirta were also visiting,there was inevitably much discussion about cointegration.I was surprised tofind that,for most of the tests,accurate critical values did not then exist.I therefore set out to calculate them for the Dickey-Fuller and Engle-Granger tests,and the result was this paper.The paper originally appeared as University of California San Diego Discussion Paper No.90-4.For many years,a bitmapped PDF of it that was missing the cover page could be found on the UCSD Economics website,but it seems to have vanished some time during2009.The paper was later published in a book edited by Rob Engle and Clive Granger;see the references.I have made this version available as a Queen’s Economics Department Working Paper so that researchers who search for the UCSD working paper on the web will be able tofind it.I have also added an appendix in which I provide new results that are much more accurate and cover more cases than the ones in the original paper.The enormous increases in computing power over the past twenty years made this quite easy to do.I have also added some additional references to works that did not exist when the paper was originally written.After I wrote this paper,I developed more advanced methods for calculating approxi-mate distribution functions of test statistics such as the ones dealt with in this paper; see,in particular,MacKinnon(1994,1996,2000),MacKinnon,Haug,and Michelis (1999),and Ericsson and MacKinnon(2002).MacKinnon(1996)provides reasonably accurate results for Dickey-Fuller and Engle-Granger tests which cover the same cases as those in the new appendix,although they are not quite as accurate.The“numerical distribution functions”obtained in that paper can be used to compute P values as well as critical values.Nevertheless,the results of this paper continue to be used far more often than the ones from the1996paper.Perhaps that is because they do not require the use of a specialized computer program to calculate critical values.I hope that,in future,researchers who prefer the approach of this paper will use the more accurate and more widely applicable results that are now in Tables2,3,and4.This version of the paper is dedicated to the late Sir Clive Granger,1934–2009,without whose fundamental contributions it could never have been conceived.January20101.IntroductionEngle and Granger(1987)suggested several techniques for testing the null hypothesis that two or more series,each of which is I(1),are not cointegrated.This paper is concerned with the most popular of these techniques,which I shall refer to as Engle-Granger(or EG)tests even though they were not the only tests proposed by those authors.EG tests are closely related to some of the tests suggested by Fuller(1976) and Dickey and Fuller(1979)to test the unit root hypothesis;I shall refer to these as Dickey-Fuller or DF tests.EG and DF tests are very easy to calculate,but they suffer from one serious disadvantage:The test statistics do not follow any standard tabulated distribution,either infinite samples or asymptotically.Engle and Granger(1987),Engle and Yoo(1987),Yoo(1987),and Phillips and Ouliaris (1990)all provide tables for one or more versions of the EG test.But these tables are based on at most10,000replications,which means that they are quite inaccurate. Moreover,they contain critical values for only a fewfinite sample sizes;asymptotic critical values,which are in many cases the most interesting ones,are not provided. This paper provides tables of critical values for two versions of the EG test and three versions of the DF test.Although they are based on simulation,they should be accurate enough for all practical purposes.The results of the simulation experiments are summarized by means of response surface regressions,in which critical values are related to sample size.The coefficients of the response surface regressions are tabulated in such a way that asymptotic critical values can be read offdirectly,and critical values for anyfinite sample size can easily be computed with a hand calculator.2.Engle-Granger and Dickey-Fuller TestsEngle-Granger tests are conceptually and computationally quite simple.Let the vector y t≡[y t1,...,y tN] denote the t th observation on N time series,each of which is known to be I(1).If these time series are cointegrated,there exists a vectorαsuch that the stochastic process with typical observation z t≡[1y t] αis I(0).If they are not cointegrated,there will exist no vectorαwith this property,and any linear combination of y1through y N and a constant will still be I(1).To implement the original form of the EG test,onefirst has to run the cointegrating regressiony t1=α1+Nj=2αj y tj+u t,(1)for a sample of size T+1,thus obtaining a vector of coefficientsˆα≡[1−ˆα1...