2021新高考压轴题解法挑战 圆锥曲线二级结论深度易记讲义01
2024年高考数学一轮复习(新高考版)《圆锥曲线压轴小题突破练》课件ppt
|PF1|+|PF2|=2a1, |PF1|-|PF2|=2a2,
得||PPFF12||= =aa11+ -aa22, ,
设|F1F2|=2c, 因为∠F1PF2=π3,
由余弦定理得|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos∠F1PF2,
即 4c2=(a1+a2)2+(a1-a2)2-2(a1+a2)(a1-a2)cos π3, 整理得 a21+3a22=4c2, 故e121+e322=4. 又 4=e121+e322≥2 e121×e322=2e1e32, 即 2≥e1e32,所以 e1e2≥ 23,
即 p2 = 42
32·94p⇒p=2,∴|AB|=92.
3
题型三 圆锥曲线与其他知识的综合
例4 (多选)油纸伞是中国传统工艺品,至今已有1 000多年的历史,为宣传和推广这 一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开 后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄 底端的距离为1,阳光照射油纸伞在地面上形成了一个椭圆形的影子(春分时,该市的 阳光照射方向与地面的夹角为60°),若伞柄底端正好位于该椭圆的左焦点位置,则
唐·金筐宝钿团花纹金杯,杯身曲线内收,巧夺天工,是唐代金银细作 的典范.该杯的主体部分可以近似看作是双曲线C: ax22-by22 =1(a>0,b>0) 的右支与直线x=0,y=4,y=-2围成的曲边四边形ABMN绕y轴旋转一
周得到的几何体,若该金杯主体部分的上口外直径为
3
2
√C.0,12
B.
23,1
D.12,1
连接OP,当P不为椭圆的上、下顶点时, 设直线PA,PB分别与圆O切于点A,B,∠OPA=α, ∵存在M,N使得∠MPN=120°, ∴∠APB≥120°,即α≥60°, 又α<90°, ∴sin α≥sin 60°, 连接 OA,则 sin α=||OOPA||=|ObP|≥ 23, ∴|OP|≤ 2b3.
高中数学圆锥曲线解题技巧方法总结及高考试题和答案
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么(ABC ≠0,且A ,B异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
2021年新高考卷I圆锥曲线压轴题的解法
圆锥曲线内容虽以具体曲线类型与具体数据在高考试题中呈现,但对其进行深入研究,往往能得到圆锥曲线的普遍性质.本文以2021年新高考卷I第21题为例,将对其进行解法探究,并对命题进行变式引申拓展,揭示一般规律,以分享给大家.1试题呈现在平面直角坐标系xOy中,已知点F1(-17,0),F2(17,0),点M满足||MF1-||MF2=2,记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=12上,过T的两条直线分别交C于A,B两点和P,Q两点,且||TA||TB=||TP||TQ.求直线AB的斜率与直线PQ的斜率之和.2解法探究(1)解x2-y216=1()x 1(此略);(2)解法1:利用韦达定理.设直线AB与PQ的方程分别为y=k1x+b1与y=k2x+b2()k1≠k2,A()x1,y1,B()x2,y2,C()x3,y3,D()x4,y4,Tæèöø12,y0,则ìíîïïy0=12k1+b1y0=12k2+b2.由ìíîïïy=k1x+b1x2-y216=1,得(16-k21)x2-2k1b1x-b21-16=0,则ìíîïïïïïïïï16-k21≠0Δ>0x1+x2=2k1b116-k21x1x2=-b21+1616-k21.∴||TA||TB=1+k21||||||x1-12·1+k21||||||x2-12=(1+k21)||||||x1x2-12(x1+x2)+14=(1+k21)(y2+12)||16-k21.同理||TP||TQ=()1+k22()y2+12||16-k22.又||TA||TB= ||TP||TQ,所以(1+k21)(y2+12)||16-k21=(1+k22)(y2+12)||16-k22,即k21=k22.因为k1≠k2,所以k1=-k2,即k1+k2=0,故直线AB的斜率与直2021年新高考卷I圆锥曲线压轴题的解法探究与变式推广广东省梅县东山中学钟国城514017摘要:本文给出了一道高考题的4种解法,进而给出了试题的变式和推广.关键词:高考试题;圆锥曲线;变式;推广··56线PQ 的斜率之和为0.评注:此法是解决直线与圆锥曲线位置关系的通法,其难点就是计算量较大,需要有细心与耐心,同时在平时训练中需多总结一些计算技巧,以尽量避免失误.解法2:利用直线的参数方程.设直线AB 与PQ 的倾斜角分别为θ,αæèöøθ,α≠π2,θ≠α,T æèöø12,y 0,则直线AB 与PQ 的参数方程分别为ìíîïïx =12+t cos θy =y 0+t sin θ,ìíîïïx =12+t cos αy =y 0+t sin α()t 为参数,||TA ,||TB ,||TP ,||TQ 对应的参数分别为t 1,t 2,t 3,t 4.把直线AB 的参数方程带入曲线C 的方程,得(15cos 2θ+1)t 2+(16cos θ-2y 0sin θ)t -(12+y 20)=0,所以t 1t 2=-12+y2015cos 2θ+1.同理,t 3t 4=-12+y 2015cos 2α+1.又||TA ||TB =||TP ||TQ ,所以||t 1t 2=||t 3t 4,即12+y 2015cos 2θ+1=12+y 2015cos 2α+1,故cos 2θ=cos 2α.又θ,α≠π2,θ≠α,所以θ+α=π,故tan θ+tan α=0,于是直线AB 的斜率与直线PQ 的斜率之和为0.评注:虽然新高考对参数方程不做要求,但掌握此法既能开拓视野、提升思维,又能准确快速地解决问题,达到事半功倍的效果.解法3:利用曲线系方程.∵||TA ||TB =||TP ||TQ ,∴||TA ||TQ =||TP ||TB .又∠ATP =∠QTB ,所以△ATP ∽△QTB ,故∠TAP =∠TQB .∵∠TAP +∠PAB =π,∴∠TQB +∠PAB =π,即∠PQB +∠PAB =π,所以A ,B ,P ,Q 四点共圆.设T æèöø12,y 0,直线AB 与PQ 的方程分别为y -y 0=k 1⋅æèöøx -12与y -y 0=k 2æèöøx -12(k 1≠k 2),即k 1x -y +y 0-12k 1=0与k 2x -y +y 0-12k 2=0.又A ,B ,P ,Q 四点在曲线C 上,所以过四点的曲线系方程为æèöøk 1x -y +y 0-12k 1(k 2x -y +y 0)-12k 2+λæèçöø÷x 2-y 216-1=0,即()k 1k 2+λx 2+æèöø1-λ16y 2-()k 1+k 2xy +()k 1y 0+k 2y 0-k 1k 2x -æèçöø÷2y 0-k 1+k 22y +æèçöø÷y 0-k 12æèçöø÷y 0-k 22-λ=0.