空间夹角和距离的计算

合集下载

1.4.2 用空间向量研究距离、夹角问题

1.4.2 用空间向量研究距离、夹角问题

0,
π 2
u n
|u n|
⑥ |u||n| =⑦ |u||n|
第1讲 描述第运动一的章基本空概间念向量与立体几何
续表
空间角
两个平面 的夹角
向量求法
空间角的范围
若平面α,β的法向量分别是n1,n2, 则平面α与平面β的夹角即为向
0,
π 2
量n1,n2的⑧ 夹角 或⑨其补角 .
设平面α与平面β的夹角为θ,则
|n|
(2)由AC∥平面PEF,将直线AC到平面PEF的距离转化为点A到平面PEF的距离求解.
第1讲 描述第运动一的章基本空概间念向量与立体几何
解析
解法一:(1)建立如图所示的空间直角坐标系,则D(0,0,0),P(0,0,1),A(1,0,0),E
1,
1 2
,0
,
F
1 2
,1,0
.
第1讲 描述第运动一的章基本空概间念向量与立体几何
第1讲 描述第运动一的章基本空概间念向量与立体几何
已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,E,F分别为AB,BC的中点. (1)求点D到平面PEF的距离; (2)求直线AC到平面PEF的距离. 思路点拨 思路一:(1)先建立合适的空间直角坐标系,再作DH⊥平面PEF,垂足为H,由线面垂直关系求 得 DH 的坐标,从而求出 DH 的模,即点D到平面PEF的距离. (2)设AH'⊥平面PEF,求出| AH'|即可. 思路二:(1)求出平面PEF的法向量n,利用公式d= |DE n| 求点D到平面PEF的距离.
17

AH'

DE
=
1,
1 2
,0
,

用空间向量研究距离、夹角问题全文

用空间向量研究距离、夹角问题全文

MN ( 1 1 )2 (0 1 )2 ( 1 0)2 2 .
22
22
2
y
x
【巩固训练3】如图,正方体ABCD和ABEF的边长都是1,且它们所在平面互相垂 直,点M在AC上,点N在BF上,若CM = BN = 2,求MN的长.
2
解2:设 AB a, AD b, AF c . 则
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(4) 求直线FC1到平面AB1E的距离.
D1
C1
解 : FC1 //平面AB1E,直线FC1到平面AB1E的距离 A1
B1
等于点C1到平面AB1 E的距离.
E
由(3)知平面AB1E的一个法向量为n (1, 2, 2). 易知C1(0,1,1), B1(1,1,1),C1B1 (1,0,0).
D1 A1
E
D
C1 B1
F
C
A
B
2. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,E为线段DD1的中点,F为线段BB1
的中点.
z
(1) 求点A1到直线B1E的距离;
D1
C1
解 : 如图示,以D为原点建立空间直角坐标系, 则有
A1
B1
1 A1(1, 0,1), B1(1,1,1), E(0, 0, 2).
z0 ,
0
取y
1, 则z
1,
x
1.
∴平面D1CB1的一个法向量为n (1,1,1).
D
A x
C y
B
点B到平面D1CB1
的距离为
|
BC n |n|

1.4.2用空间向量研究距离、夹角问题2

1.4.2用空间向量研究距离、夹角问题2

0 ≤ ≤ ,且 u, n ,或 u, n
2
2
2
un
sin | cos u n
un





启 强
4
学习新知 利用向量方法求二面角
平面α与平面β相交,形成四个二面角,我们把这四个二面角中
不大于90°的二面角称为平面α与面β的夹角.
设平面α与面β的夹角为θ,平面α与面β的法向量分别为 n1, n2
则0
<

2
,
n1, n2
, 或
n1, n2
cos | cos n1 n2 n1 n2
n1 n2





启 强
5
典型例题 例2如图,在棱长为1的正四面体(四个面都 是正三角形)ABCD中,M,N分别为BC,AD的中点, 求直线AM和CN夹角的余弦值.
分析:求直线AM和CN夹角的余弦值,可以 转化为求向量MA与CN夹角的余弦值.为此需 要把向量MA,CN用适当的基底表示出来,进 而求得向量MA,CN夹角的余弦值。
2
两个向量夹角的范围是[0,π],事实上,两异面直线所成

课 人 :
的角与其方向向量的夹角是相等或互补的关系.

启 强
3
学习新知 利用向量方法求直线与平面所成的角
直线与平面所成的角,可以转化为直线的方向向量与平面的法 向量的夹角 。
直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直 线AB的方向向量u,平面α的法向量为n,如图可得





启 强
6
典型例题 例2如图,在棱长为1的正四面体(四个面都 是正三角形)ABCD中,M,N分别为BC,AD的中点, 求直线AM和CN夹角的余弦值.

