2.2连续型随机变量及概率密度
连续型随机变量的概率密度
解:⑴.P1 X 5 F (5) F (1)
(5 2) (1 2)
3
3
1
1 3
1 1 1
3
0.84134 0.62930 1
0.47064
⑵.PX 2 6 1 PX 2 6
1 P 6 X 2 6
x
令 u t
1
t2 x
e 2 dt
2
1
(2) (0) P( X 0) 1 2
() 1 ;() 0
引理:
设X ~ N , 2 ,则 Y X ~ N ( 0, 1 )
FY
y
PY
y
P{ X
P{X y} 1
y}
y
e
t 2
2 2
dt
2
作变换
u
t
,du
dt
FY y
使用了s 小时,它总共能使用至少 s t
指数分布
若 X 表示某一元件的寿命,则 (*)式表明:已知元件 使用了s 小时,它总共能使用至少 s t 小时的条件 概率与从开始使用时算起它至少能使用 t小时的概 率相等,即元件对它使用过 s 小时没有记忆,具有这
一性质是指数分布具有广泛应用的重要原因.
设X ~ N , 2 ,则 Y X ~ N ( 0, 1 )
(2)若X~N(,2),
P{X x} P{ X x }
( x )
(3) 若X~N(,2),对于任意区间(x1,x2]有
P( x1
X
x2 )
P
x1
X
x2
x2
x1
【例5】 设 随 机 变 量 X ~ N 2, 9 求 : ⑴ P1 X 5;⑵ PX 2 6;⑶ PX 0.
《概率论》第2章§4连续型随机变量及其密度函数
密度函数是描述连续型随机变量取值 规律的工具,通常用大写字母f(x)表示 ,f(x)在x处的函数值表示随机变量在x 点附近取值的“概率密度”。
性质与定理
非负性
密度函数f(x)在整个实数范围 内都是非负的,即f(x)≥0。
正态分布
又称高斯分布,是一种连续概率分布。正态分布 是自然界中最常见的分布之一,许多自然现象和 社会现象都服从或近似服从正态分布。其密度函 数呈钟形曲线,关于均值对称。
指数分布
常用于描述某些随机事件发生之间的时间间隔, 如无线电通信中的信号到达间隔等,其密度函数 呈指数形式衰减。
其他分布
除了上述三种分布外,还有许多其他类型的连续 型随机变量分布,如t分布、F分布、贝塔分布等 。这些分布在实际问题中也有广泛的应用。
03 概率计算与应用
概率计算公式及方法
概率密度函数
常用的概率分布
对于连续型随机变量,其概率通过概率 密度函数进行描述,该函数表示随机变 量在某个取值点附近的概率分布情况。
ቤተ መጻሕፍቲ ባይዱ
如正态分布、均匀分布、指数分布等,这些 分布具有特定的概率密度函数和累积分布函 数形式,可用于描述不同类型的随机现象。
累积分布函数
性质
多维随机变量具有一维随机变量的一些基本性质,如分布函数性质、独立性等。此外, 多维随机变量还具有一些特殊的性质,如多维随机变量的每一个分量都是一维随机变量。
联合密度函数概念及性质
要点一
概念
对于多维连续型随机变量(X1, X2, ..., Xn),如果存在非负可积 函数f(x1, x2, ..., xn),使得对Rn中的任意区域D,有P{(X1, X2, ..., Xn) ∈ D} = ∫∫...∫f(x1, x2, ..., xn)dx1dx2...dxn,则 称f(x1, x2, ..., xn)为(X1, X2, ..., Xn)的联合密度函数。
连续型随机变量及其密度函数的概念与性质
连
续
型
离
散
型
知识点2.5
连续型随机变量及其密度函数的概念与性质
例1 设随机变量 的密度函数为
e− , > ,
() = ൝
≤ .
,
(1) 确定常数 ;
(2) 求{ > . } ; (3) 求 的分布函数().
解 (1)由归一性, 有
+∞
න
−∞
+∞
()d = න
e− d ≈ . .
.
()是分段表
达的, 求 ()
时也分段求.
当 x ≤ 0 时, F(x)=0.
当 x>0 时, () = න ()d = න e− d = − e− .