−ˆαN] . One then calculatesˆz t=[1y t] ˆα=y1t−ˆα1−ˆα2y t2...−ˆαN y tNand tests to see ifˆz t is I(1)using a procedure essentially the same(except for the dis-tribution of the test statistic)as the DF test.The null hypothesis of non-cointegration corresponds to the null hypothesis thatˆz t is I(1).If one rejects the null,one concludes that y1through y N are cointegrated.To test whetherˆz t is I(1),one may either run the regressionˆz t=ρˆz t−1+εt(2) and calculate the ordinary t statistic forρ=1,or run the regression∆ˆz t=γˆz t−1+εt,(3) where∆ˆz t≡ˆz t−ˆz t−1,and calculate the ordinary t statistic forγ=0.In either case, one drops thefirst observation,reducing the sample size to T.These two procedures evidently yield identical test statistics.Because there is a constant term in(1),there is no need to include one in(2)or(3).The regressandˆz t and regressorˆz t−1would each have mean zero if both were observed over observations0through T.However, because the regression does not make use of thefirst observation onˆz t or the last observation onˆz t−1,that will not be quite true.But they should both have mean very close to zero except when T is small and eitherˆz0orˆz T is unusually large in absolute value.Hence adding a constant to(2)or(3)would generally have a negligible effect on the test statistic.1The way the EG test is computed is somewhat arbitrary,since any one of the y j could be given the index1and made the regressand of the cointegrating regression(1).As a result,the value(but not the distribution)of the test statistic will differ depending on which series is used as the regressand.One may therefore wish to repeat the procedure with different choices of y j serving as regressand,thus computing up to N different test statistics,especially if thefirst one is near the chosen critical value.If N=1,this procedure is equivalent to one variant of the ordinary DF test(see below),in which one runs the regression∆z t=α1+γz t−1+εtand tests forγ=0.As several authors have shown(see West(1988)and Hylleberg and Mizon(1989)),the latter has the Dickey-Fuller distribution only when there is no drift term in the data-generating process for z t,so thatα1=0.Whenα1=0,the test statistic is asymptotically distributed as N(0,1),and infinite samples its distribution may or may not be well approximated by the Dickey-Fuller distribution.The original version of the EG test likewise has a distribution that depends on the value ofα1; since all tabulated critical values assume thatα1=0,they may be quite misleading when that is not the case.There is a simple way to avoid the dependence onα1of the distribution of the test statistic.It is to replace the cointegrating regression(1)byy t1=α0t+α1+Nj=2αj y tj+u t,(4)1Some changes were made in this paragraph in the2010version to correct minor errors in the original paper.The conclusion is unchanged.that is,to add a linear time trend to the cointegrating regression.The resulting test statistic will now be invariant to the value ofα1,although it will have a different distribution than the one based on regression(1).2Adding a trend to the cointegrating regression often makes sense for a number of other reasons,as Engle and Yoo(1990) discuss.There are thus two variants of the Engle-Granger test.The“no-trend”variant uses(1)as the cointegrating regression,and the“with-trend”variant uses(4).In some cases,the vectorα(or at leastα2throughαN)may be known.We can then just calculate z t=y t1−α2y t2...−αN y tN and use an ordinary DF test.In this case,it is easiest to dispense with the cointegrating regressions(1)or(4)entirely and simply run one of the following test regressions:∆z t=γz t−1+εt(5)∆z t=α1+γz t−1+εt(6)∆z t=α0t+α1+γz t−1+εt.