因为该曲线为圆,所以k 1+k 2=0,故直线AB 的斜率与直线PQ 的斜率之和为0.评注:此法的关键在于证得A ,B ,P ,Q 四点共圆,进而建立起过A ,B ,P ,Q 四点的曲线系方程,根据圆的一般方程的特点得到直线AB 与PQ 斜率之间的关系.解法4:先猜后证.设T æèöø12,y 0,直线AB 与PQ 的方程分别为y -y 0=k 1æèöøx -12与y -y 0=k 2æèöøx -12,(k 1≠k 2).当y 0=0时,根据||TA ||TB =||TP ||TQ ,结合对称性可知,此时直线AB 与PQ 关于x 轴对称,则k 1+k 2=0,故直线AB 的斜率与直线PQ 的斜率之和为0.以下过程只需说明当y 0≠0时,k 1+k 2=0.以下同解法1.评注:此法虽与解法1无异,但通过对特殊情况进行分析得到答案,使得在解决一般情况时目标明确,从而更有针对性地求解问题,能减少一些不必要的计算.3变式探究变式探究的过程是促进数学知识结构完善的过程,也是形成创新性思维品质的有··57效方法,更是揭示数学内容本质、提升学生数学核心素养能力的重要手段.因此,本文对这道高考题第(2)问进行了一些变式.限于篇幅,仅列举部分并简要分析如下.变式1若直线AB 的斜率与直线PQ 的斜率之和为0,求证:||TA ||TB =||TP ||TQ .证明:设直线AB 与PQ 的方程分别为y =kx +b 1与y =-kx +b 2,A ()x 1,y 1,B ()x 2,y 2,C (x 3,y 3),D (x 4,y 4),T æèöø12,y 0,则ìíîïïy 0=12k +b 1y 0=-12k +b 2.由ìíîïïy =kx +b 1x 2-y 216=1,得(16-k 2)x 2-2kb 1x -b 21-16=0,则ìíîïïïïïïïï16-k 2≠0Δ>0x 1+x 2=2kb 116-k 2x 1x 2=-b 21+1616-k 2.∴||TA ||TB =1+k 2·||||||x 1-12·1+k 2||||||x 2-12=()1+k 2|||x 1x 2-12(x 1+|||x 2)+14=()1+k 2()y 20+12||16-k 2.同理,||TP ||TQ =()1+k 2()y 20+12||16-k 2.所以||TA ||TB =||TP ||TQ .评注:变式1实质是该高考试题第(2)问的逆命题,此处只用韦达定理进行证明,进一步说明通法在解决问题的重要作用,当然也可以用其他方法进行证明.变式2若直线AB 的斜率与直线PQ 的斜率之和为0,求证:A ,B ,P ,Q 四点共圆.证明:同变式1证明,得||TA ||TB =||TP ⋅||TQ ,即||TA ||TQ =||TP ||TB .又∠ATP =∠QTB ,所以△ATP ∽△QTB ,故∠TAP =∠TQB .∵∠TAP +∠PAB =π,∴∠TQB +∠PAB =π,即∠PQB +∠PAB =π.所以A ,B ,P ,Q 四点共圆.评注:变式2实质是变式1的进一步拓展,也可以用其他方法进行证明.4结论拓展根据上述试题及变式,可以得到以下两个结论.结论1已知双曲线x 2a 2-y 2b2=±1(a >0,b >0)上有不同四点A ,B ,P ,Q ,且直线AB与PQ 交于点T ,若||TA ||TB =||TP ||TQ (或A ,B ,P ,Q 四点共圆),则直线AB 的斜率与直线PQ 的斜率之和为0.点评:此结论实质是高考试题的一般情形,其证明方法与高考试题的解答无异,在此不再赘述.结论2已知双曲线x 2a 2-y 2b2=±1(a >0,b >0)上有不同四点A ,B ,P ,Q ,且直线AB与PQ 交于点T ,若直线AB 的斜率与直线PQ 的斜率之和为0,则||TA ||TB =||TP ||TQ (或A ,B ,P ,Q 四点共圆).点评:此结论是结论1的逆命题,其证明方法与变式探究的解答一样,由此可见上述两个结论构成一个充要条件.5类比拓广事实上,可以将上述结论进行类比拓广,可以得到圆锥曲线中的一条性质:已知圆锥曲线(椭圆、双曲线、抛物线)上有不同四点A ,B ,P ,Q ,若直线AB 与PQ 交于点T ,则A ,B ,P ,Q 四点共圆的充要条件是直线AB 的斜率与直线PQ 的斜率之和为0.这是圆锥曲线的一个通性,也是上述高考试题的背景.基金项目:本文系广东省教育科学规划课题“中学生数学核心素养培养途径与策略研究”(课题批准号:2019ZQJK031)的阶段性研究成果.··58。
押新高考第21题 圆锥曲线(新高考)(原卷版)
圆锥曲线圆锥曲线部分历来是高考的重点,也是学生心中的难点,很多学生对圆锥曲线都有畏惧心理.从高考成绩分析上来看,圆锥曲线也是高考得分较低的部分;从考纲上来看,一般会"考查学生对解析几何基本概念的掌握情况,考查学生对解析几何基本方法的一般应用情况,适当地考查学生对几何学知识的综合应用能力,重视对数学思想方法的渗透".通过近几年的高考可以看到浙江高考题在圆锥曲线这一块考抛物线较多。
圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程,研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、范围、探索性问题等,此类命题第(1)问起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.解决此类问题的关键是找到已知条件和代求问题之间的联系,实现代求问题代数化,与已知条件得到的结论有效对接,难点在于代求问题的转化问题方法总结1.圆锥曲线中最值问题的求解方法(1)几何法:通过利用圆锥曲线的定义和几何性质进行求解(2)代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.函数主要是二次函数、对勾函数或者导数求解,不等式主要是运用基本不等式求解2.圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3定点、定值模板1.寻找适合运动变化的量或者参数,如点坐标,直线的斜率,截距等,把相关问题用参数表示备用,或者找寻带有参数的直线与曲线联立方程组,得到关于x 或y 的一元二次方程,利用韦达定理列出x1x2,x1+x2(或y1y2,y1+y2的关系式备用2.根据已知条件把定点、定值问题转化为与参数有关的方程问题,与第一步的结论对接3,确定与参数无关点、值,即为所求.1.(2021·湖南·高考真题)已知椭圆()2222:10x y C a b a b +=>>经过点()20A ,3(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值.2.(2021·江苏·高考真题)已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上.(1) 求实数a 的值;(2) 求()()48f f -+的值;(3) 求函数()f x 的解析式.3.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F 6 (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN =4.