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。

用空间向量研究距离、夹角问题 (3)

用空间向量研究距离、夹角问题 (3)
与2 ′所成的角叫做异面直线1 与
2 所成的角(或夹角).
β
α
l
α
β
空间中,平面与平面相交,形成四个
二面角,我们把这四个二面角中不大于
90°的二面角称为平面与平面的夹角.
追问1:两个平面夹角的取值范围是什么?
0° ≤ ≤ 90°
β
α
l
α
β
= 0°
0° < ≤ 90°
追问2:二面角的大小是如何度量的?
思考:在例题条件下,如何求“平面1 1 与平面
1 1 1 夹角的余弦值”?
C
P
B
A
R
Q
C1
A1
B1
问:转化为哪种向量的夹角?
z
C
B
A
C1
B1 y
A1
x
思路 1.两平面内与交线垂直的
直线的方向向量的夹角
2.两个平面的
法向量的夹角
例题小结
用空间向量求平面与平面的夹角的步骤与方法:
都为2,求平面1 1 与平面1 夹角的余弦值.
A1
A
C
B
C1
B1
课后作业
A
2. 如图,△ 和△ 所
B
在平面垂直,且== ,
∠=∠=120°,求:
D
(1)直线与直线所成角的大小;
(2)直线与平面所成角的大小;
(3)平面和平面的夹角的余弦值.
化为向量问题
①转化为求平面,的法向量
, 的夹角


进行向量运算
②计算cos , =
回到图形问题
③平面与平面夹角的余弦值
cos = cos ,
的值

空间向量的夹角和距离公式(讲课)

空间向量的夹角和距离公式(讲课)
aba1b1a2b2a3b3 ;
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R ) ;
a 1/b 1a 2/b 2a 2/b 2 . a b a1b 1a2b2a3b30;
二、距离与夹角 (1)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1) 、 B(x2 , y2 ,z2),则
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1E1
D1F1
A1B1 4
,求
BE1

D
F1
所成的角的余弦值。
z
D1
F1
C1
D F 1 0 , 1 4, 1 (0 ,0 ,0 ) 0 , 1 4, 1 .
A1
E1 B1
B E 1D F 1 0 0 1 4 1 4 1 1 1 1 6 5,
| AM| 5 30 6.故 点 A到 直 线 EF的 距 离 为6.
2 10 4
4
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
D1
F A1
C1 B1
E
2021/3/11
D A
C B
9
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .

空间向量的距离和夹角公式

空间向量的距离和夹角公式

例2 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 D1 B1的中點,求證:EF⊥ DA1
例3 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 CD的中點,求證:D1F⊥ 平面ADE
例4 如圖,在正方體ABCD-A1B1C1D1中,已知
B1E1
D1F1
1 4
AB
,與BE1與DF1所成的角的余弦值。
BC=1,AA1=√6,M是棱CC1的中點,
求證:A1B⊥AM
C1
B1
A1
M
C
B
A
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(1) 求證:EF⊥B1C ;
D1
C1
A1 E
B1 H
D
G
C y
F
A
B
x
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
| a| | b |
a12 a22 a32 b12 b22 b32
(2) 空間兩點間的距離公式 在空間直角坐標系中,已知A(x1 , y1 , z1),
B(x2 , y2 , z2),則
AB (x2 x1, y2 y1, z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(2) 求EF與C1G所成的角的余弦; D1
C1
(3) 求FH的長。A1 EB1 H NhomakorabeaD
G
C y
F

高一数学《夹角和距离公式》

高一数学《夹角和距离公式》

做一做: 教师备用:已知 a=(0,-1,1),b=(1,2,-1),则 a 与 b 的夹角等于( D ) (A)30° (B)60° (C)90° (D)150°
解析:a·b=0-2-1=-3,
|a|= 2,|b|= 1+22+1= 6,
∴cos〈a,b〉=|aa|·|bb|=
-3 =- 2· 6
nn··ab= =00 .
④解方程组,取其中的一个解,即得法向量. (3)方法二必须建立空间直角坐标系,方法一不一定要建立空间直角坐标系. (4)在求平面的法向量时,要先找有没有和平面垂直的直线,若没有则用待定系数法.
(5)在利用方法二求解平面的法向量时,方程组nn··ab= =00 有无数多个解,只需给 x,y,z
角时可以在两条异面直线上分别取出两个向量,通过求这两个向量所成的角来求异面直线所
成的角,但需注意异面直线所成角范围(0°,90°],注意这两个角相互转化时范围的不同.
知识要点二:线段的长度的求法
1.利用 a·a离公式来求.
知识要点三:对平面法向量的理解 1.所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然,一个平面的法向 量有无数多个,它们是共线向量.由于过直线外一点作与已知直线垂直的平面有且只有一个, 因此,在空间中,给定一个点 A 和一个向量 a,那么以向量 a 为法向量且经过 A 的平面是唯 一确定的. 2.求平面法向量的方法 (1)方法一:找到一条与已知平面垂直的直线,则该直线的任意方向向量都是该平面的法 向量. (2)方法二:待定系数法 若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求 解,一般步骤如下: ①设出平面的法向量为 n=(x,y,z). ②找出(求出)平面内的两个不共线的向量的坐标 a=(a1,b1,c1),b=(a2,b2,c2). ③根据法向量的定义建立关于 x、y、z 的方程组

1.4.2 用空间向量研究距离、夹角问题(课件)

1.4.2 用空间向量研究距离、夹角问题(课件)


cos
θ=|cos<n1,n2>|

|n1·n2| |n1|·|n2|
0,2π
自主学习
图(1)直线与平面所成角 图(2)平面与平面所成角
自主学习
思考 1:平面与平面所成的夹角与两平面的法向量所成夹角有何关系? 两平面的夹角是两法向量的夹角或其补角.
思考 2:两个平面的夹角与二面角的平面角的区别?
B→C·n=0
- 3x+y=0