−∞
所以
− e− ,
() = ൝
,
> ,
≤ .
知识点2.5
连续型随机变量及其密度函数的
概念与性质
知识点2.5
连续型随机变量及其密度函数的概念与性质
离散型 可能值为离散可列个点,如,次品数.
随机
变量 连续型
可能值为某个区间,如,年降水量.
←分布律
←?
1. 概率密度函数定义
设()是随机变量 的分布函数, 若存
在非负函数 (), 使对任何实数 ,有
知识点2.5
故
连续型随机变量及其密度函数的概念与性质
− = + ,
→−
= + .
→
−
π
+
= − = ,
π
+
= + = .
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章
第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22/C53=1/10,P{X=4}=C32/C53=3/10,P{X=5}=C42/C53=3/5,所以X的分布律为求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60},即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1,当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)k p=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5. F(x)的图形见图.习题4设离散型随机变量X的分布函数为F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布;(2)P{X<2∣X≠1}.解答:(1)F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarc tanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞==23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-32=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-)=0.1,所以Φ(x-)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595. (2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2X2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={1/[2π(y-1)]e-(y-1)/4, y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同. 总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3) 8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于元, 元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出X(元),要使保险公司亏本,则必须X>即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于元}=P{-X≥}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.,即保险公司获利不少于元的概率在98%以上.P{保险公司获利不少于元}=P{-X≥}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.,即保险公司获利不少于元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X,300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x) 1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+ 1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2( 12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0..习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X 表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为所以注:随机变量的值相同时要合并,对应的概率为它们概率之和.习题20设随机变量X的密度为fX(x)={0,x<02x3e-x2,x≥0,求Y=2X+3的密度函数.解答:由Y=2X+3,有y=2x+3,x=y-32,x′=12,由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。
概率论与数理统计-2.2连续型随机变量及其分布
注意
概率为零的事件未必是不可能事件;
事件A是不可能事件
P( A) 0
概率为1的事件也不一定是必然事件
事件A是必然事件
P( A) 1
9
连续型随机变量的其它若干结论 (1) 0≤F(x)≤1, -∞<x<+∞,
(2) F(x)是 x 的单调不减函数;
(3) F () lim F ( x) 0
理解为:X落在区间[a,b]中任意等长度的子区间内的
可能性是相同的。或者说X落在子区间内的概率只依
赖于子区间的长度而与子区间的位置无关。即X取值 在[a,b]上是均匀的。
23
若X在[a,b]上服从均匀分布,对区间内的任一个区 间[c,d],有
0 a
d
[
c
] d
b
x
P(c X d ) f ( x)dx
分布函数为
a xb 其它
xa a xb xb
21
则称X在区间 [a,b]上服从均匀分布.记为X~U[a,b]
0, x a F ( x) , b a 1,
密度函数f (x)与分布函数F(x)的图形如图2.2.2和 图2.2.3所示
22
意义:
0
a
b
x
X“等可能”地取区间[a,b]中的值,这里的“等可能”
c
d c
1 d c dx ba ba
24
例2 102电车每5分钟发一班,在任一时刻某一乘
客到了车站. 求乘客候车时间不超过2分钟的概率.
解1:设随机变量X为候车时间,则X~U[0,5]均匀分布, 故
P( X 2) F (2)
解2 (几何概率)
0 2
连续型随机变量及其概率密度
问:怎样求一般正态分布的概率?
对一般的正态分布 :X ~ N ( , 2)
其分布函数 F( x)
1
e d t x
(t )2 2 2
2
作变量代换s
t
F(x)
1 2
x
s2
e 2ds
x
即 X ~ N ( , 2) 则 X ~ N ( 0 ,1)
P{a
X
b}
F (b)
222 0.3830
3) 0.6826 4) 0.4981
0.02
-10
-5
a
5
b
x
例1 有一批晶体管,已知每只的使用寿命 X 为 连续型随机变量,其概率密度函数为
f
(
x)
c x2
,
0,
x 1000 其它
( c 为常数)
(1) 求常数 c
(2) 已知一只收音机上装有3只这样的晶体管,
每只晶体管能否正常工作相互独立,求在
使用的最初1500小时只有一个损坏的概率.
