基本不等式(均值不等式)技巧

合集下载

基本不等式(均值不等式)技巧

基本不等式(均值不等式)技巧

基本不等式(均值不等式)技巧基本知识】1.(1)若 $a,b\in \mathbb{R}$,则 $a+b\geq 2ab$。

(2)若 $a,b\in \mathbb{R}$,则 $ab\leq \frac{a^2+b^2}{2}$(当且仅当 $a=b$ 时取“=”)2.(1)若 $a,b\in \mathbb{R}$,则 $a+b\geq2\sqrt{ab}$(当且仅当 $a=b$ 时取“=”)。

(2)若 $a,b\in\mathbb{R}$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$(当且仅当 $a=b$ 时取“=”)3.若 $a,b,c\in \mathbb{R}^+$,则 $\frac{a+b+c}{3}\geq \sqrt[3]{abc}$(当且仅当 $a=b=c$ 时取“=”)4.若 $a,b,c\in \mathbb{R}^+$,则 $a+b+c\geq3\sqrt[3]{abc}$(当且仅当 $a=b=c$ 时取“=”)5.若 $a,b\in \mathbb{R}$,则 $\frac{a^2+b^2}{2}\geq\left(\frac{a+b}{2}\right)^2$(当且仅当 $a=b$ 时取“=”)技巧讲解】技巧一:凑项(增减项)与凑系数做题时,条件不满足时关键在于构造条件。

通常要通过乘以或除以常数、拆因式、平方等方式进行构造。

1.已知 $x<5$,求函数 $y=4x-\frac{5}{2}+\frac{1}{4x-5}$ 的最大值。

解:因为 $x<5$,所以首先要“调整”符号,又 $4x-5<0$,要进行拆、凑项,得到:y=4x-\frac{5}{2}+\frac{1}{4x-5}=-\frac{1}{4}\left(5-4x+\frac{1}{4x-5}\right)+\frac{11}{4}由于 $\frac{1}{4x-5}\leq\frac{1}{2}\left(\frac{1}{x}+\frac{1}{4}\right)$(当且仅当$x=2$ 时取“=”),所以:y\leq -\frac{1}{4}\left(5-4x+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{4}\right)\right)+\frac{1 1}{4}=-\frac{1}{4}\left(4x^2-16x+9-\frac{1}{x}\right)+\frac{11}{4}对 $-\frac{1}{4}\left(4x^2-16x+9-\frac{1}{x}\right)$ 求导,得到$x=\frac{1}{2}$ 时取得最小值,代入得到$y_{\max}=3$。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即x =时,上式取“=”。

均值不等式八种技巧

均值不等式八种技巧

运用均值不等式的八类拼凑技巧一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2求函数)01y x x =<<的最大值。

解:y ==。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x=-,即3x =时,上式取“=”。

故max 9y =。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3 已知02x <<,求函数()264y x x =-的最大值。

解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。

当且仅当()2224x x=-,即x ==”。

故max3218827y ⨯=,又max 0,3y y >=。

二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设1x >-,求函数()()521x x y x ++=+的最小值。

解:()())14114415159111x x y x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥+=+++。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式2 . 2®a2 +b2> lab <^> ab < ° +(a. b e /?),当且仅当a = b时,号成立:2S + ZP)注:①注意运用均值不等式求最值时的条件:②熟悉一个重要的不等式链:-A-<v^<—<丄+丄2a b一、拼凑定和通过因式分解、纳入根号、升慕等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点, 均分系数,拼凑定和,求积的最大值。

例1⑴当0 <4时,求y = x(8-2x)的最大值。

(2)已知0vxvl,求函数y = -疋一/+兀+1的最大值。

解:y = -x2(x + l) + (x + l) = (x + l)(l-x2) = (x + l)2(l-x)当且仅当¥ = l — x,即x = |时,上式取“二”。

故儿琢°评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。

例2 求函数y = x2>J\-x2 (0<x<\)的最大值。

27当且仅当斗=(1 —/),即x = £时,上式取“二”。

故儿瘁=半。

2 3 9② a + b> 2y[cib <=> ab <(a、beRJ当且仅当&二b时,“日号成立:③ / + + c' »3abc 0 abc < -_"十"3/ d+/? + C、< 3 >(A)a + b + c>3y/abc <^> abc<(a、b、cer),当且仅当a二b二c时,“才号成立:(a、b、cwRT•当且仅当a = b = c时,“〜‘号成立.一“正”、二“定”、三“等”;=4•凹・斗1_归2 2x+i A+i 厶x y〒+〒+(宀)33227评注:将函数式中根号外的正变量移进根号的目的是集中变元,为“拼凑定和”创造条件例3已知0vx<2,求函数y = 6x(4-x2)的最大值。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧均值不等式(Mean Inequality)是数学中常用的一种方法和技巧,用于求解包含均值的不等式问题。