(7) The t statistics forγ=0in these three regressions yield the test statistics that Fuller (1976)refers to asˆτ,ˆτµ,andˆτt,respectively;he provides some estimated critical values on page373.We will refer to these test statistics as the“no-constant”,“no-trend”, and“with-trend”statistics,respectively.Note that the tabulated distribution of the no-constant statistic depends on the assumption that z0=0,while those of the other two are invariant to z0.The tabulated distribution of the no-trend statistic depends on the assumption thatα1=0(see West(1988)and Hylleberg and Mizon(1989)), while that of the with-trend statistic depends on the assumption thatα0=0.Up to this point,it has been assumed that the innovationsεt are serially independent and homoskedastic.These rather strong assumptions can be relaxed without affecting the asymptotic distributions of the test statistics.The test statistics do not even have to be modified to allow for heteroskedasticity,since,as Phillips(1987)has shown, heteroskedasticity does not affect the asymptotic distribution of a wide class of unit root test statistics.They do have to be modified to allow for serial correlation,however. The easiest way to do this is to use Augmented Dickey-Fuller,or ADF,and Augmented Engle-Granger,or AEG,tests.In practice,this means that one must add as many lags of∆ˆz t to regressions(2)or(3),or of∆z t to regressions(5),(6),or(7),as are necessary to ensure that the residuals for those regressions appear to be white noise.A different approach to obtaining unit root tests that are asymptotically valid in the presence of serial correlation and/or heteroskedasticity of unknown form was suggested by Phillips(1987)and extended to the cointegration case by Phillips and Ouliaris (1990).The asymptotic distributions of what Phillips and Ouliaris call theˆZ t statistic are identical to those of the corresponding DF,ADF,EG,and AEG tests.Phillips and Ouliaris tabulate critical values for two forms of this statistic(corresponding to the no-trend and with-trend versions of the DF and EG statistics)for several values of N.Unfortunately,these critical values are based on only10,000replications,so that 2It will not be invariant to the value ofα0,however.To achieve that,one would have to add t2to the regression;see the appendix.they suffer from considerable experimental error.Moreover,they are for 500rather than an infinite number of observations,so that they are biased away from zero as estimates of asymptotic critical values.As can be seen from Table 1below,this bias is by no means negligible in some cases.3.The Simulation ExperimentsInstead of simply providing tables of estimated critical values for a few specific sample sizes,as previous papers have done,this paper estimates response surface regressions.These relate the 1%,5%and 10%lower-tail critical values for the test statistics dis-cussed above,for various values of N ,to the sample size T .3Recall that T refers to the number of observations in the unit root test regression,and that this is one less than the total number of observations available and used in the cointegrating regres-sion.Response surfaces were estimated for thirteen different tests:the no-constant,no-trend and with-trend versions of the DF test,which are equivalent to the corres-ponding EG tests for N =1,and the no-trend and with-trend versions of the EG test for N =2,3,4,5and 6.Thus a total of thirty-nine response surface regressions were estimated.The DF tests were computed using the one-step procedures of regressions (5),(6),and (7),while the EG tests were computed using two-step procedures consisting of regressions (1)or (4)followed by (3).These are the easiest ways to calculate these tests.Note that there is a slight difference between the degrees-of-freedom corrections used to calculate the regression standard errors,and hence t statistics,for the DF tests (N =1)and for the EG tests (N ≥2).If the no-trend and with-trend DF tests were computed in the same way as the corresponding EG tests,they would be larger by factors of (T −1)/(T −2) 1/2and (T −1)/(T −3) 1/2,respectively.Conceptually,each simulation experiment consisted of 25,000replications for a single value of T and a single value of N .4The 1%,5%and 10%empirical quantiles for these data were then calculated,and each of these became a single observation in the response surface regression.The number 25,000was chosen to make the bias in estimating quantiles negligible,while keeping the memory requirements of the program manageable.For all values of N except N =6,forty experiments were run for each of the following sample sizes:18,20,22,25,28,30,32,40,50,75,100,150,200,250,and 500.For N =6,the sample sizes were 20,22,25,28,30,32,36,40,50,100,250,and 275.Most of the sample