,得

A→1C·n=0
y- 3z=0

取 n=(1,
3,1),故
sin
θ=|cos〈E→F,n〉|=
|EF·n| →
=45.
|EF|·|n|
因此直线 EF 与平面 A1BC 所成角的余弦值为35.
经典例题
题型二 利用空间向量求夹角
例 6-变式 如图所示,在直四棱柱 ABCD-A1B1C1D1 中,AD∥BC,∠BAD=90°,AB= 3,
1+0×(t-2)+0= 2× 1 t 22 ·cos 60°,
所以 t=1,所以点 E 的位置是 AB 的中点.
经典例题
题型二 利用空间向量求夹角
角度2:线面角 若直线l与平面α的夹角为θ,利用法向量计算θ的步骤如下:
经典例题
题型二 利用空间向量求夹角
例 6 如图,已知三棱柱 ABC-A1B1C1,平面 A1ACC1⊥平面 ABC,∠ABC=90°, ∠BAC=30°,A1A=A1C=AC,E,F 分别是 AC,A1B1 的中点. (1)证明:EF⊥BC; (2)求直线 EF 与平面 A1BC 所成角的余弦值.
(2)范围:异面直线所成角的范围是0,π2,故两直线方向向量夹角的余弦 值为负时,应取其绝对值.

1.4.2 用空间向量研究距离、夹角问题(第1课时)

1.4.2 用空间向量研究距离、夹角问题(第1课时)

2 30
.
5
4.求点到平面的距离
①等体积法(将点面距离看作三棱锥的高)
D1
P35-2(3).棱长为2的正方体ABCD-A1B1C1D1中,E,F
分别是线段DD1的中点,求点A1到平面AEB1的距离.
B1
A1
析 : 设点A1到平面AEB1的距离hA1 .
C1
E
VA1 AEB VB1 AEA1 ,


a
2 8
4
C1
A
C
B
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 )
2
d a (
②等面积法(将点线距离视为三角形的高)
a l 2
)
|l |
[变式]棱长为a的正方体ABCD-A1B1C1D1中,M是线段DC1上的动点,
求点M到直线AD1的距离的最小值.
D1
析 : 建系Dxyz , A(a,0,0), D1 (0,0, a ), 设M (0, x, x )
AB (0,2,0), AC1 (2,2,2), AB AC1 4, | AB | 2, | AC1 | 2 3,
D
C
2
A
B
点B到直线AC1的距离为 AB (
AB AC1 2
4 2 2 6
) 4(
)
3
2 3
| AC1 |
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 或单位方向向量 )
D1
a a
析 : 建系Dxyz, A(a,0,0), D1 (0,0, a ), M (0, , )
2 2
a a

高一数学-《夹角和距离公式》课件

高一数学-《夹角和距离公式》课件

角时可以在两条异面直线上分别取出两个向量,通过求这两个向量所成的角来求异面直线所
成的角,但需注意异面直线所成角范围(0°,90°],注意这两个角相互转化时范围的不同.
知识要点二:线段的长度的求法
1.利用 a·a=|a|2 求有关线段的长度;
2.利用两点间的距离公式来求.
知识要点三:对平面法向量的理解 1.所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然,一个平面的法向 量有无数多个,它们是共线向量.由于过直线外一点作与已知直线垂直的平面有且只有一个, 因此,在空间中,给定一个点 A 和一个向量 a,那么以向量 a 为法向量且经过 A 的平面是唯 一确定的. 2.求平面法向量的方法 (1)方法一:找到一条与已知平面垂直的直线,则该直线的任意方向向量都是该平面的法 向量. (2)方法二:待定系数法 若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求 解,一般步骤如下: ①设出平面的法向量为 n=(x,y,z). ②找出(求出)平面内的两个不共线的向量的坐标 a=(a1,b1,c1),b=(a2,b2,c2). ③根据法向量的定义建立关于 x、y、z 的方程组
答案:x<-4
知识要点一:异面直线所成角的求法
1.几何法:即先根据异面直线所成角的定义,在给定的图形中找出或作出角,然后再
加以证明,最后在一个三角形中进行计算.上述过程即“作—证—求”三步.
2.向量法:即利用
cos θ=|aa|·|bb|=

x1x2+y1y2+z1z2 x21+y21+z21· x22+y22+z22
中的一个变量赋予一个特值,即可确定平面的一个法向量.赋的值不同,所求平面的法向量 就不同,但它们是共线向量.
3.应用平面的法向量解决线面平行、面面平行问题 (1)设直线 l 的方向向量是 a,平面 α 的法向量是 u,则要证明 l∥α,只需证明 a⊥u,即 a·u=0. (2)若能求出平面 α、β 的法向量 u、v,则要证明 α∥β,只需证明 u∥v.

