因式分解方法大全1

合集下载

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。

在因式分解的过程中,有许多不同的方法可以使用。

下面将介绍因式分解的十二种常见方法。

一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。

它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。

例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。

二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。

通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。

例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。

三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。

它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。

例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。

五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。

它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。

根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。

例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。

六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。

它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。

例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是一种将一个多项式分解成两个或更多个乘积的过程。

在数学中,因式分解是非常重要的概念,它能够帮助我们简化复杂的多项式表达式,从而更容易理解和计算。

在本文中,我将介绍并解释十二种常见的因式分解方法,每种方法都将详细讨论。

1.因式分解公式:因式分解公式是因式分解的基础,它是一些常见多项式的因式分解形式。

例如,平方差公式:$a^2 - b^2 = (a+b)(a-b)$,立方差公式:$a^3 - b^3 = (a-b)(a^2+ab+b^2)$,以及完全平方差公式:$a^2 - 2ab + b^2 = (a-b)^2$。

2.分组因式分解法:分组因式分解法适用于四项多项式,其中第一项和第四项以及第二项和第三项具有共同的因子。

我们将共同因子提取出来,然后重新组合表达式以实现因式分解。

例如,对于多项式$x^3-3x^2+4x-12$,我们可以将它分解为$(x^3-3x^2)+(4x-12)$,然后分别因式分解这两个分组。

3.提公因式法:提公因式法是一种常见的因式分解方法,它适用于多项式中存在公共因子的情况。

我们将公共因子提取出来,并将之前的每一项除以这个因子。

例如,对于多项式$2x^2+4x$,我们可以提取公共因子2,然后因式分解为$2(x^2+2x)$。

4.求和差式的因式分解法:求和差式的因式分解法适用于多项式中存在两个项的和或差的形式的情况。

我们根据求和差式的公式将多项式分解为两个因式的乘积。

例如,对于多项式$x^2+5x+6$,我们可以因式分解为$(x+2)(x+3)$,其中$(x+2)$和$(x+3)$是求和差式的因式。

5.平方差式的因式分解法:平方差式的因式分解法适用于多项式中存在两个项的平方差的形式的情况。

我们根据平方差式的公式将多项式分解为两个因式的乘积。

例如,对于多项式$x^2-4$,我们可以因式分解为$(x+2)(x-2)$,其中$(x+2)$和$(x-2)$是平方差式的因式。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法因式分解是一种将一个数或代数式分解成更简单的乘积的方法。

在数学中,有很多种因式分解的方法可以使用,根据不同的情况可以采用不同的方法,下面将介绍十二种常见的因式分解方法。

1.提取公因子法:当一个式子存在公因子时,可以先将公因子提取出来,然后再进行进一步的因式分解。

2. 公式法:利用公式进行因式分解,例如(a+b)^2=a^2+2ab+b^23.分组法:将一个多项式按照不同的组合方式进行分组,然后再分别进行因式分解,最后将得到的结果合并。

4.平方差公式法:对于一个二次型式,可以利用平方差公式进行因式分解,例如a^2-b^2=(a+b)(a-b)。

5. 完全平方公式法:对于一个完全平方式,可以通过完全平方公式进行因式分解,例如a^2+2ab+b^2=(a+b)^26. 二次因式法:对于一个二次多项式,可以通过二次因式法进行因式分解,例如ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为方程ax^2+bx+c=0的根。