sizes were relatively small because the cost of the experiments was slightly less than proportional to the sample size,and because small sample sizes 3The upper tail is not of any interest in this case,and the vast majority of hypothesis tests are at the 1%,5%,or 10%levels.4In fact,results for N =2,3,4,and 5were computed together to save computer time.Results for N =1were computed separately because the calculations were slightly different.Results for N =6were computed separately because it was not decided to extend the analysis to this case until after most of the other calculations had been completed.provided more information about the shape of the response surfaces.5However,a few large values of T were also included so that the response surface estimates of asymptotic critical values would be sufficiently accurate.The total number of replications was12 million in480experiments for N=1and15million in600experiments for the other values of N.6Using a correct functional form for the response surface regressions is crucial to ob-taining useful estimates.After considerable experimentation,the following form was found to work very well:C k(p)=β∞+β1T−1k +β2T−2k+e k.(8)Here C k(p)denotes the estimated p%quantile from the k th experiment,T k denotes the sample size for that experiment,and there are three parameters to be estimated. The parameterβ∞is an estimate of the asymptotic critical value for a test at level p, since,as T tends to infinity,T−1and T−2both tend to zero.The other two parameters determine the shape of the response surface forfinite values of T.The ability of(8)tofit the data from the simulation experiments was remarkably good.To test its adequacy,it was compared to the most general specification possible, in which C k(p)was regressed on15dummy variables(12when N=6),corresponding to the different values of T.It was rejected by the usual F test in only a very few cases where it seemed to have troublefitting the estimated critical values for the very smallest value(s)of T.The adequacy of(8)was therefore further tested by adding dummy variables corresponding to the smallest values of T,and this test proved slightly more powerful than thefirst one.When either test provided evidence of model inadequacy, the offending observations(T=18and in one case T=20as well)were dropped from the response surface regressions.Several alternative functional forms were also tried.Adding additional powers of1/T never seemed to be necessary.In fact,in several cases,fewer powers were necessary, since the restriction thatβ2=0appeared to be consistent with the data.In most cases,one could replace T−2by T−3/2without having any noticeable effect on either thefit of the regression or the estimate ofβ∞;the decision to retain T−2rather than T−3/2in(8)was based on very slim evidence in favor of the former.On the other hand,replacing T by either T−N or T−N−1,the numbers of degrees of freedom for 5The experiments would have required roughly nine hundred hours on a20Mh.386 personal computer.All programs were written in FORTRAN77.About70%of the computations were done on the PC,using programs compiled with the Lahey F77L-EM/32compiler.Some experiments,representing roughly30%of the total computa-tional burden,were performed on other computers,namely,an IBM3081G,which was about7.5times as fast as the PC,and an HP9000Model840,which was about15% faster.6The experiments for N=6were done later than the others and were designed in the light of experience with them.It was decided that the extra accuracy available by doing more experiments for large values of T was not worth the extra cost.the cointegrating regression in the no-trend and with-trend cases,respectively,often (but not always)resulted in a dramatic deterioration in thefit of the response surface. The residuals e k in regression(8)were heteroskedastic,being larger for the smaller sample sizes.This was particularly noticeable when(8)was run for larger values of N.The response surface regressions were therefore estimated by feasible GLS.As a first step,C k(p)was regressed on15(or12)dummy variables,yielding residuals´e k. The following regression was then run:´e2k=δ∞+δ1(T k−d)−1+δ2(T k−d)−2+error,(9) where d is the number of degrees of freedom used up in the cointegrating regression, and there are three coefficients to be estimated.7The inverses of the square roots of thefitted values from(9)were then used as