(2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.5.(2021·北京·高考真题)已知椭圆2222:1(0)x y E a b a b +=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.1.(2022·天津·一模)已知椭圆()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,离心率为2 且6AB (1)求椭圆的方程;(2)过点A 的直线与椭圆相交于点24,33⎛⎫- ⎪⎝⎭H ,与y 轴相交于点S ,过点S 的另一条直线l 与椭圆相交于M ,N 两点,且△ASM 的面积是△HSN 面积的32倍,求直线l 的方程. 2.(2022·福建·模拟预测)在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为12,F F ,2过点()2,0P 作直线l 与椭圆C 相交于,A B 两点.若A 是椭圆C 的短轴端点时,23AF AP ⋅=. (1)求椭圆C 的标准方程;(2)试判断是否存在直线l ,使得21F A ,2112F P ,21F B 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由. 3.(2022·湖南·雅礼中学二模)已知曲线C :22221(0)x y a b a b+=>>,1F ,2F 分别为C 的左、右焦点,过1F 作直线l 与C 交于A ,B 两点,满足115AF F B =,且12224AF F Sa =.设e 为C 的离心率. (1)求2e ; (2)若32e ≤,且2a =,过点P (4,1)的直线1l 与C 交于E ,F 两点,1l 上存在一点T 使111EP FP PT +=.求T 的轨迹方程.4.(2022·广东深圳·二模)已知椭圆2222:1(0)x y E a b a b +=>>经过点31,2M ⎛⎫ ⎪ ⎪⎝⎭,且焦距1223F F =,线段,AB CD 分别是它的长轴和短轴.(1)求椭圆E 的方程;(2)若(,)N s t 是平面上的动点,从下面两个条件中选一个...........,证明:直线PQ 经过定点. ①31,2s t =≠±,直线,NA NB 与椭圆E 的另一交点分别为P ,Q ; ②2,t s =∈R ,直线,NC ND 与椭圆E 的另一交点分别为P ,Q .5.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由.(限时:30分钟)1.已知圆C :()22116x y -+=,点()1,0F -,P 是圆C 上一动点,若线段PF 的垂直平分线和CP 相交于点M .(1)求点M 的轨迹方程E .(2)A ,B 是M 的轨迹方程与x 轴的交点(点A 在点B 左边),直线GH 过点()4,0T 与轨迹E 交于G ,H 两点,直线AG 与1x =交于点N ,求证:动直线NH 过定点B .2.已知定点()22,0O ,点P 为圆1O :()22232x y ++=(1O 为圆心)上一动点,线段2O P 的垂直平分线与直线1O P 交于点G .(1)设点G 的轨迹为曲线C ,求曲线C 的方程;(2)若过点2O 且不与x 轴重合的直线l 与(1)中曲线C 交于D ,E 两点,M 为线段DE 的中点,直线OM (O 为原点)与曲线C 交于A ,B 两点,且满足2MD MA MB =⋅,若存在这样的直线,求出直线l 的方程,若不存在请说明理由. 3.已知椭圆E :()222210x y a b a b +=>>的离心率3e =,椭圆E 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,四边形ACBD 的面积为4.(1)求椭圆E 的方程;(2)若P 是椭圆E 上一点(不在坐标轴上),直线PC ,PD 分别与x 轴相交于M ,N 两点,设PC ,PD ,OP 的斜率分别为1k ,2k ,3k ,过点P 的直线l 的斜率为k ,且123k k kk =,直线l 与x 轴交于点Q ,求MQ NQ -的值.4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是点A ,B ,直线2:3l x =与椭圆C 相交于D ,E 两个不同点,直线DA 与直线DB 的斜率之积为14-,ABD △的面积为23. (1)求椭圆C 的标准方程;(2)若点P 是直线2:3l x =的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q ,过P 作BQ 的垂线,垂足为M ,在x 轴上是否存在定点N ,使得MN 为定值,若存在,请求出点N 的坐标;若不存在,请说明理由.5.如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.。
2021高考数学必考点解题方式秘籍 圆锥曲线1 理(1)
2021高考理科数学必考点解题方式秘籍:圆锥曲线1点P 处的切线PT 平分△PF1F2在点P 处的外角.PT 平分△PF1F2在点P 处的外角,那么核心在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.以核心弦PQ 为直径的圆必与对应准线相离.以核心半径PF1为直径的圆必与以长轴为直径的圆内切.若000(,)P x y 在椭圆22221x y a b +=上,那么过0P 的椭圆的切线方程是00221x x y y a b +=.若000(,)P x y 在椭圆22221x y a b +=外 ,那么过Po 作椭圆的两条切线切点为P1、P2,那么切点弦P1P2的直线方程是00221x x y ya b +=.椭圆22221x y a b += (a >b >0)的左右核心别离为F1,F 2,点P 为椭圆上任意一点12F PF γ∠=,那么椭圆的核心角形的面积为122tan2F PF S b γ∆=.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).设过椭圆核心F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个极点,连结AP 和AQ 别离交相应于核心F 的椭圆准线于M 、N 两点,那么MF ⊥NF.过椭圆一个核心F 的直线与椭圆交于两点P 、Q, A1、A2为椭圆长轴上的极点,A1P 和A2Q 交于点M ,A2P 和A1Q 交于点N ,那么MF ⊥NF.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,那么22OM AB b k k a ⋅=-,即0202y a x b K AB-=。