(3) P(X>1.76)= 1 – P(X≤1.76)= 1 – Φ(1.76)
=1 – 0.9608 =0.0392 (4) P(X< – 0.78)= Φ(- 0.78) =1-Φ(0.78)
=1 – 0.7823 =0.2177 (5) P(|X|<1.55)= 2Φ(1.55) – 1 (6) P(|X|>1.55)= 1 – P(|X|<1.55)
即: P( X a) 0, a为任一指定值
事实上 { X a} {a x X a}
x 0
0 P{ X a} P{a x X a} aax f ( x)d x
连续型随机变量及其概率密度
1. 均匀分布
设连续型随机变量
X
具有概率密度f
(
x)
b
1
a
,
a x b,
0,
其它,
则称 X 在区间 (a, b) 区间上服从均匀分布,记为 X ~ U (a, b).
说明:
对c, l R, 如果(c, c l ) (a, b), 则
cl
l
P(c X c l ) c
f ( x)dx ba
1
( x )2
e , 2 2
2
x
, ( 0)为常数, 则称X服从正态分布,记作:X : N(, 2).
0, 1时, X : N (0,1)
概率密度: ( x)
1
x2
e2
2
说明:
f(x)满足概率条件: f(x) 0,
+ f(x)dx 1 -
证明(2): 令 x- t, 则x t, dx dt
解 : (1) 由概率密度的定义 :
f ( x)dx 1
-
f ( x)dx
3 C(9 x2 )dx 1
-
-3
C 1 36
(2)
P{ X 0}
0 -3
1 36
(9
x2 )dx
1 36
(9x
x3 3
)
|03
1 2
P{1 X 1} 1 1 (9 x2 )dx 13
-1 36
k 0
n大,p小,np=3,用=np=3的泊松近似
上式 1 N 3k e3 0.01
k0 k !
N 3k e3 0.99
k0 k !
查泊松分布表,最小N=8。至少配8名维修工。
连续型随机变量及其概率密度
是一个随机变量, 且X ~ N (d , 0.52 ).
(1) 若d 90, 求 X 小于 89 的概率.
(2) 若要求保持液体的温度至少为 80oC 的概率不
低于 0.99,问d 至少为多少? 解 (1) 所求概率为
P{ X
89}
89 90 0.5
(2)
1
(2)
三、小结
1. 连续型随机变量
x
F(x) f (t)dt
分布函数 概率密度
2. 常见连续型随机变量的分布
均匀分布
正态分布(或高斯分布)
指数分布
3. 正态分布是概率论中最重要的分布 正态分布有极其广泛的实际背景, 例如测量
误差, 人的生理特征尺寸如身高、体重等 ,正常 情况下生产的产品尺寸:直径、长度、重量高度, 炮弹的弹落点的分布等, 都服从或近似服从正态 分布.可以说,正态分布是自然界和社会现象中最 为常见的一种分布, 一个变量如果受到大量微小 的、独立的随机因素的影响, 那么这个变量一般 是一个正态随机变量.
F(x)
1
1x
e 2000
,
0,
x 0, x 0.
(1) P{X 1000} 1 P{X 1000} 1 F (1000)
1
e 2 0.607.
(2) P{ X 2000 X 1000} P{ X 2000, X 1000} P{ X 1000} P{ X 2000} P{ X 1000}
1
e
(
x μ 2σ2
)2
d
x
连续型随机变量及其概率密度函数
一、连续型随机变量的概念 定义2.8 设随机变量 的分布函数为 F (x ) ,若存在非负可 设随机变量X的分布函数为 定义 积函数 f (x ),使得对于任意实数 x ,都有 x (2—15) ) F ( x ) = ∫ f ( x )dx
∞
则称X为连续型随机变量, 则称 为连续型随机变量, 称 f (x )为X的概率密度函数 的 (Probability Density Function),简称概率密度或密度 ),简称概率密度或密度. ),简称概率密度或密度 由定义可知,连续型随机变量X的分布函数 由定义可知,连续型随机变量 的分布函数 F (x)在x点的函 点的函 上的积分. 数值等于其概率密度函数 f (x )在区间( ∞, x] 上的积分. 类似于离散型随机变量, 类似于离散型随机变量,连续型随机变量 f (x )的概率密度 函数具有如下基本性质: 函数具有如下基本性质:
P { x1 < X ≤ x 2 } = Φ ( x2
σ
) Φ(
x1
σ
)
关于标准正态分布,一个重要的公式是: 关于标准正态分布,一个重要的公式是:对于任意实数 x . Φ ( x) + Φ ( x) = 1 (2-31) 的定义证明或由下图说明.这里就不做证明了. 这可用 Φ(x ) 的定义证明或由下图说明.这里就不做证明了
∞
σ x+
1 2π σ
( x )2
2σ
2
e
∫
x ∞
1 2π
e
t2 2
dt
(令 σ = t ) 令
x
所以 X * ~ N (0, 1).