用空间向量研究距离,夹角问题公式

用空间向量研究距离,夹角问题公式

用空间向量研究距离,夹角问题公式
对于距离和夹角问题的研究,空间向量提供了一种有效的方法。

空间向量是指具有方向和大小的矢量,可以用来表示在三维空间中的物理量或者几何对象。

首先,我们来讨论两个点之间的距离问题。

在空间向量中,两个点的距离可以通过计算它们的欧几里得距离来确定。

欧几里得距离是指从一个点到另一个点的直线距离。

如果我们将两个点表示为向量A和向量B,那么它们之间的欧几里得距
离可以使用以下公式计算:
距离 = |向量AB| = √((Bx-Ax)^2 + (By-Ay)^2 + (Bz-Az)^2)
其中,Ax、Ay、Az分别表示向量A的x、y、z坐标,Bx、By、Bz分别表示
向量B的x、y、z坐标。

通过这个公式,我们可以计算出两个向量之间的距离。

接下来,让我们来看一下关于夹角问题的公式。

在空间向量中,可以使用两个向量的点积和模长之间的关系来计算它们之间的夹角。

如果我们将两个向量表示为向量A和向量B,它们的夹角可以通过以下公式计算:
夹角θ = arccos((向量A·向量B) / (|向量A| × |向量B|))
其中,向量A·向量B表示两个向量的点积,|向量A|和|向量B|分别表示向量A 和向量B的模长。

通过这个公式,我们可以确定两个向量之间的夹角。

通过使用上述的距离和夹角问题的公式,我们可以将空间向量用于研究并解决各种几何和物理问题。

这些公式能够提供详细而完整的信息,帮助我们深入了解空间中不同物体之间的距离和夹角关系。

无论是在几何学、物理学还是其他相关领域,空间向量的研究都具有重要的应用价值。

空间几何中的角度与距离计算

空间几何中的角度与距离计算

空间几何中的角度与距离计算在空间几何中,角度与距离的计算是非常重要的。

通过正确计算角度和距离,我们能够准确描述和分析物体的位置、运动以及相互关系。

本文将介绍空间几何中常用的角度计算方法和距离计算方法。

一、角度计算在空间几何中,角度是表示物体之间相对方向关系的重要指标。

常见的角度计算方法有以下几种:1. 余弦定理余弦定理是计算三角形内角的常用方法之一。

在空间几何中,如果已知三点的坐标,可以通过余弦定理计算出这三个点所形成的夹角。

余弦定理的公式如下:cos A = (b² + c² - a²) / (2bc)其中,A为夹角的大小,a、b、c为夹角对应的边长。

2. 矢量法矢量法是一种基于向量运算的角度计算方法。

通过将空间中的两个向量进行运算,可以得到它们之间的夹角。

常见的向量法角度计算包括点乘法和叉乘法。

(1)点乘法:两个向量的点乘结果等于它们的模长相乘再乘以它们之间的夹角的余弦值。

可以通过点乘法计算向量之间的夹角。

(2)叉乘法:两个向量的叉乘结果等于它们的模长相乘再乘以它们之间的夹角的正弦值。

可以通过叉乘法计算向量之间的夹角。

3. 三角函数在空间几何中,三角函数也是用于角度计算的常用方法之一。

通过正弦、余弦和正切等三角函数的运算,可以计算出角度的大小。

三角函数的计算方法需要先将坐标系进行转换,然后根据坐标的数值,利用相应的三角函数公式进行计算。

二、距离计算在空间几何中,距离是表示物体之间远近程度的重要指标。

常见的距离计算方法有以下几种:1. 欧几里得距离欧几里得距离是空间几何中最常用的距离计算方法。

对于二维或三维空间中的两个点,欧几里得距离可以通过计算它们在各坐标轴上的差值的平方和再开方的方式得到。

欧几里得距离的公式如下:d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]其中,d为距离,(x₁, y₁, z₁)和(x₂, y₂, z₂)分别为两个点的坐标。

