22整式的加减(2)

合集下载

(完整版)北师大数学七年级第三章整式的加减(二)—去括号与添括号(提高)

(完整版)北师大数学七年级第三章整式的加减(二)—去括号与添括号(提高)

整式的加减(二)—去括号与添括号(提高)知识讲解 【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-垐垐垎噲垐垐添括号去括号, ()a b c a b c -+--垐垐垎噲垐垐添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.(2015•泰安模拟)化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+-答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)].(3)-3[(a 2+1)-16(2a 2+a)+13(a-5)]. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}.【答案】解: (1) 15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x)-(1-x+x 2)+(1-x+x 2)-x 3=18-3x-x 3.. ……整体合并,巧去括号(2) 3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)]=3x 2y-2x 2z+(2xy-x 2z+4x 2y) ……由外向里,巧去括号=3x 2y-2x 2z+2xyz-x 2z+4x 2y=7x 2y-3x 2z+2xyz. (3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}=ab-4a 2b+3a 2b-2ab+a 2b+3ab ……一举多得,括号全脱=2ab.类型四、化简求值4.(2016春•盐城校级月考)先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.【答案与解析】 解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0,∴x=﹣2,y=,则原式=﹣﹣8=﹣. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三:【变式】(2015春•万州区期末)先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=g, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. 已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知: 10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---Q ,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n-10)厘米【答案】C.【解析】观察上图,可知n 块石棉瓦重叠的部分有(n-1)处,则n 块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a 2提示:由图形可知阴影部分面积=长方形面积29a --,而长方形的长为3+a ,宽为3,从而使问题获解.【巩固练习】一、选择题1.(2014•新泰市校级模拟)下列各式中去括号正确的是( ).A. a 2﹣(2a ﹣b 2+b )=a 2﹣2a ﹣b 2+bB. ﹣(2x+y )﹣(﹣x 2+y 2)=﹣2x+y+x 2﹣y 2C. 2x 2﹣3(x ﹣5)=2x 2﹣3x+5D. ﹣a 3﹣[﹣4a 2+(1﹣3a )]=﹣a 3+4a 2﹣1+3a2. 已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,则这个多项式是( ) .A .-5x-1B .5x+1C .-13x-1D .13x+13.代数式2332333{10(63)}672x y x x y x y x y x ---+-+-的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关4.如果210x x +-=,那么代数式3227x x +-的值为( ).A. 6B.8C. -6D. -85.化简5(2x ﹣3)﹣4(3﹣2x )之后,可得下列哪一个结果( ).A. 2x ﹣27B. 8x ﹣15C. 12x ﹣15D. 18x ﹣276. 已知有理数,,a b c 在数轴上的位置如图所示,且a b =,则代数式a c a c b b --+---的值为( ).A. 2c - B . 0 C. 2c D.222a b c -+7.(2016春•钦州期末)﹣[x ﹣(y ﹣z )]去括号后应得( )A .﹣x+y ﹣zB .﹣x ﹣y+zC .﹣x ﹣y ﹣zD .﹣x+y+z8.如果对于某一个特定范围内x 的任意允许值,1213...19110P x x x x =-+-++-+-的值恒为一个常数,则此值为 ( ).A. 2 B. 3 C. 4 D. 5二、填空题9.()()1 a b c d a -+-=-; ()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--. 10. 如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n 是正整数)个图案中由________个基础图形组成.11.(2014•阜宁县模拟)计算:2(a ﹣b )+3b= .12. 当2=x 时,代数式13+-bx ax 的值等于-17,那么当1-=x 时,代数式53123--bx ax 的值等于 . 13. 有理数a,-b 在数轴上的位置如图所示,化简a b b 322231-++--= .01a -3-2-12-b14. 任意一个三位数,减去它的三个数字之和所得的差一定能被______整除.三、解答题:15.(2016春•顺义区期末)计算:(2mn ﹣m 2+n 2)+(m 2﹣n 2+mn ).16.已知:ax 2+2xy-x 与2x 2-3bxy+3y 的差中不含2次项,求a 2-15ab+9b 2的值.17.(2015•宝应县校级模拟)先化简,再求值:(﹣4x 2+2x ﹣8y )﹣(﹣x ﹣2y ),其中x=,y=2012. 【答案与解析】一、选择题1.【答案】D.【解析】A 、a 2﹣(2a ﹣b 2+b )=a 2﹣2a+b 2﹣b ,故本选项错误;B 、﹣(2x+y )﹣(﹣x 2+y 2)=﹣2x ﹣y+x 2﹣y 2,故本选项错误;C 、2x 2﹣3(x ﹣5)=2x 2﹣3x+15,故本选项错误;D 、﹣a 3﹣[﹣4a 2+(1﹣3a )]=﹣a 3﹣[﹣4a 2+1﹣3a]=﹣a 3+4a 2﹣1+3a ,故本选项正确.2.【答案】A【解析】(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x =-5x-1.3.【答案】B【解析】合并同类项后的结果为332x --,故它的值只与x 有关.4.【答案】C【解析】21x x +=,3222227()77176x x x x x x x x +-=++-=+-=-=-.5. 【答案】D【解析】5(2x ﹣3)﹣4(3﹣2x )=5(2x ﹣3)+4(2x ﹣3)=9(2x ﹣3)=18x ﹣27.6.【答案】A【解析】由图可知:0a c b <<<,所以()()2a c a c b b a c a b c b c --+---=---+--=-.7.【答案】A【解析】解:﹣[x ﹣(y ﹣z )]=﹣(x ﹣y+z )=﹣x+y ﹣z .故选:A .8.【答案】B【解析】P 值恒为一常数,说明原式去绝对值后不含x 项,进而可得下图:由此得:P =(12)(13)...(17)(81)(91)(101)3x x x x x x -+-++-+-+-+-=.二、填空题9. 【答案】2;2;;b c d x y z a b b b -+--+-+10. 【答案】3n+1【解析】第1个图形由3×1+1=4个基础图形组成;第2个图形由3×2+1=7个基础图形组成;第3个图形由3×3+1=10个基础图形组成,故第n 个图形由(3n+1)个基础图形组成.11. 【答案】2a+b【解析】原式=2a ﹣2b+3b=2a+b.12.【答案】 22【解析】由题意可得:82117a b -+=-,即有49a b -=-.又因为12353(4)53(9)522a b a b -+-=---=-⨯--=.13.【答案】7a 3b -+【解析】3,3b b -<->,所以原式=312(2)(32)37b b a b a --++-=+-.14.【答案】9【解析】设任意一个的三位数为a ×102+b ×10+c.其中a 是1~9的正整数,b,c 分别是0~9的自然数.∵(a ×102+b ×10+c)-(a+b+c)=99a+9b=9(11a+b)=9m. (用m 表示整数11a+b) .∴任意一个三位数,减去它的三个数字之和所得的差一定能被9整除.三、解答题15.【解析】解:原式=2mn ﹣m 2+n 2+m 2﹣n 2+mn=3mn .16. 【解析】解: (ax 2+2xy-x)-(2x 2-3bxy+3y)=ax 2+2xy-x-2x 2+3bxy-3y=(a-2)x 2+(2+3b)xy-x-3y.∵此差中不含二次项, 20,230.a b -=⎧⎨+=⎩ 解得:2,3 2.a b =⎧⎨=-⎩当a=2且3b= -2时,a 2-15ab+9b 2=a 2-5a(3b)+(3b)2=22-5×2×(-2)+(-2)2=4+20+4=28.17.【解析】解:原式=﹣x 2+x ﹣2y+x+2y=﹣x 2+x ,当x=,y=2012时,原式=﹣+ = .。

人教版七年级上册数学2.2 整式的加减

人教版七年级上册数学2.2 整式的加减
(3)abc–[2ab–(3abc–ab)+4abc]
解:(1)原式=3a2–12a+9–25a2+5a–10 =–22a2–7a–1;
(2)原式=3x2–15xy–4x2–8xy+4y2–5y2+15xy =–x2–8xy–y2;
(3)原式=abc–(2ab–3abc+ab+4abc) =abc–3ab–abc=–3ab.
课堂检测
拓广探索题
解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3) =2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3 =-2y3=-2×(-1)3=2. 因为化简的结果中不含x,所以原式的值与x值无关.
课堂小结
同类项
两相同 两无关
(1)字母相同; (2)相同字母的指数相同.
人教版 数学 七年级 上册
2.2 整式的加减
第一课时 第二课时 第三课时
导入新知
在西宁到拉萨路段,列车在冻土地段的行驶速度 是100 km/h,在非冻土地段的行驶速度是120 km/h,列 车通过非冻土地段所需时间是通过冻土地段所需时间的 2.1倍 ,如果通过冻土地段需要t h,你能用含t的式子表 示这段铁路的全长吗?
探究新知
素养考点 2 去括号化简的应用
例2 两船从同一港口出发反向而行,甲船顺水,乙船逆水, 两船在静水中速度都是50千米/时,水流速度是a千米/时.
问: (1)2小时后两船相距多远?
解:顺水速度=船速+水速=(50+a)km/h, 逆水速度=船速–水速=(50–a)km/h.
2小时后两船相距(单位:km) 2(50+a)+2(50–a)=100+2a+100–2a=200.

七年级数学上册第二章《整式的加减》经典复习题(2)

七年级数学上册第二章《整式的加减》经典复习题(2)

1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 2.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.3.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.4.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .4D解析:D【分析】根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B 解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项,∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.8.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.9.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 11.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3D解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误;B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误;C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误;D 、系数相加字母及指数不变,故D 正确;故选:D .【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.12.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+31C解析:C【分析】 本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和. 故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.14.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.15.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B 解析:B【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数.【详解】根据题中的数据可知:左下角的数=上面的数的平方+1∴28165x =+=右下角的值=上面的数×左下角的数+上面的数∴888658528y x =+=⨯+=∴65528593x y +=+=故选:B.【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类. 4.化简:226334xx x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 5.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.【分析】有第1排的座位数看第n 排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n 排座位有(a+n-1)个故答案为:(a+n 解析:a n 1+-【分析】有第1排的座位数,看第n 排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有 a 个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n 排座位有 (a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n 排的座位数与第1排座位数的关系式的规律是解决本题的关键.6.有一列数:12,1,54,75,…,依照此规律,则第n 个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n 个数为故答案为:【点睛】本题考查了数字的变化规律找 解析:211n n -+. 【分析】 根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】 这列数可以写为12,33,54,75, 因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n 个数为211n n -+. 故答案为:211n n -+. 【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键. 7.将下列代数式的序号填入相应的横线上. ①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤【分析】根据单项式,多项式,整式,二项式的定义即可求解.【详解】(1)单项式有:③23xy -,④0,⑨2x ;(2)多项式有:①223a b ab b ++,②2a b +,⑤3y x -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ; (4)二项式有:②2a b +,⑤3y x -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.8.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n 由以上规律即可求解【详解解析:83n -【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.9.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 11.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键.1.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 解析:-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m 、n 的值后代入进行计算即可.【详解】my 3+3nx 2y +2y 3-x 2y +y =(m +2)y 3+(3n -1)x 2y +y ,∵此多项式不含三次项,∴m +2=0,3n -1=0,∴m =-2,n =13, ∴2m +3n =2×(-2)+3×13=-4+1=-3. 【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m 、n 的值.2.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.3. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440, ②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯ =14×10×11×12×13 =4290.【点睛】本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.4.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。