这样我们便有如下定理: 这样我们便有如下定理: 2 定理2.2 若 X ~ N ( , σ ),其分布函数为F ( x ) ,则对任意 定理 实数 ,有 x (2—29) ) F (x) = Φ ( )
连续型随机变量及其概率分布
b
利用概率密度可确 定随机点落在某个 范围内的概率
f (x) (4)在 f (x) 的连续点 x 处, F(x)=
注:
(1)连续型随机变量 X 的分布函数F(x)处处连续. (2)连续型随机变量取任一指定实数值a 的概
P X = a=. 0 (3) 率均为0. 即
P X a F ( a ) l i m F ( a x ) = F ( a ) F ( a ) = 0
例. 设X服从参数为3的指数分布,求它的密度函数 ( 1 X 2 ) 及 P( X 1) 和 P
3 e 3 x x 0 解: X 的概率密度 f ( x ) x 0 0
P ( x X x ) xd )x 1 2 f(
x 1
3 P ( X 1 ) fx ( ) d x 3 e d x e 1 1 3 x
, 正 态 分 布 , 记 为
2
X ~N ( ,2)
具有下述性质 fx :
正态分 布曲线
1
曲线 f x 关于 轴对称;
P μ X μ h P μ hX μ h 0
1 时 , 取最大值 f( ) 2 x 2
常见的连续型随机变量
1. 均匀分布
定义:若 随机变量 X的概率密度为:
1 , a x b f (x) ba , 其它 0
f ( x)
1 b a
a
b
则称X在区间[ a, b]上服从均匀分布, 记作 X ~ U(a, b)
X的分布函数为:
1 , a x b f (x) ba , 其它 0
连续型随机变量及其概率分布
t 0, t 0.
7
二、连续型随机变量的密度函数 随机变量X 在区间( x, x x)上的平均概率分布密度:
P( x X x x) x
随机变量X 在点 x 处的概率分布密度(或概率密度)为:
P( x X x x)
f ( x) lim
x0
x
连续型随机变量的分布函数F x 与概率密度f x 有如下关系:
复习
§2.1 随机变量及其分布函数
一、随机变量的概念
基本事件
二、随机变量的分布函数
F(x) PX x
X ()
(1) 0 F(x) 1 (2) F(x) 是单调不减的函数;
(3) F() 1 F() 0
(4) F(x) 是右连续的函数.
(5) Px1 X x2 F(x2 ) F(x1 )
P(10 X 30) P(40 X 60) 30 1 dx 60 1 dx 2 .
10 60
40 60 3
19
均匀分布在实际中经常用到,比如一个半径为r的汽 车轮胎,当司机刹车时,轮胎接触地面的点与地面摩 擦会有一定的磨损. 轮胎的圆周长为2r,则刹车时与 地面接触的点的位置X应服从[0, 2r]上的均匀分布, 即 X~U[0, 2r] ,即在 [0, 2r] 上任一等长的小区间 上发生磨损的可能性是相同的,这只要看一看报废轮 胎的整个圆周上磨损的程度几乎是相同的就可以明白 均匀分布的含义了.
对任意实数 x ,有
x
F(x) f (t)dt
则 X 称为连续型随机变量,称 f (x)为 X 的概率密度函数
或分布密度函数,简称为概率密度或密度函数.
利用上述定义,我们可以很容易地推出概率密度的性质
11
连续型随机变量及其概率密度
PX G f xdx (此公式非常重要)
G
f (x)
o
x
要注意的是,密度函数 f (x)在某点处a 的高度,并不反映X取值的概率. 但是,这 个高度越大,则X取a附近的值的概率就越 大. 也可以说,在某点密度曲线的高度反 映了概率集中在该点附近的程度.