weights for feasible GLS estimation of(8). The feasible GLS estimates were generally much better than the OLS ones in terms of loglikelihood values,but the two sets of estimates were numerically very close.Thefinal results of this paper are the feasible GLS estimates of regression(8)for39 sets of experimental data.These estimates are presented in Table1.The estimates of β∞provide asymptotic critical values directly,while values for anyfinite T can easily be calculated using the estimates of all three parameters.The restriction thatβ2=0 has been imposed whenever the t statistic onˆβ2was less than one in absolute value. Estimated standard errors are reported forˆβ∞but not forˆβ1orˆβ2,since the latter are of no interest.What is of interest is the standard error ofˆC(p,T)=ˆβ+ˆβ1T−1+ˆβ2T−2,∞the estimated critical value for a test at the p%level when the sample size is T. This varies with T and tends to be smallest for sample sizes in the range of80to 150.Except for very small values of T(less than about25),the standard error of ˆC(p,T)was always less than the standard error of the correspondingˆβ,so that,if∞the standard errors of theˆβ∞were accurate,they could be regarded as upper bounds for the standard errors ofˆC(p,T)for most values of T.However,the standard errors forˆβ∞reported in Table1are undoubtedly too small. The problem is that they are conditional on the specification of the response surface regressions.Although the specification(8)performed very well in all cases,other specifications also performed well in many cases,sometimes outperforming(8)in-significantly.Estimates ofβ∞sometimes changed by as much as twice the reported standard error as a result of minor changes in the specification of the response surface that did not significantly affect itsfit.Thus it is probably reasonable to think of the 7Considerable experimentation preceded the choice of the functional form for regression (9).It was found that omitting d had little effect on thefit of the regression,although on balance it seemed preferable to retain it.In this respect,regression(9)is quite different from regression(8),where using T k−d rather than T k sometimes worsened thefit substantially.actual standard errors on theˆβ∞as being about twice as large as the reported ones. Even so,it seems likely that few if any of the estimated1%critical values in Table1 differ from the true value by as much as.01,and extremely unlikely that any of the estimated5%and10%critical values differ from their true values by that much. 4.ConclusionIt is hoped that the results in Table1will prove useful to investigators testing for unit roots and cointegration.Although the methods used to obtain these results are quite computationally intensive,they are entirely feasible with current personal computer technology.The use of response surface regressions to summarize results is valuable for two reasons.First,this approach allows one to estimate asymptotic critical values without actually using infinitely large samples.Second,it makes it possible to tabulate results for all sample sizes based on experimental results for only a few.Similar methods could be employed in many other cases where test statistics do not follow standard tabulated distributions.Table1.Response Surface Estimates of Critical ValuesN Variant Level Obs.β∞(s.e.)β1β21no constant1%600−2.5658(0.0023)−1.960−10.045%600−1.9393(0.0008)−0.39810%560−1.6156(0.0007)−0.1811no trend1%600−3.4336(0.0024)−5.999−29.255%600−2.8621(0.0011)−2.738−8.3610%600−2.5671(0.0009)−1.438−4.48 1with trend1%600−3.9638(0.0019)−8.353−47.445%600−3.4126(0.0012)−4.039−17.8310%600−3.1279(0.0009)−2.418−7.58 2no trend1%600−3.9001(0.0022)−10.534−30.035%600−3.3377(0.0012)−5.967−8.9810%600−3.0462(0.0009)−4.069−5.73 2with trend1%600−4.3266(0.0022)−15.531−34.035%560−3.7809(0.0013)−9.421−15.0610%600−3.4959(0.0009)−7.203−4.01 3no trend1%560−4.2981(0.0023)−13.790−46.375%560−3.7429(0.0012)−8.352−13.4110%600−3.4518(0.0010)−6.241−2.79 3with trend1%600−4.6676(0.0022)−18.492−49.355%600−4.1193(0.0011)−12.024−13.1310%600−3.8344(0.0009)−9.188−4.85 4no trend1%560−4.6493(0.0023)−17.188−59.205%560−4.1000(0.0012)−10.745−21.5710%600−3.8110(0.0009)−8.317−5.19 4with trend1%600−4.9695(0.0021)−22.504−50.225%560−4.4294(0.0012)−14.501−19.5410%560−4.1474(0.0010)−11.165−9.88 5no trend1%520−4.9587(0.0026)−22.140−37.295%560−4.4185(0.0013)−13.641−21.1610%600−4.1327(0.0009)−10.638−5.48 5with trend1%600−5.2497(0.0024)−26.606−49.565%600−4.7154(0.0013)−17.432−16.5010%600−4.4345(0.0010)−13.654−5.77 6no trend1%480−5.2400(0.0029)−26.278−41.655%480−4.7048(0.0018)−17.120−11.1710%480−4.4242(0.0010)−13.3476with trend1%480−5.5127(0.0033)−30.735−52.505%480−4.9767(0.0017)−20.883−9.0510%480−4.6999(0.0011)−16.445Explanation of Table1N:Number of I(1)series for which null of non-cointegration is being tested.Level:Level of one-tail test of the unit root null against the alternative of stationarity.Obs.:Number of observations used in response surface regression.Possible values are 600,560,520,and480.If Obs.