它的核心思想是通过求解众多数据的平均值来确定问题的最值范围。

1.均值不等式的基本形式均值不等式分为均值-均值不等式和均值-次方均值不等式两种基本形式。

均值-均值不等式:对于任意给定的两个非负实数a和b,以及两个实数λ和μ满足λ+μ≠0,有:√(λa^2+μb^2)≥,λa+μb,/√(λ+μ)均值-次方均值不等式:对于任意给定的n个非负实数x₁,x₂,…,xₙ,以及实数p≥q>0,有:((x₁^p+x₂^p+…+xₙ^p)/n)^(1/p)≥((x₁^q+x₂^q+…+xₙ^q)/n)^(1/q)2.求解最值的一般步骤步骤1:根据不等式问题的具体情况,确定合适的均值不等式形式,即选择均值-均值不等式还是均值-次方均值不等式。

步骤2:根据题目给出的条件,选取合适的数据进行计算和代入,找到不等式中的系数和指数。

步骤3:应用均值不等式,将不等式转化为计算均值的形式。

步骤4:通过简化计算和代入数值,利用均值不等式得到最终的结果。

3.常见应用场景和例题分析均值不等式常用于求解最值问题,特别是在高中数学中的函数极值和数列极限中经常用到。

例如,求解非负整数a,b,c的最小值问题,已知条件是ab+bc+ca=8,可以利用均值不等式进行求解。

解题思路:设S=a+b+c,则利用均值-均值不等式可得:(S^2 + S^2 + S^2) / 3 ≥ (ab+bc+ca+a^2+b^2+c^2) / 6代入条件ab+bc+ca=8,化简后可得:S^2≥(8+a^2+b^2+c^2)/4而根据平方平均不等式可得:(a^2+b^2+c^2)/3≥((a+b+c)^2)/9将其代入上式化简,可得:S^2≥20/3同时,由于a,b,c都是非负整数,所以可以得到S=√(a^2+b^2+c^2)的最小整数部分为4因此,a+b+c的最小整数部分为44.注意事项和常见误区在应用均值不等式求解最值问题时,需要注意一些常见的误区和陷阱。

均值不等式求值的十种方法

均值不等式求值的十种方法

均值不等式求最值的十种方法————————————————————————————————作者:————————————————————————————————日期:用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数()22101y xx x =-<<的最大值。

基本不等式技巧

基本不等式技巧

基本不等式技巧1.均值不等式:均值不等式是由算术平均值、几何平均值和调和平均值构成的一类不等式。

a) 算术平均值不等式:对于任意非负实数a和b,有(a+b)/2 >=√(ab)。

证明方法:可使用平方差等公式,即(a-b)^2 >=0,展开可得a^2-2ab+b^2 >=0,即(a+b)^2 >= 4ab,开方可得(a+b)/2 >= √(ab)。

b) 几何平均值不等式:对于任意非负实数a和b,有√(ab) <=(a+b)/2证明方法:可使用二次根式的单调性,即二次根式对非负实数单调递增。

由于√(ab)为非负实数,所以√(ab)的值在a和b之间,取(a+b)/2,则有√(ab) <= (a+b)/2c)调和平均值不等式:对于任意非负实数a和b,有2/(1/a+1/b)<=(a+b)/2证明方法:可使用调和平均值的定义和算术平均值不等式。

调和平均值为2/(1/a+1/b),算术平均值为(a+b)/2、由算术平均值不等式可知(a+b)/2 >= √(ab),将√(ab)替换成2/(1/a+1/b),则得到2/(1/a+1/b) <= (a+b)/22.柯西不等式:柯西不等式是数学分析中的一种不等式,用于矢量空间中的内积。

柯西不等式:对于任意实数序列a1, a2, ..., an和b1, b2, ..., bn,有(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... +an^2)(b1^2 + b2^2 + ... + bn^2)。