1
( x )2
e , 2 2 x
2
6 f (x) 以 x 轴为渐近线
当x→ ∞时,f(x) → 0.
根据对密度函数的分析,也可初步画出正态分布 的概率密度曲线图.
正态分布N (, 2 ) 的图形特点
称为位置参数
正态分布的密度曲线是一条关于 对
称的钟形曲线. 特点是“两头小,中间大,左右对称”.
由定义知道:连续型随机变量的分布函数是连续函数
2 概率密度的性质
1 非负性 f (x) 0
2 规范性
f (x)dx 1
利用概率密度可确 面积为1
定随机点落在某个
范围内的概率
这两个性质是判 断一个函数是否 为一个连续型 r.v.X的概率密度 的充要条件
f (x)
分布曲 线
o
x
3
0θ
x
x0
x
注意 1)无记忆性;
对于任意s,t 0有:PX s t X s PX t
PX
s
t
X
s
连续型随机变量及其密度函数
则称 X 服从参数为 的指数分布.
常简记为 X~E( ) .
指数分布常用于可靠性统计研究 中,如元件的寿命.
例2 设某电话交换台等候第1个呼叫来到的时
间X服从参数为λ的指数分布。若已知第1个
1
呼求叫第在1个5分呼钟叫到在1200分 分钟钟以之后间才来来到到的的概概率率为。4 ,
解 P(5 X 10) 10 e xdx 1 e5 1
若不计高阶无穷小,有:
P{x X x x} f (x)x
它表示随机变量 X 取值于(x, x x] 的 概率近似等于 f (x)x.
f (x)x 在连续型r.v理论中所起的作用与 P( X xk ) pk 在离散型r.v理论中所起的 作用相类似.
需要指出的是:
连续型r.v取任一指定值的概率为0.
正态分布的密度曲线是一条关于 对
称的钟形曲线. 特点是“两头小,中间大,左右对称”.
正态分布N (, 2 ) 的图形特点
决定了图形的中心位置, 决定了图形
中峰的陡峭程度.
标准正态分布
0, 1的正态分布称为标准正态分布.
其密度函数常用 (x) 表示:
(x)
1
x2
e 2,
x
2
( x)
即: P( X a) 0, a为任一指定值
这是因为
P( X a) lim P(a X a x)
x0
ax
lim
f (x)dx
x0 a
0
由此得, 对连续型 r.v X,有
P(a X b) P(a X b)
P(a X b) P(a X b)
由于连续型 r.v唯一被它的密度函数所确 定. 所以,若已知密度函数,该连续型 r.v 的概率规律就得到了全面描述.
连续型随机变量及其概率密度函数
但要注意的是:密度函数 f (x)在某点处 a 的高度, 并不反映X 取值的概率. 但是,这个高度越大, 则 X 取 a 附近的值的概 率就越大. 也可以说, 在某点密度曲线的高度 反映了概率集中在该点 附近的程度.
f (x)
o
f ( x )x 在连续型
随机型变量理论中所 的作用与
x
P ( X xk ) pk
100
x 100
一般称:
若 X 具有概率密度:
1 x e f ( x ) 0
x0 x0
0
则 称 X 为服从参数 的 指数分布.
概率统计
二 . 连续型随机变量的分布函数 定义: 若定义在 (, ) 上的可积函数 f ( x ) 满足: (1). f ( x ) 0
x 2a
]
x 0
1 e
x 2a
0 综合上述得: F ( x ) x2 2a 1 e
x0 x0
1 2a
(2). P (0 X 1) F (1) F (0) 1 e
概率统计
例5. 设连续型随机变量 X 的密度函数为 f (x)
求 : F(x) 解: 当
x
f ( x )dx
当 x 0 时 f ( x) 0
F ( x ) 0 dx 0
x
概率统计
x 当 x 0 时 f ( x) e a x2 0 x x F ( x ) 0 dx e 2a dx 0 a 2 2
x2 2a
[ e
2 1 x2 , 1 x 1 f ( x ) 0, 其它
高等数学-概率2.2随机变量的分布
1 4 且 P = ,求常数a,b。 2 5
复习与总结
(1) F(x)=P{X≤x} 求概率: P{a<X≤b}=F(b)-F(a); (2) 离散型r.v.X,常用分布列描述
X
x1 p1
x2 p2
…… ……
xn pn
…… ……
pk
F(x)与分布列的关系(略) 求概率: P{a<X≤b} Pk
第二章 随机变量
第二节 随机变量的分布
一、离散型随机变量的分布
设X是一个离散型随机变量,它可能取的 值是 x1, x2 , …, xn,… 为了描述随机变量 X ,我们不仅需要 知道随机变量X取哪些值,而且还应知道 X取每个值的概率.