整式的加减(全章练习题)

整式的加减(全章练习题)

第二章 整式的加减2.1 整式(1)学习要求:能用含有字母的式子表示数量关系,掌握单项式的概念,体会用字母表示数的优越性. 做一做: 填空题:1.小明今年a 岁,比小军大2岁,小军今年________岁. 2.单项式4x 2y 3的系数是____,次数是____. 3.数a (a ≠0)的倒数是________.4.长为a ,宽为b ,高为c 的长方体的表面积为________. 选择题:5.在式子20a ,4t 2,50,3.5x ,vt +1,-m 中,单项式的个数是( ). (A)3 (B)4 (C)5 (D)6 6.下列说法正确的是( ). (A)23x 5的系数是1,次数是8 (B)若x 2+mx 是单项式,则m =0 (C)若332y x m的次数是5,则m =5 (D)0不是单项式7.下列式子书写规范的是( ). (A)x 312(B)a ×b ÷c(C)xy (D)cb ×38.单项式(-1)m ab m 的( ). (A)系数是-1,次数是m (B)系数是1,次数是m +1 (C)系数是-1,次数是m +1 (D)系数是(-1)m ,次数是m +1解答题: 9.列式表示:(1)a 的;51(2)m 的31的n 倍;(3)比数x 的3倍小2的数.10.用含有字母的式子表示数量关系:(1)提速火车现在的行驶速度是220千米/时,t 小时行驶的路程是多少千米?(2)已知一个长方形的周长是40厘米,一边长是a 厘米,这个长方形的面积是多少平方厘米.11.填写下表:12.一辆公交汽车从大红门出发,0.8小时后到达相距s 千米的西三旗,这辆公交车的平均速度是多少?13.张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报纸,则张大伯卖报纸收入多少元?问题探究:14.按下面图2-1所示的程序计算,若开始输入的值为x =3,则最后输出的结果是多少?试写出计算过程.图2-12.1 整 式(2)学习要求:能较熟练地用含有字母的式子表示数量关系,掌握多项式、整式的概念. 做一做: 填空题: 1.多项式3x 2y -2x 3y 3-4x -y 2+7的次数是____,项数是____,常数项是____. 2.在以下数学式子a 2-3a +2,xy 2,97-,2273n m -,b a +81中,单项式有____个,多项式有________个.3.依次大于1的几个整数,叫做连续整数.三个连续整数中,如果最大的一个数是m ,那么其它两个数分别是____,____;如果中间的数是n ,那么其它的两个数分别是____,____.4.练习本每本0.20元,铅笔每支0.50元,买a 本练习本和b 支铅笔共需用________元. 5.某项工程,甲单独做要a 天完成,乙单独做要b 天完成,则:①甲每天完成工程的______;②乙每天完成工程的________;③甲、乙合作每天完成工程的________;④甲、乙合作4天完成工程的________;⑤甲做了3天,乙做了5天,共完成工程的________. 选择题:6.式子m +n 2表示( ).(A)m 与n 的平方的和 (B)m 与n 和的平方 (C)m 与n 的平方 (D)m 、n 两数的平方和7.一个三位数,其百位上的数字是a ,十位上的数字是b ,个位上的数字是c ,则这个三位数是( ). (A)abc (B)a +b +c (C)100a +10b +c (D)100c +10b +a8.如果一个多项式的次数是5,那么这个多项式各项的次数( ). (A)都小于5 (B)都大于5 (C)都不小于5 (D)都不大于5 9.在下列式子,182,253,32,321,18,,,622++++++--⋅x x z y x ba b a x n n q m a 中,整式的个数为( ). (A)8(B)7(C)6 (D)5解答题:10.已知|a +2|+(b -3)2=0,求单项式a b ba y x -+-的次数.11.如图2-2,求图中的阴影部分的面积.图2-212.据某报登载,一位医生研究得出由父母的身高可以预测出其子女的身高,其公式是:若父亲身高为a 米,母亲身高为b 米,则儿子成年后的身高08.12⨯+=ba 米,女儿成年后的身高2923.0ba +=米,七年级女同学刘丽的父亲身高1.75米,母亲身高1.62米,试预测刘丽同学成年后的身高(结果保留两位小数).13.已知多项式835322212+++-+y y x y x m 是六次四项式,单项式2x 2n y 5-m 与该多项式次数相同,求m 、n 的值.问题探究:14t 的关系.2.2 整式的加减(1)学习要求:能运用有理数的运算律对一些式子进行化简;会识别同类项,能比较熟练地合并同类项;能根据简单实际问题列式并化简. 做一做: 填空题:1.-5x 2+3x 2=( )x 2. 2.mn +nm =____.3.2x n -x n -(-3x n )=____. 4.若3223b a m -与245+n b a 是同类项,则m =____,n =____. 选择题:5.下列合并同类项正确的有( ).①-2mn +2nm =0;②3x 2+22x 2=5x 2;③x 2+2x 2-5x 2=-2x 2;④(-y )2+y 2=0. (A)4个 (B)3个 (C)2个 (D)1个 6.计算(3x 2-2x +1)-(2x 2+3x -5)的结果是( ). (A)x 2-5x +6 (B)x 2-5x -4 (C)x 2+x -4 (D)x 2+x +6 7.在xy 2与251xy -,3ab 2与4a 2b ,4abc 与cab ,b 3与43,32-与6,5a 2b 3c 与a 2b 3中能合并的有( ).(A)5组 (B)4组(C)3组(D)2组8.下列式子的描述中,错误的是( ). (A)x +y 2表示x 与y 2的和 (B)x 2-y 2表示x ,y 的平方差 (C)(x +y )2表示x 加y 的平方(D)2)131(-x 表示x 31与1的差的平方 解答题:9.合并下列各式中的同类项: (1)mn 2-6mn 2;(2)-2a 2b +3a 2b +3ab 2-2ab 2; (3)3x 2-6y 2-5xy -4x 2+3y 2.10.某市出租车收费标准为:起步价为5元,超过3千米后每1千米收费1.2元,某人乘坐出租车行了x 千米(x >3且为整数),则他应付费多少元?11.三个队植树,第一队种a 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,问三个队共种多少棵树?如果第一队种100棵,三个队种树的总棵树是多少?问题探究:12.把(x -1)当作一个整体,合并(x -1)2+2(x -1)2+3(x -1)2+…+n (x -1)2.2.2 整式的加减(2)学习要求:会求单项式、多项式的值;能根据实际问题列式并化简. 做一做: 填空题:1.当21=x 时,(-4x )3=____. 2.当a =0.5,b =1时,则b a 21102-的值为____.3.若多项式2x 2-3x 的值为5,则2x 2-3x -3的值为____.4.如图2-3是一个数值转换机的示意图,若输入x 的值为3,y 的值为-2时,则输出的结果为____.图2-3选择题:5.当x =-2时,式子-x 2+2x -1的值等于( ). (A)9 (B)1 (C)-9 (D)-16.已知32=b a ,则b ba +的值为( ).(A)23 (B)34 (C)35 (D)53 7.若n 是正整数,当a =-1时,-(-a 2n )2n +1的值为( ). (A)1 (B)-1 (C)0 (D)1或-18.已知(2x -1)3=ax 3+bx 2+cx +d ,若求a +b +c +d 的值,则下列( )思路最简便 (A)把x =1代入等式(B)把21=x 代入等式 (C)把x =0代入等式 (D)把x =-1代入等式解答题:9.求下列多项式的值,其中x =1,y =5. (1);5122xy xy -(2)-3x 2y +2x 2y +3xy 2-2xy 2.10.求多项式222675675c a c c ab a +--+的值,其中61-=a ,b =2,c =-3的值.11.已知-x +2y -5=0,求5(x -2y )2-3(x -2y )-60的值.12.已知a =3b ,,2a c =求cb a cb a -+++的值.问题探究:13.已知:a 2+ab =3,b 2+ab =-2.求:(1)a 2+2ab +b 2的值; (2)a 2-b 2的值.2.2 整式的加减(3)学习要求:能根据图、表、数、式中的排列特征,探究其中蕴涵的数式规律. 做一做: 填空题:1.观察下列顺次排列的等式:1×3=3=22-1,3×5=15=42-1,5×7=35=62-1,7×9=63=82-1……猜想:第n 个等式(n 为正整数)应为____.2.“”是日历表中某月的4天,则a 、b 、c 、d 的关系为____(只需写出一个等式). 3.已知,,15441544,833833,322322222 ⨯=+⨯=+⨯=+若bab a ⨯=+21010(a ,b 为正数,且ba为最简分数),则a +b =____. 4.观察图2-4中各正方形图案,每条边上有n (n ≥2)个圆点,每个图案中圆点的总数为s .按此规律推断出s 与n 的关系是____.图2-45.如图2-5是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n =20)根时,需要的火柴棍总数为____根.图2-5选择题:6.如图2-6,在数轴上,从-1到1有3个整数,它们是:-1,0,1;从-2到2有五个整数,它们是:-2,-1,0,1,2;从-3到3有7个整数,它们是:-3,-2,-1,0,1,2,3;……从-n 到n (n 为正整数)有( )个整数.图2-6(A)2n (B)2n -1 (C)2n +1 (D)2n +27.用△表示三角形,用■表示正方形,现在有若干三角形和正方形按一定规律排列如下:△■△△■△△△■△■△△■△△△■△■△△■△△△■……,则前2008个图形中,三角形的个数是( ). (A)1337 (B)1338 (C)1339 (D)13408.如图2-7是2006年6月份的月历,像图中那样,用一个圈竖着圈住3个数,如果被圈住的三个数之和为39,则这三个数中最大的一个是( ). (A)19 (B)20 C)21 (D)22图2-7解答题:9写出用x表示y的关系式.10.体育馆的每个区,每排的座位数a n与排的序数n的关系如下表所示,写出用n表示a n 的关系式.11试试,先把你的年龄乘以5,再加5,然后把结果扩大2倍,最后把算得的结果告诉老师,老师就知道你的年龄了?”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“130”,杨老师马上说:“你12岁”.如果你是杨老师,当李强同学算出的结果为140时,你能算出李强的年龄吗?问题探究:12.如图2-8,有一个形如蛛丝的六边形点阵,它的中心是一个点,算作第一层,第二层每边有两个点,第三层每边有三个点,依此类推:(1)写出第n层所对应的点数;(2)如果某一层有96个点,你知道是第几层吗?(3)有没有一层,它的点数为100点?图2-82.2 整式的加减(4)学习要求:掌握添、去括号法则,并会运用添、去括号法则对多项式进行变形,进一步根据具体问题列式,提高解决实际问题的能力.做一做:填空题:1.计算:a+(b+c-d)=________.2.计算:a-(b+c-d)=____.3.化简:(5a-3b)-3(a-2b)=____.4.在下列各式的括号中填上适当的项.(1)x+y-z=x+(____)=x-(____);(2)-x+y-z=+(____)=-(____).5.根据去括号的方法,在下面方框里填上“+”或“-”:①(a-b)□(-c-d+e)=a-b+c+d-e;②(m+n)□[m-(n-p)]=2m+p;③(7a-b+c)□[-a-(2b-c+2)]=8a+b+2.选择题:6.将(a+c)+2(a+c)-4(a+c)合并成同类项,结果正确的是( ).(A)a+c(B)-a-c(C)-a+c(D)a-c7.下列去括号后结果错误的是( ).(A)(a+b)-3(x-y)=a+b-3x+3y(B)(m+n)+(5a-8b)=m+n+5a-8b(C)3m-(x+y-z)=3m-x-y+z(D)-3(2m-n)-(a-b)=-6m+n-a+b 8.把2a-[3-(2a+1)]化简后,结果正确的是( ).(A)4a-2 (B)-2 (C)4a-4 (D)-4解答题:9.下列各式的变形对不对?如果不对,指出错在哪里.(1)15x-4x-6x=15+(4x-6x);(2)12y-8y+3y=12y-(8y+3y).10.先化简下式,再求值:(-x3+6-5x)+(5x-4+2x3),其中x=-2.11.先化简再求值.3x 3-[x 3+(6x 2-7x )]-2(x 3-3x 2-4x ),其中x =-1.12.a 、b 、c 、m 都是有理数,且a +(b +2c )=m ,a =m -(2b +3c ),试探究b 与c 之间有何关系.问题探究:13.已知:a -b =0,求a 3-(2a 4b 3-a 2b )-ab 2-b 3+2a 3b 4的值.2.2 整式的加减(5)学习要求:理解整式加减的运算法则,并能运用其法则进行整式加减的运算. 做一做: 填空题: 1.=--)411(2x _________. 2.(4a +3c +5b )+(5c -4b -a )=____. 3.一个多项式A 减去多项式2x 2+5x -3,马虎同学将减抄成了加,运算结果得-x 2+3x -7,则多项式A 是________.4.已知a 、b 、c 在数轴上的位置如图2-9,则|a |+|a +b |+|c -a |-|b -c |的值等于________图2-9选择题:5.计算(3x 2-2x +1)-(2x 2+3x -5)的结果是( ). (A)x 2-5x +6 (B)x 2-5x -4 (C)x 2+x -4 (D)x 2+x +66.多项式8x 2-3x +5与多项式3x 3+2mx 2-5x +3相加后,不含二次项,则m 等于( ). (A)2 (B)-2 (C)-4 (D)-87.若A =3x 2-2x ,B =3x -2,则下列各式中成立的是( ). (A)A +B =3x 2+2x -2 (B)A -B =3x 2-x -2 (C)B -A =5x -3x 2-2 (D)A +2B =3x 2-8x -4 8.