证明方法:可使用平方差公式以及数学归纳法证明。

以下是一些基于均值不等式技巧的应用场景:1.平均分配:在一些问题中,需要将一定数量的资源按照均匀分配原则进行分配。

这时可以使用均值不等式来证明分配结果的合理性和均衡度。

2.证明不等式:在证明一些数学不等式时,可以利用均值不等式来简化证明过程,找到合适的均值不等式进行推导。

均值不等式公式总结及技巧应用典例解析

均值不等式公式总结及技巧应用典例解析

均值不等式应用知识梳理:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a=时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”) 若0ab≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x 解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项 例1 已知54x <,求函数14245y x x =-+-的最大值。

数学复习:基本不等式的十大解题技巧

数学复习:基本不等式的十大解题技巧

运用凑项或换元法将所给的函数化简为满足基本不等式的形式,运用基本不等式并检验其
等号成立的条件,若等号取不到则,结合函数 y = x + a (a 0) 单调性,并运用其图像与性 x
质求出其函数的最值即可。
【例5】(★★★)函数 y = x2 + 5 的值域为
.
x2 + 4
【答案】
5 2
,
+
【解析】令 x2 + 4 = t(t 2) , 则 y = x2 + 3 = x2 + 4 + 1 = t + 1 (t 2) .
数学复习:基本不等式的十大解题技巧
1. 基本不等式原始形式
(1)若 a,b R ,则 a2 + b2 2ab .
(2)若 a,b R ,则 ab a2 + b2 . 2
2.基本不等式一般形式(均值不等式)
若 a 0,b 0 ,则 a + b 2 ab .
3. 基本不等式的两个重要变形
(1)若 a 0,b 0 则 a + b ab (当且仅当 a = b 时取“ = ”). 2
【答案】 2 3 3
【解析】由 x2 + y2 + xy = 1,得1 = (x + y)2 − xy, (x + y)2 = 1+ xy 1+ (x + y)2 ,解得 4
− 2 3 x + y 2 3 ,又 x 0, y 0 ,所以 0 x + y 2 3 ,因此 x + y 的最大值为 2 3
【例2】(★★)已知 0 x 4 时,则 y = x(8 − 2x) 的最大值为
【答案】8

基本不等式十大解题技巧

基本不等式十大解题技巧

基本不等式十大解题技巧
基本不等式是数学中的一个重要概念,也是高中数学中的重点和难点之一。

以下是基本不等式解题的十大技巧:
1. 均值不等式法:利用算术平均值与几何平均值的关系,将不等式中的变量转化为平均值的形式,然后利用均值不等式进行证明。

2. 柯西不等式法:利用柯西不等式,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。

3. 均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。

4. 几何平均值不等于算术平均值法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。

5. 利用三角不等式法:利用三角不等式,将不等式中的变量转化为三角形的三边长度,然后利用三角不等式进行证明。

6. 利用柯西不等式的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。

7. 利用平均不等式法:利用平均不等式,将不等式中的
变量转化为平均值的形式,然后利用不等式进行证明。

8. 利用柯西不等式法的逆推法:利用柯西不等式的逆命题,将不等式中的变量转化为乘积形式,然后利用柯西不等式进行证明。

9. 利用均值不等式的逆推法:利用均值不等式的逆命题,将不等式中的变量转化为和的形式,然后利用均值不等式进行证明。

10. 利用几何平均值不等于算术平均值法的逆推法:利用几何平均值与算术平均值的关系,将不等式中的变量转化为几何平均值的形式,然后利用不等式进行证明。

以上是基本不等式解题的十大技巧,掌握这些技巧可以帮助学生更好地理解和应用基本不等式。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。

例1、求函数21(1)2(1)y x x x =+>-的最小值。

解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

2、求几个正数积的最大值。

例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。

均值不等式常用变形及解题方法总结

均值不等式常用变形及解题方法总结

均值不等式应用(一)均值不等式* 也可是值为正的代数式1.调和平均数:2.几何平均数:3.算数平均数:4.平方平均数:·均值不等式:,当且仅当时等号成立常用:两个正数的算术平均数不小于它们的几何平均数。

两个正数的等差中项不小于他们的等比中项。

(二)常见变形1.2.3.4.5.6.()7.()8.9.()10.()11.12.(三)解题技巧(一定、二正、三相等、四同时)1.计算函数最值·形函数例:求函数2y =的值域。

(2)t t =≥2y =1(2)t t t ==+≥当1t t=时函数在x 轴正半轴有最小值,在y 轴负半轴有最大值,即1t =± ∵1t =±不属于区间[)2,+∞,故等号不成立,考虑单调性。

∵1y t t=+在区间[)1,+∞单调递增, ∴52y ≥∴所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭·分离法例3.:求2710(1)1x x y x x ++=>-+的值域。