7.和差立方公式法:对于一个和差立方的多项式,可以通过和差立方公式进行因式分解。

8. 因式分解的配方法:通过配方法进行因式分解,例如ab+ac=a(b+c)。

9.分解因式法:将一个多项式根据不同的性质进行因式分解,例如差平方分解、和的平方分解等。

10.二次根与一次根相结合法:对于一个多项式,通过将二次根与一次根相结合,得到更简单的因式分解结果。

11. 分组求积法:对于一个多项式,可以通过分组求积法进行因式分解,例如(a+b)(c+d)=ac+ad+bc+bd。

12.全等公式法:利用全等公式进行因式分解。

以上是常见的十二种因式分解方法。

不同的方法适用于不同的情况,需要根据具体的问题选择合适的方法进行因式分解。

因式分解是数学中的一个重要概念,通过因式分解可以简化计算过程,提高解题效率。

因此,掌握不同的因式分解方法对于提高数学能力和解决实际问题都有很大的帮助。

因式分解的14种方法讲解

因式分解的14种方法讲解

因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。

在因式分解过程中,有多种方法可以使用。

下面我将为您介绍14种常见的因式分解方法。

方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。

例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。

方法二:配方法2. 配方法适用于二次型多项式的因式分解。

对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。

例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。

方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。

这种情况下,可以将其分解为两个因子(x+a)(x-a)。

方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。

例如,x²-y²可以通过公式(x-y)(x+y)分解。

方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。

这种情况下,可以将其分解为平方项的和或差。

(a ± b)²。

方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。

这种情况下,可以分解为两个平方差相乘。

方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。

这种情况下,可以将其分解为立方项的和或差。

(a ± b)(a² ∓ ab + b²)。

方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。

这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。

方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。

因式分解十二种方法公式

因式分解十二种方法公式

因式分解十二种方法公式因式分解是数学中的一个重要概念,它可以将一个多项式分解为若干个因子的乘积。

在因式分解中,有许多不同的方法和公式可以使用。

下面将介绍十二种因式分解的方法和公式。

一、公式法公式法是一种较为常用和简便的因式分解方法。

它利用一些已知的公式,将多项式分解为更简单的形式。

例如,我们可以利用平方差公式将一个二次多项式分解为两个一次多项式的乘积。

又如,利用差平方公式可以将一个二次多项式分解为两个一次多项式的乘积。

二、提公因式法提公因式法是一种常见的因式分解方法。

它利用多项式中的公因式,将多项式分解为公因式和余项的乘积。

通过提取公因式,可以简化多项式的形式,便于后续的计算和分解。

三、配方法配方法是一种常用的因式分解方法,它适用于多项式中存在二次项的情况。

配方法通过将多项式中的一部分进行配方,从而将多项式分解为两个简化的多项式的乘积。

这种方法常用于分解二次多项式,可以将其分解为两个一次多项式的乘积。

四、分组分解法分组分解法是一种适用于四项多项式的因式分解方法。

它通过将多项式中的项进行分组,从而将多项式分解为多个简化的多项式的乘积。

这种方法常用于分解四项多项式,可以将其分解为两个二次多项式的乘积。

五、和差化积法和差化积法是一种常用的因式分解方法,它适用于多项式中存在和差项的情况。

和差化积法通过将多项式中的和差项进行化简,从而将多项式分解为简化的多项式的乘积。

这种方法常用于分解多项式中的高次项。

六、平方差公式平方差公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。

平方差公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。

七、差平方公式差平方公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。

差平方公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。

八、立方差公式立方差公式是一种常用的因式分解公式,它用于将一个立方多项式分解为两个一次多项式的乘积。

因式分解的14种方法

因式分解的14种方法

因式分解的14种方法因式分解是将一个多项式进行拆解,使其表示为更简洁的乘积形式。

因式分解可以帮助我们简化复杂的计算或者解决一些与多项式相关的问题。

在本文中,将会介绍14种常见的因式分解方法。

1.公因式提取法:当多项式中的每一项都有相同的因子时,可以将这个公因式提取出来。

例如,将多项式2x+4y表示为2(x+2y)。

2.平方差公式:当一个多项式可以写成两个平方项之差时,可以通过平方差公式进行因式分解。

例如,将多项式x^2-4表示为(x-2)(x+2)。

3.完全平方公式:当一个多项式可以写成一个平方项加上一个常数项时,可以通过完全平方公式进行因式分解。

例如,将多项式x^2+6x+9表示为(x+3)(x+3)。

4.平方和公式:当一个多项式可以写成两个平方项之和时,可以通过平方和公式进行因式分解。

例如,将多项式x^2+6x+9表示为(x+3)(x+3)。

5.差平方公式:当一个多项式可以写成两个项的平方差时,可以通过差平方公式进行因式分解。

例如,将多项式x^4-16表示为(x^2+4)(x^2-4)。

6.二次差公式:当一个多项式可以写成两个项的二次差时,可以通过二次差公式进行因式分解。