已知x 2+xy =3,xy +y 2=-2,则x 2+4xy +3y 2的值是( ). (A)-3 (B)-6 (C)6 (D)以上都不对 解答题: 9.计算:(1)2b 3+(3ab 2-a 2b )-2(ab 2+b 3);(2)6(mn +mq )+(nq -3mq )-(6mn +nq ).10.求多项式21322-+x x 与4x 2-4x +2的差. 11.求)3123()31(22133n m n m m +-+--的值,其中m =-3,n =2.12.七年级(一)班分成三个组,利用星期日参加社会公益活动.第一组有学生m 名;第二组的学生人数比第一组学生人数的2倍少10;第三组学生人数是第二组学生人数的一半.七年级(一)班共有多少名学生?13.要给一个长、宽、高分别为x 、y 、z 的箱子打包,其打包的方式如图2-10所示,则打包带的长至少要多少?(单位:cm)(用含x 、y 、z 的式子表示)图2-10问题探究:14.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c ,…,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号21+=x y ;当明码对应的序号x 为偶数时,密码对应的序号.132+=xy按上述规定,将明码“love ”译成密码是( ).(A)gawq (B)shxc (C)sdri (D)love15.已知a 表示正数,b 表示负数.先化简|3-5b |-|3b -2a |+|8b -1|-|3a +1|,再求当a =5,101-=b 时,原式的值.小 结学习要求:进一步理解和掌握整式的有关概念,能熟练运用去括号、添括号的法则及整式加减的运算法则,能根据条件列式解决有关实际问题. 做一做: 填空题:1.多项式4a -3a 2b 3+6ab 2-8的最高次项是____,常数项是____.2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度v 千米/时,那么船在这条河流中顺水行驶的速度为____千米/时;逆水行驶的速度为____千米/时. 3.已知a 2+a -1=0,则a 2000+a 1999-a 1998=____.4.代数式10-(x +4)2的最大值是____,此时x =____. 5.数学兴趣小组的同学用棋子摆放如图2-11中三个“工”字型图案,依照这种摆放规律,图2-11 ①摆第4个“工”字型图案用____个棋子; ②摆第n 个“工”字型图案用____个棋子. 选择题:6.已知a -b =-3,c +d =2,则(b +c )-(a -d )的值为( ). (A)-1 (B)-5 (C)5 (D)17.若n 是正整数,当a =-1时,-(-a 2n )2n +1的值为( ). (A)1 (B)-1 (C)0 (D)1或-18.已知一个长方形的周长是40cm ,一边长是a cm ,则这个长方形的面积是( )cm 2. (A)2)40(a a - (B)4)240(a a - (C)a (40-2a ) (D)a (20-a )9.x 个工人m 天的工作量为a ,则一个人一天的工作量是( ).(A)m xa (B)a xm (C)xma(D)xma解答题: 10.列式表示:(1)比-a 小5的数; (2)m 的3倍与8的和;(3)x 的二分之一减y 的平方的差; (4)比s 的三分之一小7t 的数.11.计算:(1)-2(x 2-3x )+(5x 2-2x );(2)2m -(m +3n )-(-m -n )-(m -n ).12.窗户的形状如图2-12所示,其上部是半圆形,下部是边长相同的四个小正方形,已知下部小正方形的边长为a cm ,计算: (1)窗的面积; (2)窗框的总长.图2-12问题探究:13.为了便于计算,常把圆柱形钢管堆成等腰梯形状,下面的一层比上面一层多放一根,只要数出顶层的根数a 和层数n ,就可以算出这堆钢管的根数. (1)用含a 、n 的式子表示这堆钢管的总根数; (2)当n =6,a =5时,求这堆钢管的根数.14.两个奇数的和一定是偶数吗?如果不是,请举出反例;如果是,请说明理由.第二章 整式的加减测试题一、选择题:(本题共24分;每小题2分,每小题只有一个答案正确.) 1.下列说法正确的是( ). (A)单项式a 的次数是0 (B)a 的系数为0 (C)-9是单项式(D)52xy的系数是2 2.下列不是同类项的一组是( ).(A)3x 2y 与-6xy 2 (B)-ab 3与b 3a (C)12和0(D)2xyz 与zyx 21-3.下列运算结果正确的是( ). (A)5a +5b =5ab (B)-3ab +5ab =2ab (C)a -2a 2=-3a (D)-3a 2b -2ab 2=-5a 2b 4.x -(2x -y )的运算结果是( ). (A)-x +y (B)-x -y (C)x -y (D)3x -y 5.-a -b +c 的相反数是( ). (A)a +b +c (B)a -b +c (C)a +b -c (D)c +a -b 6.已知(4x 2-7x -3)-A =3x 2-2x +1,则A 为( ). (A)x 2-9x +2 (B)x 2-9x -4 (C)x 2-5x -2 (D)x 2-5x -4 7.若4x 2-3x -2=4,则=+-52322x x ( ). (A)2(B)8(C)-2(D)-88.多项式8313322-+--xy y kxy x 中不含xy 项,则k 的值是( ). (A)31 (B)61 (C)91 (D)09.已知关于x 的多项式ax 2-abx +b 与bx 2+abx +2a 的和是一个单项式,则a 、b 的关系为 ( ). (A)a =b (B)a =-b 或b =-2a (C)a =0或b =0 (D)ab =1图2-1310.如图2-13所示,图中阴影部分的面积是( ).(A)ab -x 2 (B)ab +x 2 (C)a 2-b 2 (D)a 2-b 2-x 211.某家庭电话月租金为15元,每次市内通话费平均为0.6元,每次长途通话费平均为1.8元,若半年内打市内电话a 次,打长途电话b 次,则这半年应付电话费为( ). (A)0.6a +1.8b (B)15+a +b (C)15+0.6a +1.8b (D)15 × 6+0.6a +1.8b12.已知x =3时ax 3-bx +1=5,则当x =-3 时,ax 3-bx +1的值为( ).(A)-3 (B)3 (C)5 (D)-5 二、填空题:(本题共24分;每小题3分)13.单项式22bca -的次数是____,系数是____.14.多项式4x 3y 3-5x 4y 3-3x 2-y 2+5x +2的次数是____,项数是____,常数项是____15.气温由t ℃上升m ℃后变成____℃.16.一个两位数,a 、b 分别表示是十位和个位上的数字,则这个两位数可表示为____. 17.一件上衣原售价a 元,降价10%后,每件的售价为____元. 18.已知-x +2y =6,则3(x -2y )2-5(x -2y )+6的值为____. 19.观察下列等式:,,545545,434434,323323,212212+=⨯+=⨯+=⨯+=⨯设n 表示正整数,用关于n 的等式表示这个规律为:____×____=____+_______.20.七年级进行体能测试,一班有m 个学生,平均成绩为a 分;二班有n 个学生,平均成绩为b 分,则这两个班的平均成绩为____分. 三、解答题:(本题共52分) 21.(本题8分)计算:(1));5(61)12(31)1(21-+--+m m m(2)5a 2-[3a -2(2a -3)-4a 2].22.(本题5分)先化简,再求值:)3123()31(22122b a b a a +-+--,其中⋅=-=32,2b a23.(本题5分)已知:(a +2)2+|a +b +5|=0,求3a 2b -(2a 2b -12ab +a 2b -4a 2)-11ab 的值.24.(本题6分)有一串单项式:-x ,2x 2-3x 3,4x 4,…,-19x 19,20x 20,…(1)写出第2005个单项式;(2)写出第n 个,第(n +1)个单项式.25.(本题6分)题目条件是某代数式减去ab -2bc +3ac ,有位同学误以为是加上此式,结果得到错误答案:-2ab +bc +8ac ,试求出正确答案.26.(本题7分)已知4a -3b =7,3a +2b =19,求9a -11b 的值.27.(本题7分)已知(a -1)x 2y a +1是x 、y 的5次项式,试求整式的值:(1)a 2+2a +1; (2)(a +1)2.由(1)(2)两小题的结果你有发现了什么结论?任意取几个a 值验证你的结论.28.(本题8分)某地电话拨号入网有两种收费方式,用户可以任选其一:Ⅰ.记时制:0.05元/分钟;Ⅱ.包月制:50 元/月(限一部个人住宅电话入网),此外,每一种上网方式都得加收通信费0.02元/分钟.(1)某用户某月上网的时间为x 小时,请你写出这两种收费方式下该用户应该支付的费用;(2)若用户估计一个月内上网的时间为20小时,你认为采用哪种方式合算?通过计算来说明理由.参 考 答 案第二章 整式的加减2.1 整式(1)1.(a -2) 2.4,5 3.a 1 4.2(ab +bc +ca ) 5.C 6.B 7.C 8.D 9.(1)a 51 (2)mn 31 (3)3x -2 10.(1)220t 千米 (2)a (20-a )平方厘米 11.12.45s13.[0.5b +0.2(a -b )-0.4a ]元 14.输出结果为231.提示:当x =3时,62)13(32)1(=+⨯=+x x ;当x =6时,212)16(62)1(=+⨯=+x x ;当x =21时,=+2)1(x x231212121=+⨯)(2.1 整式(2)1.6,5,7 2.3,2 3.m -1,m -2;n -1,n +1 4.(0.2a +0.5b ) 5.;1;1ba ②①③b a 11+;④b a 44+;⑤b a 53+ 6.A 7.C 8.D 9.C 10.单项式的次数为6 11.ab a 21π412- 12.1.62米 13.m =3,n =2 14.y =20+0.15t2.2 整式的加减(1)1.-2 2.2mn 3.4x n4.6,1 5.C 6.A 7.C 8.C 9.(1)-5mn 2 (2)a 2b +ab 2 (3)-x 2-3y 2-5xy 10.(1.2x +1.4)元 11.4a +6;40612.提示:把(x -1)当作一个整体,然后运用分配律即可解决问题.(x -1)2+2(x -1)2+3(x -1)2+…+n (x -1)2=(1+2+3+…+n )(x -1)2=2)1(2)1(-+=x n n 2.2 整式的加减(2)1.-8 2.2 3.2 4.-1 5.C 6.C 7.A 8.A 9.(1)20,542xy (2)-x 2y +xy 2,20 10.2 11.80 12.51113.(1)1 提示:两式相加得a 2+2ab +b 2=3+(-2)=1;(2)5提示:第一式减去第二式得:a 2-b 2=3-(-2)=52.2 整式的加减(3)1.(2n -1)(2n +1)=(2n )2-1 2.如:b -a =d -c ,或a -c =b -d 等 3.109 4.S =4(n -1) 5.630 6.C 7.C 8.B 9.y =2.1x 10.a n =20+2(n -1)11.13岁 12.(1)6(n -1)(n ≥2) (2)第17层 (3)没有哪一层的点数为100点.提示:由6(n -1)=100,得3217=n ,而3217不为整数 2.2 整式的加减(4)1.a +b +c -d 2.a -b -c +d 3.2a +3b 4.(1)y -z ,-y +z (2)-x +y -z ,x -y +z 5.①-;②+;③- 6.B 7.D 8.A 9.(1)不对,添括号出现符号错误 (2)不对,添括号出现符号错误 10.x 3+2,-6 11.15x ;-15 12.b 与c 互为相反数 13.02.2 整式的加减(5) 1.221-x 2.3a +b +8c 3.-3x 2-2x -4 4.-3a 5.A 6.C 7.C 8.A 9.(1)ab 2-a 2b (2)3mq 10.25722-+-x x 11.-3m +n 3,17 12.(4m -15)名学生 13.(2x +4y +6z )厘米 14.B .分析:理解题意的关键是“love ”中第一个字母“1”对应序号为12,12为偶数,故密码对应序号是1913212=+=y ,序号19对应字母是s ,s 为密码的第一个字母,依此类推,可知译成的密码是“shxc ”. 15.3-5a -10b ,-21小 结1.-3a 2b 3,-8 2.(v +2.5),(v -2.5) 3.0 4.10,-4 5.①22;②(5n +2) 6.C 7.A 8.D 9.C 10.(1)-a -5 (2)3m +8 (3)221y x - (4)t s 731-11.(1)3x 2+4x (2)m -n 12.(1)2)2π4(a +(2)(15+π)a 13.(1)a +a +1+a +2+…+(a +n -1)=2)12(-+n a n (2)当n =6,a =5时,2)12(-+n a n =452)1652(6=-+⨯⨯(根)14.两个奇数的和一定是偶数,理由略第二章 整式的加减测试题1.C 2.A 3.B 4.A 5.C 6.D 7.B 8.C 9.B 10.A11.D 12.A 13.21,4-14.7,6,2 15.(t +m ) 16.10a +b 17.0.9a 18.144 19.)1(1)1(1+++=+⨯+n nn n n n 20.n m bnam ++ 21.(1)0;(2)9a 2+a -6 22.958;32a b - 23.a =-2,b =-3;22 24.(1)-2005x 2005;(2)(-1)n ·nx n ;(-1)n +1·(n+1)x n +1 25.-4ab +5bc +2ac 26.9a -11b =3(4a -3b )-(3a +2b )=2 提示:此题要进行整体代入,利用已知条件变换成所求的式子 27.(1)a 2+2a +1=9;(2)(a +1)2=9猜想:a 2+2a +1=(a +1)2,略 28.解:(1)方式Ⅰ:60×(0.05+0.02)x ;方式Ⅱ:50+60×0.02x ; (2)当x =20时,方式Ⅰ:4.2x =4.2×20=84(元);方式Ⅱ:1.2x +50=1.2×20+50=74(元).选择方式Ⅱ较合算。