高三数学空间向量夹角与距离

高三数学空间向量夹角与距离
要面对社会、政府要面对群众。古往今来,诸如成功、荣誉,挫折、困难,乃至灾祸等等,无一不要人们面对。
设a=(a1,a2,a3), b=(b1,b2,b3)
a//b
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a⊥b
a1b1+a2b2+a3b3=0
例1.已知A(3,3,1),B(1,0,5)求:
确实是一种不好的行为,它会给人们带来不幸和灾难,但也有些“闯祸”恰恰是对旧事物的破坏,对旧传统的反叛,因此,就带有一种革命性的色彩,具有创新的内涵。你可以写写生活中的这类事件,也可以虚构故事来表现这一道理。 25、21世纪世界教育的核心主题之一是“学会共同生 活,”而“学会共同生活”的核心内容是“学会合作”。 试围绕“学会合作”的话题,写一篇600字左右的文章,题目自拟,文体不限。 思路点拨 合作的领域很多,同学们可以从自己的学习与生活中选取材料,可以写与老师、家长、同学、朋友等熟悉的人合作,也可以写与陌生人合作,还 可以写与集体的合作,更可以写与“自己”合作(学会用理智控制自己的感情,或自己的毅力与勤奋等)。可从大处着眼,也可以从小处说起;可高层建瓴叙谈,也可以小见大行文;既可写正面的(成功的)合作经历,也可写反面的(失败的)合作经历。可以写记叙文,也可写议。可以表达 这样的主题:合作是事业取得成功的保,合作万事兴。 26、阅读下面的材料,根据要求作文。 1830年,法国作家雨果同出版商签订合同,半年内交出一部作品。于是,雨果把外出的所有衣服锁进柜子里,把钥匙扔进了湖里,彻底断了外出会友和游玩的念头,一心写作,文学巨著《巴黎圣母 院》就是这样写成的。是的,在漫漫人生路上,往往只有不留下退路,才更容易赢得出路。当我们难以驾驭自己的惰性和欲望,不能专心致志地前行时,不妨也采取一些斩断退路之举,逼着自己全力以赴地寻找出路,走向成功。 请以“不留退路,才有出路”为题写一篇作文,所写内容必须 与“退路和出路”有关,文体不限,文题自拟,不得少于800字,不得抄袭。 27、阅读下面的材料,根据要求作文。 登山的人,有的目不旁视,奋力攀登,他执著于到达峰顶的瞬间风光;有的则流连沿途风景,且走且赏,山顶不过是他歇脚的地方。不只登山,生活也是这样:两种心态,两 种行为,两种价值观。你怎么看待这个问题呢? 请以“进取心与平常心”为题,联系现实生活,写一篇文章。自定立意,自拟标题,自选文体,不少于800字。 28、阅读下面的材料,根据要求作文。 巴豆,药性最能泻,但只要用量适度,非但不会引起腹泻,反倒能治好腹泻,剂量大了才会 引起严重腹泻。 由此,你会得到哪些启示?请以“度”为题,写一篇作文。题目自拟,立意自定,文体自选,不少于800字。 29、联系生活实际,以“包装”为题,写一篇不少于800字的作文,立意自定,题目自拟,文体不限。 [写作提示]联系现实生活,说明包装是为了使产品美观,吸引 消费者乐于购买,收到外观与内质相得益彰的效果。而今有些“包装”,诸如歌星矫揉造作,打扮过分;商品包装花样翻新;房屋装修华而不实。凡此种种,其效果适得其反,追求形式而损害了内容。要结合画面寓意予以剖析。 30、阅读下面的材料,根据要求作文。 两只蚂蚁想翻越一段墙, 寻找墙那边的食物。这段墙长有20米,高有10米。其中一只蚂蚁来到墙脚就毫不犹豫地向上爬去,可每爬到大半时,就会因劳累跌落下来。可是它不气馁,它相信只要付出就会有回报。一次次跌下来,它都迅速地调整一下自己,重新开始向上爬。 而另一只蚂蚁观察一下,决定绕过这段墙。 很快地,这只蚂蚁绕过这段墙来到食物面前,开始享用起来;而那只“勇敢”“坚定”的蚂蚁还在不停地跌落下去,又重新开始。 很多时候,我们赞扬那些做事情锲而不舍的人,但是往往忽视方向的选择与方法的运用。实际上,成功需要坚持,也需要方向、机遇、方法。请以“坚持与选择” 为题写一篇不少于800字的文章。立意自定,文体自拟。 三、半命题作文预测 31、请以“听听那 的声音”为题,写一篇作文。可讲述你自己或身边的故事,抒发你的真情实感,也可阐明你的思想观点。 【注意】①把题目补充完整。②立意自定,角度自选。③除诗歌外,文体不限。④不少 于800字。⑤不得抄袭。 写作点拨 这个命题非常贴近学生的生活可以写自然界的各种声音,也可以写家庭中、社会上的各种声音,还可以写心灵的声音等等等等。而我们要选择的,是最最触动我们心灵的声音。 32、阅读下面材料,按要求作文。 喧闹、快节奏的生活和工作给人们带来了满 足,也带来了烦恼。心灵时常被搓揉得疲惫不堪。那么,我们该到哪里去寻找心灵的憩息地呢? 请以“让心灵在 中憩息”为标题写一篇文章,文体自选,立意自定,字数不少于800,不得抄袭和套作。 思路点拨 这是一篇半命题作文。文题“让心灵在 中憩息”包含着一定的哲理意义。审题 立意的关键在于明确设定“心灵”与“憩息”的含义,并准确把握“憩息”的条件。可以选择宽容、爱等。 33、“? 的滋味” 以“? 的滋味”为题,写一篇记叙文。 要求:①补全题目;②自定立意;③不少于800字。 思路点拨: 文题中的“滋味”本义是“味道”,喻义是“某种感受”。 为此,本文的写作要注意以下三点:一是缘事生感。必须叙写一个中心事件,或围绕一个中心叙写一组事件,在此基础上生发出自己的内心感受。而且,只有事件叙写得“厚实”,生发的感受才会“真切”。那种通篇无事、跟着感觉走的文章只会给人以无病呻吟、为赋新词强说愁之感。二是 多法生感。对于“感受”的生发,既可先“事”后“感”,卒章生发,升华情感;也可将“感受”融化在“事件”的叙写过程之中,“生发”于无痕。三是用足描写。中学生的生活一般都是风平浪静的,很难“惊世骇俗”,很难给人以“超级震撼”。那么,要想在“平凡的世界”里生发出让 人怦然心动的感受,就必须用敏锐的触觉去捕捉,用细腻的笔触去描写生活中那些让人的心灵为之一颤的场景、画面、镜头,让读者的心弦在你柔柔地拨弄下产生出共鸣,这样才能收到“平凡的人给我以最多感动”的构思之效。 34、阅读下面的文字,根据要求作文。 人类要面对自然,个人