例如,将多项式x^4-16表示为(x^2+4)(x^2-4)。

7.和积公式:当一个多项式可以写成两个项的和乘以另外一个因子时,可以通过和积公式进行因式分解。

例如,将多项式x^2+3x+2表示为(x+1)(x+2)。

8.差积公式:当一个多项式可以写成两个项的差乘以另外一个因子时,可以通过差积公式进行因式分解。

例如,将多项式x^2-3x+2表示为(x-1)(x-2)。

9.二次和公式:当一个多项式可以写成两个平方项之和以及另外一个项的平方时,可以通过二次和公式进行因式分解。

例如,将多项式x^4+4x^2+4表示为(x^2+2)^210.幂次差公式:当一个多项式可以写成一个项的两个幂次差的形式时,可以通过幂次差公式进行因式分解。

例如,将多项式x^6-y^6表示为(x^3+y^3)(x^3-y^3)。

因式分解的9种方法

因式分解的9种方法

因式分解的9种方法因式分解是代数学中的一项重要内容,可以将一个复杂的代数表达式分解成简单的乘积形式,从而便于计算和理解。

在因式分解过程中,根据不同的情况和不同的代数表达式,可以采用多种方法进行分解。

下面将介绍常见的九种因式分解方法。

一、公因式法公因式法是因式分解中最常用的方法之一、公因式法适用于含有公因式的多项式表达式。

它的基本思想是找出多项式表达式中所有项的最高次幂的公因式,然后将整个表达式除以这个公因式进行分解。

例如:4x^3+2x^2-6x可以分解为2x(2x^2+x-3)。

二、配方法配方法适用于含有二次项和一次项的多项式表达式。

它的基本思想是通过增加一个适当的常数因子,使得多项式表达式可以分解成两个完全平方的形式相加或相减。

例如:x^2+2x+1可以分解为(x+1)(x+1)。

三、平方差公式平方差公式适用于含有二次项且系数为1的多项式表达式。

它的基本思想是将多项式表达式表示为两个完全平方的差。

例如:x^2-4可以分解为(x+2)(x-2)。

四、差两个平方公式差两个平方公式适用于含有平方项的多项式表达式。

它的基本思想是利用两个完全平方的差进行分解。

例如:x^4-16可以分解为(x^2+4)(x^2-4)。

五、两项平方和公式两项平方和公式适用于含有平方项和常数项的多项式表达式。

它的基本思想是将多项式表达式表示为两个平方项的和。

例如:x^2+6x+9可以分解为(x+3)(x+3)。

六、组合法组合法适用于含有三项或三项以上的多项式表达式。

它的基本思想是根据多项式表达式中各项间的关系,将表达式分解为不同的组合。

例如:x^3+x^2+x+1可以分解为(x^2+1)(x+1)。

七、分组法分组法适用于含有四项或四项以上的多项式表达式。

它的基本思想是将多项式表达式进行适当的分组,然后在每一组内进行因式分解。

例如:x^3+2x^2+x+2可以分解为(x^3+x)+(2x^2+2)=x(x^2+1)+2(x^2+1)=(x+2)(x^2+1)。

因式分解的五种方法

因式分解的五种方法

因式分解的五种方法一、提公因式法。

这就像是从一群小伙伴里找出那个共同的小头目一样。

比如说,对于式子3x + 6,3就是公因式呀。

我们就可以把它提出来,写成3(x + 2)。

你看,就这么简单,把公共的部分先拎出来,就像把大家共有的宝贝先拿出来放一边,剩下的部分放在括号里。

这是因式分解里最基础也是最常用的方法哦。

二、公式法。

这里面有平方差公式和完全平方公式呢。

平方差公式就是a^2 - b^2=(a + b)(a - b)。

就像两个数的平方相减,就能变成这样两个数的和与差的乘积。

比如说9x^2 - 16,这就是(3x)^2 - 4^2,那它就可以分解成(3x + 4)(3x - 4)啦。

完全平方公式有a^2+2ab + b^2=(a + b)^2和a^2 - 2ab + b^2=(a - b)^2。

要是看到式子长得像这样,那就可以直接用公式啦。

像x^2+4x + 4,这里a=x,b = 2,它就是(x +2)^2呢。

三、分组分解法。

这个方法就有点像给小伙伴们分组做游戏啦。

比如对于式子ax + ay + bx + by,我们可以把前面有a的放在一组,后面有b的放在一组,就变成了a(x + y)+b(x + y),然后再提公因式(x + y),最后得到(a + b)(x + y)。

是不是很神奇,就像把不同的小团队又组合成了一个大团队。

四、十字相乘法。

这个方法就像在玩一个十字交叉的小魔术。

对于二次三项式ax^2+bx + c(a≠0)。

比如说x^2+3x + 2,我们要找到两个数,它们相乘等于c(这里是2),相加等于b(这里是3),那就是1和2啦。

然后就可以写成(x + 1)(x + 2)。

就像把数字在一个十字框架里找到合适的搭配一样,特别有趣。

五、添项、拆项法。

这个方法就有点调皮啦。

比如说对于式子x^3 - 3x^2+4,我们可以把4拆成-x^2 + x^2+4,然后式子就变成x^3 - 3x^2 - x^2+ x^2+4,再分组变成(x^3 - 4x^2)+(x^2+4),接着继续分解。

因式分解的13种方法

因式分解的13种方法

因式分解的13种方法因式分解是将多项式分解成几个因式的乘积的过程。

它是代数中的一个重要技巧,可以帮助我们简化计算、解方程、求根等。

以下是13种常见的因式分解方法。

方法一:提公因式法提公因式法是将多项式的共同因子提出来,使得多项式可以分解为几个因子的乘积。

例如,对于多项式2x^2+4x,我们可以提取公因式2x,得到2x(x+2)。

方法二:分组提公因式法分组提公因式法是将多项式中的项按照一定的规则进行分组,然后分别提取每组的公因式。

例如,对于多项式2x^3+4x^2+3x+6,可以将其分组为(2x^3+4x^2)+(3x+6),然后对每个组提取公因式,得到2x^2(x+2)+3(x+2),再提取公因式(x+2),最终得到(x+2)(2x^2+3)。

方法三:差平方公式差平方公式是指a^2-b^2=(a+b)(a-b)。

如果我们遇到一个差平方的形式,可以直接利用差平方公式进行因式分解。

例如,对于多项式x^2-4,可以利用差平方公式得到(x+2)(x-2)。

方法四:和差化积公式和差化积公式是指a^3±b^3=(a±b)(a^2∓ab+b^2)。

如果我们遇到一个和差的形式,可以直接利用和差化积公式进行因式分解。

例如,对于多项式x^3+8,可以利用和差化积公式得到(x+2)(x^2-2x+4)。

方法五:平方差公式平方差公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个平方差的形式,可以直接利用平方差公式进行因式分解。