【初中教育】2020七年级数学上册第二章整式的加减22整式的加减同步检测试卷含解析新版新人教版

【初中教育】2020七年级数学上册第二章整式的加减22整式的加减同步检测试卷含解析新版新人教版

【20xx精选】最新七年级数学上册第二章整式的加减22整式的加减同步检测试卷含解析新版新人教版一、选择题(每小题3分,总计30分。

请将唯一正确答案的字母填写在表格内)题号 1 2 3 4 5 6 7 8 9 10选项1.下列各组中的两项,属于同类项的是()A.﹣2x2y与xy2 B.与2πy C.3mn与﹣4nm D.﹣0。

5ab与abc2.若是同类项,则m+n=()A.﹣2 B.2 C.1 D.﹣13.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3 B.6 C.8 D.94.下列计算,正确的是()A.3+2ab=5ab B.5xy﹣y=5x C.﹣5m2n+5nm2=0 D.x3﹣x=x25.下列计算正确的有()①(﹣2)2=4②﹣2(a+2b)=﹣2a+4b③﹣(﹣)2=④﹣(﹣120xx)=1⑤﹣[﹣(﹣a)]=﹣a.A.1个B.2个C.3个D.4个6.下列去括号正确的是()A.a2﹣4(a﹣1)=a2﹣4a+4 B.x2﹣4(y2﹣2xy)=x2﹣4y2+2xyC.a2﹣(a﹣3b)=a2﹣a﹣3b D.x2﹣2(x﹣3)=x2+2x﹣67.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2 B.2x2﹣y2 C.x2﹣2y2 D.﹣x2+2y28.某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是()A.4x﹣3y B.﹣5x+3y C.﹣2x+y D.2x﹣y9.若a2+2ab=﹣10,b2+2ab=16,则多项式a2+4ab+b2与a2﹣b2的值分别为()A.6,26 B.﹣6,26 C.6,﹣26 D.﹣6,﹣2610.如果代数式a+b=3,ab=﹣4,那么代数式3ab﹣2b﹣2(ab+a)+1的值等于()A.﹣9 B.﹣13 C.﹣21 D.﹣25二、填空题(每空2分,总计20分)11.化简3m﹣2(m﹣n)的结果为.12.如果﹣2xmy3与xyn是同类项,那么2m﹣n的值是.13.已知a﹣3b=3,则6b+2(4﹣a)的值是.14.写出﹣2m3n的一个同类项.15.已知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.若代数式3ax﹣2b2y+1与a3b2是同类项,则x= ,y= .17.有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b﹣a|= .18.若多项式A满足A+(2a2﹣b2)=3a2﹣2b2,则A= .19.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足.20.已知a、b、c在数轴上对应的点如图所示,则代数式|﹣a|﹣|b﹣a|+|c﹣a|﹣|a+b|化简后的结果为.三.解答题(总计50分)21.合并下列多项式中的同类项:(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;(2)﹣a2b+2a2b;(3)a3﹣a2b+ab2+a2b﹣2ab2+b3;(4)2a2b+3a2b﹣a2b22.先化简,再求值:a2﹣4b2﹣3(a2﹣4b2)﹣a2+4b2﹣5(a2﹣b)﹣b+a2,其中a=2,b=1.23.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3.正确的结果应该是多少?24.先化简,再求值:2x2y﹣[xy2﹣(6xy﹣9x2y)]+2(2xy2﹣xy).其中x=2,y=﹣3.25.已知A=﹣x2+x+1,B=2x2﹣x.(1)当x=﹣2时,求A+2B的值;(2)若2A与B互为相反数,求x的值.26.一个两位数,它的十位数字为a,个位数字为b,若把它的十位数字和个位数字对调,得到一个新的两位数.(1)计算新数与原数的和,这个和能被11整除吗?为什么?(2)计算新数与原数的差,这个差有什么性质?参考答案与试题解析一.选择题(共10小题)1.【分析】根据同类项的概念即可求出答案.【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:C.2.【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m和n的值,从而求出m+n的值.【解答】解:由同类项的定义可知m+2=1且n﹣1=1,解得m=﹣1,n=2,所以m+n=1.故选:C.3.【分析】首先可判断单项式am﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式am﹣1b2与的和仍是单项式,∴单项式am﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴nm=8.故选:C.4.【分析】根据同类项的概念及合并同类项的法则得出.【解答】解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选:C.【分析】依据有理数的乘方法则、去括号法则、相反数的定义进行解答即可.【解答】解:①(﹣2)2=4,故①正确;②﹣2(a+2b)=﹣2a﹣4b,故②错误;③﹣(﹣)2=﹣,故③错误;④﹣(﹣120xx)=1,故④正确;⑤﹣[﹣(﹣a)]=﹣a,故⑤正确.故选:C.6.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行分析即可.【解答】解:A、a2﹣4(a﹣1)=a2﹣4a+4,故原题正确;B、x2﹣4(y2﹣2xy)=x2﹣4y2+8xy,故原题错误;C、a2﹣(a﹣3b)=a2﹣a+3b,故原题错误;D、x2﹣2(x﹣3)=x2﹣2x+6,故原题错误;故选:A.7.【分析】被减式=差+减式.【解答】解:多项式为:x2﹣2y2+(x2+y2)=(1+1)x2+(﹣2+1)y2=2x2﹣y2,故选:B.=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.【分析】依据相同字母的指数也相同可求得x、y的值.【解答】解:代数式3ax﹣2b2y+1与a3b2是同类项,∴x﹣2=3,2y+1=2.解得:x=5,y=.故答案为:5;.17.【分析】根据数轴可化简含绝对值的式子.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a18.【分析】此题涉及整式的加减运算,解答时只要用和减去加数即可得出A的结果.【解答】解:A=3a2﹣2b2﹣(2a2﹣b2)=3a2﹣2b2﹣2a2+b2=a2﹣b2.19.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.故答案为:a=3b.20.【分析】先根据a、b、c在数轴上的位置可得a<b<0<c,然后进行绝对值的化简,合并求解.【解答】解:由图可得,a<b<0<c,原式=﹣a﹣(b﹣a)+c﹣a+(a+b)=﹣a﹣b+a+c﹣a+a+b=c.故答案为:c.三.解答题(共6小题)21.【分析】根据合并同类项的法则求解.【解答】解:(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1=(3﹣2+1)x2+(4﹣1﹣3)x﹣1=2x2﹣1;(2)﹣a2b+2a2b=(﹣1+2)a2b=a2b;(3)a3﹣a2b+ab2+a2b﹣2ab2+b3=a3+(﹣1+1)a2b+(1﹣2)ab2+b3=a3﹣ab2+b3;(4)2a2b+3a2b﹣a2b=(2+3﹣)a2b=a2b.。