例1
从中任取3 个球
取到的白球数X是一个随机变量
X可能取的值是0,1,2
P X x
k
k :xk x
pk
x x1 0, p , x1 x x2 1 p1 p2 , x2 x x3 F x p1 p2 pk , xk x xk 1
(1)连续型随机变量X的所有可能取值 充满一个区间, 不可列; (2)X取某一个具体的值的概率为零, 意义不大。
例如:某公共汽车站每隔5分钟有一辆汽 车通过,一位乘客对该汽车的通车时间 一无所知,则该乘客的候车时间是一个 连续型随机变量X。
(1)X的取值充满区间[0,5]. (2)P{X=2.859}=0,无太大意义. (3)考虑P{a<X≤b} = P{X≤b}- P{X≤a}
(5)连续型r.v.X取单点值的概率为0,即
对 a ,P{X=a}=0。 (6)P{a≤X≤b}=P{a≤X<b}=P{a<X<b} b =P{a<X≤b} a f x dx
连续型随机变量及概率密度
2021/8/17
7
0 x 0
ex1.设X的分布函数为 F(x) x 0 x 1,
求X的分布密度 f (x).
1 x 1
解 f(x ) F (x ),
而端点处情况可人为规定.
f(x)10
0x1 其它
orf(x) 10
1(1e2)5.
2021/8/17
16
三、正态分布
1. 正态分布的定义
如果连续型随机变量X的概率密度为
f(x)
1
(x)2
e 22
2
( x)
其 , 中 (0 )为,常 则 X 服 数 称从 , 参 的数 正
分布或 .记 高 X 为 ~N 斯 (,2)分 . 布
特,令 别 0 ,地 1 得 (x) 1 2ex22 ( x)
且 1 (z) ( z) 2
2
2
从 2021/8而 /17 (z2)12
z
2
( x)
O z x
( x)
2
O z x
2
26
e5 .x 设 X ~ N (1,9 0 ) N 8 (1,3 0 2 )8 , (1 )求 P { 1.1 0 X 1 1.6 1 }7 ;
( 2 ) 求 a 使 P { X a } 0 .9 ;
f (x)
面积为1
o
x
( 3 )P { x 1 X x 2 } F ( x 2 ) F ( x 1 ) x x 1 2 f ( x ) d ;x
(4)在 f(x)的连,F 续 (x)点 f(x);处
2021/8/17
5
在 f(x)的不连 ,F续 (x)不 点 存 ;处 在 (用 F (x 0 ) lx i0 F m (x 0 x x ) F (x 0 )证 ) 明 (5 )对任 a ,P { X 意 a } F ( 实 a ) F (a 数 0 ) 0 ;
连续型随机变量及其密度函数
即f ( x)不是X取值x的概率,而是它在x点 概率分布的密集程度 .因此,f ( x)的大小能 反映出X在x附近取值的概率的大小 .
密度函数的性质:
1. f ( x) 0
2.
f ( x)dx 1
注意:
1. 求f ( x)中的参数:利用 f ( x)dx 1;
2. 求F ( x)中的参数:F () lim F ( x) 0;
例 3: 设随机变量 X 的密度函数为
0 x 1 Ax( x 1), f ( x) 0, 其他
(1) 确定常数 A; (2)
1 P ( 1 X ) 计算概率 2 .
解
1
(1)由密度函数性质
6 Ax3 Ax2 1 5 f ( x)dx Ax( x 1)dx ( A ) |0 A 0 3 2 6 5
任取其中 5 只,求: (1) 使用最初 150 小时内,无一晶体管损坏的概率. (2) 使用最初 150 小时内,至多有一只晶体管损坏的 概率.