距离和夹角公式(空间向量) 精品

距离和夹角公式(空间向量) 精品
A1
D1
C1
思路二:利用空间向量的知识,
转化为求 EF和BG的 夹角,进一步转化为求 它们的数量积和长度.
B1 D
G
Cy F A E B
x
问题:正方体ABCD-A1B1C1D1中,E,F,G分别为AB,BC, CC1的中点,那么EF与BG所成角的余弦值为----z 解:不妨设已知正方体的棱长 为1个单位长度,且设DA=i D1 C1 DC=j,DD1=k,以i,j,k为坐标 向量建立空间直角坐标系 G A1 D-xyz B1
cos a, b a b | a ||b |

a1b1 a2b2 a3b3 a1 a2 a3 b1 b2 b3
2 2 2 2 2 2
;
a b a1b1 a2b2 a3b3 ;
| a | a a a1 a2 a3
2 2 2 2
| b | b b b b2 b3
2
2 1
2
2
练习:求下列向量的夹角的余弦: (1)a=(2,-3, 3), b=(1,0,0) (2)a=(-1,-1,1), b=(-1,01,)
思 已知A(0,2,3)、B( 2,1,6), C (1,1,5), 用向量 考
方法求ABC的面积S。
距离和夹角公式
(空间向量)
复习
空间向量的数量积: a b a b cos a, b 空间向量的坐标运算:
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b a1b1 a2b2 a3b3 ;
请思考: 2+a 2+a 2 2 a· a= a 1 2 3 |a| = |a|= √ a12+a22+a32 b=b12+b22+b32 |b|2= b· |b|= √ b12+b22+b323页第7题,第9题

用空间向量研究距离、夹角问题(一)(人教A版2019选修一)高二数学

用空间向量研究距离、夹角问题(一)(人教A版2019选修一)高二数学

解析:建立如图所示的空间直角坐标系,
则O(0,0,0),O1(0,1, 3 ),A( B(0,2,0),
∴A→1B=(- 3,1,- 3), O→1A=( 3,-1,- 3).
3 ,0,0),A1(
3 ,1,
3 ),
∴|cos〈A→1B,O→1A〉|=||AA→→11BB|··|OO→→11AA||
系?
条件
平面α,β的法向量分别为 u,v,α,β所构成的二面 角的大小为θ,〈u,v〉=φ
图形
关系 计算
θ=φ cos θ=cos φ
θ=π-φ cos θ=-cos φ
[基础自测]
1.判断正误(正确的画“√”,错误的画“×”) (1)两异面直线所成的角与两直线的方向向量所成的角相 等.( × ) (2)若向量n1,n2分别为二面角的两半平面的法向量,则二面 角的平面角的余弦值为cos〈n1,n2〉=|nn11|·|nn22|.( × ) (3)平面α外一点A到平面α的距离,就是点A与平面内一点B所 成向量A→B的长度.( × ) (4)二面角α-l-β的大小为θ,平面α,β的法向量分别为n1, n2,则θ=〈n1,n2〉.( × )
则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0), A→E =(0,1,1), A→D1 =(-1,0,2),D→E=(1,1,1)
设平面AD1E的法向量为n=(x,y,z),则- y+x+ z=20z=0
令z=1,则n=(2,-1,1)
∴cos〈n,D→E〉=2-31·+61=
(2)如图,以A为坐标原点,建立空间直角坐标系A-xyz,则 C(2,2,0),D(0,4,0),F(2,0,4) ∴A→D=(0,4,0),C→D=(-2,2,0),C→F=(0,-2,4) 设n=(x,y,z)是平面CDF的一个法向量,则

1.4.2.1用空间向量解决夹角、距离问题(一)

1.4.2.1用空间向量解决夹角、距离问题(一)

则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0), A→E =(0,1,1), A→D1 =(-1,0,2),D→E=(1,1,1)
设平面AD1E的法向量为n=(x,y,z),则- y+x+ z=20z=0
令z=1,则n=(2,-1,1)
∴cos〈n,D→E〉=2-31·+61=
又A→D是平面AEFB的一个法向量,
∴cos 〈n,A→D〉=|nn|··A|→A→DD|=23
∴平面CDF与平面AEFB所成锐二面角的余弦值为23.
方法归纳
利用法向量求二面角的大小的一般步骤 1.建立适当的空间直角坐标系. 2.分别求出二面角的两个半平面所在平面的法向量. 3.求出两个法向量的夹角的余弦值. 4.确定二面角的平面角的大小,方法有:(1)根据几何图形直 观判断二面角的平面角是锐角还是钝角,从而决定其余弦值的正 负;(2)依据“同进同出互补,一进一出相等”求解;(3)在二面角 的一个半平面内取一点P,过P点作另一个半平面所在平面的垂 线,若垂足在另一个半平面内,则所求二面角为锐二面角,若垂 足在另一个半平面的反向延长面上,则所求二面角为钝二面角.
A. 2 B. 3 C. 5 D.3
解析:
以O为坐标原点,建立如图所示的空间直角坐标系,由题设可 知A(1,0,0),B(0,2,0),C(0,0,2),∴ A→B =(-1,2,0), B→C =(0,- 2,2),|A→B|= 1+4距离d= 5-2= 3. 答案:B
跟踪训练2 如图,在四棱锥P-ABCD中,AD∥BC, AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面
ABCD,直线PE与平面PAC所成的角的正弦值为
5 5.
(1)求异面直线PB与CD所成的角;

空间向量的夹角和距离公式

空间向量的夹角和距离公式

空间向量的夹角和距离公式
cosθ = (A·B) / (,A, * ,B,)
其中,A·B表示向量A和向量B的点乘,A,和,B,表示向量A和向量B的模。

点乘的计算方法如下:
A·B=A1*B1+A2*B2+A3*B3
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。