若000(,)P x y 在椭圆22221x y a b +=内,那么被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 若000(,)P x y 在椭圆22221x y a b +=内,那么过Po 的弦中点的轨迹方程是22002222x x y y x y ab a b +=+. 双曲线点P 处的切线PT 平分△PF1F2在点P 处的内角.PT 平分△PF1F2在点P 处的内角,那么核心在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.以核心弦PQ 为直径的圆必与对应准线相交.以核心半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,那么过0P 的双曲线的切线方程是00221x x y ya b -=. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,那么过Po 作双曲线的两条切线切点为P1、P2,那么切点弦P1P2的直线方程是00221x x y ya b -=.双曲线22221x y a b -=(a >0,b >o )的左右核心别离为F1,F 2,点P 为双曲线上任意一点12F PF γ∠=,那么双曲线的核心角形的面积为122t2F PF S b co γ∆=.双曲线22221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a=-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a=--设过双曲线核心F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个极点,连结AP 和AQ别离交相应于核心F 的双曲线准线于M 、N 两点,那么MF ⊥NF.过双曲线一个核心F 的直线与双曲线交于两点P 、Q, A1、A2为双曲线实轴上的极点,A1P 和A2Q 交于点M ,A2P 和A1Q 交于点N ,那么MF ⊥NF.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,那么0202y a x b K K ABOM =⋅,即022y a x b K AB =。
2021高考数学必考点解题方式秘籍 圆锥曲线2 理(1)
2021高考理科数学必考点解题方式秘籍:圆锥曲线2第一、知识储蓄: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一样式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:2AB x =-= 或2AB y =-(4)两条直线的位置关系 ①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且二、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n +=>>≠且2a +=参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n +=⋅<距离式方程:|2a=(3)、三种圆锥曲线的通径你记得吗? (4)、圆锥曲线的概念你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个核心,平面内一个动点M 知足221=-MF MF 那么动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、核心三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p px x y ++抛物线焦点在轴上时为焦点在y 轴上时为(6)、椭圆和双曲线的大体量三角形你清楚吗? 第二、方式储蓄一、点差法(中点弦问题)设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点那么有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =b a43-二、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?若是有两个参数如何办?设直线的方程,而且与曲线的方程联立,消去一个未知数,取得一个二次方程,利用判别式0∆≥,和根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程取得○1○2两个式子,然后○1-○2,整体消元··,假设有两个字母未知数,那么要找到它们的联系,消去一个,比如直线过核心,那么能够利用三点A 、B 、F 共线解决之。
高考数学专题六解析几何 微专题38 圆锥曲线中二级结论的应用
当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率
π 与椭圆的长半轴长与短半轴长的乘积,已知椭圆 C:ax22+by22=1(a>b>0)的
面积为 6π,两个焦点分别为 F1,F2,点 P 为椭圆 C 的上顶点,直线 y=
kx 与椭圆 C 交于 A,B 两点,若 PA,PB 的斜率之积为-49,则椭圆 C 的
A,B
两点,且|A→F|=λ|F→B|,则椭圆的离心率等于λ+λ1-c1os
α.
2.设点 P 是双曲线ax22-by22=1(a>0,b>0)上异于实轴端点的任一点,则
(1)|PF1||PF2|=1-2cbo2s
θ.(2)
S△PF1F2
= b2 tan
由二级结论可知S△F1PF2 =
∠bF2 1PF2=5 3.
tan 2
(2)已知 P 为椭圆 C:x42+y32=1 上的一个动点,F1,F2 是椭圆 C 的左、右焦 点,O 为坐标原点,O 到椭圆 C 在 P 点处切线的距离为 d,若|PF1|·|PF2|=
274,则
14 d=____2____.
方法二 因为AB过抛物线的焦点, 设A(x1,y1),B(x2,y2), 则 x1x2=p42=1,y1y2=-p2=-4,
所以O→A·O→B=x1x2+y1y2=-3.
总结提升
圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二 级结论,能快速解决圆锥曲线压轴小题,常用结论包括椭圆与双曲 线中的焦点三角形面积公式、焦半径、切线方程、离心率等,周角 定理以及抛物线焦点弦二级结论的综合应用.
3.M为抛物线y2=2px(p>0)的准线l上一点,MA,MB均与抛物线相切,A, B为切点,则有:(见图4) (1)AB过焦点F. (2)2yM=yA+yB. (3)MA⊥MB. (4)MF⊥AB.
2021年高考文数第二轮第3讲 圆锥曲线中的热点问题
P1(1,1),P2(0,1),P3-1,
23,
P41,
23中恰有三点在椭圆
C
上.
(1)求 C 的方程;
(2)设直线 l 不经过 P2 点且与 C 相交于 A,B 两点.若直线 P2A 与直线 P2B 的斜率的 和为-1,证明:l 过定点.
第5页
赢在微点 无微不至
考前顶层设计·英语
(1)解 由于点 P3,P4 关于 y 轴对称,由题设知 C 必过 P3,P4.又由a12+b12>a12+43b2知,
设l:x=m,A(m,yA),B(m,-yA),
k1+k2=yAm-1+-ymA-1=-m2=-1,得 m=2,
此时l过椭圆C右顶点,与椭圆C不存在两个交点,故不满足.
从而可设l:y=kx+m(m≠1). 将 y=kx+m 代入x42+y2=1 得(4k2+1)x2+8kmx+4m2-4=0.
由题设可知Δ=16(4k2-m2+1)>0.