整式的加减(二)—去括号与添括号(基础)知识讲解

整式的加减(二)—去括号与添括号(基础)知识讲解

整式的加减(⼆)—去括号与添括号(基础)知识讲解整式的加减(⼆)—去括号与添括号(基础)【学习⽬标】1.掌握去括号与添括号法则,充分注意变号法则的应⽤;2. 会⽤整式的加减运算法则,熟练进⾏整式的化简及求值.【要点梳理】【⾼清课堂:整式的加减(⼆)--去括号与添括号388394 去括号法则】要点⼀、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,⾸先要弄清括号前⾯是“+”号,还是“-”号,然后再根据法则去掉括号及前⾯的符号.(3)对于多重括号,去括号时可以先去⼩括号,再去中括号,也可以先去中括号.再去⼩括号.但是⼀定要注意括号前的符号.(4)去括号只是改变式⼦形式,但不改变式⼦的值,它属于多项式的恒等变形.要点⼆、添括号法则添括号后,括号前⾯是“+”号,括到括号⾥的各项都不变符号;添括号后,括号前⾯是“-”号,括到括号⾥的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前⾯的符号,也就是说,添括号时,括号前⾯的“+”号或“-”号也是新添的,不是原多项式某⼀项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则⼀般地,⼏个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的⼀般步骤是:①先去括号;②再合并同类项.(2)两个整式相加减时,减数⼀定先要⽤括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为⽌;②⼀般按照某⼀字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型⼀、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ;(2)-(-xy-1)+(-x+y)=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.举⼀反三【变式1】去掉下列各式中的括号:(1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n).【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2015?济宁)化简﹣16(x ﹣0.5)的结果是()A .﹣16x ﹣0.5B .﹣16x+0.5C . 16x ﹣8D .﹣16x+8【答案】D类型⼆、添括号2.在各式的括号中填上适当的项,使等式成⽴.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【答案】(1)2345x y z t --+-,2345x y z t +-+,345y z t -+-,45z t -.(2)345y z t -+-,345y z t -+,45z t -+,23x y -+.【解析】(1)2345x y z t +-+ (2345)x y z t =---+-(2345)x y z t =++-+2(345)x y z t =--+-23(45)x y z t =+--;(2)2345x y z t -+-2(345)x y z t =+-+-2(345)x y z t =--+23(45)x y z t =---+45(23)z t x y =---+.【总结升华】在括号⾥填上适当的项,要特别注意括号前⾯的符号,考虑是否要变号.【⾼清课堂:整式的加减(⼆)--去括号与添括号 388394添括号练习】举⼀反三【变式】()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.【答案】b c d -+;2x y z --+;a b -;2b b +. 类型三、整式的加减3.(2016?邢台⼆模)设A ,B ,C 均为多项式,⼩⽅同学在计算“A﹣B”时,误将符号抄错⽽计算成了“A +B”,得到结果是C ,其中A=x 2+x ﹣1,C=x 2+2x ,那么A ﹣B=()A .x 2﹣2xB .x 2+2xC .﹣2D .﹣2x【思路点拨】根据题意得到B=C ﹣A ,代⼊A ﹣B 中,去括号合并即可得到结果.【答案】C .【解析】解:根据题意得:A ﹣B=A ﹣(C ﹣A )=A ﹣C+A=2A ﹣C=2(x 2+x ﹣1)﹣(x 2+2x )=x 2+2x ﹣2﹣x 2﹣2x=﹣2,故选C.【总结升华】整式加减的⼀般步骤是:①先去括号;②再合并同类项.类型四、化简求值 4. 先化简,再求各式的值:22131222,2,;22333x x y x y x y +-+--=-= ? ?其中【答案与解析】原式=2221312232233x x y x y x y -+-+=-+, 当22,3x y =-=时,原式=22443(2)()66399-?-+=+=. 【总结升华】化简求值题⼀般采⽤“⼀化⼆代三计算”,此类题的书写格式⼀般为:当……时,原式=?举⼀反三【变式1】先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案】 (-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.【变式2】先化简,再求值:3(2)[3()]2y x x x y x +----,其中,x y 化为相反数.【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +----=+-+--=+因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +----=+=?= 5. 已知2xy =-,3x y +=,求整式(310)[5(223)]xy y x xy y x ++-+-的值.【答案与解析】由2xy =-,3x y +=很难求出x ,y 的值,可以先把整式化简,然后把xy ,x y +分别作为⼀个整体代⼊求出整式的值.原式310(5223)xy y x xy y x =++--+3105223xy y x xy y x =++--+5310232x x y y xy xy =++-+-88x y xy =++8()x y xy =++.把2xy =-,3x y +=代⼊得,原式83(2)24222=?+-=-=.【总结升华】求整式的值,⼀般先化简后求值,但当题⽬中含未知数的部分可以看成⼀个整体时,要⽤整体代⼊法,即把“整体”当成⼀个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.举⼀反三【变式】已知代数式2326y y -+的值为8,求2312y y -+的值.【答案】∵ 23268y y -+=,∴ 2322y y -=.当2322y y -=时,原式=211(32)121222y y -+=?+=. 6. 如果关于x 的多项式22(8614)(865)x ax x x ++-++的值与x ⽆关.你知道a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母x ⽆关,就是合并同类项,结果不含有“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.注意这⾥的a 是⼀个确定的数.(8x 2+6ax+14)-(8x 2+6x+5)=8x 2+6ax+14-8x 2-6x-5=6ax-6x+9=(6a-6)x+9由于多项式(8x 2+6ax+14)-(8x 2+6x+5)的值与x ⽆关,可知x 的系数6a-6=0.解得a =1.【总结升华】本例解题的题眼是多项式的值与字母x ⽆关.“⽆关”意味着合并同类项后,其结果不含“x ”的项.。

整式的加减(二)—添加减括号及化简求值 第2讲

整式的加减(二)—添加减括号及化简求值  第2讲

整式的加减(二)—添加减括号及化简求值(基础)【学习目标】1.掌握去括号与添括号法则,充分注意变号法则的应用; 2. 会用整式的加减运算法则,熟练进行整式的化简及求值. 【要点梳理】【整式的加减(二)--去括号与添括号 去括号法则】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +-+-添括号去括号, ()a b ca b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.去括号:(1)d -2(3a -2b+3c );(2)-(-xy -1)+(-x+y ).练习1去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m );(3). 2(a -2b )-3(2m -n ).2化简﹣16(x ﹣0.5)的结果是( )A . ﹣16x ﹣0.5B . ﹣16x+0.5C . 16x ﹣8D . ﹣16x+8 3化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +-+=-=+2()x =-23()x y =+-; (2). 23452()2()x y z t x x -+-=+=-23()45()x y z t =--=--.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号. 练习()()1 a b c d a -+-=-;()()22 ;x y z +-=-()()()()()22222223 ;4 a b a b a b a b a b a a -+-=-+---=--.(5)22()101025()10()25x y x y x y +--+=+-+.(6)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.类型三、小马虎例1.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x 2+3xy ﹣y 2)﹣(﹣x 2+4xy ﹣y 2)=﹣x 2+y 2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 .例2.由于看错了运算符号,“小马虎”把一个整式减去多项式2ab -3bc +4误认为加上这个多项式,结果得出答案是2bc -1-2ab.问原题的正确答案应是多少?练习:1小明在一次测验中计算一个多项式A 减去xz yz xy 235+-时,不小心看成加上xz yz xy 235+-,计算出错误结果为xz yz xy 462-+,试求出原题目的多项式A 。

2022秋七年级数学上册 第2章 整式加减2.2 整式加减 3整式的加减——降幂(升幂)排列授课课件

2022秋七年级数学上册 第2章 整式加减2.2 整式加减 3整式的加减——降幂(升幂)排列授课课件

感悟新知
考查角度 2 利用多项式的排列规律探究多项式的项
12. 有一多项式为x10-x9y+x8y2-x7y3+…,若按这样 的规律写下去,则它的第7项和最后一项各是什 么?这个多项式是几次几项式?
解:第7项是x4y6,最后一项是y10, 这个多项式是十次十一项式.
课堂小结
整式加减
(1)第一项前面没有符号的在交换位置时,需要 添“+”;
11、人总是珍惜为得到。2022/5/62022/5/62022/5/6M ay-226-May-22
12、人乱于心,不宽余请。2022/5/62022/5/62022/5/6Friday, May 06, 2022
13、生气是拿别人做错的事来惩罚自 己。2022/5/62022/5/62022/5/62022/5/65/6/2022
14、抱最大的希望,作最大的努力。2022年5月6日 星期五2022/5/62022/5/62022/5/6
15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 2022/5/62022/5/62022/5/65/6/2022
16、业余生活要有意义,不要越轨。2022/5/62022/5/6May 6, 2022
这个单项式前面的系数和符号,特别是负号.
感悟新知
1. 多项式x5y2+2x4y3-3x2y2-4xy是( B )
知1-练
A. 按x的升幂排列的 B. 按x的降幂排列的
C. 按y的升幂排列的 D. 按y的降幂排列的
2. 把多项式5x-4x2+3按x的升幂排列,下列结果正
确的是( D )
A. 4x2+5x+3
17、一个人即使已登上顶峰,也仍要 自强不 息。2022/5/62022/5/62022/5/62022/5/6

整式的加减(2)

整式的加减(2)

2
3
= 3 x 2 y 5 xy2
2
3
例3 合并同类项:
(1)3x 2 y 2xy2 1 xy2 3 yx 2
小明的解法:
3
2
(2)3a a-b-2b2-a+b 2b2
(2)解:原式=(3a a a) (b b) (2b2 2b2 )
=a 2b
(2)错在把结合同类项时弄错了符号;