解:当,即时,421)591y x x ≥+⨯+=+(,当且仅当x =1时等号成立·换元法例:已知 ,则解:令 则·拼凑(系数、常数)例:已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.解:x 1+y 2=x2·1+y 22 = 2 x ·12 +y 22x 1+y 2 = 2 ·x 12 +y 22 ≤ 2x 2+(12 +y 22 )22 ≤ 342例:已知54x <,求函数14245y x x =-+-的最大值。

解:∵54x <∴540x -> ∴11425432314554y x x x x ⎛⎫=-+=--++≤-+= ⎪--⎝⎭ 当且仅当15454x x-=-,即1x =时等号成立 ∴当1x =时,max 1y =。

·化积为和(因式分解、平方)例:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

均值不等式技巧

均值不等式技巧

题根 已知,,,a b c d 都是正数,求证()()4a b c d a cb da b c d++≥ [题根]已知,,,a b c d 都是正数,求证()()4ab cd ac bd abcd ++≥[思路]1) 平均值不等式2ba +≥ab (当且仅当,a b R +∈,a=b 时取“=”号) 2)需两次利用平均值不等式,要使得此不等式等号成立,需两次取等号的条件一致或同时成立。

即ab cd ac bd ==且同时成立.即a b c d ===时成立。

[破解]:由,,,a b c d 都是正数,得:()()()()0,0..2244ab cd ac bd ab cd ac bdabcd ab cd ac bd abcd++++≥>≥>∴≥++≥即有 [收获]1)多次运用平均值不等式,要使得不等式等号成立,需这几次取等号的条件一致、相同或同时成立。

2)利用不等式的同向相乘性质时,需保证不等式两边同时为正。

第1变 变结构,创造基本不等式“一正、 二定、 三相等”的条件证不等式。

[变题1]设x,y,z ∈R +且x+y+z=1求证: 1x + 4y + 9z≥36.[思路]从左到右事实上是求和式1x + 4y + 9z的最小值,需变式出现积为定值的情况,而条件中是和为定值x+y+z=1,所以对待证式的左边需变形出现积为定值的情况。

[破解]证法一:巧用1代换 1x +4y +9z = x+y+z x +4(x+y+z)y +9(x+y+z)z=14+(y x +4x y )+(z x +9x z )+(4z y +9y z )≥14+4+6+12=36当且仅当y x =4x y ,z x =9x z ,4z y =9yz,x+y+z=1取等号.证法二:分式代换法令x= a 1 a 1+a 2+a 3 ,y= a 2 a 1+a 2+a 3 , z= a 3a 1+a 2+a 3 则1x +4y +9z= a 1+a 2+a 3 a 1 + 4(a 1+a 2+a 3) a 2 + 9(a 1+a 2+a 3) a 3=14+( a 2 a 1 + a 1 a 2 )+( a 3 a 1 + 9a 1 a 3 )+ ( 4a 3 a 2 + 9a 2 a 3 )≥14+4+6+12=36 当且仅当……取等号. 解法三: ∵x+y+z=1∴mx+my+mz=m, (m>0) ∴1x +4y +9z =1x +4y +9z + mx+my+mz-m =(1x + mx)+( 4y + my)+( 9z + mz)-m ≥2m +4m +6m -m当且仅当1x = mx, 4y = my, 9z = mz即x= 1 m ,y= 2 m ,z= 3m 时取等号代入x+y+z=1解得m=36 ∴2m +4m +6m –m=36.[收获]由于不等式是分式形式,上述三种证明方法都是巧用1作代换,构造倒数关系,使乘积为定值,从而取得最值.[请你试试2—1]1: 设a>0,b>0,求证:ab b a +≥b a +。

用均值不等式求值的方法和技巧

用均值不等式求值的方法和技巧

用均值不等式求值的方法和技巧————————————————————————————————作者:————————————————————————————————日期:几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab ab +≤≤≤222b a +。

三、用均值不等式求最值的常见的技巧 1、 添、减项(配常数项) 例1 求函数221632y x x =++的最小值.2、 配系数(乘、除项)例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.3、 裂项例3 已知1x >-,求函数()()521x x y x ++=+的最小值.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值.5、 平方例5 已知0,0x y >>且22283y x +=求262x y +的最大值.6、 换元(整体思想) 例6 求函数225x y x +=+的最大值.7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .8、 巧组合例8 若,,0a b c >且()423a a b c bc +++=-,求2a b c ++的最小值 .9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值是.几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab ab +≤≤≤222b a +。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