例如,对于多项式x^2+4x+4,可以利用平方差公式得到(x+2)^2方法六:二次差公式二次差公式是指a^2-b^2=(a-b)(a+b)。

如果我们遇到一个二次差的形式,可以直接利用二次差公式进行因式分解。

例如,对于多项式x^2-9,可以利用二次差公式得到(x-3)(x+3)。

方法七:完全平方公式完全平方公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个完全平方的形式,可以直接利用完全平方公式进行因式分解。

因式分解的14种方法

因式分解的14种方法

因式分解的14种方法因式分解是数学中的一种重要运算方法。

它可以将一个数或一个多项式分解成若干个乘积的形式,从而可以更好地理解和研究数与代数表达式的性质。

根据因式分解的对象和方法的不同,可以总结出以下14种因式分解的方法。

1.因数法:当一个数或一个多项式可以被一个常数因式整除时,可以使用因数法进行分解。

例如,对于多项式3x^2+6x,可以因式分解为3x(x+2)。

2.公因式法:当一个多项式中的每一项都有一个共同的因式时,可以使用公因式法进行分解。

例如,对于多项式6x^3+9x^2+15x,可以因式分解为3x(2x^2+3x+5)。

3.完全平方式:对于一个完全平方数,可以使用完全平方式进行分解。

例如,对于数16,可以因式分解为4^24.平方差公式:根据平方差公式,可以将两个平方差形式分解为两个因式的乘积。

例如,a^2-b^2可以分解为(a+b)(a-b)。

5. 二次三项式因式分解:对于一个二次三项式(ax^2 + bx + c),可以使用二次三项式因式分解法进行分解。

例如,对于多项式 x^2 + 4x+ 4,可以因式分解为(x + 2)^26.分组因式法:当多项式中存在多个项,但无法直接应用其他因式分解法时,可以使用分组因式法进行分解。