知识结构:
整式的概念 整式的加减
整式的计算
单项式 多项式
系数
次数 项,项数,常数项, 最高次项 次数
同类项与合并同类项 去括号 化简求值
用字母来表示生活中的量
定义:由__数__字__或_字__母__的__乘__积__组成的式子。 单独的_一__个__数_或_一__个__字__母_也是单项式。
单项式: 系数: 单项式中的__数_字__因__数__。 次数: 单项式中的___所_有__字__母__的__指_数__和___.
3
1、代数式中用到乘法时,若是数字与数字乘,要用“×”
若是数字与字母乘,乘号通常写成”.”或省略不写,如
3×y应写成3·y或3y,且数字与字母相乘时,字母与
字母相乘,乘号通常写成“·”或省略不写。
2、带分数与字母相乘,要写成假分数
3、代数式中出现除法运算时,一般用分数写,即用分数
线代替除号。
4、系数一般写在字母的前面,且系数“1”往往会省略;
正确的解法: (2)解:原式=(3a a a) (b b) (2b2 2b2 )
=a 4b2
总之,合并同类项现要找出式子中的同类项,并把它们写在一起, 最后合并,注意同类项的系数是带符号的。

《整式的加减》教学设计(精选22篇)

《整式的加减》教学设计(精选22篇)

《整式的加减》教学设计《整式的加减》教学设计什么是教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

《整式的加减》教学设计(精选22篇)作为一位杰出的老师,编写教学设计是必不可少的,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

我们该怎么去写教学设计呢?下面是小编精心整理的《整式的加减》教学设计(精选22篇),欢迎阅读,希望大家能够喜欢。

《整式的加减》教学设计1教学目标:教学内容分析:本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。

整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。

教学重点和难点:同类项的概念及合并同类项的方法教学设计思路:长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。

新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。

为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。

为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。

人教版数学七年级全章授课突破课件第2章 第22课时 整式的加减(2)——去括号

人教版数学七年级全章授课突破课件第2章  第22课时 整式的加减(2)——去括号

A.a-(b+c)
B.a-(b-c)
C.(a-b)+(-c)
D.(-c)-(b-a)
4.在等式 1-a2+2ab-b2=1-(
)中,括号里
应填( A ) A.a2-2ab+b2
B.a2-2ab-b2
C.-a2-2ab+b2
D.-a2+2ab-b2
5.若长方形的周长为 4,一边长为 m-n,则另一边
第22课时 整式的加减(2)——去括号
核心提要 典例精练 变式训练 基础巩固 能力拔高 拓展培优
去括号法则: (1)如果括号外的因数是正数,去括号后原括号内各 项的符号与原来的符号__相__同____; (2)如果括号外的因数是负数,去括号后原括号内各 项的符号与原来的符号__相__反____.
知识点一 去括号法则 ☞ 例 1 (教材 P67 练习第 1 题节选)化简: (1)12(x-0.5); 解:12(x-0.5)=12x-6.
解:a-15a+5-213a-3=a-15a-5-23a+6=125a +1(页).
答:此部小说他还有125a+1页没看.
10.观察下列各式: ①-a+b=-(a-b);②2-3x=-(3x-2); ③5x+30=5(x+6);④-x-6=-(x+6). 探索以上四个式子中括号的变化情况,思考它和去 括号法则有什么不同?利用你探索出来的规律,解答下 列问题: 已知 a2+b2=5,1-b=-2,求-1+a2+b+b2 的值.
知识点二 去括号与合并同类项的综合 ☞
例 2 (教材 P67 练习第 1 题节选)化简: (1)-5a+(3a-2)-(3a-7); 解:原式=-5a+3a-2-3a+7=(-5+3-3)a+ (-2+7)=-5a+5. (2)13(9y-3)+2(y+1).

七年数学上册第2章整式的加减22整式的加减第2课时去括号习题课件

七年数学上册第2章整式的加减22整式的加减第2课时去括号习题课件
接力中,自己负责的一步正确的是( ) A.甲 B.乙 C.丙 D.丁
【点拨】6m+2n-(3m-n)=6m+2n-3m+n, 6m+2n-3m-n=6m-3m+2n-n,6m+3m-2n-n =(6m+3m)-(2n+n),(6m+3m)-(2n-n)=9m-n, 故丁的运算正确.
【答案】D
12.根据实际问题的要求列出式子,再去括号化简,使 结果达到___最__简_____.
2.把a-(-2b+c)去括号,结果正确的是( B ) A.a-2b+c B.a+2b-c C.a-2b-c D.a+2b+c
3.在等式a-( 是( C )
A.b-c C.-b+c
)=a+b-c中,括号内应填的多项式
B.b+c D.-b-c
4.下列各式中,去括号不正确的是( D ) A.x+2(y-1)=x+2y-2 B.x+2(y+1)=x+2y+2 C.x-2(y+1)=x-2y-2 D.x-2(y-1)=x-2y-2
D.x-3
*10.有理数a在数轴上的对应点的位置如图所示,则|a-4| +|a-11|化简后为( A )
A.7
B.-7
C.2a-15
D.无法确定
【点拨】由题意得5<a<10,则a-4>0,a-11<0. 故|a-4|+|a-11|=(a-4)-(a-11)=a-4-a+11=7.
*11.老师在做网络直播课时设计了一个接力游戏,用合作的 方式完成化简整式,规则是:每名同学只能利用前面一 名同学的式子,进一步计算,再将结果传给下一名同学, 最后解决问题.过程如图所示.
解:原式=12x-2x+23y2-32x+13y2=-3x+y2. 当 x=-2,y=23时,原式=-3×(-2)+232=6+49=598.
(2)5(3a2b-ab2)-(ab2+3a2b),其中 a=12,b=13. 解:原式=15a2b-5ab2-ab2-3a2b=12a2b-6ab2. 当 a=12,b=13时, 原式=12×122×13-6×12×132=12×14×13-6×12×19=1-13=23.

七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版

七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版

七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。

)2 二一(々一。

)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。

-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。

(完整版)北师大数学七年级第三章整式的加减(二)—去括号与添括号(基础)

(完整版)北师大数学七年级第三章整式的加减(二)—去括号与添括号(基础)

去 括 号去 括 号【学习目标】整式的加减(二)—去括号与添括号(基础)1. 掌握去括号与添括号法则,充分注意变号法则的应用;2. 会用整式的加减运算法则,熟练进行整式的化简及求值. 【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1 与括号内的各项相乘;当括号前为“-”号时,可以看作-1 与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号. (4) 去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1) 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2) 去括号和添括号是两种相反的变形,因此可以相互检验正误:如: a + b - c 添 括 号 要点三、整式的加减运算法则a + (b -c ) , a - b + c 添 括 号a - (b -c )一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释: (1) 整式加减的一般步骤是:①先去括号;②再合并同类项. (2) 两个整式相加减时,减数一定先要用括号括起来.(3) 整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】 类型一、去括号1.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y).【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ;(2)-(-xy-1)+(-x+y)=xy+1-x+y .【总结升华】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号. 举一反三【变式 1】去掉下列各式中的括号: (1). 8m-(3n+5); (2). n-4(3-2m);(3). 2(a-2b)-3(2m-n). 【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m.(3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.【变式2】(2015•济宁)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5 B.﹣16x+0.5 C. 16x﹣8 D.﹣16x+8【答案】D类型二、添括号2.在各式的括号中填上适当的项,使等式成立.(1). 2x + 3y - 4z + 5t =-( ) =+( ) = 2x - ( ) = 2x + 3y - ( ) ;(2). 2x - 3y + 4z - 5t = 2x + ( ) = 2x - ( ) = 2x - 3y - ( ) = 4z - 5t - ( ) .【答案】(1)-2x - 3y + 4z - 5t ,2x + 3y - 4z + 5t ,-3y + 4z - 5t ,4z - 5t .(2)-3y + 4z - 5t ,3y - 4z + 5t ,-4z + 5t ,-2x + 3y .【解析】(1) 2x + 3y - 4z + 5t =-(-2x - 3y + 4z - 5t) =+(2x + 3y - 4z + 5t)= 2x - (-3y + 4z - 5t) = 2x + 3y - (4z - 5t) ;(2) 2x - 3y + 4z - 5t = 2x + (-3y + 4z - 5t) = 2x - (3y - 4z + 5t)= 2x - 3y - (-4z + 5t) = 4z - 5t - (-2x + 3y) .【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三【变式】(1)a-b+c-d=a-();(2)x+2y-z=-();(4)a2-b2-a -b =a2-a -().(3)a2-b2+a -b =(a2-b2)+();【答案】b -c +d ;-x - 2 y +z ;a -b ;b2+b .类型三、整式的加减3.(2016•邢台二模)设A,B,C 均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=x2+x﹣1,C=x2+2x,那么A﹣B=()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【思路点拨】根据题意得到 B=C﹣A,代入 A﹣B 中,去括号合并即可得到结果.【答案】C.【解析】解:根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(x2+x﹣1)﹣(x2+2x)=x2+2x﹣2﹣x2﹣2x=﹣2,故选 C.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.2类型四、化简求值4. 先化简,再求各式的值:;⎭ 【答案与解析】原式= 1 x - 3 x + 1 y 2 - 2x + 2y 2 = -3x + y 2 ,2 23 3当 x = -2, y = 时,原式= -3⨯(-2) + ( 2)2 = 6 + 4 = 6 4.3 3 9 9【总结升华】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=? 举一反三【变式 1】先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中 x =-2.【答案】 (-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当 x =-2,原式=(-2)2+10×(-2)=-16.【变式 2】先化简,再求值: 3( y + 2x ) -[3x - (x - y )] - 2x ,其中 x , y 化为相反数.【答案】3( y + 2x ) -[3x - (x - y )] - 2x = 3y + 6x - 3x + x - y - 2x = 2(x + y )因为 x , y 互为相反数,所以 x + y = 0所以3( y + 2x ) -[3x - (x - y )] - 2x = 2(x + y ) = 2 ⨯ 0 = 05. 已知 xy = -2 , x + y = 3 ,求整式(3xy +10 y ) +[5x - (2xy + 2 y - 3x )] 的值.【答案与解析】由 xy = -2 , x + y = 3 很难求出 x , y 的值,可以先把整式化简,然后把 xy , x + y 分别作为一个整体代入求出整式的值. 原式= 3xy +10 y + (5x - 2xy - 2 y + 3x )= 3xy +10 y + 5x - 2xy - 2 y + 3x= 5x + 3x +10 y - 2 y + 3xy - 2xy= 8x + 8 y + xy= 8(x + y ) + xy .把 xy = -2 , x + y = 3 代入得,原式= 8⨯ 3 + (-2) = 24 - 2 = 22 .【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.1 x + ⎛ - 3 x + 1 y2 ⎫ - ⎛ 2x - 2 y 2 ⎫ , 其中x = -2, y = 2 2 ⎝ 23 ⎪ ⎭ ⎝ 3 ⎪ 3举一反三【变式】已知代数式3y2- 2 y + 6 的值为 8,求3y2-y +1的值.2【答案】∵3y2- 2 y + 6 = 8 ,∴3y2- 2 y = 2 .当3y2- 2 y = 2 时,原式=1(3y2- 2 y) +1 =1⨯ 2 +1 = 2 .2 26. 如果关于 x 的多项式(8x2+ 6ax +14) - (8x2+ 6x + 5) 的值与 x 无关.你知道 a 应该取什么值吗?试试看.【答案与解析】所谓多项式的值与字母 x 无关,就是合并同类项,结果不含有“x”的项,所以合并同类项后,让含 x 的项的系数为 0 即可.注意这里的 a 是一个确定的数. (8x2+6ax+14)-(8x2+6x+5)=8x2+6ax+14-8x2-6x-5=6ax-6x+9=(6a-6)x+9由于多项式(8x2+6ax+14)-(8x2+6x+5)的值与 x 无关,可知 x 的系数 6a-6=0.解得 a=1.【总结升华】本例解题的题眼是多项式的值与字母 x 无关.“无关”意味着合并同类项后,其结果不含“x”的项.【巩固练习】一、选择题1.(2015•江西模拟)计算:a﹣2(1﹣3a)的结果为()A.7a﹣2B.﹣2﹣5aC.4a﹣2D.2a﹣22.(2016•黄陂区模拟)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣z C.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)3.计算-(a-b)+(2a+b)的最后结果为( ).A.a B.a+b C.a+2b D.以上都不对4.(2010·山西)已知一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1 C.-13x-1 D.13x+15.代数式-3x2y -10x3+ 3(2x3y +x2y) - (6x3y - 7x3+ 2) 的值( ).A.与x,y 都无关B.只与x 有关C.只与y 有关D.与x、y 都有关6.如图所示,阴影部分的面积是( ).A.11xy B.132 2xy C.6xy D.3xy二、填空题7.添括号:(1). -3 p + 3q -1 =+( ) = 3q - ( ) .(2). (a -b +c -d )(a +b -c +d ) = [a - ( )][a + ( )].8.(2015•镇江一模)化简:5(x﹣2y)﹣4(x﹣2y)= .9.若m2- 2m =1 则2m2- 4m + 2008 的值是.10.(2016•河北)若mn=m+3,则2mn+3m﹣5mn+10=.11.已知a=-(-2)2,b=-(-3)3,c=-(-42),则-[a-(b-c)]的值是.12.如图所示是一组有规律的图案,第 1 个图案由 4 个基础图形组成,第 2 个图案由 7 个基础图形组成,…,第n(n 是正整数)个图案中由个基础图形组成.三、解答题13. 化简 (1).(2015•宝应县校级模拟)2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)(2). - 3x 2y + 2x 2y + 3xy 2- 2xy 2(3). 3m 2n -mn 2-6mn +n 2m - 0.8mn - 3n 2m 5(4). 3(2a2b-ab2 )-2(5a2b-4ab2 )(5).(6).14.化简求值:(1). 已知:a = 2010 ,求(a 2- 3 - 3a +a3 ) - (2a3+ 4a 2+a - 8) + (a3+ 3a 2+ 4a - 4) 的值.(2). -1a2b -⎡ 3a2b - 3⎛abc -1a2c⎫- 4a2c⎤- 3abc ,其中a = -1, b = -3, c = 1. 2⎢23 ⎪⎥⎣⎝⎭⎦(3). 已知3x + 5 y 2+ 3 的值是 6,求代数式- 3x - 4 y 2+ 9x + 14 y 2- 7 的值.15. 有一道题目:当 a=2,b=-2 时,求多项式:3a3b3-2a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3 的值.甲同学做题时把 a=2 错抄成 a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