模的计算方法如下:
A,=√(A1^2+A2^2+A3^2)
B,=√(B1^2+B2^2+B3^2)
其中,^2表示求平方根的操作。

夹角θ的取值范围是[0,π],即0到180度。

此外,空间向量的夹角还可以通过向量的叉乘计算。

设有两个三维向量A和B,它们的夹角θ可以通过以下公式计算:
sinθ = ,A × B, / (,A, * ,B,)
其中,A×B表示向量A和向量B的叉乘。

叉乘的计算方法如下:
A×B=(A2*B3-A3*B2,A3*B1-A1*B3,A1*B2-A2*B1)
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。

距离公式:
两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
其中,^2表示求平方根的操作。

这个公式适用于二维和三维空间的点之间的距离计算。

总结起来,空间向量的夹角可以通过点乘和叉乘计算,距离可以通过
坐标差的平方和再开方计算。

这些公式在物理学、几何学和计算机图形学
等领域有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3x+1y=0, 2 则 2 y+2z=0.
工具
第七章
立体几何
栏目导引
取 m=(0,0,1),作为平面 ABC 的法向量. 1 57 则 cos〈m,n〉=- =- . 19 19 3 57 ∴二面角 C1-AB-C 的余弦值为 . 19
答案:
57 19
工具
第七章
立体几何
栏目导引
工具
工具
第七章
立体几何
栏目导引
(2)设平面 SAB 的一个法向量为 n=(a,b,c), 则 n· S→ B =(a,b,c)· (1,1,-1)=a+b-c=0, n· S→ A =(a,b,c)· (0,1,-1)=b-c=0. 令 b=1 可得 n=(0,1,1), cos〈M→ N ,n〉= = → |M N |· |n| M→ N· n -1 6 =- . 3 3 ·2 4
所以异面直线 BF 与 DE 所成的角的大小为 60° . 1 1 →= → ,1, ,C→ (2)证明:由 AM E = ( - 1,0,1) , A D =(0,2,0) 2 2

→=0,C→ 可得 C→ E· AM E· A→ D =0.因此,CE⊥AM,CE⊥AD.
又 AM∩AD=A,故 CE⊥平面 AMD. 而 CE 平面 CDE,所以平面 AMD⊥平面 CDE.
(2)平面间的夹角 ① 两个 平面 所成 的 二 面 角 的 平 面 角 的大 小就 是这 两个平面的夹角.
其夹角θ∈[0,π].
②平面π1和π2的法向量为n1和n2,θ=∠MRN为两个平面二面角的平 面角,它由〈n1,n2〉确定.
π 当〈n1,n2〉≤ 时,θ= 2
〈n1,n2〉