例如,对于多项式x^3+x^2+2x+2,可以因式分解为(x^3+x^2)+(2x+2),然后再进行进一步的分解。

7.因式分解与除法结合:当一个多项式无法直接因式分解时,可以先进行除法运算,将其分解为两个因式相乘的形式。

例如,对于多项式x^4-1,可以使用除法运算将其分解为(x^2+1)(x^2-1)。

8.差两个平方公式:根据差两个平方公式,可以将两个平方和形式分解为两个因式相乘的形式。

例如,a^2+b^2可以分解为(a+b)(a-b)。

9. 三次和三项式因式分解:对于一个三次和三项式(ax^3 + bx^2 + cx + d),可以使用三次和三项式因式分解法进行分解。

因式分解的七种常见方法

因式分解的七种常见方法

因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。

在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。

1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。

公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。

它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。

例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。

它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。

例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。

它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。

例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。

这样我们就把原始式子分解成了两个因子的乘积。

3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。

该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。

例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。

因式分解的16种方法

因式分解的16种方法

因式分解的16种方法
因式分解是将一个多项式或整数表达式分解为不可再分的乘积的过程。

在因式分解的方法中,常见的有以下16种方法:
1.公因式法:根据多项式的各项之间的最大公因式进行因式分解。

2.差平方公式:利用两个完全平方数的差可以分解成两个因数的平方差。

3.完全平方公式:利用两个因数的平方和可以分解成两个完全平方数
的和。

4.配方法:将多项式按照公式进行配方分解,然后进行因式分解。

5.一元两次方程法:对于一元二次方程,可以通过二次方程的解,将
方程进行因式分解。

6.和差化积:将多项式中的和差进行化积,然后进行因式分解。

7.分组法:将多项式中的项进行分组,然后进行因式分解。

8.提公因式法:将多项式的各项提取公因式,然后进行因式分解。

9.代入法:将因式分解的结果代入方程,通过求方程的解,验证因式
分解的正确性。

10.根式法:将多项式转化为根式表达式,然后进行因式分解。

11.差因式公式:利用一个完全平方数与一个差的因式的乘积可以表
示为两个因数的差的平方。

12.和因式公式:利用一个完全平方数与一个和的因式的乘积可以表
示为两个因数的和的平方。

13.二次齐次因式分解:对于二次齐次方程,可以通过齐次方程的解,将方程进行因式分解。

14.辗转相除法:对于整数表达式,可以利用辗转相除法,将整数进
行因式分解。

15.因数分解法:将整数进行因数分解,找出所有的因数,然后进行
因式分解。

16.文氏因式分解法:将多项式的各项按照文氏图进行排列,然后进
行因式分解。

因式分解法的12种方法

因式分解法的12种方法

因式分解法的12种方法一、公式因式分解法公式因式分解法是一种基于公式的因式分解方法。

通过运用一些常见的代数公式,将多项式进行因式分解。

例如,对于二次多项式a^2 + 2ab + b^2,可以利用平方差公式因式分解为(a + b)^2。

二、因式提取法因式提取法是一种通过提取多项式中的公因子来进行因式分解的方法。

通过寻找多项式中的最大公因子并将其提取出来,可以将多项式进行因式分解。

例如,对于多项式2x^2 + 4x,可以提取公因子2x,得到2x(x + 2)。

三、分组法分组法是一种将多项式中的项进行分组,并利用分组后的特点进行因式分解的方法。

通常是将多项式中的项进行适当的分组,然后利用分组后的项之间的关系进行因式分解。

例如,对于多项式x^3 + x^2 + x + 1,可以分组为(x^3 + x^2) + (x + 1),然后利用分组后的特点进行因式分解。

四、平方差公式平方差公式是一种通过平方差的形式进行因式分解的方法。

该方法适用于一些特定的二次多项式,可以将其因式分解为两个平方差的形式。

例如,对于二次多项式x^2 - 4,可以利用平方差公式因式分解为(x + 2)(x - 2)。

五、差平方公式差平方公式是一种通过差平方的形式进行因式分解的方法。

该方法适用于一些特定的二次多项式,可以将其因式分解为两个差平方的形式。

例如,对于二次多项式x^2 - 9,可以利用差平方公式因式分解为(x + 3)(x - 3)。

六、完全平方公式完全平方公式是一种通过完全平方的形式进行因式分解的方法。

该方法适用于一些特定的二次多项式,可以将其因式分解为完全平方的形式。

例如,对于二次多项式x^2 + 6x + 9,可以利用完全平方公式因式分解为(x + 3)^2。

七、三项立方和公式三项立方和公式是一种通过三项立方和的形式进行因式分解的方法。

该方法适用于一些特定的立方多项式,可以将其因式分解为三项立方和的形式。

例如,对于立方多项式x^3 + 3x^2 + 3x + 1,可以利用三项立方和公式因式分解为(x + 1)^3。

因式分解的14种方法

因式分解的14种方法

因式分解的14种方法因式分解是代数学中的一种重要概念,它用于将一个多项式分解成几个较为简单的因子的乘积形式。

在代数学中,有多种方法用于进行因式分解,下面将介绍其中的14种常见的因式分解方法。

1.提取公因式法:从多项式中提取出公共因子,例如将2x^2+4x分解为2x(x+2)。

2.平方差公式:通过平方差公式将两个平方差表达式相加或相减,例如将x^2-4分解为(x-2)(x+2)。

3.平方和公式:通过平方和公式将两个平方和表达式相加或相减,例如将x^2+4分解为(x+2i)(x-2i)。

4. 公式法:根据一些特定公式进行因式分解,例如(x + a)(x + b) = x^2 + (a + b)x + ab。

5.组合方法:将多项式拆分成两个或多个较小的多项式,例如将x^3+8拆分为(x+2)(x^2-2x+4)。

6.凑项法:通过增减一些合适的项来凑出因子,例如将x^2+3x+2分解为(x+2)(x+1)。

7.换元法:通过引入新的变量来进行因式分解,例如将x^2+y^2分解为(x+y)(x-y)。

8.分组法:将多项式分成两组,然后进行公因式提取,最后再进行合并,例如将3x^3-3x^2+2x-2分解为3x^2(x-1)+2(x-1)=(x-1)(3x^2+2)。

9.公因式分解法:将多项式中的每一项提取出公共因子,例如将3x^2+6x+9分解为3(x^2+2x+3)。

10.因式分解公式法:根据一些特定的因式分解公式进行分解,例如(x+a)^2-b^2=(x+a+b)(x+a-b)。

11. 完全平方差公式:将完全平方差公式应用到多项式中,例如将x^2 + 2xy + y^2分解为(x + y)^212.构造法:通过构造合适的项来分解多项式,例如将x^3-64分解为(x-4)(x^2+4x+16)。

13.分解因子法:将多项式因子化,并检查是否存在相同的因子,例如将x^2-4x+4分解为(x-2)^214.复数法:使用复数进行因式分解,例如将x^2+2x+2分解为(x+(1+i))(x+(1-i))。

因式分解16种方法

因式分解16种方法

因式分解16种方法因式分解是数学中一个重要的概念,也是解决多项式、代数方程的基本步骤之一、在因式分解过程中,我们将一个多项式或代数方程表示为较为简单的乘积形式,以便更好地理解和处理问题。