=600,the regression used40observations from each of T=18,20,22,25,28,30,32,40,50,75,100,150,200,250,and500.If Obs.=560,observations for T=18were not used.If Obs.=520,observations for T=18and T=20were not used.If Obs.=480,the regression used40 observations from each of T=20,22,25,28,30,32,36,40,50,100,250,and 275.β∞:Estimated asymptotic critical values(with estimated standard errors in paren-theses).β1:Coefficient on T−1in response surface regression.β2:Coefficient on T−2in response surface regression.It was omitted if the t statistic was less than one in absolute value.For any sample size T,the estimated critical value isβ∞+β1/T+β2/T2.For example,when T=100,the5%critical value for the with-trend EG test when N=5is−4.7154−17.432/100−16.50/1002=−4.8914.Appendix(added in2010version)In the twenty years since this paper was written,computer technology has advanced enormously.On the occasion of reissuing the paper,it therefore makes sense to report new results based on a much larger number of replications that cover a broader range of cases.However,for comparability with the original paper,the methodology is largely unchanged.The simulation results could also have been used to provide somewhat more accurate numerical distribution functions than those of MacKinnon(1996),which allow one to compute P values and critical values for tests at any level,but no attempt is made to do so here.One major difference between the original experiments and the new ones is that the latter involve far more computation.Instead of25,000replications,each simulation now involves200,000.Instead of40simulations for each sample size,there are now 500.And instead of the12or15sample sizes used originally,there are30.The sample sizes are20,25,30,35,40,45,50,60,70,80,90,100,120,140,160,180,200,250, 300,350,400,450,500,600,700,800,900,1000,1200,and1400.Some of these values of T are much larger than the largest ones used originally.This increases the precision of the estimates but made the experiments much more expensive.The total number of observations for the response surface regressions is usually15,000 (that is,30times500),although,in a few cases,the simulations for T=20were dropped because the response surface did notfit well enough.In a very few cases,the simulations for T=25were dropped as well.Thus a few of the estimates,always for larger values of N,are based on either14,500or14,000observations.Because the new response surface regressions are based on200times as many simula-tions as the original ones,any misspecification becomes much more apparent.It was therefore necessary in most cases to add an additional(cubic)term to equation(8), which thus becomesC k(p)=β∞+β1T−1k +β2T−2k+β3T−3k+e k.(A.1)To avoid adding the cubic term,it would usually have been necessary to drop one or more of the smaller sample sizes(often quite a few of them).This was tried in several cases,and the estimate ofβ∞did not change much when enough small values of T k were dropped so that the estimate ofβ3became insignificant at the10%level. In general,the standard error ofˆβ∞was lower when equation(A.1)was estimated using all the data than when equation(8)was estimated without the observations corresponding to some of the smaller values of T k.The second major difference between the original experiments and the new ones is that the latter deal with a broader range of cases.The values of N now go from1to 12instead of from1to6.Moreover,an additional variant of the DF and EG tests is included,in which t2is added to either the cointegrating regression(4)or the DF test regression(7).This variant of the tests was advocated by Ouliaris,Park,and Phillips (1989).In the notation used by MacKinnon(1996),the tests for which critical values are computed are theτc,τct,andτctt tests.These involve,respectively,a constant。