第3页
赢在微点 无微不至
考前顶层设计·英语
以 x22=m-(3-2y2)2=-14m2+52m-94=-14(m-5)2+4≤4,所以当 m=5 时,点 B 的 横坐标的绝对值最大,最大值为 2. 答案 5
第4页
赢在微点 无微不至
考前顶层设计·英语
2.(2017·全国Ⅰ卷)已知椭圆
C:ax22+by22=1(a>b>0),四点
第2页
赢在微点 无微不至
考前顶层设计·英语
真题感悟 1.(2018·浙江卷)已知点 P(0,1),椭圆x42+y2=m(m>1)上两点 A,B 满足A→P=2P→B,
则当 m=________时,点 B 横坐标的绝对值最大. 解析 设 A(x1,y1),B(x2,y2),由A→P=2P→B,得- 1-x1y=1=2x22(,y2-1),即 x1=-2x2, y1=3-2y2.因为点 A,B 在椭圆上,所以4x4422x+22+y22(=3m-,2y2)2=m,得 y2=14m+34,所
高考数学二轮考前复习第三篇直击压轴大题搏高分必须攻克的6个热点专题专题2圆锥曲线中的定点与定值课件
(2)①由题知,因为x=-1为抛物线D的准线, 由抛物线的定义知:|AB|=d1+d2=|AF2|+|BF2|, 又因为|AB|≤|AF2|+|BF2|,当且仅当A,B,F2三点共线时等号成立, 所以直线l过定点F2, 根据椭圆定义得: |EF|+|EF1|+|FF1|=|EF2|+|EF1|+|FF1|+|FF2|=4a=4 2 .
代入y=1
x2得
y-
1 2
x12
x1x-x12①,
2
y-
1 2
x22
x 2 x-x 2 2②,
①×x2-②×x1,
得(x2-x1)y+1 x1x2(x1-x2)=0,
2
因为x1-x2≠0,
故y=1 x1x2,
2
………3分
因为DA和DB的交点D为直线y=1 -
2
上的动点,所以有y1=
2
x1x2=1 -
程并整理出可以确定定点的形式.
3.计算分:计算准确是根本保证.
4.防止漏解:解答第二问时,通过数形结合,只得到切点为(0, 1 )时的圆的方程,
2
而忽略其他情形而致错.
高考演兵场·检验考试力
1.(定值)已知O为坐标原点,椭圆C:
x2 y2 a2 b2
=1(a>b>0)的左,右焦点分别为F1,F2,
14k2 4
2 2,
所以定值为2.
14k2
4.(定值)已知点Q是圆M:(x+ 5 )2+y2=36上的动点,点N( 5 ,0),若线段QN的垂直 平分线交MQ于点P. (1)求动点P的轨迹E的方程; (2)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于B,C两点,求证:直线 AB,AC的斜率之和为定值.
2021版新高考数学:圆锥曲线含答案
设M(x、y)、由已知得⊙M的半径为r=|x+2|、|AO|=2.
由于 ⊥ 、【关键点5:圆的几何性质向量化】
故可得x2+y2+4=(x+2)2、化简得M的轨迹方程为y2=4x.
因为曲线C:y2=4x是以点P(1、0)为焦点、以直线x=-1为准线的抛物线、所以|MP|=x+1.
因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1、所以存在满足条件的定点P.
[解](1)由题设得 · =- 、化简得 + =1(|x|≠2)、【关键点1:指明斜率公式中变量隐含的范围】
所以C为中心在坐标原点、焦点在x轴上的椭圆、不含左右顶点.
(2)设直线PQ的斜率为k、则其方程为y=kx(k>0).
由 得x=± .记u= 、则P(u、uk)、Q(-u、-uk)、E(u、0).
设t=k+ 、则由k>0得t≥2、当且仅当k=1时取等号.【关键点2:整体代换、指明范围】
因为S= 在[2、+∞)单调递减、所以当t=2、即k=1时、S取得最大值、最大值为 .【关键点3:用活“对勾”函数及复合函数的单调性】
因此、△PQG面积的最大值为 .
【点评】基本不等式求最值的5种典型情况分析
(1)s= (先换元、注意“元”的范围、再利用基本不等式).
故∠OPM=∠OPN、所以点P(0、-a)符合题意.
【点评】破解此类解析几何题的关键:一是“图形”引路、一般需画出大致图形、把已知条件翻译到图形中、利用直线方程的点斜式或两点式、即可快速表示出直线方程;二是“转化”桥梁、即先把要证的两角相等、根据图形的特征、转化为斜率之间的关系、再把直线与椭圆的方程联立、利用根与系数的关系、以及斜率公式即可证得结论.
2021版新高考数学:圆锥曲线含答案
2024高考数学二轮重难点-圆锥曲线中的常用二级结论-课件
则有 ,即 ,而 为任意实数,则 ,即点 的坐标为 .当直线 与 轴重合时,点 , 为椭圆长轴的两个端点,点 也满足 ,所以存在点 满足条件,点 的坐标为 .
[解析] (1)依题意,设直线 ,联立 ,整理得 , ① ,即 , 又 ,且 , 或 (舍去),∴①可化为 ,设 , ,则 .
(2)当直线 的斜率不存在时,由对称性知,存在点 满足 , 若直线 的斜率存在,设为 ,则 ,联立 , 整理得 ,则 . 设 , ,∴ 设 ,由 ,得 ,即 , ,即 ,
[解析] 设 , 的倾斜角分别为 , ,则 ,整理得 ,同理 . , 同理 . , ,化简得 , .
4.已知抛物线 的焦点为 ,直线 与 交于 , 两点,且与 轴交于点 .
(1)若直线 的斜率 ,且 ,求 的值.
(2)若 , 轴上是否存在点 ,总有 ?若存在,求出点 的坐标;若不存在,请说明理由.
提分秘籍
(1)根据给定条件直接计算出 即可求解作答.
(2)根据等角性质,存在点 满足条件,且快速算出点 的坐标为 ,这给算出准确答案提供了依据.
结论4 切线、切点弦方程
(1)已知点 是椭圆上一点,则椭圆在点 处的切线方程是 .
(2)已知点 是双曲线上一点,则双曲线在点 处的切线方程是 .
①抛物线焦半径公式 , , .
由于抛物线的离心率 ,则 , , . ②抛物线焦点弦弦长公式 ,由于抛物线的离心率 ,则 .
(4)焦点弦定理 已知焦点在 轴上的椭圆或双曲线或抛物线,经过其焦点 的直线交曲线于 , 两点,直线 的倾斜角为 , ,则曲线的离心率满足等式: .