以下将介绍因式分解的16种常见方法。

1.分解公因式:分解公因式是最基本的因式分解方法。

当多项式中的各项存在公因式时,我们可以因式分解出这个公因式。

2.提取因子:对于完全平方数或完全立方数的形式,我们可以将其提取因子,即将多项式中的完全平方数或完全立方数作为因子分解出来。

3.配方法:配方法适用于二次多项式和三次多项式的因式分解。

我们通过将多项式表示成两个括号内两项的积来进行因式分解。

4.差平方公式:差平方公式是一种特殊的因式分解方法,可用于将差的平方表达式分解为两个乘积。

5.平方差公式:平方差公式是差平方公式的逆向操作,可用于将平方差表达式分解为两个乘积。

6.完全平方公式:完全平方公式是分解完全平方三项式的方法,它将三项式分解为两个括号内两项的平方和。

7.和差公式:和差公式可以将两个平方和式或差和式分解为两个括号内的和或差。

8.乘法公式:乘法公式是将一个多项式展开为多个括号内的乘积的方法,反过来,我们也可以将一个乘积表达式分解为多项式。

9.代换法:代换法是一种巧妙的因式分解方法,通过将多项式中的变量替换为另一个变量或表达式,使得分解过程更加简化。

10.二次差分公式:二次差分公式是一种用于分解二次多项式的方法,它将二次多项式分解为两个括号内的差的平方。

11.组合方法:组合方法是将多项式中的项进行重组,以便进行因式分解。

通过合并或拆分多项式的项,可以更好地进行因式分解。

12.卡方差分公式:卡方差分公式是一种因式分解方法,将二次多项式分解为两个完全平方的差。

13.分组公式:分组公式是一种因式分解方法,将多项式按照一定的规律进行分组,再进行因式分解。

14.换元法:换元法是一种常用的因式分解方法,通过替换多项式变量为新的变量,使得多项式能够更容易地进行因式分解。

数学因式分解的12种方法

数学因式分解的12种方法

数学因式分解的12种方法
数学因式分解是数学中的一项重要技能,它可以将一个数或一个式子分解成若干个因数的乘积。

在数学中,有许多种方法可以进行因式分解,下面将介绍12种常用的方法。

1. 公因数法:将一个式子中的公因数提取出来,然后将剩余部分继续分解。

2. 分组法:将一个式子中的项按照某种规律分成若干组,然后将每组中的项提取公因数,最后将每组中的公因数相乘。

3. 公式法:利用一些常见的公式进行因式分解,如平方差公式、完全平方公式等。

4. 分解质因数法:将一个数分解成若干个质数的乘积,这是一种最基本的因式分解方法。

5. 带余数除法法:将一个式子进行带余数除法,然后将余数继续分解,最后将商和余数的因式相乘。

6. 变形法:将一个式子进行变形,使其更容易进行因式分解。

7. 合并同类项法:将一个式子中的同类项合并,然后将合并后的式子进行因式分解。

8. 分解平方差法:将一个平方差式子分解成两个因数的乘积。

9. 分解完全平方法:将一个完全平方式子分解成两个因数的乘积。

10. 分解差的平方法:将一个差的平方式子分解成两个因数的乘积。

11. 分解和的平方法:将一个和的平方式子分解成两个因数的乘积。

12. 分解立方和差法:将一个立方和差式子分解成两个因数的乘积。

以上12种方法是常用的因式分解方法,掌握这些方法可以帮助我们更好地解决数学问题。

在实际应用中,我们需要根据具体情况选择合适的方法进行因式分解,以达到最好的效果。

因式分解的十二种方法

因式分解的十二种方法

因式分解的十二种方法1. 公因式提取法:当代数表达式中的各项含有公共因子时,可以将公因式提取出来,从而简化计算。

例如,对于表达式2x+4xy,可以将2x提取出来得到2x(1+2y)。

2.公式法:当代数表达式满足特定的公式时,可以直接应用公式进行因式分解。

例如,表达式a^2-b^2满足差平方公式:a^2-b^2=(a+b)(a-b)。

3.平方差公式法:当代数表达式为两个数的平方差时,可以应用平方差公式进行因式分解。

例如,表达式a^2-b^2可以分解为(a+b)(a-b)。

4. 完全平方公式法:当代数表达式满足完全平方公式时,可以直接应用公式进行因式分解。

例如,表达式a^2+2ab+b^2满足完全平方公式:a^2+2ab+b^2=(a+b)^25.因式定理法:当代数表达式是两个或多个一次式的乘积时,可以应用因式定理进行因式分解。

例如,表达式x^2-4可以分解为(x-2)(x+2)。

6. 分组分解法:对于一些多项式,可以通过分组的方式拆分为若干个因式的乘积形式。

例如,对于表达式ax+ay+bx+by,可以将ax+ay和bx+by进行分组,得到a(x+y)+b(x+y),再将公因式(x+y)提取出来,得到(x+y)(a+b)。