均值不等式求最值的十种方法用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立;②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c ba 当且仅当a =b =c 时,“=”号成立;④)(3333+∈⎪⎭⎫⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba112+2a b ab +≤≤≤222ba +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y xx x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max3227y=。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭,当且仅当()2212x x =-,即63x =时,上式取“=”。

高中数学均值不等式的十一大方法与八大应用(解析版)

高中数学均值不等式的十一大方法与八大应用(解析版)

均值不等式的“十一大方法与八大应用”目录一、重难点题型方法11.方法一:“定和”与“拼凑定和”方法二:“定积”与“拼凑定积”方法三:“和积化归”方法四:“化1”与“拼凑化1”方法五:“不等式链”方法六:“复杂分式构造”方法七:“换元法”方法八:“消元法”方法九:“平方法”方法十:“连续均值”方法十一:“三元均值”应用一:在常用逻辑用语中的应用应用二:在函数中的应用应用三:在解三角形中的应用应用四:在平面向量中的应用应用五:在数列中的应用应用六:在立体几何中的应用应用七:在直线与圆中的应用应用八:在圆锥曲线中的应用二、针对性巩固练习重难点题型方法方法一:“定和”与“拼凑定和”【典例分析】典例1-1.(2021·陕西省神木中学高二阶段练习)若x>0,y>0,且2x+3y=6,则xy最大值为( )A.9B.6C.3D.32【答案】D【分析】由x>0,y>0,且2x+3y为定值,利用基本不等式求积的最大值.【详解】因为x>0,y>0,且2x+3y=6,所以xy=16×2x⋅3y≤162x+3y22=32,当且仅当2x=3y,即x=32,y=1时,等号成立,即xy的最大值为3 2.故选:D.典例1-2.(2022·湖南·雅礼中学高三阶段练习)已知x>0,y>0,且x+y=7,则1+x2+y的最大值为( )A.36B.25C.16D.9【答案】B【分析】由x+y=7,得x+1+y+2=10,再利用基本不等式即可得解.【详解】解:由x+y=7,得x+1+y+2=10,则1+x2+y≤1+x+2+y22=25,当且仅当1+x=2+y,即x=4,y=3时,取等号,所以1+x2+y的最大值为25.故选:B.【方法技巧总结】1.公式:若a,b∈R*,则a+b≥2ab(当且仅当a=b时取“=”)推论:(1)若a,b∈R,则a2+b2≥2ab(2)a+1a≥2(a>0)(3)ba+ab≥2(a,b>0)2.利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.3.技巧:观察积与和哪个是定值,根据“和定积动,积定和动”来求解,不满足形式的可以进行拼凑补形。

均值不等式求值的常用技巧及习题含解答:经典

均值不等式求值的常用技巧及习题含解答:经典

均值不等式求最值的常用技巧及习题(含解答:经典)————————————————————————————————作者:————————————————————————————————日期:利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当 _____________时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”)2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当_________时取“=”) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R +∈,且满足134x y+=,则xy 的最大值为 ________。

解:因为x >0,y>0,所以234343x y x yxy+≥=(当且仅当34x y =,即x=6,y=8时取等号),于是13xy≤, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=1621211211==≥+∴xy y x y x 当且仅当x=y 时等号成立技巧二:配凑项求 例2:已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式总结及解题技巧

均值不等式公式总结及解题技巧

均值不等式应用【知识必备】 1.基本不等式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2.基本不等式变式(1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x+≥(当且仅当1x =时取“=”) 若0x <,则12x x+≤-(当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x+≥+≥+≤即或(当且仅当b a =时取“=”)4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或(当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 【题型分析】 题型一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x·1x=2; 当x <0时,y =x +1x =-(-x -1x)≤-2x·1x =-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项 例已知54x <,求函数14245y x x =-+-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式习专题之基本不等式做题技巧【基本知识】1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) (4),、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3) 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

【技巧讲解】技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。

通常要通过乘以或除以常数、拆因式、平方等方式进行构造)1:已知54x <,求函数14245y x x =-+-的最大值。

2. 当时,求(82)y x x =-的最大值。

3:设230<<x ,求函数)23(4x x y -=的最大值。

4、求函数21(1)2(1)y x x x =+>-的最小值。

5 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值. 6已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2的最大值.7 若,,0a b c >且()423a a b c bc +++=-,求2a b c ++的最小值 .技巧一答案:1解:因450x -<,所以首先要“调整”符号,又1(42)45x x --g 不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->Q ,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