(2)过双曲线 <m></m> 的右焦点且垂直于 <m></m> 轴的直线与双曲线交于 <m></m> , <m></m> 两点,与双曲线的渐近线交于 <m></m> , <m></m> 两点,若 <m></m> ,则该双曲线离心率的取值范围为_ ________.
2021年高考数学专题10 圆锥曲线 (解析版)
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.【错解】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别. 【试题解析】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x . 故动点P 的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P 的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知定点(1,0)A -及直线:2l x =-,动点P 到直线l 的距离为d ,若||PA d =. (1)求动点P 的轨迹C 方程;(2)设,M N 是C 上位于x 轴上方的两点,B 坐标为(1,0),且AM BN ∥,MN 的延长线与x 轴交于点(3,0)D ,求直线AM 的方程.【答案】(1)2212x y +=;(2)(1)2y x =+.【解析】(1)设(,)P x y ,则由(1,0)A -,知||PA = 又:2l x =-,∴|2|d x =+,2=∴2221(1)(2)2x y x ++=+, ∴2222x y +=,∴点P 的轨迹方程为2212x y +=.(2)设1122(,),(,)M x y N x y ()120,0y y >>,∵(1,0)(1,0),(3,0)A B D -,, ∴B 为AD 中点, ∵//AM BN ,∴1212,322x x y y +==, ∴1223x x =-,又221112x y +=,∴()222223412x y -+=, 又222212x y +=,∴2151,42x x ==-,∵0y >,∴14y =,∴1112AM y k x ==+, ∴直线AM的方程为1)2y x =+. 【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y=x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y >2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y的取值范围.2.已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,则动圆圆心M的轨迹方程为A .2218y x -=B .221(1)8y x x -=≤-C .2218x yD .221(1)8y x x -=≥【答案】B【解析】设动圆的圆心M 的坐标为(,)x y ,半径为r , 则由题意可得121,3MC r MC r =+=+,相减可得21122MC MC C C -=<,所以点M 的轨迹是以12,C C 为焦点的双曲线的左支, 由题意可得22,3a c ==,所以b =,故点M 的轨迹方程为221(1)8y x x -=≤-,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以12,C C 为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D【解析】虽然动点M 到两个定点F 1,F 2的距离为常数8,但由于这个常数等于|F 1F 2|,故动点M 的轨迹是线段F 1F 2,故选D .平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x ykk+=>,并且焦距为8,则实数k的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.②表示焦点在y 轴上的椭圆⇔0,0m n >>且m n <; ③表示椭圆⇔0,0m n >>且m n ≠.对于形如:Ax 2+By 2=1(其中A >0,B >0,A ≠B )的椭圆的方程,其包含焦点在x 轴上和在y 轴上两种情况,当B >A 时,表示焦点在x 轴上的椭圆;当B <A 时,表示焦点在y 轴上的椭圆. 2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.关于曲线C :222214x y a a +=-性质的叙述,正确的是A .一定是椭圆B .可能为抛物线C .离心率为定值D .焦点为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B 错误;因为24a -可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则()22244c a a =--=,∴2c =,2e a=,离心率不是定值,焦点()2,0,()2,0-,为定点. 若曲线为双曲线,方程为222214x y a a-=-,则()22244c a a =+-=,∴2c =,2e a =,离心率不是定值,焦点()2,0,()2,0-为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率32e =,已知点3(0,)2P 到椭圆的最远距离为7,求椭圆的标准方程.1.椭圆22221(0)x ya ba b+=>>的范围就是方程中变量x,y的范围,由22221x ya b+=得222211x ya b=-≤,则||x a≤;222211y xb a=-≤,则||y b≤.故椭圆落在直线x=±a,y=±b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处. 3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 【解析】(1)由题意可得1b =.又2P 在椭圆C 上,所以22212a +=,解得2a =,所以椭圆C 的方程为2214x y +=,所以c C 的离心率2c e a ==.(2)设直线l 的方程为()0y kx m m =+≠.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=, 所以22222(8)4(41)(44)6416160km k m k m ∆=-+-=-+>,设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++. ()()()2212121212121212OM ONkx m kx m k x x km x x my y k k x x x x x x +++++===222222244841414441m kmk km m k k m k --⨯+⨯+++=-+222444m k m -=-, 由题意,OM ON k k 为定值,所以21444k -=-,即214k =,解得12k =±.此时MN===, 点O 到直线y kx m =+的距离|5m d =.11||22MON S MN d m ==△== 显然,当21m =(此时214k =,21m =满足226416160k m ∆=-+>),即1m =±时,S 取得最大值,最大值为1.易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .因为2sin sin 2sin A C B +=,由正弦定理可得||||||22BC AB AC +=,故|||||12|||AC BC AB AB -=<=, 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为22221()x y x a a b-=>,因为a =c =2226b c a =-=,故所求轨迹方程为221(26x y x -=>.【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M 是双曲线2216436x y -=上一点,F 1,F 2是双曲线的左、右焦点,且1||17MF =,则2MF =_____________.1.在求解双曲线上的点到焦点的距离d 时,一定要注意d c a ≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知x 2a2≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.7.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于,P Q ,1F 是另一焦点,若1=3PFQ π∠,则双曲线的离心率e 等于 A 1 BC 1D 2+【答案】B【解析】由双曲线的对称性可知,12PF F △是以点2F 为直角顶点,且126PF F π∠=,则122PF PF =,由双曲线的定义可得1222PF PF PF a -==, 在12Rt PF F △中,212122tan 2PF a PF F F F c ∠===c e a∴== B. 