7. 十字相乘法:对于形如ab+ad+cb+cd的多项式,可以应用十字相乘法进行因式分解。

这种方法主要适用于四项的多项式。

例如,对于表达式ab+ad+cb+cd,可以通过十字相乘法将其分解为(a+c)(b+d)。

8. 二次三项全图算法:对于二次三项的多项式,可以通过这种算法进行因式分解。

例如,对于表达式ax^2+bx+c,通过这个算法可以找到其因式分解形式。

9. 因数分解法:对于一些特殊的多项式,可以通过因式分解法进行因式分解。

例如,对于表达式x^3+y^3,可以通过因式分解法将其分解为(x+y)(x^2-xy+y^2)。

10.配方法:对于一些高次多项式,可以应用配方法来进行因式分解。

因式分解的13种方法

因式分解的13种方法

因式分解的13种方法因式分解可以说是代数学中的基础知识,它是解方程、简化分数、展开多项式、求出多项式的根等等问题的基础。

在因式分解的过程中,我们将一个复杂的代数式表示成两个或者多个简单的代数式的乘积形式。

下面我们来介绍13种常见的因式分解方法。

一、提取公因式法对于一个代数式,如果其中的每一项都含有一些因子a,那么我们就可以将这个公因子a提取出来,然后将剩下的部分进行因式分解。

例如:2x^2 + 4xy可以进行提取公因式为2x(x + 2y)。

二、配方法对于一些二次三项式或者四项式,我们可以采用配方法将其因式分解。

例如:x^2+5x+6可以进行配方法为(x+2)(x+3)。

三、平方差公式对于一些二次多项式的和或差,我们可以利用平方差公式进行因式分解。

例如:x^2-4可以进行因式分解为(x+2)(x-2)。

四、平方和公式对于一些二次多项式的和,我们可以利用平方和公式进行因式分解。

例如:x^2+4可以进行因式分解为(x+2i)(x-2i)。

五、差平方公式对于一些二次多项式的差,我们可以利用差平方公式进行因式分解。

例如:x^2-4可以进行因式分解为(x+2)(x-2)。

六、分组分解法对于一些多项式,我们可以将其表达式分为两组,然后分别提取公因式进行因式分解。

例如:5xy + 10x + 3y + 6可以进行分组分解为(5xy + 10x) + (3y + 6),再进行因式分解为5x(y + 2) + 3(y + 2),再提取公因子得到(5x + 3)(y + 2)。

七、立方和差公式对于一些立方多项式的和或差,我们可以利用立方和差公式进行因式分解。

例如:x^3+8可以进行因式分解为(x+2)(x^2-2x+4)。

八、平方根公式对于一些二次多项式或四次多项式,我们可以利用平方根公式进行因式分解。

例如:x^4-y^4可以进行因式分解为(x^2+y^2)(x^2-y^2),再进一步因式分解为(x^2+y^2)(x+y)(x-y)。

因式分解的12种方法

因式分解的12种方法

因式分解的12种方法因式分解是数学中常用的一种方法,可以将一个多项式或一个数分解成更简单的因子。

根据题目的不同要求,因式分解有不同的方法。

下面将介绍12种因式分解的方法。

1.找出公因子法:如果一个多项式的每一项都有相同的因子,那么可以先找出这个公因子,然后用它除去每一项。

例如,对于多项式6x+12y,可以发现每一项都有2作为公因子,因此我们可以因式分解为2(3x+6y)。

2.看作差的平方:如果一个多项式可以看作两个数的平方的差,那么可以使用差平方公式进行因式分解。

例如,x^2-4可以看作(x+2)(x-2)即(x+2)(x+(-2))。

3.提取公因子法:如果一个多项式的每一项都有相同的因子,并且多项式含有不止一个非常数项,那么可以先提取这个公因子。

例如,对于多项式2x^3+4x^2-6x,可以先提取出公因子2x,得到2x(x^2+2x-3)。

4.和差形式:如果一个多项式可以看做两个数的和或差的形式,那么使用和差的平方公式进行因式分解。

例如,x^2-4y^2可以看作(x+2y)(x-2y)。

5.分组分解法:当一个多项式无法直接因式分解时,可以通过将其分成两组,然后使用其他因式分解方法进行分解。

例如,对于多项式x^3-x^2+2x-2,可以将其分组为(x^3-x^2)+(2x-2),然后分别因式分解得到x^2(x-1)+2(x-1)。

6.平方差公式:当一个多项式可以看做两个数的平方的差时,可以使用平方差公式进行因式分解。

例如,x^4-y^4可以通过平方差公式分解为(x^2+y^2)(x^2-y^2)。

7.次数递减法:当一个多项式的次数比较高时,可以使用次数递减法进行因式分解。

例如,对于多项式x^5-x^4+x^3-x^2+x-1,可以写成x(x^4-x^3+x^2-x+1)-1,然后继续使用次数递减法进行分解。

8.因式分解公式:当一个多项式可以看作一些因式分解公式的形式时,可以直接使用该公式进行因式分解。

因式分解的12种方法

因式分解的12种方法

因式分解的12种方法因式分解是将一个多项式分解成两个或多个乘法因子的过程。

它在数学中有着广泛的应用,特别是在代数和数论中。

下面将介绍12种常见的因式分解方法。

1.相异二次因式法:当一个二次多项式的两个根分别为a和-b时,可以使用相异二次因式法进行因式分解。

例如,对于多项式x^2-4x+4,可以使用相异二次因式法将其分解为(x-2)^22.平方差公式:平方差公式可以将一个二次或更高次幂的多项式分解成两个平方差相减的形式。