整式的加减测试卷(2)(含答案)

整式的加减测试卷(2)(含答案)

整式的加减测试卷(2)(含答案)第三章_shy; 整式的加减单元测试一.判断1.S=_shy;是圆的面积公式,也是代数式.( _shy;)2.代数式_shy;都是整式.(_shy;)3.对于代数式_shy;来说,不论a取何值,总有意义(_shy; )4.某项工程甲单独做a天完成,乙单独做b天完成,则甲.乙两人合作要用_shy;天( )5.某商品原价a元,降价20%后又提价20%,则该商品的价格仍为a元.(_shy; )6.代数式_shy;是单项式,系数是_shy;,次数为4.(_shy;)_shy;7.两个二次多项式的和仍是二次多项式.(_shy; )_shy;8.(_-1)-(1-_)+(_+1)=3_-1.(_shy;)_shy;9.若与是同类项,则m=4.(_shy; )_shy;10.对于代数式a3+3a2b+3ab2+b3,当a=4,b=-3时,代数式的值为-1.( _shy;)_shy;二.填空_shy;11.a表示一个三位数,b表示一个两位数,若把b放在a的左边构成一个五位数,则该五位数应记为__________._shy;12.在代数式0,a2+1,_2y,(a+b)(a-b),-a,_+-2_y+1,_shy;a2b中,单项式有____,_shy;多项式有________._shy;13.多项式-_shy;_3y+3_y3-5_2y3-1是______次______项式,最高次项是______,_shy;常数项是_________,最高次项的系数是_________._shy;14.多项式2_4y-_2y3+_shy;_3y2+_y4-1按_的降幂排列为______,按y_shy;的升幂排列为________._shy;15.多项式8_2-3_-3+4+2_-6_2中的同类项是_________._shy;16.已知A=_2-3_+2,B=-2_2+_-1,则A-B=______,-A+2B=________._shy;17.去括号:-{-[-(1-a)-(1-b)]}=______________._shy;18.化简:(3_2-2_+1)-(_2+2_+2)-(-2_2-_)=__________,当_=-2时,代数式的值是_______._shy;19.代数式(a2+b2)-(a+b)2的意义是_______,_shy;的意义是_______._shy;20.已知三个数的平均值是a,其中一个数为b,则其余两个数的平均值是______(用含a,b的代数式表示),若a=-3,b=2,则其余两个数的平均值是________._shy;三.选择_shy;21.有一两位数,其十位数字为a,个位数字为b,将两个数颠倒,_shy;得到一个新的两位数,_shy;那么这个新两位数十位上的数字与个位数字的和与这个新两位数的积用代数式表示( _shy;)_shy; A.ba(a+b)_shy; B.(a+b)(b+a) C.(a+b)(10a+b)_shy;D.(a+b)(10b+a)_shy;22.某班有学生m人,若每4人一组,有一组少2人,则所分组数是(_shy; )_shy; A. B. C.D._shy;23.浓度为p%和q%的盐水各akg和bkg,混合后从中取出ckg(c≤a+b,_shy;那么关于这ckg盐水的说法:(1)浓度是(p+q)%;(2)含盐(ap%+bq%)kg;(3)浓度是_shy;;(4)含水是_shy;,_shy;其中说法正确的个数是(_shy;)._shy; A.1 _shy;B.2 _shy;C.3_shy; D.4_shy;24.下列代数式的叙述,正确的是(_shy; )_shy; A. _shy;读作_减y分之一_shy;B._shy;读作_分之a减b_shy; C._shy;读作_除以3乘以y的平方_shy;D._shy;读作_的平方除以_与y的差_shy;25.下列各组单项式中,不是同类项的是(_shy; )_shy; A._y2和_2y_shy; B._shy;abc2和3ac2b_shy;C._shy;和0 D. _shy;和-2_y_shy;26.一个五次项式,它任何一项的次数( _shy;)._shy; A.都等于5 _shy;B.都大于5_shy; C.都不大于5_shy;D.都不小于5_shy;27.若A=4_2-3_-2,B=4_2-3_-4,则A,B的大小关系是(_shy; )_shy; A.A_lt;B_shy; B.A=B_shy;C.A_gt;B_shy;D.无法确定_shy;28.若-4y2与_shy;_4是同类项,则m-n的值是(_shy; )_shy; A.2_shy; B.6_shy; C.-2_shy;D.-6_shy;29.已知a-b=-1,则3b-3a-(a-b)3的值是(_shy; )._shy; A.-4_shy;B.-2 _shy;C.4_shy;D.230.已知m,n是自然数, 多项式的次数应当是()A.mB.nC.m+nD.m,n中较大的数_shy;四.解答_shy;31.某班共有学生40人,其中m岁的有9人,n岁的有24人,其余的都是s岁的人,_shy;用代数式表示他们的平均年龄.若m=7,n=8,s=9,该班的平均年龄是多少?_shy;32.先化简,再求值._shy; (1)_shy;(_2y2-_y+3)+2[_2-_shy;(_y-2_+y-1)]+3_-1,其中_=-4,y=3; _shy;(2)2(2a-b)2-_shy;(2a+b)+3(2a-b)2+2(2a+b)-13,其中a=_shy;,b=-2._shy;33.多项式5_2y+7_3-2y3与另一多项式的和为3_2y-y3,求另一多项式. _shy;34.把多项式_3y-_y2+_shy;-_2y3先按_的升幂排列,再按y的降幂排列._shy;35.如图,长方形ABCD的长是a,宽是b,分别以A,B为圆心作扇形,用代数式表示阴影部分的周长L和面积S._shy;36.已知:a=b+2,c的绝对值为3,m,n互为倒数,试求代数式_shy;+4mn-c2的值. _shy;五.证明_shy;37.已知:A=2_2+14_-1,B=_2+7_-2,试证A-2B的值与_无关._shy;38.证明:一个两位数的十位数字大于个位数字,_shy;如果把十位数字与个位数字交换位置,则原来的数与新得到的数的差必能被9整除._shy;第三章_shy;单元测试_shy;一.1.__shy;2.__shy;3.∨_shy;4.∨_shy;5.__shy;6.__shy;7.__shy;8.∨_shy;9.∨_shy;10.__shy;提示:_shy; 1.S=_shy;中含有非运算符号〝=〞,是等式,而非代数式._shy; 2._shy;中的分母含有字母_,因此_shy;不是整式._shy; 3.对任意的a,3a2+1_gt;0是恒成立的._shy; 5.a(1-20%)(1+20%)=_shy; 6._shy;是单项式,但系数是_shy;,次数为3._shy; 7.两个二次多项式的和可能不是二次多项式,如-_2+3和_2+y的和为y+3,是一次多项式,正确的说法应为两个二次多项式的和是不大于二次的多项式._shy; 9.由同类项的定义,即为m=4._shy; 10.代数式的值应为1._shy;二.11.1000b+a_shy; 提示:a是一个三位数,由于放在右边,所以不变,而b放在a的左边,把b_shy;看成一个整体,b处在千位上,应乘以1000,所以这个五位数是1000b+a._shy; 12.0,_2y,-a,_shy;a2b;_shy;a2+1,(a+b)(a-b),_2-2_y+1_shy; 13.五,_shy;四_shy;,-5_2y3_shy;,-1,_shy;-5._shy; 14.2_4y+_shy;_3y2-_2y3+_y4-1,_shy;-1+2_4y+_shy;_3y2-_2y3+_y4_shy; 15.8_2和-6_2,-3_和2_,-3和4_shy; 16.3_2-4_+3,_shy;-5_2+5_-4_shy; 17.a+b-2_shy; 18.4_+-3_-1,_shy;21._shy; 19.a,b的平方和与a,b和的平方的差,_shy;_,y倒数和的倒数._shy; 20._shy; 提示:三个数的和为3a,则其余两个数的和为3a-b,所以这两个数的平均值为_shy;三.21.D _shy;22.B _shy;23.A _shy;24.D_shy; 25.A_shy;26.C_shy; 27.C_shy; 28.A_shy; 29.C_shy; 30.D_shy; 提示:21.原两位数是10a+b,颠倒后的两位数是10b+a,新两位数十位上的数字是b,个位数字是a,两数字和为a+b,此和与新两位数的积为(a+b)(10b+a)_shy; 22.若给这个班加上2个人,每4人一组,则每个组的人数刚好相等,所以组数为_shy; 23.这ckg盐水的浓度为, 含盐应为,含水应为c-,只有(3)是正确的._shy; 25.A中所含字母相同,但相同字母的指数不同,故不是同类项._shy; 26.五次多项式是指最高次项的次数是5,而不要求每一项的次数都是5._shy; 27.A-B=(4_2-3_-2)-(4_2-3_-4)=2_gt;0,故A_gt;B._shy; 28.m=4,n=2._shy; 29.把a-b看成整体,并代入,3b-3a-(a-b)3=-3(a-b)-(a-b)3._shy; 30.多项式的次数是指最高次项的次数, _shy;是常数项,_shy;所以多项式的次数由决定,若m≥n,则m即为多项式的次数;反之若n≥m,则是最高次项,即n_shy;为多项式的次数._shy;四.31.平均年龄为,_shy; 将m=7,n=8,s=9代入得=7.95(岁)_shy; 32.(1)原式=-_shy;_2y2-_shy;_y+2_2+5_-y-1=-32._shy; (2)原式=5(2a-b)2+_shy;(2a+b)-13=_shy; 提示:将(2a-b)2,2a+b看成整体,合并同类项._shy; 33.-2_2y+y3-7_3_shy; 34.按_的升幂排列:_shy;-_y2-_2y3+_3y._shy; 按y的降幂排列:-_2y3-_y2+_3y+_shy; 35.L=2a-2b+_shy;b._shy; S=ab-_shy; 36.-4.6._shy;五.37.(略)_shy; 提示:消去_._shy; 38.设原两位数的十位数字为b,个位数字为a(b_gt;a),则原两位数为10b+a,交换后的两位数为10a+b._shy; 10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)。