【名师点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是23y x=±,焦距为226,求双曲线的标准方程. 2b1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.8.已知双曲线的一条渐近线方程为0x y ±=,且过点()12P ,--,则该双曲线的标准方程为__________.【答案】22133y x -=【解析】根据题意,双曲线的一条渐近线方程为0x y ±=,可设双曲线方程为()220x y λλ-=≠,∵双曲线过点()12P ,--,∴14λ-=,即3λ=-.∴所求双曲线方程为22133y x -=,故答案为22133y x -=.【名师点睛】本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.【方法点睛】解决直线与双曲线的位置关系的题目时,要注意讨论联立直线与双曲线的方程消元后得到的方程是否为一元一次方程,即二次项系数是否为0,因为直线与双曲线有一个公共点包含直线与双曲线的渐21. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【解析】由22416x y y kx -==⎧⎨⎩消去y 得22(4)160k x --= ①,当240k -=,即2k =±时,方程①无解;当240k -≠时,2204(4)(16)64(4)k k ∆=---=-, 当0∆>,即22k -<<时,方程①有两解; 当0∆<,即2k <-或2k >时,方程①无解; 当0∆=,且240k -≠时,这样的k 值不存在.综上所述,(1)当22k -<<时,直线与双曲线有两个公共点; (2)不存在使直线与双曲线有一个公共点的k 值; (3)当2k ≤-或2k ≥时,直线与双曲线没有公共点.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【参考答案】2189y x =+.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【解析】设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R x =,∵动圆与定圆C :2252)5(x y -+=外切,∴5PC R =+,∴5PC x =+.当点P 在y 轴右侧,即x >0时,5PC x =+,点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为220(0)y x x =>;当点P 在y 轴左侧,即x <0时, 5PC x =-+,此时点P 的轨迹是x 轴的负半轴,即方程)00(y x =<.故点P 的轨迹方程为220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x . 【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:图 形标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦点坐标(,0)2p (,0)2p -(0,)2p(0,)2p -准线方程2p x =-2p x =2p y =-2p y =注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bxy k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件.故选A .本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.3.椭圆的几何性质标准方程22221x y a b +=(a >b >0) 22221y x a b +=(a >b >0) 图形范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1 (-c ,0),右焦点F 2 (c ,0)下焦点F 1 (0,-c ),上焦点F 2 (0,c )顶点1212(,0),(,0),(0,),(0,)A a A a B b B b -- 1212(0,),(0,),(,0),(,0)A a A a B b B b --三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质标准方程22221x y a b -=(a >0,b >0) 22221y x a b -=(a >0,b >0) 图形范围 ||x a ≥,y ∈R ||y a ≥,x ∈R对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1(-c ,0),右焦点F 2(c ,0)下焦点F 1(0,-c ),上焦点F 2(0,c )顶点12(,0),(,0)A a A a - 12(0,),(0,)A a A a -轴线段A 1A 2是双曲线的实轴,线段B 1B 2是双曲线的虚轴;实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b渐近线 b y x a=±a y x b=±离心率e22c ce a a==(1)e >在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->。
2021年新课标新高考数学复习课件:§9.6 圆锥曲线的综合问题
知识拓展 1.圆锥曲线中的最值和范围问题的求解方法 求解有关圆锥曲线的最值、参数范围的问题:一是注意题目中的几何特征, 充分考虑图形的性质;二是运用函数思想,建立目标函数,求解最值.在利用 代数法解决最值和范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是两个参数 之间建立等量关系; (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 2.求有关圆锥曲线的最值问题时应注意以下几点: (1)圆锥曲线上本身存在最值问题,如(i)椭圆上两点间的最大距离为2a(长
1 4
=k
x
1 2
,y-
9 4
=-
1 k
x-
3 2
.
联立直线AP与BQ的方程
kx-y
1 2
k
1 4
0,
x
ky-
9 4
k-
3 2
0,
解得点Q的横坐标是xQ=
-k 2 4k 2(k 2
1)
3
.
因为|PA|=
1
k2
x
1 2
=
1 k2 (k+1),
|PQ|= 1 k 2 (xQ-x)=- (k-1)(k 1)2 ,
故所求椭圆方程为 x2 +y2=1.
2
(2)由题意知,直线l的斜率存在,
设l:y=kx+m,M(x1,y1),N(x2,y2).
x2
由 2
y2
1,
y kx m,
得(2k2+1)x2+4kmx+2(m2-1)=0,
高考数学压轴题解题技巧和方法
GAGGAGAGGAFFFFAFAF圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB中点为M(x 0,y 0)则有02020=-k b y ax (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
典型例题设P(x,y)为椭圆xayb22221+=上任一点,F c1(,)-,F c 20(,)为焦点,∠=PF F12α,∠=PF F21β。
GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
2021-2022年高考数学二轮复习层级三30分的拉分题压轴专题(二)解答题第20题“圆锥曲线的综合
2021年高考数学二轮复习层级三30分的拉分题压轴专题(二)解答题第20题“圆锥曲线的综合问题”抢分练1.(xx·湖南东部六校联考)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,S 是椭圆上任意一点,且△SF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若C 点满足,,连接AC 交DE 于点P ,求证:PD =PE .2.(xx·河南六市联考)如图,在平面直角坐标系xOy 中,已知R (x 0,y 0)是椭圆C :x 224+y 212=1上的一点,从原点O 向圆R :(x-x 0)2+(y -y 0)2=8作两条切线,分别交椭圆于点P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求k 1·k 2的值.3.设椭圆M :y 2a 2+x 2b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +m 交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 面积的最大值.4.(xx·湖北七市联考)已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求的取值范围.1.解:(1)由e =32,知c a =32,所以c =32a , 因为△SF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0),设D (x 0,y 0),所以E (x 0,0), 因为,所以可设C (2,y 1),所以=(x 0+2,y 0),=(2,y 1),由可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2. 