例如,对于多项式x^2-9,可以使用平方差公式将其分解为(x-3)(x+3)。

3.割项公式:割项公式用于将一个高次多项式分解成两个低次多项式的乘积。

例如,对于多项式x^3+3x^2-4x-12,可以使用割项公式将其分解为(x+4)(x-1)(x+3)。

4.公因式提取法:公因式提取法是将一个多项式中的公因式提取出来,并将其余部分用括号括起来。

例如,对于多项式2x^2+6x,可以提取出公因式2x,得到2x(x+3)。

5.分组因式法:分组因式法是将一个多项式分成两组,并在每一组中找到一个公因式。

然后,将公因式提取出来,并将其余部分用括号括起来。

例如,对于多项式x^3+x^2+x+1,可以将其分成两组x^3+x和x^2+1,并分别提取出公因式x(x^2+1),得到(x^2+1)(x+1)。

6.组合因式法:组合因式法是将一个多项式分成若干个互补的因子,并将其进行组合。

例如,对于多项式x^2-5x+6,可以将其分解为(x-2)(x-3)。

7.差平方公式:差平方公式可以将一个多项式分解为两个平方差的形式。

例如,对于多项式x^2-4,可以使用差平方公式将其分解为(x-2)(x+2)。

8.完全平方公式:完全平方公式可以将一个二次多项式分解为两个平方和的形式。

例如,对于多项式x^2+6x+9,可以使用完全平方公式将其分解为(x+3)^29.配方法:配方法用于将一个二次多项式分解为两个一次多项式的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解方法大全(一)因式分解是将一个多项式转化成几个整式的积的形式,叫因式分解或分解因式。

它与整式乘法是方向相反的变形.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。

因式分解的主要方法: ⑴提公因式法;⑵运用公式法;⑶分组分解法;⑷十字相乘法;⑸添项折项法;⑹配方法;⑺求根法;⑻特殊值法;⑼待定系数法;⑽主元法;⑾换元法;⑿综合短除法等。

第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:⑴平方差公式:22()()a b a b a b -=+-⑵完全平方公式:2222()a ab b a b ±+=±⑶立方和公式:3322()()a b a b a ab b +=+-+(新课标不做要求)⑷立方差公式:3322()()a b a b a ab b -=-++(新课标不做要求)⑸三项完全平方公式:2222222()a b c ab ac bc a b c +++++=++⑹ 3332223()()a b c abc a b c a b c ab bc ac ++-=++++---例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。

第二、三项为一组。

解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)abc c b a 3333-++四、十字相乘法.㈠二次项系数为1的二次三项式:2x bx c ++,条件:如果存在两个实数p 、q ,使得c p q =且b p q =+,那么2()()x b x c x p x q++=++ 例1、分解因式:652++x x分析:将6分解成两个数的积,且这两个数的和等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a 。

例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x㈡二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例2、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y㈢二次项系数为1的齐次多项式例3、分解因式:2286n mn m +-解:原式=2m [(2n)(4n)]m (2n)(4n)+-+-+-- 1 -2n=(m 2n)(m 4n)-- 1 -4n(-2n )+(-4n )= -6n练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --㈣二次项系数不为1的齐次多项式例4、22672y xy x +-1 -2y2 -3y(-3y)+(-4y)= -7y解:原式=)32)(2(y x y x --练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++ 思考:分解因式:abc x c b a abcx +++)(2222 五、添项、拆项法:(1)、巧拆项:在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。

例1、因式分解32422+++-b a b a解析:根据多项式的特点,把3拆成4+(-1),解:32422+++-b a b a n 224241a b a b =-+++-22(44)(21)a a b b =++--+22(2)(1)a b =+--(1)(3)a b a b =++-+例2、因式分解 611623+++x x x解析:根据多项式的特点,把26x 拆成2242x x +;把x 11拆成x x 38+解:611623+++x x x 322(2)(48)(36)x x x x x =+++++2(2)4(2)3(2)x x x x x =+++++2(2)(43)x x x =+++(1)(2)(3)x x x =+++(2)、巧添项:在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,也可谓方法独特,新颖别致。

例3、因式分解444y x +解析:根据多项式的特点,在444y x +中添上22224,4y x y x -两项,解:444y x +422422(44)4x x y y x y =++-2222(2)(2)x y xy =+-2222(22)(22)x xy y x xy y =++-+例4、因式分解 4323+-x x解析:根据多项式的特点,将23x -拆成224x x +-,再添上x x 4,4-两项,则解:4323+-x x 3224444x x x x x =-++-+22(44)(44)x x x x x =-++-+2(44)(1)x x x =-++2(1)(2)x x =+-例15、分解因式(1)4323+-x x解法1——拆项。

解法2——添项。

原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x =2)2)(1(-+x x =2)2)(1(-+x x(2)3369-++x x x解:原式=)1()1()1(369-+-+-x x x =)1()1)(1()1)(1(333363-++-+++-x x x x x x =)111)(1(3363+++++-x x x x =)32)(1)(1(362++++-x x x x x练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++ 六、配方法。

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例:分解因式2672x x +-解:2672x x +- 269972x x =++--22(3)9x =+- (39)(39)x x =+++- (12)(6)x x =+-七、待定系数法。

例16、分解因式613622-++-+y x y xy x 分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++ ∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622 ∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622 对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m∴原式=)32)(23(+--+y x y x例17、(1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式。

相关文档
最新文档