π 当 <〈n1,n2〉≤π 时,θ=π- 〈n1,n2〉. 2
2 .已知两平面的法向量分别为 m = (0,1,0) , n = (0,1,1) ,则两平面
所成的二面角为(
A.45°
)
B.135° D.90°
C.45°或135°
1 2 m· n 解析: cos〈m,n〉= = = , |m||n| 1· 2 2 即〈m,n〉=45° ,其补角为 135° . ∴两平面所成二面角为 45° 或 180° -45° =135° .
工具
第七章
立体几何
栏目导引
利用向量法求线面角的方法.一是分别求出斜线和它在平面内的射
影直线的方向向量,转化为求两个方向向量的夹角(或其补角);二是通 过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐 角,取其余角就是斜线和平面所成的角.
工具
第七章
立体几何
栏目导引
(2011· 徐州质检)如图所示, 在四棱锥 S-OABC 中, 底面四边形 OABC π 是直角梯形,且∠COA=∠OAB= ,OA=OS=AB=1,OC=4,点 M 是 2 棱 SB 的中点,N 是 OC 上的点,且 ON∶NC=1∶3,以 OC,OA,OS 所 在直线分别为 x 轴,y 轴,z 轴建立空间直角坐标系 O-xyz. (1)求异面直线 MN 与 BC 所成的角的余弦值; (2)求 MN 与平面 SAB 所成的角的正弦值.
第七章
立体几何
栏目导引
利用向量的夹角来求异面直线的夹角时,注意区别:当异面直线的
向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的向 量的夹角为钝角时,其补角才是异面直线的夹角.
工具
第七章
立体几何
栏目导引
(2010· 天 津 卷 ) 如 图 , 在 长 方 体 ABCD -
A1B1C1D1 中,E 、 F 分别是棱 BC , CC1 上的点, CF = AB=2CE,AB∶AD∶AA1=1∶2∶4. (1)求异面直线EF与A1D所成角的余弦值; (2)证明:AF⊥平面A1ED.
工具
第七章
立体几何
栏目导引
(3)直线与平面的夹角
①平面外一条直线与它在平面内
π 0 , 2
投影
的夹角叫做该直线与
此平面的夹角.其夹角θ∈
.
②已知直线的方向向量s与平面的法向量n, π -〈s,n〉 ; 2 当〈s,n〉≤时,则θ= π 〈 s , n 〉- . 当〈s,n〉>时,则θ= 2
答案: C
工具
第七章
立体几何
栏目导引
1 4. 若直线 l 的方向向量 e=(2,1, m), 平面 α 的法向量 n=1,2,2,
且 l⊥α,则 m=________.
解析: 平面 α 的法向量即为平面的法线的方向向量,
又 l⊥α,∴e∥n, 即 e=λn(λ≠0),
1 亦即(2,1,m)=λ1,2,2, λ=2, ∴ ∴m=4. m = 2 λ .
解析: 如图所示,建立空间直角坐标系, 点A为 坐标原点,设 AB=1, 依 题 意 得 D(0,2,0) , F(1,2,1) , A1(0,0,4) ,
3 E1,2,0.
工具
第七章
立体几何
栏目导引
→ 1 → = 0, ,1,A (1)易得EF 1D=(0,2,-4), 2
; .
工具
第七章
立体几何
栏目导引
3.利用空间向量求空间距离
(1)空间一点A到直线l的距离的算法框图如图
d=
→ |2-|PA →· |PA s0|2 .
工具
第七章
立体几何
栏目导引
(2)空间一点A到平面π的距离的算法框图如图
d=
→· |PA n0|
.
工具
第七章
立体几何
栏目导引
1.已知平面α 内有一个点M(1,-1,2),平面α的一个法向量为 n= (6,-3,6),则下列点P中,在平面α内的是( A.P(2,3,3) C.P(-4,4,0) B.P(-2,0,1) D.P(3,-3,4) )
第7课时 空间夹角和距离的计算
工具
第七章
立体几何
栏目导引
工具
第七章
立体几何
栏目导引
1.利用空间向量证明空间中的位置关系
若直线l,l1,l2的方向向量分别为v,v1,v2,平面α,β的法向量分
别为n1 ,n2 ,利用向量证明空间中平行关系与垂直关系的基本方法列表
如下: 平行
直线 l ∥l ⇔v1∥v2⇔v1=λv2(λ为非零实数) 与直线 1 2 (1)l∥α⇔v⊥n1⇔v·n1=0 直线 (2)l∥α⇔v=xa+yb其中a,b为平面α内 与平面 不共线向量,x,y均为实数 平面 α∥β⇔n1∥n2⇔n1=λn2 与平面 (λ为非零实数)
→· → EF A 3 1D → → 于是 cos〈EF,A1D〉= =- . 5 → → |EF||A1D| 3 所以异面直线 EF 与 A1D 所成角的余弦值为 . 5
→ 3 1 → → (2)证明: 易知AF=(1,2,1), EA1= -1,-2,4 , ED= -1,2,0,
1 1 2 S(0,0, 2),E , , , 2 2 2 1 3 2 → A E =- , , ,
2Hale Waihona Puke 22S→ D =(-1,-1,- 2),
工具
第七章
立体几何
栏目导引
A→ E· S→ D 3 → → ∴cos〈A E ,S D 〉= =- , 3 → → |A E ||S D | ∴AE、SD 所成的角的余弦值为 3 . 3
(2)方法一:由(1)知 AD⊥平面 BCD, ∴平面 ABD⊥平面 BCD. ∴∠CBD 即为 BC 与平面 ABD 所成角. ∴sin θ=sin∠CBD= CD 2 3 = = . DB 2 3 3
工具
第七章
立体几何
栏目导引
方法二:建立空间直角坐标系 O-xyz,如图所示,则 A( 2,0,0), B(- 2,2 2,0),C(- 2,0,0),D(0,0, 2),A→ B =(-2 2,2 2,0), A→ D =(- 2,0, 2),B→ C =(0,-2 2,0). 设平面 ABD 的法向量为 n=(x,y,z).
解析: 如图所示,建立空间直角坐标系,点 A 为坐标原点, 设 AB=1, 依题意得 B(1,0,0),C(1,1,0), D(0,2,0),E(0,1,1),
1 1 . , 1 , F(0,0,1),M 2 2
工具
第七章
立体几何
栏目导引
(1)B→ F =(-1,0,1),D→ E =(0,-1,1), 于是 cos〈B→ F ,D→ E 〉= 0+0+1 1 = = . 2 → → 2· 2 |B F ||D E | B→ F· D→ E
工具
垂直
l1⊥l2⇔v1⊥v2 ⇔v1·v2=0
l⊥α⇔v∥n1⇔v=λn1(λ 为非零实数)
α⊥β⇔n1⊥n2 ⇔n1·n2=0
第七章
立体几何
栏目导引
2.利用空间向量求空间角
(1)直线间的夹角 ①当两条直线 l1 与 l2 共面时,我们把两条直线交角中不超过 90°的 角叫做 两直线的夹角. ②当直线 l1 与l2 是异面直线时,在直线 l1 上任取一点A 作AB∥l2 ,我
(1)求证:BC⊥平面ACD;
(2)求BC与平面ABD所成角θ的正弦值.
工具
第七章
立体几何
栏目导引
解析: (1)证明:由已知有 AC=BC=2 2,从而 AC2+BC2=AB2, 故 AC⊥BC. 取 AC 中点 O,连接 DO,则 DO⊥AC, 又平面 ADC⊥平面 ABC,平面 ADC∩平面 ABC=AC,DO 平面 ACD,从而 DO⊥平面 ABC,∴DO⊥BC. 又 AC⊥BC,AC∩DO=O,∴BC⊥平面 ACD.
→· →1=0,AF →· → =0, 于是AF EA ED 因此,AF⊥EA1,AF⊥ED,又 EA1∩ED=E, 所以 AF⊥平面 A1ED.
相关文档
最新文档