整式的加减 知识点总结

整式的加减 知识点总结
(3)合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.
(2)单项式的系数、次数
单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.
在判别单项式的系数时,要注意包括数字前面的符号,而形如a或-a这样的式子的系数是1或-1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.
多项式
(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.
(2)整式的加减实质上就是合并同类项.
(3)整式加减的应用:
①认真审题,弄清已知和未知的关系;
②根据题意列出算式;
③计算结果,根据结果解答实际问题.
整式的加减----化简求值
给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.
②对于“数”或“形”的排列规律问题,用先从开始的几个简单特例入手,对比、分析其中保持不变的部分及发展变化的部分,以及变化的规律,尤其变化时与序数几的关系,归纳出一般性的结论.
单项式
(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.
用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.

《整式的加减》知识点

《整式的加减》知识点

3).合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不
变。
c.写出合并后的结果。
4).在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为 0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
叫做多项式。其中
叫做多项式的项,不含字母的项叫做
项。例
如:在多项式 2x-3 中,2x 和-3 是它的项,其中-3 是常数项。
7. 多项式的次数:多项式里
次数,叫做这个多项式的次数。例如:在多项
式 2x-3 中,次数最高的项是一次项 2x,这个多项式的次数是 1;在多项式 x 2 +2x+18
中,次数最高的项是二次项 x 2 ,这个多项式的次数是 2。
n 为指数,an 的结果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂
再运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂
例题:多项式 3x 2 y 2xy 4x 1 是

人教版七年级数学上册:22整式的加减教学设计(3课时)

人教版七年级数学上册:22整式的加减教学设计(3课时)
-总结规律,引出整式的概念:这些表达式都是由数字和字母的乘积组成的,我们把这类表达式称为整式。
(二)讲授新知
1.教学内容:讲解整式的分类、系数、次数等概念,以及整式的加减运算规则。
2.教学过程:
-介绍整式的分类:单项式、多项式,并通过实例进行解释。
-解释整式中的系数和次数的概念,让学生理解它们的含义。
-各小组汇报讨论成果,分享整式加减的运算技巧和心得。
-教师对每个小组的讨论成果进行点评,引导学生总结整式加减的运算规律。
-鼓励学生提出疑问,解答学生在讨论过程中遇到的问题。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生当堂巩固整式加减的知识。
2.教学过程:
-设计基础题,让学生熟练掌握整式加减的基本运算。
2.运算规律的掌握:帮助学生理解并熟练运用整式加减的运算规律,特别是在合并同类项和去括号时的技巧。
3.问题解决能力的提升:培养学生将整式加减应用于实际问题解决的能力,特别是在分析问题和构建数学模型时的能力。
教学想:
1.情境导入:通过生活中的实例,如购物时商品价格的计算,引出整式的概念和加减运算的必要性,激发学生的兴趣和求知欲。
2.新课导入:讲解整式的概念,引导学生认识单项式、多项式等。
3.教学重点:整式的加减运算规律。
4.教学难点:合并同类项、去括号的方法。
5.课堂练习:设计不同难度的练习题,让学生当堂巩固所学知识。
6.课后作业:布置适量的作业,巩固整式的加减运算。
第二课时:整式的加减应用
1.复习导入:回顾上一节课的内容,为新课的学习做好铺垫。
1.复习导入:回顾前两节课的内容,巩固整式的加减运算。
2.教学重点:整式的加减运算规律及其在实际问题中的应用。

2023-2024人教版七年级数学上册22整式的加减第3课时整式的加减运算pptx

2023-2024人教版七年级数学上册22整式的加减第3课时整式的加减运算pptx
解:由题意,得x3+3x2 -2x-(2x2 –x3+x) =x3+3x2-2x-2x2+x3-x =2x3+x2-3x.
所以另一个多项式为2x3+x2-3x.
第3课时 整式的加减运算
二 整式的加减的应用
例3 笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,2 支 圆珠笔;小明买4本笔记本,3支圆珠笔.买这些笔记本和圆珠笔,小红和 小明一共花费多少钱?
解:(2)当a=200,b=100时, 7a-5b=7×200-5×100=1400-500=900. 故中途上车的乘客有900人.
第3课时 整式的加减运算
课堂小结
整式加减的运算 法则
一般地,几个整式相加减,如果有括 号就先去括号,然后再合并同类项.
整式的 加减运算
整式加减运算 的应用
(1)化简求值; (2)实际应用.
第3课时 整式的加减运算
2.先化简,再求值:a+2(2a- 3 b)-3(a-b),其中a=-3,b=2.
2
解:a+2(2a- 3 b)-3(a-b)
2
=a+4a-3b-3a+3b =2a. 当a=-3时,原式=2×(-3)=-6.
第3课时 整式的加减运算
3.一列火车上原有乘客(6a-2b)人,中途有一半乘客下车,又有若干乘 客上车,此时车上共有乘客(10a-6b)人.试问: (1) 中途上车的乘客有多少人?
第3课时 整式的加减运算
随堂练习
1.计算: (1) (-x+2x2+5)+(4x2-3-6x) ;
解:(1)(-x+2x2+5)+(4x2-3-6x) =-x+2x2+5+4x2-3-6x =6x2 -7x+2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳小结
你觉得我们去括号时应特别注意什么?
1、去括号时要将括号前的符号和括号一起去掉 2、去括号时首先弄清括号前是“+”还是“-” ; 3、去括号时当括号前有数字因数应用乘法分配 律,切勿漏乘。
这节课我们学到了什么?
• 1 去括号的依据是:分配律 2 学习了类比的方法 3 去括号的方法 4 去括号在整式加减中的运用
巩固新知
2.判断下列计算是否正确:
(1) : 3(x 8) 3x 8
不正确
(2) : 3(x 8) 3x 24 不正确
(3) : 2(6 x) 12 2x 正确
(4) : 4(3 2x) 12 8x 不正确
3.下列去括号正确吗?如有错误 请改正。
(1)-(-a-b)=a-b ×
(1)2(χ+8)=2χ+16 观察与思考:
(2)-3(+3χ+4)= -9χ-12
(3)-7(+7y-5)= -49y+35
去括号前后,括
(1) :12(x 0.5) 12x 6
(2) : 5(1 1 x) 5
5 x
(3) : (x 3) x 3
号里各项的符号 有什么变化?
(4) : (x 3) x 3
(3)____(a-b)___(c+d)=c+d-a+b
5.利用去括号的规律进行整式的化简:
化简下列各式:
(1)8a 2b (5a b)
解:原式=8a+2b+5a-b
=13a+b
(2)(5a-3b)-3(a2 -2b)
解:原式 5a 3b (3a2 6b)
5a 3b 3a2 6b 3a2 5a 3b
布置作业
甲本:P68 练习1
再见
s 如果括号外的因数是正数,去括号后原
括号内的各项的符号与原来的符号
(
);
s 如果括号外的因数是负数,去括号后原 括号内的各项的符号与原来的符号 ( )。
s
项数都没变
s
乘法分配律
去掉“+( 去掉“–(
去括号法则:
)”,括号内各项的符号不变。 )”,括号内各项的符号改变。
用三个字母a、b、c表示去括号前后的变 化规律:
a+(b+c) = a+b+c a-(b+c) = a-b-c
读一读下面顺口溜,你是怎样理解的?
s 去括号, 看符号: s 是“+”号,不变号; s 是“-”号,全变号
s你明白它们变化的依据吗?
巩固新知
1.口答:去括号 (1)a + (– b + c ) = a-b+c ( 2 ) ( a – b ) – ( c + d ) = a-b-c-d ( 3 ) – (– a + b ) – c = a-b-c ( 4 ) – (2x – y ) – ( - x2 + y2 ) = -2x+y+x2-y2
(1)2(χ+8)= 2χ+16
(2)-3(3χ+4)= -9χ-12 (3)-7(7y-5)= -49y+35
探究新知
(1) :12(x 0.5) 12x 6
(2) : 5(1 1 x) 5
5 x
(3) : (x 3) x 3
(4) : (x 3) x 3
+(x+3)可 以看成是 +1×(x+3)
(2)5x-(2x-1)-x2=5x-2x+1+x2 ×
(3)3xy-0.5(xy-y2)=3xy-0.5xy+y2 ×
(4)(a3+b3)-3(2a3-3b3)=a3+b3-
-
6a3+9b3

3.根据去括号法则,在___上填上“+”号 或“-”号:
(1)a___(-b+c)=a-b+c; (2)a___(b-c-d)=a-b+c+d;
----去括号
慈惠中学 耿巧菊
知识回顾
1.你记得乘法分配律吗?用字母怎 样表示?
一个数同两个数的和相乘,等于把这个数分别 同这两个数相乘,再把积相加.
用字母表示为: a(b+c)=ab+ac
2.利用乘法分配律计算:
(1)12(
1 6
2 3
)
(2)
1类比方法计算下列各式:
相关文档
最新文档