2解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

3、解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

4解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

5、分析 lg lg lg()x y xy +=, xy 是二项“积”的形式,但不知其“和”的形式x y +是否定值, 而已知是3x 与2y 的和为定值12,故应先配系数,即将xy 变形为326x y⋅,再用均值不等式.220,032lg lg lg()lg6132112lg lg 6262lg 6x y x y x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6. 6分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22 。

同时还应化简1+y 2中y 2前面的系数为 12 , x 1+y 2 =x2·1+y 22 = 2x ·12 +y 22下面将x ,12 +y 22 分别看成两个因式: x ·12 +y 22 ≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2 = 2 ·x 12 +y 22≤3427分析 初看,这是一个三元式的最值问题,无法利用a b +≥+b 来解决.换个思路,可考虑将2a b c ++重新组合,变成()()a b a c +++,而()()a b a c ++等于定值423-,于是就可以利用均值不等式了. 2,,0,2()()2()()22423232,,31.223 2.a b c a b c a b a c a b a c a ab ac bc b c b c a a b c >++=+++≥++=+++=-=-===--++-解:由知当且仅当即时,等号成立故的最小值为技巧二: 分离或裂项1. 求2710(1)1x x y x x ++=>-+的值域。

2求函数1+=1+2x y x x ()()的值域.1解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,41)591y x x ≥+⨯=+((当且仅当x =1时取“=”号)。

2、解:可将上式转化为所以值域为:-)22-322+3∞⋃∞(,技巧三:换元1、求2710(1)1x x y x x ++=>-+的值域。

2+1[1-1][1+2(x+1-1)]+11==12+1-3(1++21+-3+1x y x x x x x x =++()()()())1()()>-1+1>01+21+y +122-3<-1-+1>11+21+=-+2-1--,+1--122+3x x x x x x x x y x x ≥≤≤≥当时,()2,此时()当时,()0()(())22此时()()2、求函数225x y x +=+的最大值.3、、已知正数x 、y 满足811x y+=,求2x y +的最小值。

4、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值.参考答案:1、解析:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯=(当t =2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。

即化为()(0,0)()Ay mg x B A B g x =++>>,g (x )恒正或恒负的形式,然后运用基本不等式来求最值。

2分析 2x t +=,进行换元,再使分子常数化,然后运用均值不等式来解决.222,0,2,(0)2100;120141222122=.232,2x t t x t t y t t t y t y t t t t t t t x +=≥=-=≥+==>=≤=+⋅==-则当时,当时,当且仅当,即所以时3、解法三:(三角换元法)令228sin 1cos x x x y ⎧=⎪⎪⎨⎪=⎪⎩则有228sin 1cos x x y x ⎧=⎪⎪⎨⎪=⎪⎩22822sin cos x y x x+=+2222228csc 2sec 8(1cot )2(1tan )108cot 2tan x x x x x x =+=+++=++10≥+18≥,易求得12,3x y ==此时时“=”号成立,故最小值是18。

技巧四:消元(转化为函数最值,此时要注意确定变量的范围)1、已知正数x 、y 满足811x y +=,求2x y +的最小值。

2、已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.3、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值是.1解法:(消元法)由811x y +=得8x y x =-,由00088xy x x x >⇒>>⇒>-又则2x y +22(8)1616162(8)108888x x x x x x x x x x -+=+=+=++=-++----1018≥=。

当且仅当1688x x -=-即12,3x y ==此时时“=”号成立,故此函数最小值是18。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t ≥2t ·16t=8∴ ab ≤18 ∴ y ≥ 118当且仅当t =4,即b =3,a =6时,等号成立。

3分析 本题也是三元式的最值问题.由题意得32x zy +=,则可对2y xz 进行消元,用,x z 表示,即变为二元式,然后可利用均值不等式解决问题.22223,0,,29666=3,443,,=33.x zx z y y x z xz xz xz xz xz xzyx z x y z y xz +>=+++≥====解:由可得当且仅当即时,取“”.故的最小值为技巧五:整体代换(条件不等式) 1:已知0,0x y >>,且191x y+=,求x y +的最小值。

2、已知正数x 、y 满足811x y+=,求2x y +的最小值。

1.错解..:Q 0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥= ⎪⎝⎭故 ()min 12x y += 。

错因:解法中两次连用基本不等式,在x y +≥等号成立条件是x y =,在19x y +≥19x y=即9y x =,取等号的条件的不一致,产生错误。

相关文档
最新文档