解
100 , x 100 因为X~ f ( x) x 2 0, x 100
p P( X 150)
150
对任意的实数a<b
① P(a X b) F (b) F (a)
b
f (t )dt
a
f (t )dt
f (t)dt
a
b
即X落在区间的概率为密度函数y=f(t)与直线 t=a,t=b及t轴所围面积.
②X取任意单点值a的概率
P( X a ) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 2
0
2
上述两个式子请熟练掌握,它在以后的计算中经常用到.
3. 正态分布的简单性质 (1) f ( 2) f ( x)在(, )上严格上升,在( ,)上严格下降, 在x 点处达到最大值,
当x 或x 时f ( x) 0;
(3) f ( x)的两个拐点的横坐标为x ;
即 z
(
x)dx
且1 (z )
从而(z ) 1
P{ X z } ,
2
即 z
(
2
x)dx
z
2
(
x)dx
且1 (z ) (z ) 2
2
2
从而(
z
2
)
1
2
z
2
(x)
O
z x
(x)
2
O
z x
2
ex5.设X ~ N (108,9) N (108,32 ),
(1)求P{101.1 X 117.6};
服从正态分布,如,测量误差、炮弹落点距目标的偏差、海 洋波浪的高度、一个地区的男性成年人的身高及体重、考试 的成绩等.正是由于生活中大量的随机变量服从或近似服从 正态分布,因此,正态分布在理论与实践中都占据着特别重 要的地位.
ex7.求 0.05的上侧分位点与双侧分位点.
解 0.05,
由(z0.05 ) 1 0.05 0.95,
同理, P{ X 2 } 2(2) 1 0.9544. P{ X 3 } 2(3) 1 0.9974.
由此可见,在一次试验中随机变量X的取值几乎总是
落在( 3 , 3 )之中. 这就是"3规则".
可见, 服从正态分布N, 2 的随机变量X,虽然理论上可以
取任意实数值,但实际上它的取值落在区间 , 内的概 率约为68.26 %;落在区间 2, 2 内的概率约为95.44 %,落
如果连续型随机变量X的概率密度为
f (x)
1
( x )2
e 2 2
( x )
2
其中, ( 0)为常数,则称X服从参数为,的正态 分布或高斯分布. 记为X ~ N ( , 2 ).
特别地,令 0, 1得 ( x)
1
x2
e2
( x )
2
称X服从标准正态分布. 记为X ~ N (0,1).
P{a X b} F (b) F (a) (b ) (a ).
用于利用标准正态分布表计算事件的概率.
(7) f ( x) 1 ( x );
(8) 若X ~ N ( , 2 ),Y X ,则Y ~ N (0,1);
(9) 分布密度函数图形中,σ越大,曲线越平坦; σ越小,曲线越尖陡.
(2a 108) 0.99,
3
3
查表得 2a 108 2.33, a 57.495. 3
ex6.设X ~ N ( , 2 ),则 P{ X } P{ X } F( ) F( )
( ) ( )
(1) (1) 2(1) 1 0.6826.
其分布函数为:
0,
F
(
x
)
x b
a a
,
1 ,
xa a xb xb
2.
指数分布 若 r.vX的概率密度为:
f
(
x
)
1
e
x
,
x0
0, x 0
其中 0为常数,则称X服从参数为的指数分布.
记为X ~ E( ).
其分布函数为:
F
(
x)
1
e
x
,
x0
0,
x0
指数分布常用于可靠性统计研究中,如元件的寿命.
(4) ( x)为偶函数,关于x 0对称,即( x) ( x), f ( x)关于x 对称,即f ( x) f ( x);
(5) ( x) 1 ( x);
证
(
x)
x
1
t2
e 2 dt
2
令t y
x
1
y2
e 2 dy
2
x
x
x
1
x
1
y2
e 2 dy
2
1 ( x).
另外还有几个重要公式:
P{x1 X x2} (x2 ) (x1)
P{ X x} (x) (x) 2(x) 1
P{ X x} 2[1 (x)]
(6) F ( x) ( x );
证
F ( x) x
1
(t )2
e 2 2 dt
2
t z
x
1
2
z2
e 2 dz
( x ).