所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝ ⎛⎭⎪⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.解:(1)设圆R 的半径为r ,由圆R 的方程知r =22,因为直线OP ,OQ 互相垂直,且和圆R 相切, 所以|OR |=2r =4,即x 20+y 20=16,①又点R 在椭圆C 上,所以x 2024+y 2012=1,②联立①②,解得⎩⎨⎧x 0=22,y 0=22,所以,圆R 的方程为(x -22)2+(y -22)2=8.(2)因为直线OP :y =k 1x 和OQ :y =k 2x 都与圆R 相切,所以|k 1x 0-y 0|1+k 21=22,|k 2x 0-y 0|1+k 22=22,化简得(x 20-8)k 21-2x 0y 0k 1+y 20-8=0,(x 20-8)k 22-2x 0y 0k 2+y 20-8=0,所以k 1,k 2是方程(x 20-8)k 2-2x 0y 0k +y 20-8=0的两个不相等的实数根,由根与系数的关系得,k 1·k 2=y 20-8x 20-8,因为点R (x 0,y 0)在椭圆C 上,所以x 2024+y 2012=1, 即y 20=12-12x 20,所以k 1k 2=4-12x 20x 20-8=-12. 3.解:(1)由题可知,双曲线的离心率为2,则椭圆的离心率e =ca =22, 由2a =4,c a =22,b 2=a 2-c 2,得a =2,c =2,b =2, 故椭圆M 的方程为y 24+x 22=1.(2)联立方程⎩⎪⎨⎪⎧y =2x +m ,x 22+y 24=1,得4x 2+22mx +m 2-4=0,由Δ=(22m )2-16(m 2-4)>0,得-22<m <2 2. 设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=-22m ,x 1x 2=m 2-44,所以|AB |=1+2|x 1-x 2| =3·(x 1+x 2)2-4x 1x 2=3·12m 2-m 2+4 =3·4-m 22.又P 到直线AB 的距离为d =|m |3,所以S △PAB =12|AB |·d =32·4-m 22·|m |3=12⎝ ⎛⎭⎪⎫4-m 22·m 2 =122 m 2(8-m 2) ≤122·m 2+(8-m 2)2=2,当且仅当m 2=8-m 2,即m =±2时等号成立, 此时△PAB 面积有最大值 2.4.解:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=42,所以圆心为(-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4,又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,其方程为x 24+y 23=1,即为所求曲线C 的方程. (2)由直线EF 与直线PQ 垂直,可得=0,于是==①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝ ⎛⎭⎪⎫1,32,Q ⎝⎛⎭⎪⎫1,-32,E ()2,0,F (-2,0),所以=⎝⎛⎭⎪⎫1,-32·⎝ ⎛⎭⎪⎫-3,32=-3-94=-214.②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得=-214.③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0,所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是=(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1]=(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1 =-9(1+k 2)3+4k2. 将上面的k 换成-1k ,可得=-9(1+k 2)4+3k 2,所以==-9(1+k 2)(13+4k 2+14+3k 2).令1+k 2=t ,则t >1,于是上式化简整理可得, =-9t ⎝ ⎛⎭⎪⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝ ⎛⎭⎪⎫1t -122. 由t >1,得0<1t <1,所以-214< ≤-367.综合①②③可知,的取值范围为⎣⎢⎡⎦⎥⎤-214,-367.。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的二级结论(解析版)
2023年高考数学热点专题解析几何模型通关圆锥曲线中的二级结论(解析版)圆锥曲线中的二级结论思路引导圆锥曲线有许多形式结构相当漂亮的结论,记住圆锥曲线中一些二级结论,能快速摆平一切圆锥曲线压轴小题。
母题呈现类型一巧用焦点三角形的面积、离心率,突破圆锥曲线压轴小题1设P 点是椭圆x 2a 2+y 2b 2=1(a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点,记∠F 1PF 2=θ,则(1)|PF 1||PF 2|=2b 21+cos θ;(2)S △PF 1F 2=b 2tan θ2;(3)e =sin ∠F 1PF 2sin ∠PF 1F 2+sin ∠PF 2F 1.2设P 点是双曲线x 2a 2-y 2b2=1(a >0,b >0)上异于实轴端点的任一点,F 1,F 2为其焦点,记∠F 1PF 2=θ,则(1)|PF 1||PF 2|=2b 21-cos θ;(2)S △PF 1F 2=b 2tanθ2;(3)e =sin ∠F 1PF 2|sin ∠PF 1F 2-sin ∠PF 2F 1|.【例1】在椭圆x 225+y 29=1上,△PF 1F 2为焦点三角形,如图所示.(1)若θ=60°,则△PF 1F 2的面积是________;(2)若α=45°,β=75°,则椭圆离心率e =________.【例2】已知双曲线C :()22105x y k k -=>的左、右焦点分别为1F ,2F ,且123F PF π∠=,则12F PF △的面积为______.【跟踪训练】(2022·荆州模拟)已知P 是椭圆x 24+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=π3时,则△PF 1F 2的面积为________.类型2妙用中心弦的性质,突破圆锥曲线压轴小题设A,B为圆锥曲线关于原点对称的两点,点P是曲线上与A,B不重合的任意一点,则k AP·k BP=e2-1.【例4】设椭圆xa2+yb2=1(a>b>0)的左,右顶点分别为A,B,点P在椭圆上异于A,B两点,若AP与BP的斜率之积为-1,则椭圆的离心率为________.设圆锥曲线以M(x0,y0)(y0≠0)为中点的弦AB所在的直线的斜率为k.1.若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k AB=-b2x0a2y0,k AB·k OM=e2-1.2.若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k AB=b2x0a2y0,k AB·k OM=e2-1.3.若圆锥曲线为抛物线y2=2px(p>0),则k AB=py0.【例5】已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB 的中点为M(-12,-15),则E的方程为()A.x2 3-y26=1 B.x24-y25=1C.x2 6-y23=1 D.x25-y24=1点为()2,1M -,则E 的离心率e =_____.类型4利用焦点弦的性质,突破圆锥曲线压轴小题1.过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交椭圆于A ,B 两点,且|AF →|=λ|FB →|,则椭圆的离心率等于1(1)cos λλα-+.2.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 且倾斜角为α(α≠90°)的直线交双曲线右支于A ,B 两点,且|AF →|=λ|FB →|,则双曲线的离心率等于|λ-1(λ+1)cos α|.3.过抛物线y 2=2px (p >0)的焦点F 倾斜角为θ的直线交抛物线于A ,B 两点,则两焦半径长为p 1-cos θ,p1+cos θ,1|AF |+1|BF |=2p ,|AB |=2p sin 2θ,S △AOB =p 22sin θ.【例8】已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =32,经过右焦点且斜率为k (k >0)的直线交椭圆于A ,B两点,已知AF →=3FB →,则k =()A .1B.2C.3D .2则|AB |为【例11】设F 为抛物线C :y 2=16x 的焦点,过F 且倾斜角为6π的直线交C 于A 、B 两点,O为坐标原点,则△AOB 的面积为。