注意 若X ~ N ( , 2 ),则
则顾客未等到服务而离去的概率为
p
P{Y
10}
1
e
1 5
x
dx
10 5
e2.
X的分布律为
P{ X k} C5ke2k (1 e2 )5k (k 0,1,2,3,4,5).
P{X 1} 1 P{X 0} 1 C50(1 e2 )5
1 (1 e2 )5.
三、正态分布
1. 正态分布的定义
在区间 3 , 3 内的概率99.74%.因此,服从正态分布N, 2
的随机变量X落在区间 3, 3 之外的概率约0.26%,还不到 千分之三,这是一个小概率事件,在实际中认为它几乎不可
能发质生,这就是著名的“3 ”准则.它在实际中常用来作为
量控制的依据. 在自然现象和社会现象中, 大量的随机变量都服从或近似
F( x)
P{ X
x}
x
f
(t )dt
则称X为连续型随机变量,其中函数f ( x)称为X的
概率密度函数,简称概率密度.
2. 概率密度函数的性质
(1) f ( x) 0;
(2)
f
(
x)dx
1;
这两条性质是判定一个 函数 f(x)是否为某r.vX的 概率密度函数的充要条件.
f (x)
面积为1
o
x
(3)
1. 均匀分布 若 r.vX的概率密度为:
f (x)
f
(
x)
b
1
a
,
a xb
0, 其它
ab
则称X服从区间( a, b)上的均匀分布,记作:X ~ U(a, b)
它的实际背景是: r.v X 取值在区间(a, b) 上,并且 取值在(a, b)中任意小区间内的概率与这个小区间的 长度成正比. 则 X 具有(a,b)上的均匀分布.
ex2.设随机变量X的密度函数为
f
(
x)
a
cos
x
x
2
2
0
其它
求(1)a,(2)F ( x),(3)P{0 X }.
4
解 (1)由 f ( x)dx 1得
1 2a cos xdx 2a,
a 1. 2
2
(2)当x
2
时,
F
(
x)
x
0dx
0;
当
2
x
时, F ( x)
2
x
f
( x)dx
(2)求a使P{ X a} 0.9;
(3)求a使P{| X a | a} 0.01.
解 (1)P{101.1 X 117.6} F(117.6) F (101.1)
(117.6 108) (101.1 108)
3
3
(3.2) (2.3)
查表
0.9993 0.0107 0.9886.
连续型随机变量X所有可能取值充满一个区间, 对这 种类型的随机变量, 不能象离散型随机变量那样, 以 指定它取每个值概率的方式, 去给出其概率分布, 而 是通过给出所谓“概率密度函数”的方式.
1. 连续型r.v及其密度函数的定义
如果对于随机变量X的分布函数F ( x),存在非负
函数f ( x),使对于任意实数x,有
从而 P{ x1 X x2} P{ x1 X x2}
P{ x1 X x2}
P{ x1 X x2}
x2 x1
f ( x)dx.
注意:
(1) F(x)为连续函数;
(2) 概率为0的事件,不一定是不可能事件;同样地 概率为1的事件,不一定是必然事件.
(3) 对于连续型随机变量,求区间上的概率时可以不 考虑端点的情况,而离散型随机变量得特别注意.
查表得z0.05 1.65或1.64;
由( z 0.05
2
)
1
0.05 2
0.975,
查表得z0.05 1.96.
2
四、注意事项及课堂练习 注意区别以下概念:
离散型:概率分布、分布律 连续型:概率密度、分布密度、密度函数
pk
分布函数F ( x)
P{ X
x}
xk
x
x f (t)dt
The end
x
1 2
cos
xdx
1 2
(sin
x
1);
2
当x
时, F ( x)
2
x
f
( x)dx
2
1 cos 2
xdx
1.
2
0
F
(
x)
1
2
(sin
x
1)
1
x
2
x
2
2
x
2
(3)P{0 X } F ( ) F (0) 2 ,
4
4
4
或P{0
X
}
4
04
1 cos 2
xdx
2. 4
二、几种常用的连续型分布
4. 分位点
设X ~ N (0,1),0 1.